JP2008094654A - 光学素子の製造方法及び製造装置 - Google Patents

光学素子の製造方法及び製造装置 Download PDF

Info

Publication number
JP2008094654A
JP2008094654A JP2006277353A JP2006277353A JP2008094654A JP 2008094654 A JP2008094654 A JP 2008094654A JP 2006277353 A JP2006277353 A JP 2006277353A JP 2006277353 A JP2006277353 A JP 2006277353A JP 2008094654 A JP2008094654 A JP 2008094654A
Authority
JP
Japan
Prior art keywords
molten glass
molding
cooling
optical
outer diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006277353A
Other languages
English (en)
Inventor
Hideki Sonoda
英樹 薗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2006277353A priority Critical patent/JP2008094654A/ja
Publication of JP2008094654A publication Critical patent/JP2008094654A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Surface Treatment Of Glass (AREA)

Abstract

【課題】溶融ガラスの中心部と端部の冷却速度を均一化して、高精度な光学面を有する光学素子を高い生産効率で製造することができる光学素子の製造方法を提供する。
【解決手段】成形金型を所定温度に加熱する加熱工程と、成形金型に溶融ガラスを供給する溶融ガラス供給工程と、供給された溶融ガラスの上面に冷却部材を接触させることにより溶融ガラスを冷却する冷却工程と、溶融ガラスを加圧成形する成形工程とを有する。
【選択図】図1

Description

本発明は、溶融ガラスを成形金型で加圧成形してガラス製の光学素子を得る光学素子の製造方法及び製造装置に関する。
今日、ガラス製の光学素子は、デジタルカメラ用レンズ、DVD等の光ピックアップレンズ、携帯電話用カメラレンズ、光通信用のカップリングレンズ、各種ミラーなどとして広範にわたって利用されている。かかるガラス製の光学素子は、ガラス素材を成形金型で加圧成形するプレス成形法により製造されることが多くなってきた。特に、光学面として非球面を有する光学素子は、研削・研磨加工による面形成が容易でないことから、成形金型によるプレス成形法による製造が一般的になりつつある。その中でも、溶融ガラスを成形金型で直接加圧成形してガラス製の光学素子を得るダイレクトプレス法は、高い生産効率を期待できることから注目されている。
溶融ガラスを成形金型で直接加圧成形してガラス製の光学素子を得る方法として、ノズル先端からの溶融ガラスを支持部材に滞留させたあと、該支持部材をノズル先端から退避させ、得られたガラスゴブを上型と下型とで加圧成形する方法が知られている(例えば、特許文献1を参照。)。
しかし、成形の過程で溶融ガラスが冷却される速度が、溶融ガラスの上面と下面、あるいは中心部と端部において異なり、冷却による収縮量が不均一になることから、かかる方法により精度の高い光学面を形成することは困難であった。特に、溶融ガラスが最初に支持部材に接触して急冷される下面側に精度の高い光学面を形成することは非常に困難であった。
また、受け型に供給された溶融ガラスを下型の上に搬送した後、上下金型で加圧成形することによって、溶融ガラスの温度が比較的安定する上面側の光学面のみを上型の成形面の転写によって形成し、下面側の光学面は追加工(研削・研磨加工)によって形成してガラスレンズを製造する方法が提案されている(例えば、特許文献2を参照。)。
特許文献2には、更に、成形されるレンズの肉厚が全面にわたって均一になるように下型の受け面を形成することで、レンズの径方向の冷却速度の分布が小さくなり、レンズの上面側に高精度な光学面が得られる旨が開示されている。
特開平6−206730号公報 特開平8−208248号公報
しかしながら、実際には、たとえ成形される光学素子の肉厚が全面にわたって均一になるように下型の受け面を形成したとしても、溶融ガラスを下型の受け面に溜めた状態においては、溶融ガラスの表面張力によって端部よりも中心部の肉厚の方が大きくなるのが一般的である。従って、上型と下型とで加圧成形される段階では、既に中心部よりも端部の方が冷却が進んだ状態になっていることから、成形時における収縮量が均一にならず、光学素子の上面側に高精度な光学面を得ることはできないという問題があった。
また、例えば外径がφ20mm以上といった比較的大きな光学素子を製造する場合には、下型の受け面に多量の溶融ガラスを溜める必要があることから、溶融ガラスの外径を規制するための外径規制面を有する外径規制部材を備えた成形金型を使用する必要がある。この場合、供給された溶融ガラスは下型の受け面と接触するだけでなく、外径規制部材の外径規制面とも接触することになる。溶融ガラスは、これら成形金型との接触面から急速に冷却されるため、このような外径規制部材を備えた成形金型を使用する場合には、溶融ガラスの端部の冷却がいっそう急速に進むことになる。このように、溶融ガラスの中心部と端部の冷却速度に大きな差が生じることから、成形時における溶融ガラスの収縮量が均一にならず、光学素子の上面側に高精度な光学面を得ることは更に困難となっていた。
本発明は上記のような技術的課題に鑑みてなされたものであり、本発明の目的は、溶融ガラスの中心部と端部の冷却速度を均一化して、高精度な光学面を有する光学素子を高い生産効率で製造することができる光学素子の製造方法を提供することである。
上記の課題を解決するために、本発明は以下の特徴を有するものである。
1. 溶融ガラスを受けるための受け面を有する下型、及び、光学素子の第1の光学面を形成するための成形面を有する上型を備える成形金型を、溶融ガラスの温度よりも低い所定温度に加熱する加熱工程と、前記下型の受け面に前記溶融ガラスを供給する溶融ガラス供給工程と、供給された前記溶融ガラスの上面に冷却部材を接触させることにより前記溶融ガラスを冷却する冷却工程と、前記成形金型で前記溶融ガラスを加圧成形し、前記上型の成形面が転写された第1の光学面を有する成形体を形成する成形工程とを有することを特徴とする光学素子の製造方法。
2. 前記溶融ガラスと前記冷却部材との接触部の直径をφD、前記溶融ガラスと前記下型の受け面との接触部の直径をφGとしたとき、0.3≦φD/φG≦0.9を満足することを特徴とする前記1に記載の光学素子の製造方法。
3. 前記成形工程の後に、追加工によって前記成形体の第1の光学面の裏面側に第2の光学面を形成する追加工工程を有することを特徴とする前記1又は2に記載の光学素子の製造方法。
4. 前記成形金型は、前記溶融ガラスの外径を規制するための外径規制面を有する外径規制部材を備え、前記溶融ガラス供給工程において、前記下型の受け面に供給された前記溶融ガラスが、前記外径規制部材の外径規制面に接触することを特徴とする前記1乃至3の何れか1項に記載の光学素子の製造方法。
5. 溶融ガラスを受けるための受け面を有する下型、及び、光学素子の第1の光学面を形成するための成形面を有する上型を備える成形金型と、前記成形金型を溶融ガラスの温度よりも低い所定温度に加熱するための加熱手段と、前記下型の受け面に前記溶融ガラスを供給するための溶融ガラス供給手段と、供給された前記溶融ガラスの上面に冷却部材を接触させることにより前記溶融ガラスを冷却するための冷却手段と、前記成形金型で前記溶融ガラスを加圧成形し、前記上型の成形面が転写された第1の光学面を有する成形体を形成するための加圧手段とを有することを特徴とする光学素子の製造装置。
本発明の光学素子の製造方法によれば、成形工程に先立って溶融ガラスの上面に冷却部材を接触させることで、成形金型に供給された溶融ガラスの温度分布を均一化でき、成形時における溶融ガラスの収縮量を均一化することができる。そのため、成形によって少なくとも上面側の光学面が高精度に形成された成形体を得ることができ、高精度な光学面を有する光学素子を高い生産効率で製造することができる。
以下、本発明の実施の形態について図面を参照しつつ詳細に説明する。
(光学素子)
本発明の方法により製造される光学素子の形状に特に制限はなく、両凸形状、メニスカス形状、両凹形状、平面等、各種の形状の光学素子を製造することができる。ここで、光学素子とは、レンズのような透過型の光学素子の他、ミラーのような反射型の光学素子も含む。
図3は、本実施形態で製造する光学素子の一例であるメニスカス形状のレンズ10を示している。レンズ10は、成形によって形成される第1の光学面11と追加工によって形成される第2の光学面12及びコバ面13とを有している。第1の光学面11は凹の非球面であり、第2の光学面12は凸の球面である。
光学素子の有する二つの光学面のうちいずれの面を成形によって形成される第1の光学面とするかについては、特に制限はない。ただし、レンズ10のように、一方の面が非球面や回折面などの追加工による形成が困難な形状であり、他方の面が一般的な球面である場合には、前者を成形によって形成される第1の光学面とし、後者を追加工によって形成する第2の光学面とすることが、生産性の観点から好ましい。尤も、製造する光学素子がミラーのような反射型の光学素子であって一つの光学面のみを有する物の場合には、その面を第1の光学面として成形によって形成すれば良い。
図4は、レンズ10を製造するための成形工程で得られた成形体を示す図である。本発明において成形体の肉厚は、必ずしも全面にわたって均一にする必要はない。図4(a)は全面にわたって肉厚がほぼ均一な成形体14a、図4(b)は、中心よりも端部の肉厚の方が大きい成形体14b、図4(c)は、端部よりも中心の肉厚の方が大きい成形体14cを示している。本発明においては、レンズ10を製造するための成形体として、成形体14a、14b、14cのいずれを用いても良い。いずれの場合であっても、図の波線で示すように、追加工によって第2の光学面12とコバ面13とを形成することで目的とするレンズ10が完成する。
図5は、本実施形態で製造する光学素子の別の例である両凸形状のレンズ20を示している。レンズ20は、成形によって形成される第1の光学面21と追加工によって形成される第2の光学面22及びコバ面23とを有している。第1の光学面21は凸の非球面であり、第2の光学面22は凸の球面である。
図6は、レンズ20を製造するための成形工程で得られた成形体を示す図である。図6(a)は肉厚がほぼ均一な成形体24a、図6(b)は、中心よりも端部の肉厚の方が大きい成形体24b、図6(c)は、端部よりも中心の肉厚の方が大きい成形体24cを示している。この場合も、レンズ20を製造するための成形体として、成形体24a、24b、24cのいずれを用いても良い。いずれの場合であっても、図の波線で示すように、追加工によって第2の光学面22とコバ面23とを形成することで目的とするレンズ20が完成する。
(成形金型)
図7は、本実施形態で用いる成形金型30を示す図である。成形金型30は、レンズ10用の成形体14aを成形するための成形金型である。この成形金型30は、下型31と上型32とを有し、更に、外径規制部材33を備えている。下型31は溶融ガラスを受けるための受け面37を有し、上型32は光学素子の第1の光学面を形成するための成形面38を有している。外径規制部材33は、溶融ガラスの外径を規制するための外径規制面39を有し、下型31に組み合わされて固定されている。また、下型31、上型32、外径規制部材33は、加熱手段としてのヒーター34a、34b、34c及び温度センサー35a、35b、35cをそれぞれ有している。
外径規制部材33は、本発明の製造方法において必ずしも必須の部材ではないが、例えば外径がφ20mm以上といった比較的大きな光学素子を製造する場合には、下型31の受け面37に多量の溶融ガラスを溜める必要があることから、溶融ガラスの外径を規制するための外径規制面39を有する外径規制部材33を備えていることが好ましい。外径規制部材は、図7のように下型と別部材で構成しても良いし、同一部材に受け面と外径規制面とを形成し、下型と外径規制部材の両方の機能を兼ね備えた部材を用いても良い。また、下型と固定せずに脱着可能な構成としても良いし、下型とは別に独立して上下に移動できる機構を備えた構成とすることも好ましい。
下型31、上型32、及び外径規制部材33の材質は、炭化タングステンを主成分とする超硬材料、炭化珪素、窒化珪素、窒化アルミニウム、カーボンなど、ガラス製光学素子を加圧成形するための成形金型として公知の材料の中から用途に応じて適宜選択して用いることができる。また、これらの材料の表面に各種金属やセラミックス、カーボンなどの保護膜を形成したものを用いることもできる。下型31、上型32、及び外径規制部材33を全て同一の材料で構成しても良いし、それぞれ別の材料で構成しても良い。
上型32の成形面38は、レンズ10の第1の光学面11に対応した形状とする。これに対して、レンズ10の第2の光学面12は成形後の追加工によって形成するため、下型31の受け面37は第2の光学面12に対応した形状とする必要はない。
(加熱工程)
加熱工程は、成形金型を溶融ガラスの温度よりも低い所定温度に加熱する工程である。下型31、上型32、外径規制部材33は、加熱手段としてのヒーター34a、34b、34c及び温度センサー35a、35b、35cをそれぞれ有している。このように、それぞれの部材を独立して温度調節することができる構成としても良いし、成形金型全体を一つ、あるいは複数のヒーターでまとめて加熱するような構成としても良い。ヒーターは、公知の各種のヒーターの中から適宜選択して用いることができる。例えば、部材の内部に埋め込んで使用するカートリッジヒーターや、部材の外側に接触させて使用するシート状のヒーターなどを用いることができる。また、温度センサーとしては、種々の熱電対の他、白金測温抵抗体、各種サーミスタなど公知の手段を使用することができる。
成形金型30の内、上型32の加熱温度は、溶融ガラスに成形面38の形状を良好に転写できる温度範囲に設定する必要がある。通常、成形するガラスのTg(ガラス転移点)−100℃からTg+100℃程度の温度範囲とすることが好ましい。加熱温度が低すぎると溶融ガラスに成形面38の形状を良好に転写させることが困難になってくる。逆に、必要以上に温度を高くしすぎることは、ガラスと成形金型との融着を防止する観点や、成形金型の寿命の観点から好ましくない。実際には、成形するガラスの材質や、成形体の形状、大きさ、成形金型の材質、保護膜の種類、ヒーターや温度センサーの位置等種々の条件を考慮に入れて適正な温度を決定する。
下型31と外径規制部材33の加熱温度については、上型32とは異なり成形面の転写性を考慮する必要はないが、溶融ガラスの冷却速度に影響することから、上型32と同様に、成形するガラスのTg−100℃からTg+100℃程度の温度範囲とすることが好ましい。
(溶融ガラス供給工程)
溶融ガラス供給工程は、下型31の受け面37に溶融ガラスを供給する工程である。供給された溶融ガラスは、下型31の受け面37に接触して冷却される。成形金型が、溶融ガラスの外径を規制するための外径規制面39を有する外径規制部材33を備えている場合には、外径規制面39にも接触して冷却される。
溶融ガラスを供給する方法について特に制限はなく、公知の手法を適宜選択して用いることができる。図8は、溶融ガラスを供給する方法の一例を示す模式図である。溶融槽41に溶融ガラスが貯蔵されており、溶融槽41の下部に設けられたノズル42の先端から溶融状態のガラス滴が自重により落下する状態となっている。このとき、溶融槽41とノズル42はヒーター43により所定温度に加熱されている。この状態で、下型31をノズルの先端に接近させて受け面37に所定量の溶融ガラスを滞留させた後、下型31を下方に引き下げて溶融ガラスを切断することで溶融ガラスを供給することができる(特許文献1を参照。)。図8(a)は、下型31をノズルの先端に接近させた状態を示す図であり、図8(b)は、下型31を下方に引き下げて溶融ガラスを切断した状態を示す図である。また、別の方法として、ノズルの先端から溶融ガラスが液線状態で流出する状態で、下型に所定量の溶融ガラスを滞留させた後、金属ブレードによって溶融ガラスを切断する方法によって溶融ガラスを供給することもできる。
図8(b)のように、供給された溶融ガラス44は、下型31の受け面37と外径規制部材33の外径規制面39とに接触する。下型31と外径規制部材33の温度は供給される溶融ガラス44よりも低温であることから、溶融ガラス44は主にこれらの接触面から冷却される。また、溶融ガラス44は、表面張力によって中心部が盛り上がった形状となるのが普通である。そのため、供給された溶融ガラス44には、中心部が高温で端部が低温という温度分布が生じることになる。
なお、使用できるガラスの種類に特に制限はなく、光学的用途に用いられる公知のガラスを用途に応じて選択して用いることができる。例えば、リン酸系ガラス、ランタン系ガラスなどが挙げられる
(冷却工程)
冷却工程は、供給された溶融ガラスの上面に冷却部材を接触させることにより溶融ガラスを冷却する工程である。
上述の通り、溶融ガラス供給工程で成形金型に供給された溶融ガラスには、中心部が高温で端部が低温という温度分布が生じている。このような状態の溶融ガラスを直接成形してしまうと、成形時における溶融ガラスの収縮量が均一にならず、高精度な光学面を得ることは困難である。本発明の製造方法においては、成形工程に先立って溶融ガラスの上面に冷却部材を接触させることにより、溶融ガラスの特に中心部が冷却されて溶融ガラスの温度分布を解消することができ、高精度な光学面を得ることができる。
図1は、溶融ガラスに冷却部材が接触している状態を示した模式図である。外径規制部材33が下型31に固定されている。図1(a)は、端部が平坦な円柱状の冷却部材51を用いた場合の図であり、図1(b)は、端部が凸の球面であり冷却部材51よりも径の大きな冷却部材52を用いた場合の図である。
また、図2は、溶融ガラスに冷却部材が接触している状態の別の例を示した模式図である。図1の場合と異なり、溶融ガラスの端部がある程度冷却されて粘度が高くなった後に外径規制部材を取り外し、その後に冷却部材を接触させている。図2(a)は、端部が平坦で径の大きな円柱状の冷却部材53を用いた場合の図であり、図2(b)は、端部が円錐台形状の冷却部材54を用いた場合の図である。
溶融ガラスと冷却部材との接触部の径φDについて特に制限はない。溶融ガラスのうち、特に高温となっている中心部を効果的に冷却するという観点からは、溶融ガラスと冷却部材との接触部の径φDは、溶融ガラスと下型の受け面との接触部の径φGよりも小さい方が好ましい。更に、0.3≦φD/φG≦0.9を満足する範囲とすることが特に好ましい。
なお、一般的に、成形体や下型の受け面は円形の外径を有する場合が多く、溶融ガラスと冷却部材との接触部や、溶融ガラスと下型の受け面との接触部についても円形の場合が多いが、本発明はそれに限定されるものではなく、多角形など円形以外の形状であっても良い。その場合、φD、φGは、それぞれの部分が面積の等しい円形であると仮定した場合における円の直径を意味する。
冷却部材が溶融ガラスに接触する部分の形状に特に制限はなく、平面、球面、円錐、円錐台など種々の形状とすることができる。溶融ガラスの表面付近だけでなく、内部まで効率的に冷却できるという観点からは、球面や円錐、円錐台のように接触部の端部よりも中心部が出っ張っている形状とすることが好ましい。
冷却部材と接触させている時間については、溶融ガラスの種類や温度、成形金型の温度、得ようとする成形体の径や肉厚などの条件を考慮に入れて適切な値を選択する。通常、冷却部材を退避させ溶融ガラスとの接触を解除させると、溶融ガラスは表面張力によって再び中心部の肉厚が厚い液滴状に戻り、冷却部材に接触した痕跡も問題にならない。しかし、接触時間が長すぎて冷却が進みすぎると溶融ガラスの粘性が高くなりすぎ、冷却部材に接触した痕跡がそのまま成形体に残ってしまう場合があり問題となる。逆に、接触時間が短すぎると溶融ガラスの冷却が不十分となり、溶融ガラスの温度分布が解消されない場合がある。一般的には、1秒〜20秒程度が好ましい範囲である。
冷却部材は、内部に水やオイル等の流体用配管を備えたり、ヒーター、温度センサーを備える等によって、温度調節機構を有していても良い。冷却部材の温度を一定に保つことにより、溶融ガラスの冷却を安定的に行うことができる。冷却部材の温度に特に制限はないが、効果的かつ安定的に冷却を行うという観点から、0℃〜500℃が好ましく、10℃〜300℃が更に好ましい。
冷却部材の材質は、耐熱性が高く、また溶融ガラスとの接触によって劣化しにくいものが好ましい。また、溶融ガラスの熱を効率的に奪うためには、熱伝導率が高く、比熱が高いものが更に好ましい。冷却部材として用いることができる材質として、例えば、ステンレス鋼などの耐熱鋼、ニッケル基やコバルト基の耐熱合金、炭化タングステンを主成分とする超硬材料、炭化珪素や窒化珪素などのセラミックス、カーボンなどが挙げられる。また、これらの材料の表面に各種金属やセラミックス、カーボンなどの保護膜を形成したものを用いることもできる。
なお、上型を冷却部材として用いることもできるが、冷却部材と上型とを別の部材とする方が好ましい。冷却部材を上型と別の部材とすることで、接触部の形状や温度を自由に設定することができ、また、上型の劣化を最小限に抑えることができる。
(成形工程)
成形工程は、成形金型で溶融ガラスを加圧成形し、上型の成形面が転写された第1の光学面を有する成形体を形成する工程である。
加圧の手段に特に制限はなく、エアシリンダ、油圧シリンダ、サーボモータを用いた電動シリンダ等の公知の加圧手段を適宜選択して用いることができる。
加圧の間に溶融ガラスの冷却が更に進む。溶融ガラスが十分固化する温度まで冷却された後、加圧を解除して成形金型から成形体を取り出す。加圧を解除する際の成形体の温度は、ガラスの種類や、成形体の大きさや形状、必要な精度等によるが、通常はガラスのTg近傍の温度まで冷却されていれば良い。必要な加圧時間、荷重も種々の条件によって異なるが、通常は、加圧時間が10秒〜300秒、荷重が500N〜20000Nの範囲の中から適切な値を選択すれば良い。
なお、溶融ガラスと外径規制部材が接触した状態のままで加圧を行っても良いし、成形工程の前に外径規制部材を退避させて溶融ガラスと外径規制部材との接触を解除した後に加圧を行っても良い。後者の場合、溶融ガラスが外部に流れ出さない程度の粘度になるまで冷却された後に外径規制部材を退避させる必要がある。
また、得られた成形体に残存する歪みを除去し、屈折率等の品質を均一化して更に高精度の光学素子とするために、成形体をアニールする工程を設けることもできる。
(追加工工程)
追加工工程とは、成形工程の後に、成形体の第1の光学面の裏面側に第2の光学面を形成する工程である。
一般的には、高速研削機(カーブジェネレータ)等を用いた粗摺工程、ダイヤモンドペレット等を用いた精研削工程、研磨剤で表面を仕上げる研磨工程といった工程によって光学面を形成することができるが、これに限定されることはなく、公知の手法を適宜選択して用いることができる。
また、研削等によって光学素子のコバ面を形成する工程を備えていても良い。
(実施例1)
図7に示した成形金型30を用いて、図4(a)に示す成形体14aを作製し、上型の成形面の転写によって形成された第1の光学面11の形状精度の評価を行った。第1の光学面11は、通常、非球面とすることが多いが、ここでは評価を容易にするため曲率半径30mmの球面とした。
成形体14aの外径はφ25mm、中心部の肉厚は6mmとした。下型31の受け面37の中心部は曲率半径30mmの凹面である。下型31、上型32、外径規制部材33は、いずれも炭化タングステンを主成分とする超硬材料を用いた。加熱温度は、下型31と外径規制部材33が520℃、上型32が430℃に設定した。
ガラス材料には、Tgが495℃のリン酸系ガラスを用いた。ノズルを1000℃に加熱し、溶融状態のガラス滴が自重により落下する状態で、下型31をノズルの先端に接近させて受け面37に溶融ガラスを滞留させた後、下型31を下方に引き下げて溶融ガラスを切断し、所定量の溶融ガラスを供給した。
供給された溶融ガラスに冷却部材を接触させた。冷却部材は、図1(a)に示した冷却部材51を用いた。冷却部材51の材質はSUS310Sとした。冷却部材51は特に温度制御の手段を備えておらず、溶融ガラスと接触する前の温度は約28℃であった。溶融ガラスと冷却部材との接触部の径φDは10mm、接触時間は5秒とした。
冷却部材を上昇させて溶融ガラスとの接触を解除すると、溶融ガラスは表面張力によって接触前と同様の液滴状の形状に戻った。その後、下型31を上型32に対向する位置まで移動し、1800Nの荷重で70秒の間溶融ガラスを加圧した。
取り出した成形体の光学面11の形状精度を評価した。評価は、テーラーホブソン株式会社製の表面形状測定器PGI840を用いて球面からのずれ量の最大値を求め、球面からのずれ量の最大値が150nm以下であり極めて良好な場合を◎、150nmより大きく300nm以下であり良好な場合を○、300nmより大きく問題となる場合を×とした。
評価結果を表1に示す。光学面11の形状精度は95nmと極めて良好であり、本発明の方法によって高精度な光学面を形成することができることが確認された。
Figure 2008094654
(実施例2)
冷却部材として図1(b)に示した冷却部材52を用いた以外は、実施例1と同じ条件で成形体14aを作製した。冷却部材52の溶融ガラスと接触する面は、曲率半径20mmの凸の球面とした。材質、温度は実施例1で用いた冷却部材51と同様である。溶融ガラスと冷却部材との接触部の径φDは15mm、接触時間は3秒とした。
得られた成形体の光学面11の形状精度を評価した。評価は、実施例1と同様の方法で行った。評価結果を表1に併せて示す。形状制度は70nmであり、実施例1と比較して更に高精度な光学面を形成することができた。
(比較例1)
冷却工程を設けず、供給された溶融ガラスを直接成型して成形体を作製した。その他の条件は実施例1と同じである。得られた成形体の光学面11の形状精度を評価した。評価は、実施例1と同様の方法で行った。
評価結果を表1に併せて示す。実施例1、2の場合と異なり、光学面の形状精度は300nmよりも大きく、高精度な光学面を形成することはできなかった。
(実施例3〜7)
図6(c)に示す成形体24cを作製し、上型の成形面の転写によって形成された第1の光学面21の形状精度の評価を行った。第1の光学面21は、曲率半径30mmの球面とした。
成形体24cの外径はφ40mm、中心部の肉厚は8mmとした。下型の受け面の中心部は曲率半径30mmの凹面である。下型、上型、外径規制部材の材質は、いずれも炭化珪素とした。加熱温度は、下型が710℃、外径規制部材が730℃、上型が680℃に設定した。
ガラス材料には、Tgが650℃のランタン系ガラスを用いた。ノズル先端を1200℃に加熱し、ノズル先端から溶融ガラスが液線状態で流出する状態で下型に溶融ガラスを滞留させた後、金属ブレードによって溶融ガラスを切断し、所定量の溶融ガラスを供給した。切断してから約10秒後に外径規制部材を取り外した。
供給された溶融ガラスに冷却部材を接触させた。冷却部材は、図2(a)に示した冷却部材53を用いた。冷却部材53の材質は炭化タングステンを主成分とする超硬材料とした。冷却部材53は内部に温度調節のためのオイルを流す配管が備えられている。オイルの温度を調節し、冷却部材53の温度を100℃に設定した。溶融ガラスと冷却部材との接触部の径φDが10mm(実施例3)、12mm(実施例4)、24mm(実施例5)、36mm(実施例6)、40mm(実施例7)となる5種類の条件で成形体を作製した。接触時間はいずれも12秒とした。
冷却部材を上昇させて溶融ガラスとの接触を解除すると、溶融ガラスは表面張力によって接触前と同様の液滴状の形状に戻った。その後、下型を上型に対向する位置まで移動し、3200Nの荷重で110秒の間溶融ガラスを加圧した。
得られた成形体の光学面21の形状精度を評価した。評価は、実施例1と同様の方法で行った。評価結果を表2に示す。光学面21の形状精度はいずれも良好であった。特に、溶融ガラスと冷却部材との接触部の径をφD、溶融ガラスと下型の受け面との接触部の径をφGとしたとき、0.3≦φD/φG≦0.9を満足する実施例4、5、6の場合は極めて良好な結果が得られた。
Figure 2008094654
(比較例2)
冷却工程を設けず、供給された溶融ガラスを直接成型して成形体を作製した。その他の条件は実施例3〜7と同じである。得られた成形体の光学面21の形状精度を評価した。評価は、実施例1と同様の方法で行った。
評価結果を表2に併せて示す。実施例3〜7の場合と異なり、光学面の形状精度は300nmよりも大きく、高精度な光学面を形成することはできなかった。
溶融ガラスに冷却部材が接触している状態の例を示した模式図 溶融ガラスに冷却部材が接触している状態の別の例を示した模式図 本実施形態で製造する光学素子の一例を示す断面図 レンズ10を製造するための成形体の断面図 本実施形態で製造する光学素子の別の例を示す断面図 レンズ20を製造するための成形体の断面図 本実施形態で用いる成形金型の断面図 溶融ガラスを供給する方法の一例を示す模式図
符号の説明
10、20 レンズ(光学素子)
11、21 第1の光学面
12、22 第2の光学面
14a、14b、14c 成形体
24a、24b、24c 成形体
30 成形金型
31 下型
32 上型
33 外径規制部材
37 受け面
38 成形面
39 外径規制面
44 溶融ガラス
51、52、53、54 冷却部材
φD 溶融ガラスと冷却部材との接触部の径
φG 溶融ガラスと下型の受け面との接触部の径

Claims (5)

  1. 溶融ガラスを受けるための受け面を有する下型、及び、光学素子の第1の光学面を形成するための成形面を有する上型を備える成形金型を、溶融ガラスの温度よりも低い所定温度に加熱する加熱工程と、
    前記下型の受け面に前記溶融ガラスを供給する溶融ガラス供給工程と、
    供給された前記溶融ガラスの上面に冷却部材を接触させることにより前記溶融ガラスを冷却する冷却工程と、
    前記成形金型で前記溶融ガラスを加圧成形し、前記上型の成形面が転写された第1の光学面を有する成形体を形成する成形工程とを有することを特徴とする光学素子の製造方法。
  2. 前記溶融ガラスと前記冷却部材との接触部の直径をφD、前記溶融ガラスと前記下型の受け面との接触部の直径をφGとしたとき、0.3≦φD/φG≦0.9を満足することを特徴とする請求項1に記載の光学素子の製造方法。
  3. 前記成形工程の後に、追加工によって前記成形体の第1の光学面の裏面側に第2の光学面を形成する追加工工程を有することを特徴とする請求項1又は2に記載の光学素子の製造方法。
  4. 前記成形金型は、前記溶融ガラスの外径を規制するための外径規制面を有する外径規制部材を備え、
    前記溶融ガラス供給工程において、前記下型の受け面に供給された前記溶融ガラスが、前記外径規制部材の外径規制面に接触することを特徴とする請求項1乃至3の何れか1項に記載の光学素子の製造方法。
  5. 溶融ガラスを受けるための受け面を有する下型、及び、光学素子の第1の光学面を形成するための成形面を有する上型を備える成形金型と、
    前記成形金型を溶融ガラスの温度よりも低い所定温度に加熱するための加熱手段と、
    前記下型の受け面に前記溶融ガラスを供給するための溶融ガラス供給手段と、
    供給された前記溶融ガラスの上面に冷却部材を接触させることにより前記溶融ガラスを冷却するための冷却手段と、
    前記成形金型で前記溶融ガラスを加圧成形し、前記上型の成形面が転写された第1の光学面を有する成形体を形成するための加圧手段とを有することを特徴とする光学素子の製造装置。
JP2006277353A 2006-10-11 2006-10-11 光学素子の製造方法及び製造装置 Pending JP2008094654A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006277353A JP2008094654A (ja) 2006-10-11 2006-10-11 光学素子の製造方法及び製造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006277353A JP2008094654A (ja) 2006-10-11 2006-10-11 光学素子の製造方法及び製造装置

Publications (1)

Publication Number Publication Date
JP2008094654A true JP2008094654A (ja) 2008-04-24

Family

ID=39377888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006277353A Pending JP2008094654A (ja) 2006-10-11 2006-10-11 光学素子の製造方法及び製造装置

Country Status (1)

Country Link
JP (1) JP2008094654A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021084586A1 (ja) * 2019-10-28 2021-11-18 株式会社ダイテック ディスプレイ用レンズの成型方法、ディスプレイ用レンズの金型セット

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5562815A (en) * 1978-11-06 1980-05-12 Ohara Inc Press molding method for thick optical glass molding
JPH07133121A (ja) * 1993-11-08 1995-05-23 Ohara Inc ディスク状ガラス製品のプレス成形方法
JP2000233934A (ja) * 1998-12-09 2000-08-29 Hoya Corp ガラス製品のプレス成形方法及び装置
JP2002068757A (ja) * 2000-09-01 2002-03-08 Hoya Corp ガラス成形品の製造方法及び製造装置、並びにガラス製品の製造方法
JP2004339039A (ja) * 2003-05-19 2004-12-02 Minolta Co Ltd 光学素子製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5562815A (en) * 1978-11-06 1980-05-12 Ohara Inc Press molding method for thick optical glass molding
JPH07133121A (ja) * 1993-11-08 1995-05-23 Ohara Inc ディスク状ガラス製品のプレス成形方法
JP2000233934A (ja) * 1998-12-09 2000-08-29 Hoya Corp ガラス製品のプレス成形方法及び装置
JP2002068757A (ja) * 2000-09-01 2002-03-08 Hoya Corp ガラス成形品の製造方法及び製造装置、並びにガラス製品の製造方法
JP2004339039A (ja) * 2003-05-19 2004-12-02 Minolta Co Ltd 光学素子製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021084586A1 (ja) * 2019-10-28 2021-11-18 株式会社ダイテック ディスプレイ用レンズの成型方法、ディスプレイ用レンズの金型セット

Similar Documents

Publication Publication Date Title
JP4684014B2 (ja) 精密プレス成形用プリフォームの製造方法および光学素子の製造方法
JP4951166B2 (ja) レンズブランク及びレンズの製造方法
JP4368368B2 (ja) ガラス塊の製造方法、その製造装置および光学素子の製造方法
JP4992035B2 (ja) 光学素子の製造方法
JP2008074636A (ja) 光学素子の製造方法及び製造装置
JP4784454B2 (ja) 光学素子の製造方法及び製造装置
JP2008094654A (ja) 光学素子の製造方法及び製造装置
WO2010122844A1 (ja) ガラス成形体の製造装置
JP2010254519A (ja) ガラス成形体の製造装置、及びガラス成形体の製造方法
JP5381706B2 (ja) 光学素子の製造方法
JP2011016699A (ja) 光学素子の製造方法、及び光学素子
JP4289716B2 (ja) ガラス素子の成形方法
JP5476993B2 (ja) 光学素子の製造方法及び製造装置
JP2008230874A (ja) 光学素子の製造方法
JP5197696B2 (ja) 精密プレス成形用プリフォームの製造方法および光学素子の製造方法
JP2501585B2 (ja) 光学素子の成形方法
JP2010184830A (ja) ガラス成形体の製造方法及び製造装置
JP2001278631A (ja) ガラス成形型、ガラス成形体及びガラス光学素子の製造方法
JP5652398B2 (ja) ガラスゴブの製造方法及びガラス成形体の製造方法
JP4919942B2 (ja) ガラス成形体、精密プレス成形用プリフォームおよび光学素子それぞれの製造方法
JP2011251887A (ja) 光学素子の製造装置および光学素子の製造方法
JPS63315524A (ja) ガラスゴブの供給方法
JPH10158019A (ja) 光学素子の成形方法及び光学素子及び光学素子成形用素材の製造方法及び精密素子の成形方法及び精密素子
JP2008239423A (ja) 光学素子の製造方法
JP2008230863A (ja) 光学素子の製造方法及び成形金型

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110927