JP2005181300A - Method for evaluating water vapor permeability - Google Patents

Method for evaluating water vapor permeability Download PDF

Info

Publication number
JP2005181300A
JP2005181300A JP2004336889A JP2004336889A JP2005181300A JP 2005181300 A JP2005181300 A JP 2005181300A JP 2004336889 A JP2004336889 A JP 2004336889A JP 2004336889 A JP2004336889 A JP 2004336889A JP 2005181300 A JP2005181300 A JP 2005181300A
Authority
JP
Japan
Prior art keywords
metal
water vapor
corrosion
test piece
vapor permeability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004336889A
Other languages
Japanese (ja)
Other versions
JP4470707B2 (en
Inventor
Hisashi Ito
寿 伊東
Kentaro Fujimoto
健太郎 藤本
Kenichi Kanemasa
賢一 兼政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2004336889A priority Critical patent/JP4470707B2/en
Publication of JP2005181300A publication Critical patent/JP2005181300A/en
Application granted granted Critical
Publication of JP4470707B2 publication Critical patent/JP4470707B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for evaluating water vapor permeability, capable of accurately and rapidly carrying out evaluating a slight amount of water vapor permeation, measuring moisture permeability and evaluating the in-plane distribution of structural defects, causing the water vapor permeation, which cannot be carried out by conventional methods, by using a simple test piece on which metallic corrosion is applied. <P>SOLUTION: In the method for evaluating the water vapor permeability, a metallic corrosion test piece is kept under a humidity environment, which is made up by forming a corrosive metal capable of being corroded, in reaction to moisture, on one surface side of a solid substrate composed of a material having water vapor permeability to be evaluated. Then, an image of the metallic corrosion test piece is photographed, where a portion of the corrosive metal is corroded by water vapor permeating through the solid substrate; a corrosion state of the metal reacting to the moisture is evaluated, by using an image processing means which processes the photographed image; and the water vapor permeability of the solid substrate is evaluated from the shape, distribution and/or area of corroded regions. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、水分による金属の腐食状態を迅速に精度良く測定する水蒸気透過性評価方法に関するものである。 The present invention relates to a water vapor permeability evaluation method for quickly and accurately measuring the corrosion state of a metal due to moisture.

水分が透過することで材料の特性が低下する現象が昔から確認されている。例えば、鉄表面に亜鉛やアルミ等のメッキを施したメッキ鋼板や表面処理鋼板では、メッキ材の欠陥を通して水分が浸透しサビを発生させる。また、プラスチック表面に酸化ケイ素、酸化アルミまたはアルミ金属箔を蒸着した食品や薬品の包装材料では蒸着膜の欠陥を通して水蒸気が拡散し、食品または薬品に吸湿する等の問題が発生する。更に最近では、電子・電気装置の包装材料や液晶表示素子、有機EL表示素子のようなハイレベルな防湿性が要求されるプラスチック基板の開発がなされているため、吸湿を防止するためのバリア膜の開発が非常に活発に行なわれている。   It has been confirmed for a long time that the properties of materials deteriorate due to the permeation of moisture. For example, in a plated steel sheet or a surface-treated steel sheet in which zinc or aluminum is plated on the iron surface, moisture penetrates through defects in the plated material and generates rust. In addition, in a packaging material for foods and chemicals in which silicon oxide, aluminum oxide or aluminum metal foil is vapor-deposited on the plastic surface, water vapor is diffused through defects in the deposited film, causing problems such as moisture absorption by the food or chemicals. More recently, plastic substrates that require high levels of moisture resistance such as packaging materials for electronic and electrical devices, liquid crystal display elements, and organic EL display elements have been developed. The development of is very active.

従来から検討されている水蒸気透過性の評価は、カップ法(非特許文献1)、モコン法(非特許文献2)等であるが、ハイレベルな防湿性を評価することは不可能であった。モコン法の測定限界値は0.01g/m2/day程度であり、有機EL基板等に要求される高度なバリア膜の水蒸気透過量は評価できない。 The evaluation of water vapor permeability that has been studied in the past is the cup method (Non-patent document 1), the mocon method (Non-patent document 2), etc., but it has been impossible to evaluate a high level of moisture resistance. . The measurement limit value of the Mocon method is about 0.01 g / m 2 / day, and the water vapor permeation amount of the advanced barrier film required for the organic EL substrate or the like cannot be evaluated.

最近、カルシウムの腐食により、バリア膜付きプラスチック基板の防湿性を評価する方法が開発された(例えば、非特許文献3、非特許文献4)。この方法はバリア膜付きプラスチック基板のバリア欠陥を通して侵入した水分とカルシウムの反応を利用した測定方法である。この方法は水分により腐食されやすいカルシウム金属薄膜を用いていることから、水蒸気透過性評価における腐食状態の変化を起こさないように、迅速に腐食状態を評価することが必要であった。また、バリア膜付きプラスチック基板の水蒸気透過性を定量的に評価するために、試験片を湿度環境に長時間保管し一定期間毎にカルシウム腐食の発生状態を観察することが必要である。腐食状態の測定は、湿度環境暴露試験を中断して行うために、短時間で試験片の腐食状態を測定できる装置の開発が求められていた。
試験片の腐食状態を短時間で測定する方法としては、試験片の表面状態をカメラで撮影し、その画像を画像処理装置で二値化処理して、腐食領域の面積などを測定する方法が考えられる(例えば、特許文献1)。しかしながら、あらかじめ設定した閾値による二値化処理手法が有効となるのは、画像上での試験片の腐食領域と未腐食領域の濃淡、あるいは、色の差が大きい場合のみである。基板、腐食金属、腐食物の組み合わせによっては、腐食領域と未腐食領域の濃淡、あるいは、色の差が、試験片の表面のむらや照明のばらつきと同程度かそれ以下の場合がある。このような試験片に対しては画像の二値化処理を用いた表面状態測定方法を用いることはできず、検査員が目視により長時間かけて腐食の状態を測定するしかなかった。
Recently, a method for evaluating the moisture resistance of a plastic substrate with a barrier film by corrosion of calcium has been developed (for example, Non-Patent Document 3 and Non-Patent Document 4). This method is a measurement method using the reaction between moisture and calcium that has penetrated through a barrier defect of a plastic substrate with a barrier film. Since this method uses a calcium metal thin film that is easily corroded by moisture, it was necessary to quickly evaluate the corrosion state so as not to cause a change in the corrosion state in water vapor permeability evaluation. In addition, in order to quantitatively evaluate the water vapor permeability of the plastic substrate with a barrier film, it is necessary to store the test piece in a humidity environment for a long time and observe the occurrence of calcium corrosion at regular intervals. Since the measurement of the corrosion state is performed by interrupting the humidity environment exposure test, development of an apparatus capable of measuring the corrosion state of the test piece in a short time has been demanded.
As a method for measuring the corrosion state of a test piece in a short time, there is a method of photographing the surface state of the test piece with a camera, binarizing the image with an image processing device, and measuring the area of the corrosion region, etc. It is conceivable (for example, Patent Document 1). However, the binarization processing method using a preset threshold value is effective only when the density of the corroded area and the uncorroded area of the test piece on the image or the color difference is large. Depending on the combination of the substrate, corroded metal, and corroded material, the contrast between the corroded area and the uncorroded area, or the color difference may be similar to or less than the unevenness of the surface of the test piece and the variation in illumination. For such a test piece, the surface state measurement method using the binarization processing of the image cannot be used, and the inspector has to measure the corrosion state over a long time by visual observation.

特開平7−5117号公報Japanese Patent Laid-Open No. 7-5117 JIS Z 0208JIS Z 0208 JIS K 7129 B法JIS K 7129 method B Asia Display/IDW'01 p1435〜p1438Asia Display / IDW'01 p1435〜p1438 R.S. Kumar et al, Thin Solid Films, 417, 120-126(2002)R.S.Kumar et al, Thin Solid Films, 417, 120-126 (2002)

本発明は、従来行うことができなかった微量な水蒸気透過性の評価、透湿度測定及び水蒸気透過を引き起こす構造欠陥の面内分布の評価を、金属腐食を活用した簡便な試験片を用いて精度良く迅速に評価できる水蒸気透過性評価方法を提供するものである。   The present invention accurately evaluates a small amount of water vapor permeability, measurement of moisture permeability and in-plane distribution of structural defects causing water vapor transmission, which could not be performed conventionally, using a simple test piece utilizing metal corrosion. The present invention provides a water vapor permeability evaluation method that can be evaluated well and quickly.

すなわち本発明は、
(1) 水蒸気透過性を評価する材料から成る固体基板の片面側に、水分と反応して腐食する腐食性金属を形成した金属腐食試験片を湿度環境下に保管し、固体基板を透過した水蒸気によって前記腐食性金属の一部分が腐食した金属腐食試験片の画像を撮影し、撮影した画像の処理を行う画像処理手段を用いて水分と反応した金属の腐食状態を評価し、腐食領域の形状、分布及び/又は面積から固体基板の水蒸気透過性を評価する水蒸気透過性評価方法、
(2)前記撮影した画像に対し、微分処理を行うことにより得られた輪郭点群のうち隣接する輪郭点同士を接続することにより得られた閉曲線を腐食領域の輪郭として腐食領域の面積を測定する(1)記載の水蒸気透過性評価方法、
(3)前記金属腐食試験片に腐食性金属の形成箇所を特定するためのマークが腐食性 金属と重ならない領域に少なくとも2個形成されている(1)又は(2)記載 の水蒸気透過性評価方法、
(4) 前記金属腐食試験片の単位時間あたりの腐食面積増加量と腐食金属の厚みから算出される単位時間あたりの腐食金属の体積変化量から、金属と反応する単位時間あたりの水分量を定量化し、水蒸気透過度を測定する(1)〜(3)いずれか記載の水蒸気透過性評価方法、
(5) 前記腐食性金属が、アルカリ金属、アルカリ土類金属またはその合金を含むものである(1)〜(4)いずれか記載の水蒸気透過性評価方法、
(6) 前記腐食性金属がCa、Mgの何れかを含むものである(5)記載の水蒸気透過性評価方法、
である。
That is, the present invention
(1) A metal corrosion test piece in which a corrosive metal that reacts with moisture and corrodes is formed on one side of a solid substrate made of a material for evaluating water vapor permeability is stored in a humidity environment, and water vapor that has permeated the solid substrate. By taking an image of a metal corrosion test piece in which a part of the corrosive metal corroded by the image processing means to evaluate the corrosion state of the metal reacted with moisture using an image processing means for processing the photographed image, the shape of the corrosion area, Water vapor permeability evaluation method for evaluating water vapor permeability of a solid substrate from distribution and / or area,
(2) The area of the corrosion area is measured using the closed curve obtained by connecting adjacent outline points among the outline point groups obtained by performing differentiation on the photographed image as the outline of the corrosion area. The water vapor permeability evaluation method according to (1),
(3) The water vapor permeability evaluation according to (1) or (2), wherein at least two marks for identifying a location where a corrosive metal is formed on the metal corrosion test piece are formed in a region not overlapping with the corrosive metal. Method,
(4) Quantify the amount of moisture per unit time reacting with the metal from the amount of corrosion area increase per unit time calculated from the amount of corrosion area of the metal corrosion test piece and the thickness of the corroded metal. The water vapor permeability evaluation method according to any one of (1) to (3),
(5) The water vapor permeability evaluation method according to any one of (1) to (4), wherein the corrosive metal includes an alkali metal, an alkaline earth metal, or an alloy thereof.
(6) The method for evaluating water vapor permeability according to (5), wherein the corrosive metal contains Ca or Mg.
It is.

本発明によれば、従来測定が困難であった微量な水蒸気透過性の評価及びその定量的な評価を、迅速かつ高精度で達成できる測定手法を提供できることから、工業的価値は極めて高い。   According to the present invention, since it is possible to provide a measurement technique that can achieve a rapid and highly accurate evaluation of a trace amount of water vapor permeability and its quantitative evaluation, which have been difficult to measure conventionally, the industrial value is extremely high.

本発明は、水蒸気透過性を評価する材料から成る固体基板(以下、固体基板と略する)の片面側に、水分と反応して腐食する腐食性金属を形成した金属腐食試験片を湿度環境下に保管することで、固体基板を透過した水蒸気によって前記腐食性金属が腐食することを利用したものである。
本発明の水蒸気透過性評価方法に用いる金属腐食試験片としては、固体基板の片面側に腐食性金属を形成した後に、腐食性金属を形成した面側を大気開放することなしに、固体基板の周辺および腐食性金属側を硬化性接着剤とガラス基板で封止することにより得られる試験片(図4)、固体基板の表面に腐食性金属を形成した後に非腐食性金属またはバリア性の高い透明酸化物で固体基板と接触していない腐食性金属の表面を保護した後に、固体基板の周辺および腐食性金属側の面を硬化性接着剤とガラス基板で封止することにより得られる試験片(図5)、固体基板の表面に腐食性金属を形成した後に非腐食性金属で固体基板と接触していない腐食性金属の表面を保護した後に、腐食性金属と非腐食性金属を順じ形成した固体基板の腐食性金属側の面をガラス基板と硬化性接着剤を介して接着することにより得られる試験片(図6)が挙げられる。また、固体基板の表面に腐食性金属を形成した後に非腐食性金属で固体基板と接触していない腐食性金属の表面を保護した後に、腐食性金属と非腐食性金属を順じ形成した側の面を低透湿性の熱可塑性樹脂で全面封止することにより得られる試験片や腐食性金属と非腐食性金属を順じ形成した側の固体基板全面を低透湿性の熱可塑性樹脂を挟んでガラス基板で封止する試験片(図7)が挙げられる。
また、バリア薄膜層のみの水蒸気透過性を評価するために、ガラス基板のような不透湿性基板上に腐食性金属を形成した後に、大気開放せずに連続で水蒸気透過性を評価したいバリア薄膜層を用いて腐食性金属の表面を保護することにより得られる試験片を挙げることもできる。
The present invention provides a metal corrosion test piece in which a corrosive metal that reacts with moisture and corrodes is formed on one side of a solid substrate (hereinafter abbreviated as a solid substrate) made of a material for evaluating water vapor permeability in a humidity environment. In this case, the corrosive metal is corroded by water vapor permeated through the solid substrate.
As a metal corrosion test piece used in the water vapor permeability evaluation method of the present invention, after forming a corrosive metal on one side of the solid substrate, the surface side on which the corrosive metal is formed is not opened to the atmosphere. Test piece obtained by sealing the periphery and corrosive metal side with a curable adhesive and a glass substrate (FIG. 4), non-corrosive metal or high barrier property after forming corrosive metal on the surface of solid substrate A test piece obtained by protecting the surface of a corrosive metal not in contact with a solid substrate with a transparent oxide, and then sealing the periphery of the solid substrate and the surface on the corrosive metal side with a curable adhesive and a glass substrate. (Fig. 5) After the corrosive metal is formed on the surface of the solid substrate, the non-corrosive metal protects the surface of the corrosive metal that is not in contact with the solid substrate, and then the corrosive metal and the non-corrosive metal are ordered. Corrosivity of the formed solid substrate Test pieces obtained by bonding a surface of genus side through the glass substrate and a curable adhesive (Fig. 6) and the like. In addition, after the corrosive metal is formed on the surface of the solid substrate, the surface of the corrosive metal that is not in contact with the solid substrate is protected with a non-corrosive metal, and then the corrosive metal and the non-corrosive metal are sequentially formed. A test piece obtained by sealing the entire surface with a low-moisture-permeable thermoplastic resin, or a solid substrate on the side where a corrosive metal and a non-corrosive metal are sequentially formed, sandwiched with a low-moisture-permeable thermoplastic resin The test piece (FIG. 7) sealed with a glass substrate is mentioned.
In addition, in order to evaluate the water vapor permeability of only the barrier thin film layer, after forming a corrosive metal on a moisture-impermeable substrate such as a glass substrate, it is desired to continuously evaluate the water vapor permeability without opening to the atmosphere. Mention may also be made of specimens obtained by using a layer to protect the surface of corrosive metals.

本発明の一部分が腐食した金属腐食試験片の画像を撮影し、撮影した画像の処理を行う画像処理手段としては、例えば以下のように実現できる。
本発明の水蒸気透過性を評価する装置の概略構成図を図1に示す。照明装置3の光を試験片2の表面で反射させ撮像装置1にて撮影する。試験片2の腐食による表面状態の変化を感度良く撮影するため、試験片2の表面からの正反射光を撮像装置1にて撮影できるように、撮像装置1、試験片2、照明装置3の位置を設定する。つまり、照明装置3から試験片2への光の入射角と試験片2から撮像装置1への反射角を等しくする。撮像装置1のセンサの種類としては、CCD、CMOSなどがあるが、いずれでも良い。撮像装置1のセンサの形式としては、2次元の画像が取得可能なエリア形と、素子自体は1次元の画像のみが取得可能だが、試験片2と撮像装置1を相対的に移動させながら撮影することにより2次元の画像を構成可能なラインセンサ形がある。試験片2の測定対象範囲を数回以内の撮影でカバーできる場合は、エリア形、それよりも広い範囲を撮影する必要がある場合はラインセンサ形を使用すると、撮影時間、精度の面で好ましい。照明装置3としては、撮像装置1で正反射の光を撮影するのに十分な面積が必要で、輝度はできる限り均一であることが好ましい。
An image processing means for taking an image of a metal corrosion test piece in which a part of the present invention is corroded and processing the taken image can be realized as follows, for example.
A schematic configuration diagram of an apparatus for evaluating water vapor permeability of the present invention is shown in FIG. The light from the illumination device 3 is reflected by the surface of the test piece 2 and is imaged by the imaging device 1. In order to photograph the change in the surface state due to corrosion of the test piece 2 with high sensitivity, the imaging device 1, the test piece 2, and the illumination device 3 can be photographed with the imaging device 1 so that the specular reflection light from the surface of the test piece 2 can be photographed. Set the position. That is, the incident angle of light from the illumination device 3 to the test piece 2 and the reflection angle from the test piece 2 to the imaging device 1 are made equal. Examples of the sensor of the imaging device 1 include a CCD and a CMOS, but any of them may be used. As the sensor format of the image pickup apparatus 1, an area shape capable of acquiring a two-dimensional image and the element itself can acquire only a one-dimensional image, but the image is taken while relatively moving the test piece 2 and the image pickup apparatus 1. By doing so, there is a line sensor type that can form a two-dimensional image. When the measurement target range of the test piece 2 can be covered with a few shots, it is preferable in terms of shooting time and accuracy to use the area type and the line sensor type when it is necessary to take a wider range. . It is preferable that the illumination device 3 has a sufficient area for photographing regularly reflected light by the imaging device 1 and the luminance is as uniform as possible.

画像入力装置4は撮像装置1から出力されるアナログ信号もしくはデジタル信号を画像処理装置5で処理するのに必要な形式に変換する。画像処理装置5が画像処理専用装置である場合、画像入力装置4の機能も含有している場合がある。また、画像処理装置5がパソコンとすることも可能で、その場合、画像入力装置4はパソコンの拡張ボードとなっている場合が多い。画像処理装置5としては、処理量が多い場合は画像処理専用機の方が高速な処理が可能なことから好ましく、処理量が少ない場合は、安価であること、処理内容を柔軟に変更可能であることからパソコンをベースとしたものが好ましい。
試験片2の画像を処理し、表面の腐食を測定した結果は表示装置6に表示するとともに、記憶装置7に記録し、後からデータを引き出すことが可能にするのが好ましい。
試験片2の測定対象領域を1回の撮影では撮影しきれない場合は、試験片2を移動させるためのアクチュエータ9を具備させ、撮影領域をずらしながら撮影を繰り返し行うことにより測定対象領域全体の測定をすることが可能となる。アクチュエータ9の動作と撮像装置1の撮影やその後の処理の同期を取るため、制御装置8より各装置の制御を行う。撮像装置1がエリア形の場合、試験片2をアクチュエータ9により、連続的、もしくは、断続的に動かし、撮影領域をずらしながら撮影することにより、測定対象領域全体を撮影することができる。撮像装置1がライン形の場合は、試験片2を連続的に動かしながら撮影することにより測定対象領域全体を撮影することができる。
The image input device 4 converts an analog signal or a digital signal output from the imaging device 1 into a format necessary for processing by the image processing device 5. When the image processing apparatus 5 is an image processing dedicated apparatus, the function of the image input apparatus 4 may be included. Further, the image processing apparatus 5 can be a personal computer. In that case, the image input apparatus 4 is often an expansion board of the personal computer. As the image processing apparatus 5, when the amount of processing is large, the image processing dedicated machine is preferable because it can perform high-speed processing. When the amount of processing is small, it is inexpensive and the processing content can be changed flexibly. For this reason, a personal computer-based one is preferable.
The result of processing the image of the test piece 2 and measuring the surface corrosion is preferably displayed on the display device 6 and recorded in the storage device 7 so that the data can be retrieved later.
When the measurement target area of the test piece 2 cannot be captured by one imaging, an actuator 9 for moving the test piece 2 is provided, and the imaging is repeated while shifting the imaging area, so that the entire measurement target area is measured. Measurement can be performed. In order to synchronize the operation of the actuator 9 with the imaging of the imaging device 1 and the subsequent processing, the control device 8 controls each device. When the imaging device 1 is an area type, the entire measurement target region can be photographed by moving the test piece 2 continuously or intermittently by the actuator 9 and photographing while shifting the photographing region. When the imaging device 1 is a line type, the entire measurement target region can be photographed by photographing while moving the test piece 2 continuously.

図2は本発明の装置における画像処理の説明図である。画像処理装置5は画像入力装置4から入力画像10を得る。入力画像10には濃淡差あるいは色差として腐食領域11やむら12の像が含まれている。入力画像10に微分処理を行い、微分処理画像13を得ると、腐食領域11はむら12と比較して、入力画像10における像の輪郭がはっきりしているため、腐食領域11の輪郭周辺は画像微分値が大きく、むら12の輪郭周辺は画像微分値が小さくなる。腐食領域11の中央部やむら12の中央部、さらに、腐食領域11でもむら12でもない部分の画像微分値は小さく、ほとんど0となる。従って、微分処理画像13を適当な閾値で二値化することにより、腐食領域11の輪郭の大部分と、むら12の輪郭のうちはっきりしている部分を抽出することが可能となる。画像処理における微分手法しては、ソベルフィルタ、ラプラシアンフィルタなどがある。ソベルフィルタでは画像中の各画素における微分値とともに、各画素における輪郭の角度の値も得られる。輪郭の角度の値は後述する輪郭点連結処理の際に有用であるため、微分手法としてはソベルフィルタが好適である。   FIG. 2 is an explanatory diagram of image processing in the apparatus of the present invention. The image processing device 5 obtains an input image 10 from the image input device 4. The input image 10 includes images of corrosion areas 11 and unevenness 12 as light and shade differences or color differences. When differential processing is performed on the input image 10 to obtain a differential processing image 13, the contour of the image in the input image 10 is clearer than the unevenness 12 in the corrosion region 11. The differential value is large, and the image differential value is small around the contour of the unevenness 12. The image differential values of the central portion of the corroded area 11 and the central portion of the unevenness 12 and the portion that is neither the corroded area 11 nor the unevenness 12 are small and almost zero. Therefore, by binarizing the differential processing image 13 with an appropriate threshold value, it becomes possible to extract most of the contour of the corroded region 11 and a clear portion of the contour of the unevenness 12. Differentiating methods in image processing include a Sobel filter and a Laplacian filter. In the Sobel filter, the value of the angle of the contour in each pixel is obtained together with the differential value in each pixel in the image. Since the value of the contour angle is useful in the contour point connection process described later, a Sobel filter is suitable as the differentiation method.

微分処理画像13中の輪郭点14同士を接続することにより、輪郭点連結画像15を得る。輪郭点の連結方法としては、隣り合う輪郭点14同士を連結する4近傍連結法や8近傍連結法、連結された曲線の滑らかさや曲線を構成する輪郭点間の距離をもとに評価値を作成し、遺伝的アルゴリズムなどの最適化手法により評価値が大きくなるように輪郭点14を連結する方法、輪郭点14における輪郭の角度をもとに曲線を延長し輪郭点14を連結していく方法などがある。微分処理画像13中にノイズが少なく、輪郭点14を連結していく際に曲線の枝分かれがほとんど生じない場合には、処理速度の面で4近傍連結法や8近傍連結法が好ましく、そうではない場合は、最適化手法を用いた方法や輪郭の角度を用いた方法などにより、ノイズの影響を受けにくい連結方法を採用する必要がある。   By connecting the contour points 14 in the differentiated image 13, a contour point connected image 15 is obtained. As a method for connecting contour points, an evaluation value is calculated based on a 4-neighbor connection method or an 8-neighbor connection method for connecting adjacent contour points 14, smoothness of connected curves, or distances between contour points constituting a curve. A method of creating and connecting contour points 14 so as to increase the evaluation value by an optimization method such as a genetic algorithm, and extending the curve based on the angle of the contour at the contour point 14 to connect the contour points 14 There are methods. When there is little noise in the differential processing image 13 and there is almost no branching of the curve when the contour points 14 are connected, the 4-neighbor connection method or the 8-neighbor connection method is preferable in terms of processing speed. If not, it is necessary to adopt a connection method that is not easily affected by noise, such as a method using an optimization method or a method using a contour angle.

輪郭点の連結処理により得られた輪郭点連結画像15中には輪郭点の接続により生成された閉曲線16と輪郭点の接続により生成された開曲線17が存在する。むら12は輪郭がはっきりしないため、輪郭点連結画像15中では、輪郭点14を連結した曲線は途中で切れてしまい、閉曲線とはならない。しかしながら、腐食領域11の輪郭はむら12よりははっきりしているため、輪郭点14を連結すると曲線は閉曲線16になる。従って、輪郭点連結画像15から輪郭点の接続により生成された閉曲線16のみを抽出することにより腐食領域抽出画像18を得ることができる。腐食領域抽出画像18中の腐食領域輪郭19から、腐食領域の面積や位置を測定することが可能となる。 本発明の金属腐食試験片は、例えば以下のように実施する。成膜源を2つ以上持つ真空成膜装置を用い、まず水分と反応して腐食する金属を、マスクを介して不透湿固体基板上に蒸着させた後に、マスクを取り除き大気に開放することなしに、連続してバリア性を有する膜構造物で金属を保護することにより試験片を作製することができる。 A closed curve 16 generated by connecting the contour points and an open curve 17 generated by connecting the contour points exist in the contour point connected image 15 obtained by the connecting process of the contour points. Since the contour of the unevenness 12 is not clear, the curved line connecting the contour points 14 is cut off in the contour point connected image 15 and does not become a closed curve. However, since the contour of the corroded region 11 is clearer than the unevenness 12, the curve becomes a closed curve 16 when the contour points 14 are connected. Therefore, the corrosion area extraction image 18 can be obtained by extracting only the closed curve 16 generated by connecting the contour points from the contour point connection image 15. From the corrosion area outline 19 in the corrosion area extraction image 18, the area and position of the corrosion area can be measured. The metal corrosion test piece of the present invention is implemented as follows, for example. Use a vacuum film-formation device with two or more film-formation sources, and first deposit the metal that reacts with moisture and corrodes it onto a moisture-impermeable solid substrate through a mask, then removes the mask and opens it to the atmosphere. The test piece can be prepared by continuously protecting the metal with a film structure having a barrier property.

本発明の水蒸気透過性評価方法を用いて、腐食性金属の水蒸気透過による腐食成長挙動を経時的に撮影するには、金属腐食試験片に腐食性金属の形成箇所を特定するためのマークを腐食性金属と重ならない領域に少なくとも2個形成されていることが好ましい。金属腐食試験片にマークが少なくとも2個あれば、金属腐食状態を画像撮影する場合に、腐食性金属の領域を迅速に精度良く撮影可能となる。また、撮影した画像を画像処理手段で評価する場合、水蒸気透過により生じたそれぞれの腐食の位置を、マークを基準にして評価可能となるため、一つの腐食に着目した経時的な腐食の成長の評価も容易にできる。
図8、図9にマーキングを入れた腐食性金属試験片の例を示した。
金属腐食試験片に用いるマークは水蒸気透過により、マークが消失しないことが必要であり、耐水性のインクや非腐食性金属等で形成されることが好ましい。形成方法は、マスクを用いた印刷やマスクを用いた真空蒸着やスパッタ法等の真空成膜法が挙げられるが、腐食性金属を形成する面を清浄に保ち評価面のダメージを軽減するためには、真空蒸着法が好ましい。
Using the method for evaluating water vapor permeability of the present invention, the corrosion growth behavior of corrosive metals due to water vapor permeation can be photographed over time by corroding the mark for identifying the location of the corrosive metal on the metal corrosion test piece. It is preferable that at least two are formed in a region that does not overlap with the conductive metal. If the metal corrosion test piece has at least two marks, the corrosive metal region can be imaged quickly and accurately when an image of the metal corrosion state is imaged. In addition, when the captured image is evaluated by the image processing means, it is possible to evaluate the position of each corrosion caused by water vapor permeation with reference to the mark. Evaluation is also easy.
8 and 9 show examples of corrosive metal test pieces with markings.
The mark used for the metal corrosion test piece needs to be prevented from disappearing due to water vapor transmission, and is preferably formed of water-resistant ink or non-corrosive metal. The formation method includes printing using a mask, vacuum deposition using a mask, and vacuum deposition methods such as sputtering. In order to keep the surface on which the corrosive metal is formed clean and reduce damage to the evaluation surface Is preferably a vacuum deposition method.

また、本発明の水蒸気透過性評価方法を用いて、任意の条件下で恒温恒湿度処理を施した金属腐食試験片の腐食する金属の腐食面積とその厚みから算出される腐食金属物の総体積を経時的に観察することによって、腐食性金属と反応した水分量が算出されるため、金属腐食試験片の水蒸気透過性を定量的に評価できる。腐食性の金属は水分と反応することで金属水酸化物に変化する。式1に示すように、価数aの金属1molはamolの水分と反応し、1molの金属水酸化物を生成する。

M + aH2O → M(OH)a + (a/2)H2 (式1)

よって水蒸気透過量は、恒温恒湿処理時間、金属腐食試験片の腐食性金属面積と処理後の腐食された金属面積、腐食性金属の厚み、腐食性金属の腐食後の厚み補正係数(式3)、腐食後の金属水酸化物の密度から求めることができる。

恒温恒湿処理後の金属水酸化物のモル量(X):
X=(δ*t*α*d(MOH))/M(MOH) (式2)
1<α≦(M(MOH)/d(MOH)))/(M(M)/d(M)) (式3)
水蒸気透過度(g/m2/day)=X*18*m*(104/A)*(24/T)(式4)

恒温恒湿処理時間 : T(hour)
腐食性金属の面積 : A(cm2
腐食性金属の厚み : t(cm)
腐食性金属の腐食後の厚み補正係数 :α
腐食された金属面積 : δ(cm2
腐食性金属の分子量 : M(M)
腐食後の金属水酸化物分子量 : M(MOH)
腐食性金属の密度 : d(M)(g/cm3
腐食後の金属水酸化物密度 : d(MOH)(g/cm3
腐食性金属の価数 : m

また、本発明の水蒸気透過性評価方法を用いて、任意の条件下で恒温恒湿度処理を施した金属腐食試験片の腐食性金属の面積に対する腐食された金属面積の割合を腐食面積率(式5)とし、腐食面積率を恒温恒湿処理時間に対してプロットしたグラフの傾きから得られる腐食面積率成長速度(式6)と腐食性金属の厚みから算出される単位時間あたりに生成する腐食金属の水酸化物の総体積から、単位時間当たりに腐食性金属と反応した水分量が算出されるため、金属腐食試験片の水蒸気透過性を、式7を用いて定量的に評価することもできる。

腐食面積率:Y(%) Y=δ/A*100 (式5)
腐食面積率成長速度:Z(%/h) Z=ΔY/ΔT (式6)
水蒸気透過度(g/m2/day)=8.64*104*Z*t*α*d(MOH)/M(MOH) (式7)
Further, using the water vapor permeability evaluation method of the present invention, the total volume of corroded metal objects calculated from the corroded area and thickness of the corroded metal of the metal corrosion test piece subjected to constant temperature and humidity treatment under any condition Since the amount of water that has reacted with the corrosive metal is calculated by observing the water vapor over time, the water vapor permeability of the metal corrosion test piece can be quantitatively evaluated. Corrosive metals change to metal hydroxides by reacting with moisture. As shown in Equation 1, 1 mol of metal having a valence of a reacts with amol of water to produce 1 mol of metal hydroxide.

M + aH 2 O → M ( OH) a + (a / 2) H 2 ( Equation 1)

Therefore, the water vapor permeation amount is the constant temperature and humidity treatment time, the corrosive metal area of the metal corrosion test piece, the corroded metal area after the treatment, the thickness of the corrosive metal, the thickness correction coefficient after the corrosion of the corrosive metal (formula 3 ) And can be obtained from the density of the metal hydroxide after corrosion.

Molar amount of metal hydroxide after constant temperature and humidity treatment (X):
X = (δ * t * α * d (MOH) ) / M (MOH) (Formula 2)
1 <α ≦ (M (MOH) / d (MOH)) ) / (M (M) / d (M) ) (Formula 3)
Water vapor permeability (g / m 2 / day) = X * 18 * m * (10 4 / A) * (24 / T) (Formula 4)

Constant temperature and humidity treatment time: T (hour)
Area of corrosive metal: A (cm 2 )
Corrosive metal thickness: t (cm)
Thickness correction factor after corrosion of corrosive metal: α
Corroded metal area: δ (cm 2 )
Corrosive metal molecular weight: M (M)
Metal hydroxide molecular weight after corrosion: M (MOH)
Corrosive metal density: d (M) (g / cm 3 )
Metal hydroxide density after corrosion: d (MOH) (g / cm 3 )
Corrosion metal valence: m

Further, by using the water vapor permeability evaluation method of the present invention, the ratio of the corroded metal area to the corrosive metal area of the metal corrosion test piece subjected to constant temperature and humidity treatment under an arbitrary condition is expressed as a corrosion area ratio (formula 5) and the corrosion generated per unit time calculated from the corrosion area rate growth rate (formula 6) obtained from the slope of the graph plotting the corrosion area rate against the constant temperature and humidity treatment time and the thickness of the corrosive metal Since the amount of water that has reacted with the corrosive metal per unit time is calculated from the total volume of the metal hydroxide, the water vapor permeability of the metal corrosion test piece can be quantitatively evaluated using Equation 7. it can.

Corrosion area ratio: Y (%) Y = δ / A * 100 (Formula 5)
Corrosion area rate growth rate: Z (% / h) Z = ΔY / ΔT (Formula 6)
Water vapor permeability (g / m 2 /day)=8.64*10 4 * Z * t * α * d (MOH) / M (MOH) (Formula 7)

本発明の金属腐食試験片に用いる水分と反応して腐食する金属としては、アルカリ金属、アルカリ土類金属またはその合金が好ましく、安価で比較的蒸着膜を形成し易いカルシウムやマグネシウム金属またはその合金がより好ましい。また、腐食性金属の仕事関数は4.1eVより小さい金属が良い。仕事関数が4.1eV以上の金属または合金は水分が浸透しても酸化腐食され難く、極微量な水分の透過を評価することは出来ない。また、腐食性金属層の膜厚は、30nm〜500nmであることが好ましい。蒸着によって形成される腐食性金属の厚さが30nm以下であると、膜形成能が不十分な厚み領域のため、金属層が固体基板上に均一に形成されないことがあるので好ましくない。一方、500nm以上であると、非腐食性金属またはバリア性の高い透明酸化物で表面を封止保護する際に、腐食性金属層が形成されている部分と形成されていない部分の境目の段差が大きくなり、境界部で封止欠陥ができやすくなるため好ましくない。 As a metal which reacts with moisture used in the metal corrosion test piece of the present invention and corrodes, an alkali metal, an alkaline earth metal or an alloy thereof is preferable, and a calcium or magnesium metal or an alloy thereof which is easy to form a deposited film at a low price. Is more preferable. Moreover, the work function of the corrosive metal is preferably a metal smaller than 4.1 eV. A metal or alloy having a work function of 4.1 eV or more is hardly oxidized and corroded even if moisture penetrates, and the permeation of a very small amount of moisture cannot be evaluated. Moreover, it is preferable that the film thickness of a corrosive metal layer is 30 nm-500 nm. If the thickness of the corrosive metal formed by vapor deposition is 30 nm or less, it is not preferable because the metal layer may not be formed uniformly on the solid substrate because the film forming ability is insufficient. On the other hand, when the surface is 500 nm or more, when the surface is sealed and protected with a non-corrosive metal or a transparent oxide having a high barrier property, the level difference between the portion where the corrosive metal layer is formed and the portion where it is not formed Becomes larger, and a sealing defect is likely to occur at the boundary, which is not preferable.

腐食性金属層の表面に形成される保護層は、非腐食性金属またはガスバリア性の高い透明酸化物が上げられる。非腐食性金属としては、亜鉛、クロム、アルミニウム、銀またはそれらの合金が安価で化学的に安定であるためより好ましい。ガスバリア性の高い透明酸化物としては、金属酸化物、金属窒化物または金属窒化酸化物が好ましい。中でも透明性の高い酸化ケイ素、酸化アルミ、窒化酸化ケイ素、窒化アルミ、窒化珪素、インジウム錫酸化物(ITO)がより好ましい。また、透明構造物である金属酸化物、金属窒化物または金属窒化酸化物を多層化した膜構造物も封止性能を向上させるために好ましく、金属酸化物、金属窒化物または金属窒化酸化物を、有機化合物を介して多層化する方法は封止性能を更に向上させるためにより好ましい。 The protective layer formed on the surface of the corrosive metal layer is made of a non-corrosive metal or a transparent oxide having a high gas barrier property. As the non-corrosive metal, zinc, chromium, aluminum, silver or an alloy thereof is more preferable because it is inexpensive and chemically stable. As the transparent oxide having a high gas barrier property, a metal oxide, a metal nitride, or a metal nitride oxide is preferable. Among these, highly transparent silicon oxide, aluminum oxide, silicon nitride oxide, aluminum nitride, silicon nitride, and indium tin oxide (ITO) are more preferable. In addition, a film structure in which a metal oxide, metal nitride, or metal nitride oxide that is a transparent structure is multilayered is also preferable in order to improve sealing performance, and metal oxide, metal nitride, or metal nitride oxide is preferably used. The method of multilayering via an organic compound is more preferable in order to further improve the sealing performance.

以上のように本発明の水蒸気透過性評価方法を用いて腐食状態の経時変化を測定することにより、これまで評価が困難であったハイレベルな水蒸気バリア性の定量評価を精度良く評価できるばかりでなく、腐食領域の分布から水蒸気透過要因の場所を特定することができ、またその形状から水蒸気透過要因自体の形状を推定することもできる。このように、従来の画像解析評価手法では不可能であった精度の良い表面状態測定を、迅速かつ高精度で達成できる腐食表面状態測定方法を提供できる。 As described above, by measuring the time-dependent change in the corrosion state using the method for evaluating water vapor permeability of the present invention, it is possible to accurately evaluate quantitative evaluation of high-level water vapor barrier properties, which has been difficult to evaluate so far. The location of the water vapor transmission factor can be specified from the distribution of the corrosion region, and the shape of the water vapor transmission factor itself can be estimated from the shape thereof. As described above, it is possible to provide a corrosion surface state measuring method that can achieve accurate surface state measurement that is impossible with the conventional image analysis evaluation method with high accuracy.

以下、実施例により本発明を具体的に説明するが、本発明はこの実施例によって限定されるものではない。本実施例では、以下に示す装置および原材料を用いた。
(実施例1)
厚さ200μmのポリエーテルサルホンフィルム/厚さ5μm紫外線(UV)硬化性樹脂(有機層1)/厚さ50nmのSiOx(無機層1)の順に積層された構造を持つ固体基板を用いた。有機層1はスヒ゜ンコートで塗布乾燥後、UVを照射し固化した。無機層1はスハ゜ッタリンク゛にて形成した。この固体基板を用いて水蒸気透過性評価用の金属腐食試験片を作製した。金属腐食試験片は、真空蒸着装置(日本電子製真空蒸着装置 JEE-400)を用い、腐食金属としてカルシウムを10x10mm、厚み200nmに蒸着し、真空を解除すること無に連続で非腐食性金属のアルミニウムを40x40mm、厚み4μmで封止した後に、窒素雰囲気下でカルシウム/アルミニウムを積層した固体基板の周囲を二液性熱硬化接着剤(ERS-2300/2830:住友ベークライト社製)でガラス基板と貼り合せて作製した。
作製した金属腐食試験片を、高温高湿槽中50℃95%RHの環境条件下に一定時間の保管した後、カルシウム腐食状態を評価することを繰り返し、水蒸気透過によるカルシウムの腐食状態の経時変化を観察した。作製した金属腐食試験片の全面を高解像度で撮影するためラインセンサカメラを使用し、アクチュエータにより等速度で試験片を移動させながら撮影した。照明はハロゲン光源で、ファイバーガイドを用いて試験片へと導き、斜めに入射した照明光の試験片上での正反射光をラインセンサカメラで撮影し、画像データとして得た。湿熱処理により発生したカルシウム腐食状態の画像に対し微分処理を行うことにより得た隣接する輪郭点同士を接続し、図3に示されるように各腐食領域を閉曲線として解析した。金属腐食試験片の測定時間は、画像取り込み及び腐食領域と総腐食面積の解析を含め1分/1試験片と非常に迅速であり、試験片の湿度環境暴露試験を中断する時間を短時間にすることが出来た。
作製した金属腐食試験片を高温高湿50℃95%RHの条件下で累積24時間処理した後、試験片の腐食状態を評価した。カルシウム部分には不均一に分散した大きさの異なる腐食パターンが見られ、水蒸気透過が局所的なバリア膜構造欠陥から生じたものであることが確認できた。腐食状態の画像解析から10mm□サイス゛のカルシウム膜に総面積が6.70×10-3cm2の金属腐食が測定できた。カルシウムの分子量と比重は40.08と1.55g/cm3であり、腐食として観察される水酸化カルシウムの分子量と比重は74.09と2.08〜2.34g/cm3であることから、金属腐食の厚み補正を考慮すると24時間の湿熱処理で生成した水酸化カルシウムのモル数は3.76×10-9〜5.83×10-9molである。よって、水蒸気透過度は0.0135〜0.0210(g/m2/day)と見積もることができた。
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited by this Example. In this example, the following apparatuses and raw materials were used.
(Example 1)
A solid substrate having a structure in which a polyethersulfone film having a thickness of 200 μm / ultraviolet (UV) curable resin (organic layer 1) having a thickness of 5 μm / SiOx having a thickness of 50 nm (inorganic layer 1) was sequentially laminated was used. The organic layer 1 was applied with a spin coat and dried, and then solidified by UV irradiation. The inorganic layer 1 was formed by a shutter link. A metal corrosion test piece for evaluating water vapor permeability was produced using this solid substrate. For the metal corrosion test piece, use a vacuum evaporation system (JEOL-made vacuum evaporation system JEE-400) to deposit calcium as a corrosive metal to a thickness of 10x10mm and a thickness of 200nm. After sealing aluminum with 40x40mm and 4μm thickness, around the glass substrate with a two-component thermosetting adhesive (ERS-2300 / 2830: manufactured by Sumitomo Bakelite Co., Ltd.) It was produced by pasting together.
The prepared metal corrosion test piece was stored in a high-temperature, high-humidity tank at 50 ° C and 95% RH for a certain period of time, and then repeatedly evaluated the calcium corrosion state. Was observed. In order to photograph the entire surface of the produced metal corrosion test piece with high resolution, a line sensor camera was used and photographed while moving the test piece at a constant speed by an actuator. Illumination was a halogen light source, guided to a test piece using a fiber guide, and specular reflection light on the test piece of obliquely incident illumination light was photographed with a line sensor camera to obtain image data. Adjacent contour points obtained by performing differential processing on the image of the calcium corrosion state generated by the wet heat treatment were connected, and each corrosion region was analyzed as a closed curve as shown in FIG. The measurement time of the metal corrosion test piece is very quick as 1 minute / 1 test piece including image capture and analysis of the corrosion area and total corrosion area, and the time to interrupt the humidity exposure test of the test piece is shortened to a short time I was able to do it.
The prepared metal corrosion test piece was treated for 24 hours under the condition of high temperature and high humidity of 50 ° C. and 95% RH, and then the corrosion state of the test piece was evaluated. Corrosion patterns with different sizes and uneven distribution were observed in the calcium portion, and it was confirmed that water vapor transmission was caused by local barrier film structure defects. From the image analysis of the corrosion state, it was possible to measure metal corrosion with a total area of 6.70 × 10 −3 cm 2 on a 10 mm square calcium film. The molecular weight and specific gravity of calcium are 40.08 and 1.55 g / cm 3 , and the molecular weight and specific gravity of calcium hydroxide observed as corrosion are 74.09 and 2.08 to 2.34 g / cm 3 , so the thickness correction for metal corrosion is considered Then, the number of moles of calcium hydroxide generated by the wet heat treatment for 24 hours is 3.76 × 10 −9 to 5.83 × 10 −9 mol. Therefore, the water vapor permeability could be estimated as 0.0135 to 0.0210 (g / m 2 / day).

(実施例2)
厚さ200μmのポリエーテルサルホンフィルム/厚さ5μm紫外線(UV)硬化性樹脂(有機層1)/厚さ80nmのSiOx(無機層1)の順に積層された構造を持つ固体基板を用いた。有機層1はスヒ゜ンコートで塗布乾燥後、UVを照射し固化した。無機層1はスハ゜ッタリンク゛にて形成した。この固体基板を用いて水蒸気透過性評価用の金属腐食試験片を作製した。金属腐食試験片は、真空蒸着装置(日本電子製真空蒸着装置 JEE-400)を用い、腐食金属としてカルシウムを10x10mm、厚み200nmに蒸着し、真空を解除すること無に連続で非腐食性金属のアルミニウムを40x40mm、厚み4μmで封止した後に、真空状態を解除し、速やかに蜜蝋(融点 60〜62℃)とパラフィン(融点 60〜62℃)を1:1の割合で溶融混合した熱可塑性樹脂でカルシウム/アルミニウムを積層した面を樹脂封止した後に、更にガラス基板を積層し熱可塑性樹脂を冷却固化させることにより作製した。
作製した金属腐食試験片を、高温高湿槽中50℃95%RHの環境条件下に一定時間の保管した後、フィルム側からカルシウム腐食状態を評価することを繰り返し、水蒸気透過によるカルシウムの腐食状態の経時変化を実施例1の腐食状態評価装置を用いて観察した。金属腐食試験片の測定時間は、画像取り込み及び腐食領域と総腐食面積の解析を含め1分/1試験片と非常に迅速であり、試験片の湿度環境暴露試験を中断する時間を短時間にすることが出来た。
作製した金属腐食試験片を高温高湿50℃95%RHの条件下で累積24時間処理した後、試験片の腐食状態を評価した。カルシウム部分には不均一に分散した大きさの異なる腐食パターンが見られ、水蒸気透過が局所的なバリア膜構造欠陥から生じたものであることが確認できた。腐食状態の画像解析から10mm□サイス゛のカルシウム膜に総面積が5.32×10-3cm2の金属腐食が測定できた。実施例1と同様な方法により水蒸気透過度を推定すると、24時間の湿熱処理で生成した水酸化カルシウムのモル数は2.99×10-9〜4.63×10-9molであるため、水蒸気透過度は0.0107〜0.0167(g/m2/day)と見積もることができた。
(Example 2)
A solid substrate having a structure in which a polyethersulfone film having a thickness of 200 μm / ultraviolet (UV) curable resin (organic layer 1) having a thickness of 5 μm / SiOx having a thickness of 80 nm (inorganic layer 1) was laminated in this order was used. The organic layer 1 was applied with a spin coat and dried, and then solidified by UV irradiation. The inorganic layer 1 was formed by a shutter link. A metal corrosion test piece for evaluating water vapor permeability was produced using this solid substrate. For the metal corrosion test piece, use a vacuum evaporation system (JEOL-made vacuum evaporation system JEE-400) to deposit calcium as a corrosive metal to a thickness of 10x10mm and a thickness of 200nm. After sealing aluminum with 40x40mm and 4μm thickness, release the vacuum state and quickly melt and mix beeswax (melting point 60-62 ° C) and paraffin (melting point 60-62 ° C) at a ratio of 1: 1. After sealing the calcium / aluminum-laminated surface with a resin, a glass substrate was further laminated, and the thermoplastic resin was cooled and solidified.
After the prepared metal corrosion test piece was stored in a high-temperature and high-humidity tank at 50 ° C and 95% RH for a certain period of time, the calcium corrosion state was repeatedly evaluated from the film side. Was observed using the corrosion state evaluation apparatus of Example 1. The measurement time of the metal corrosion test piece is very quick as 1 minute / 1 test piece including image capture and analysis of the corrosion area and total corrosion area, and the time to interrupt the humidity exposure test of the test piece is shortened to a short time I was able to do it.
The prepared metal corrosion test piece was treated for 24 hours under the condition of high temperature and high humidity of 50 ° C. and 95% RH, and then the corrosion state of the test piece was evaluated. Corrosion patterns with different sizes and uneven distribution were observed in the calcium portion, and it was confirmed that water vapor transmission was caused by local barrier film structure defects. From the image analysis of the corrosion state, it was possible to measure metal corrosion with a total area of 5.32 × 10 −3 cm 2 in a 10 mm square calcium film. When the water vapor permeability was estimated by the same method as in Example 1, the number of moles of calcium hydroxide produced by the wet heat treatment for 24 hours was 2.99 × 10 −9 to 4.63 × 10 −9 mol. It was estimated to be 0.0107 to 0.0167 (g / m 2 / day).

(実施例3)
厚さ200μmのポリエーテルサルホンフィルム/厚さ2μm紫外線(UV)硬化性樹脂(有機層1)/厚さ50nmのSiOx(無機層1)の順に積層された構造を持つバリア性フィルムを用いた。有機層1はスヒ゜ンコートで塗布乾燥後、UVを照射し固化した。無機層1は実施例2と異なるスハ゜ッタリンク゛条件にて形成した。用いる固体基板以外は実施例2と同様な条件で、金属腐食試験片を作製した。
作製した金属腐食試験片を、高温高湿槽中40℃90%RHの環境条件下に一定時間の保管した後、フィルム側からカルシウム腐食状態を評価することを繰り返し、水蒸気透過によるカルシウムの腐食状態の経時変化を実施例1の腐食状態評価装置を用いて観察した。金属腐食試験片の測定時間は、画像取り込み及び腐食領域と総腐食面積の解析を含め1分/1試験片と非常に迅速であり、試験片の湿度環境暴露試験を中断する時間を短時間にすることが出来た。
作製した評価用セルを高温高湿40℃、90%RHの条件下で6時間処理した後に、試験片の腐食状態を評価した。カルシウム部分には不均一に分散した大きさの異なる腐食パターンが見られ、水蒸気透過が局所的なバリア膜構造欠陥から生じたものであることが確認できた。腐食状態の画像解析から10mm□サイス゛のカルシウム膜に総面積が0.168cm2の金属腐食が測定できた。実施例1と同様な方法により水蒸気透過度を推定すると、6時間の湿熱処理で生成する水酸化カルシウムのモル数は9.43×10-8〜14.6×10-8molであるため、水蒸気透過度は0.136〜0.211(g/m2/day)と見積もることができた。用いた固体基板をモコン法により評価した結果、水蒸気透過度は0.18(g/m2/day)であったことから、本発明による水蒸気透過測定の定量性は十分実用レベルと判断できる。
(Example 3)
A barrier film having a structure in which a polyethersulfone film having a thickness of 200 μm / a 2 μm thick UV (UV) curable resin (organic layer 1) / a SiOx having a thickness of 50 nm (inorganic layer 1) is laminated in this order was used. . The organic layer 1 was applied with a spin coat and dried, and then solidified by UV irradiation. The inorganic layer 1 was formed under the sputtering conditions different from those in Example 2. A metal corrosion test piece was produced under the same conditions as in Example 2 except for the solid substrate to be used.
After the prepared metal corrosion test piece was stored in a high-temperature and high-humidity tank at 40 ° C and 90% RH for a certain period of time, the calcium corrosion state was repeatedly evaluated from the film side. Was observed using the corrosion state evaluation apparatus of Example 1. The measurement time of the metal corrosion test piece is very quick as 1 minute / 1 test piece including image capture and analysis of the corrosion area and total corrosion area, and the time to interrupt the humidity exposure test of the test piece is shortened to a short time I was able to do it.
The prepared evaluation cell was treated for 6 hours under conditions of high temperature and high humidity of 40 ° C. and 90% RH, and then the corrosion state of the test piece was evaluated. Corrosion patterns with different sizes and uneven distribution were observed in the calcium portion, and it was confirmed that water vapor transmission was caused by local barrier film structure defects. From the image analysis of the corrosion state, it was possible to measure metal corrosion with a total area of 0.168 cm 2 on a 10 mm square calcium film. When the water vapor permeability was estimated by the same method as in Example 1, the number of moles of calcium hydroxide generated by the wet heat treatment for 6 hours was 9.43 × 10 −8 to 14.6 × 10 −8 mol. It was estimated to be 0.136 to 0.211 (g / m 2 / day). As a result of evaluating the solid substrate used by the Mocon method, the water vapor transmission rate was 0.18 (g / m 2 / day). Therefore, it can be judged that the quantitative property of the water vapor transmission measurement according to the present invention is sufficiently practical.

(実施例4)
厚さ200μmのポリエーテルサルホンフィルム/厚さ5μm紫外線(UV)硬化性樹脂(有機層1)/厚さ100nmのSiOx(無機層1)の順に積層された構造を持つ固体基板を用いた。有機層1はスヒ゜ンコートで塗布乾燥後、UVを照射し固化した。無機層1は実施例1と異なる成膜条件でスハ゜ッタリンク゛法にて形成した。この固体基板を用いて水蒸気透過性評価用の金属腐食試験片を作製した。金属腐食試験片は、真空蒸着装置(日本電子製真空蒸着装置 JEE-400)を用い、腐食金属としてカルシウムを15x15mm、厚み200nmに蒸着し、真空を解除すること無に連続で非腐食性金属のアルミニウムを40x40mm、厚み4μmで封止した。更に、マーキング用のパターンを入れたマスクを用いてアルミニウムを蒸着し、評価基板にマーキングを4点形成した。封止膜とマーキング形成した後に真空状態を解除し、実施例2に用いた方法でカルシウム/アルミニウム形成面及びマーキングを形成した面を樹脂封止した後に、更にガラス基板を積層し熱可塑性樹脂を冷却固化させることにより評価セルを作製した。
作製した金属腐食試験片を、高温高湿槽中50℃95%RHの環境条件下に保管し、フィルム側からカルシウム腐食状態変化を経時的に撮影することを繰り返し、水蒸気透過によるカルシウムの腐食状態の経時変化を実施例1の腐食状態評価装置を用いて画像撮影した。金属腐食試験片の測定時間は、画像取り込み及び腐食領域と総腐食面積の解析を含め1分/1試験片と非常に迅速であり、試験片の湿度環境暴露試験を中断する時間を短時間にすることが出来た。また、マーキングを基準点とすることで、撮影する度毎の評価セルの固定位置を一定に保つことが容易になり、金属腐食の経時変化観察の精度を向上し撮影することができた。
作製した金属腐食試験片を高温高湿50℃95%RHの条件下で累積33時間処理した後、試験片の腐食状態を評価した。15mm□のカルシウムの中央12mm□の領域を用いて解析を行った。カルシウム部分には不均一に分散した大きさの異なる腐食パターンが見られ、水蒸気透過が局所的なバリア膜構造欠陥から生じたものであることが確認できた。腐食状態の画像解析は15mm□のカルシウムの中央12mm□の領域を用いて行った。腐食状態を撮影した画像のマーキングを基準にして腐食点の特定を行うことで各腐食に着目した解析が容易になった。各腐食点の面積を処理時間に対してプロットした結果(図10)、殆どの腐食点は非常に緩やかに成長するが、数個の腐食は4〜5倍の速度で成長する傾向が確認され、無機膜の防湿性は数個の防湿性欠陥が大きく影響していることが解った。また、各腐食点を累積した総腐食面積から腐食面積率を算出し、処理時間に対してプロットすることから腐食面積率成長速度を得た(図11)。腐食面積率成長速度は1.87x10-2%/hであり、水蒸気透過度は9.07×10-4〜1.41×10-3(g/m2/day)と見積もることができた。
Example 4
A solid substrate having a structure in which a polyethersulfone film having a thickness of 200 μm / ultraviolet (UV) curable resin (organic layer 1) having a thickness of 5 μm / SiOx having a thickness of 100 nm (inorganic layer 1) was sequentially laminated was used. The organic layer 1 was applied with a spin coat and dried, and then solidified by UV irradiation. The inorganic layer 1 was formed by the sputtering method under film formation conditions different from those in Example 1. A metal corrosion test piece for evaluating water vapor permeability was produced using this solid substrate. For the metal corrosion test piece, use a vacuum evaporation system (JEOL-made vacuum evaporation system JEE-400) to deposit calcium as a corrosive metal in a thickness of 15x15mm and a thickness of 200nm. Aluminum was sealed at 40 × 40 mm and a thickness of 4 μm. Furthermore, aluminum was vapor-deposited using the mask containing the pattern for marking, and four markings were formed on the evaluation substrate. After forming the sealing film and the marking, the vacuum state is released, and after the calcium / aluminum forming surface and the surface on which the marking is formed are resin-sealed by the method used in Example 2, a glass substrate is further laminated and a thermoplastic resin is laminated. An evaluation cell was produced by cooling and solidifying.
The prepared metal corrosion test pieces are stored in a high-temperature and high-humidity tank at 50 ° C and 95% RH, and the calcium corrosion state changes are repeated over time from the film side. An image of the change over time was taken using the corrosion state evaluation apparatus of Example 1. The measurement time of the metal corrosion test piece is very quick as 1 minute / 1 test piece including image capture and analysis of the corrosion area and total corrosion area, and the time to interrupt the humidity exposure test of the test piece is shortened to a short time I was able to do it. In addition, by using the marking as a reference point, it becomes easy to keep the fixed position of the evaluation cell every time the image is taken, and it is possible to improve the accuracy of observation of metal corrosion over time and take pictures.
The prepared metal corrosion test piece was treated for 33 hours under conditions of high temperature and high humidity of 50 ° C. and 95% RH, and then the corrosion state of the test piece was evaluated. Analysis was carried out using a 12 mm square region of 15 mm square calcium. Corrosion patterns with different sizes and uneven distribution were observed in the calcium portion, and it was confirmed that water vapor transmission was caused by local barrier film structure defects. Image analysis of the corrosion state was performed using a 12 mm square region of 15 mm square calcium. The analysis focusing on each corrosion became easy by specifying the corrosion point on the basis of the marking of the image which photographed the corrosion state. As a result of plotting the area of each corrosion point against the processing time (FIG. 10), most corrosion points grow very slowly, but several corrosions tend to grow at a rate of 4 to 5 times. It was found that the moisture resistance of the inorganic film was greatly influenced by several moisture resistance defects. Further, the corrosion area rate was calculated from the total corrosion area where each corrosion point was accumulated, and plotted against the processing time, the corrosion area rate growth rate was obtained (FIG. 11). The corrosion area rate growth rate was 1.87 × 10 −2 % / h, and the water vapor permeability could be estimated as 9.07 × 10 −4 to 1.41 × 10 −3 (g / m 2 / day).

(比較例1)
実施例1で作製した金属腐食試験片を本発明の試験片測定装置ではなく、レーザー顕微鏡を用いて評価した。金属腐食成長の経時変化を評価するため、1サンプルに対し1.0mm×1.4mm範囲の画像を88枚撮影した。腐食状態測定に要した時間は90分/1試験片と長時間が必要であり、試験片の湿度環境暴露試験を長時間中断せざるを得なかった。腐食領域と総腐食面積の解析をするために、撮影した88枚の画像データを1つの画像データにつなぎ合わせた。つなぎ合わせた画像を記録紙に印刷した後に、腐食領域のみを切り抜き、評価領域全重量に対する切り抜き部分の重量を計量することで、腐食領域と腐食総面積の評価を行った。金属腐食試験片の腐食状態測定及び腐食領域と総腐食面積の解析を含め120分/1試験片と長時間が必要であった。
作製した金属腐食試験片を高温高湿50℃95%RHの条件下で累積24時間処理した後、腐食状態の顕微鏡観察からカルシウム膜の中央10mm□サイス゛の腐食総面積を7.26×10-3cm2と測定した。実施例1と同様な方法により水蒸気透過度を推定すると、24時間の湿熱処理で生成した水酸化カルシウムのモル数は4.08×10-9〜6.32×10-9molであるため、水蒸気透過度は0.0147〜0.0227(g/m2/day)と見積もることができ、微量な水蒸気透過量を測定することはできたが、画像測定は効率よく行うことは困難であった。
(Comparative Example 1)
The metal corrosion test piece produced in Example 1 was evaluated using a laser microscope instead of the test piece measuring apparatus of the present invention. In order to evaluate the temporal change of metal corrosion growth, 88 images of 1.0 mm × 1.4 mm range were taken for one sample. The time required for measuring the corrosion state was 90 minutes / 1 test piece and a long time, and the humidity environment exposure test of the test piece had to be interrupted for a long time. In order to analyze the corroded area and the total corroded area, the 88 pieces of photographed image data were joined to one image data. After printing the stitched image on the recording paper, only the corrosion area was cut out, and the weight of the cut-out portion with respect to the total weight of the evaluation area was measured to evaluate the corrosion area and the total corrosion area. 120 minutes / 1 test piece and a long time were required including the corrosion state measurement of metal corrosion test piece and analysis of corrosion area and total corrosion area.
The prepared metal corrosion test piece was processed for 24 hours under the condition of high temperature and high humidity 50 ℃ 95% RH, and then the total corrosion area of the center 10mm □ size of the calcium film was 7.26 × 10 -3 cm from the microscopic observation of the corrosion state. Measured as 2 . When the water vapor permeability was estimated by the same method as in Example 1, the number of moles of calcium hydroxide produced by the wet heat treatment for 24 hours was 4.08 × 10 −9 to 6.32 × 10 −9 mol. Although it was estimated to be 0.0147 to 0.0227 (g / m 2 / day) and a very small amount of water vapor transmission could be measured, it was difficult to perform image measurement efficiently.

本発明によれば、従来測定が困難であった微量な水蒸気透過性の評価及びその定量的な評価を、迅速かつ高精度で達成できる測定手法を提供でき有用である。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a measurement technique that can achieve a quick and highly accurate evaluation of a trace amount of water vapor permeability and its quantitative evaluation, which have been difficult to measure conventionally.

本発明の概略構成を示す図である。It is a figure which shows schematic structure of this invention. 本発明の装置における画像処理の説明図である。It is explanatory drawing of the image process in the apparatus of this invention. 本発明の装置を用いた画像解析例である。It is an example of an image analysis using the apparatus of the present invention. 腐食性金属試験片の例Example of corrosive metal specimen 腐食性金属試験片の例Example of corrosive metal specimen 腐食性金属試験片の例Example of corrosive metal specimen 腐食性金属試験片の例Example of corrosive metal specimen マーキングを入れた腐食性金属試験片の例Example of corrosive metal specimen with marking マーキングを入れた腐食性金属試験片の例Example of corrosive metal specimen with marking 金属腐食面積の経時変化の例Example of metal corrosion area change over time 腐食面積率の経時変化の例Example of corrosion area rate change over time

符号の説明Explanation of symbols

1 撮像装置
2 試験片
3 照明装置
4 画像入力装置
5 画像処理装置
6 表示装置
7 記憶装置
8 制御装置
9 アクチュエータ
10 入力画像
11 腐食領域
12 むら
13 微分処理画像
14 輪郭点
15 輪郭点連結画像
16 輪郭点の接続により生成された閉曲線
17 輪郭点の接続により生成された開曲線
18 腐食領域抽出画像
19 腐食領域輪郭
20 腐食状態生画像データ
21 腐食領域抽出画像データ
22 腐食性金属層
23 プラスチックフィルム
24 ガスバリア層
25 硬化性接着剤
26 ガラス基板
27 非腐食性金属
28 低透湿性の熱可塑性樹脂
29 マーキング

DESCRIPTION OF SYMBOLS 1 Imaging device 2 Test piece 3 Illumination device 4 Image input device 5 Image processing device 6 Display device 7 Storage device 8 Control device 9 Actuator 10 Input image 11 Corrosion area 12 Unevenness 13 Differential processing image 14 Contour point 15 Contour point connection image 16 Contour Closed curve 17 generated by connection of points Open curve 18 generated by connection of contour points Corrosion region extraction image 19 Corrosion region contour 20 Corrosion state raw image data 21 Corrosion region extraction image data 22 Corrosive metal layer 23 Plastic film 24 Gas barrier Layer 25 Curable adhesive 26 Glass substrate 27 Non-corrosive metal 28 Low moisture-permeable thermoplastic resin 29 Marking

Claims (6)

水蒸気透過性を評価する材料から成る固体基板の片面側に、水分と反応して腐食する腐食性金属を形成した金属腐食試験片を湿度環境下に保管し、固体基板を透過した水蒸気によって前記腐食性金属の一部分が腐食した金属腐食試験片の画像を撮影し、撮影した画像の処理を行う画像処理手段を用いて水分と反応した金属の腐食状態を評価し、腐食領域の形状、分布及び/又は面積から固体基板の水蒸気透過性を評価する水蒸気透過性評価方法。 On one side of a solid substrate made of a material whose water vapor permeability is to be evaluated, a metal corrosion test piece that forms a corrosive metal that reacts with moisture to corrode is stored in a humidity environment, and the corrosion is caused by water vapor that has permeated the solid substrate. An image of a metal corrosion test piece in which a part of the corrosive metal is corroded is photographed, and the corrosion state of the metal that has reacted with moisture is evaluated using an image processing means for processing the photographed image. Alternatively, a water vapor permeability evaluation method for evaluating water vapor permeability of a solid substrate from an area. 前記撮影した画像に対し、微分処理を行うことにより得られた輪郭点群のうち隣接する輪郭点同士を接続することにより得られた閉曲線を腐食領域の輪郭として腐食領域の面積を測定する請求項1記載の水蒸気透過性評価方法。 The area of the corrosion region is measured using the closed curve obtained by connecting adjacent contour points among the contour point groups obtained by performing a differentiation process on the photographed image as the contour of the corrosion region. 1. The water vapor permeability evaluation method according to 1. 前記金属腐食試験片に腐食性金属の形成箇所を特定するためのマークが腐食性金属と重ならない領域に少なくとも2個形成されている請求項1又は2記載の水蒸気透過性評価方法。 The water vapor permeability evaluation method according to claim 1 or 2, wherein at least two marks for identifying a location where a corrosive metal is formed are formed on the metal corrosion test piece in an area where the corrosive metal does not overlap. 前記金属腐食試験片の単位時間あたりの腐食面積増加量と腐食金属の厚みから算出される単位時間あたりの腐食金属の体積変化量から、金属と反応する単位時間あたりの水分量を定量化し、水蒸気透過度を測定する請求項1〜3いずれか記載の水蒸気透過性評価方法。 The amount of moisture per unit time that reacts with the metal is quantified from the amount of change in the corrosion metal volume per unit time calculated from the amount of corrosion area increase per unit time of the metal corrosion test piece and the thickness of the corroded metal. The water vapor permeability evaluation method according to any one of claims 1 to 3, wherein the permeability is measured. 前記腐食性金属が、アルカリ金属、アルカリ土類金属またはその合金を含むものである請求項1〜4いずれか記載の水蒸気透過性評価方法。 The water vapor permeability evaluation method according to any one of claims 1 to 4, wherein the corrosive metal contains an alkali metal, an alkaline earth metal, or an alloy thereof. 前記腐食性金属がCa、Mgの何れかを含むものである請求項5記載の水蒸気透過性評価方法。

The water vapor permeability evaluation method according to claim 5, wherein the corrosive metal contains one of Ca and Mg.

JP2004336889A 2003-11-26 2004-11-22 Water vapor permeability evaluation method Expired - Fee Related JP4470707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004336889A JP4470707B2 (en) 2003-11-26 2004-11-22 Water vapor permeability evaluation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003396157 2003-11-26
JP2004336889A JP4470707B2 (en) 2003-11-26 2004-11-22 Water vapor permeability evaluation method

Publications (2)

Publication Number Publication Date
JP2005181300A true JP2005181300A (en) 2005-07-07
JP4470707B2 JP4470707B2 (en) 2010-06-02

Family

ID=34797246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004336889A Expired - Fee Related JP4470707B2 (en) 2003-11-26 2004-11-22 Water vapor permeability evaluation method

Country Status (1)

Country Link
JP (1) JP4470707B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096428A (en) * 2006-09-14 2008-04-24 Jfe Steel Kk Observation device for corrosion part of surface-treated steel plate, and method and device for observing white rust part of galvanized sheet
JP2008096429A (en) * 2006-09-14 2008-04-24 Jfe Steel Kk Area ratio measuring instrument of corrosion part for surface-treated steel plate, and method and instrument for measuring area ratio of white rust part of galvanized sheet
JP2012007954A (en) * 2010-06-23 2012-01-12 Sumitomo Bakelite Co Ltd Steam permeability evaluation cell and steam permeability evaluation method
JP2012047509A (en) * 2010-08-25 2012-03-08 Sumitomo Bakelite Co Ltd Cell for water vapor permeability evaluation and method for manufacturing the same
JP2012058151A (en) * 2010-09-10 2012-03-22 Toppan Printing Co Ltd Gas permeability evaluation method and gas permeability evaluation device
CN102621048A (en) * 2011-01-28 2012-08-01 三菱综合材料株式会社 Method for evaluating vapor blocking performance
JP2013057096A (en) * 2011-09-07 2013-03-28 Sumitomo Bakelite Co Ltd Film forming method and method for producing test piece
JP2013088249A (en) * 2011-10-17 2013-05-13 Shimadzu Corp Cell for moisture permeability evaluation and moisture permeability evaluation method
JP2019528433A (en) * 2016-07-19 2019-10-10 エコラブ ユーエスエイ インク Control of industrial water treatment by digital imaging
CN112098175A (en) * 2020-09-28 2020-12-18 银邦金属复合材料股份有限公司 Preparation method of metal corrosion test sample
WO2021001922A1 (en) * 2019-07-02 2021-01-07 三菱電機株式会社 Corrosion damage evaluation method, corrosion damage evaluation program, and corrosion damage evaluation device
US11465916B2 (en) 2016-07-19 2022-10-11 Ecolab Usa Inc. Control of industrial water treatment via digital imaging

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096428A (en) * 2006-09-14 2008-04-24 Jfe Steel Kk Observation device for corrosion part of surface-treated steel plate, and method and device for observing white rust part of galvanized sheet
JP2008096429A (en) * 2006-09-14 2008-04-24 Jfe Steel Kk Area ratio measuring instrument of corrosion part for surface-treated steel plate, and method and instrument for measuring area ratio of white rust part of galvanized sheet
JP2012007954A (en) * 2010-06-23 2012-01-12 Sumitomo Bakelite Co Ltd Steam permeability evaluation cell and steam permeability evaluation method
JP2012047509A (en) * 2010-08-25 2012-03-08 Sumitomo Bakelite Co Ltd Cell for water vapor permeability evaluation and method for manufacturing the same
JP2012058151A (en) * 2010-09-10 2012-03-22 Toppan Printing Co Ltd Gas permeability evaluation method and gas permeability evaluation device
CN102621048A (en) * 2011-01-28 2012-08-01 三菱综合材料株式会社 Method for evaluating vapor blocking performance
JP2012154865A (en) * 2011-01-28 2012-08-16 Mitsubishi Materials Corp Evaluation method of steam barrier property
JP2013057096A (en) * 2011-09-07 2013-03-28 Sumitomo Bakelite Co Ltd Film forming method and method for producing test piece
JP2013088249A (en) * 2011-10-17 2013-05-13 Shimadzu Corp Cell for moisture permeability evaluation and moisture permeability evaluation method
JP2019528433A (en) * 2016-07-19 2019-10-10 エコラブ ユーエスエイ インク Control of industrial water treatment by digital imaging
JP7003108B2 (en) 2016-07-19 2022-01-20 エコラブ ユーエスエイ インク Control of industrial water treatment by digital imaging
US11465916B2 (en) 2016-07-19 2022-10-11 Ecolab Usa Inc. Control of industrial water treatment via digital imaging
US11467072B2 (en) 2016-07-19 2022-10-11 Ecolab Usa Inc. Control of industrial water treatment via digital imaging
US11946841B2 (en) 2016-07-19 2024-04-02 Ecolab Usa Inc. Control of industrial water treatment via digital imaging
US11953445B2 (en) 2016-07-19 2024-04-09 Ecolab Usa Inc. Control of industrial water treatment via digital imaging
WO2021001922A1 (en) * 2019-07-02 2021-01-07 三菱電機株式会社 Corrosion damage evaluation method, corrosion damage evaluation program, and corrosion damage evaluation device
JP6887535B1 (en) * 2019-07-02 2021-06-16 三菱電機株式会社 Corrosion damage assessment method, corrosion damage assessment program and corrosion damage assessment equipment
CN112098175A (en) * 2020-09-28 2020-12-18 银邦金属复合材料股份有限公司 Preparation method of metal corrosion test sample

Also Published As

Publication number Publication date
JP4470707B2 (en) 2010-06-02

Similar Documents

Publication Publication Date Title
JP4470707B2 (en) Water vapor permeability evaluation method
CA2736734C (en) Method for detecting defect in material and system for the method
ES2334984T3 (en) ONLINE CHARACTERIZATION PROCEDURE OF A MOVING AND DEVICE SURFACE FOR YOUR PRACTICE.
JP5874139B2 (en) Method and apparatus for optical observation of defects in film material
KR20120091249A (en) Image processing device for defect inspection and image processing method for defect inspection
Enos et al. Data Report on Corrosion Testing of Stainless Steel SNF Storage Canisters.
JP7003108B2 (en) Control of industrial water treatment by digital imaging
KR102592554B1 (en) Methods for determining the nature of particles in a fluid sample and/or methods for determining the nature of contaminants in a fluid sample
JP2010286285A (en) Unit and method for evaluating steam barrier properties
JP2006250816A (en) Device and method for measuring water vapor permeability
JP6007639B2 (en) Wrinkle detection method and wrinkle detection device
WO2005062029A2 (en) A tape manufacturing system
EP3669168A1 (en) Water vapour permeation
BR112015025556B1 (en) METAL DEFECT INSPECTION METHOD
JP2006119069A (en) Method for measuring water vapor permeability by using calcium corrosion test
Strahan et al. Measuring mercury emissions from cinnabar lacquer objects
Wang et al. Quantitative evaluation of surface cleanliness of weathering steel treated by continuous wave laser
Tiwari et al. Enhanced visualization of latent fingermarks on rough aluminum surfaces using sequential Au and Zn/ZnS/ZnO depositions
JP2008051631A (en) Method for measuring dust
US20150243006A1 (en) Identifying an Original Object in a Forgery-Proof Way
JPWO2015194558A1 (en) Water vapor permeability evaluation method and water vapor permeability evaluation apparatus
Blunt et al. In-line metrology of functional surfaces with a focus on defect assessment on large area Roll to Roll substrates
Albano et al. Microstructural investigations on historical organ pipes
Streinz et al. Analysis of passive film growth by dynamic imaging microellipsometry
JP6472859B1 (en) Position detecting device and vapor deposition device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees