JP2008088030A - Method for producing electroconductive zinc oxide fine particle and electroconductive zinc oxide fine particle - Google Patents

Method for producing electroconductive zinc oxide fine particle and electroconductive zinc oxide fine particle Download PDF

Info

Publication number
JP2008088030A
JP2008088030A JP2006272914A JP2006272914A JP2008088030A JP 2008088030 A JP2008088030 A JP 2008088030A JP 2006272914 A JP2006272914 A JP 2006272914A JP 2006272914 A JP2006272914 A JP 2006272914A JP 2008088030 A JP2008088030 A JP 2008088030A
Authority
JP
Japan
Prior art keywords
zinc oxide
oxide fine
fine particles
conductive zinc
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006272914A
Other languages
Japanese (ja)
Inventor
Hideyuki Hirakoso
英之 平社
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2006272914A priority Critical patent/JP2008088030A/en
Publication of JP2008088030A publication Critical patent/JP2008088030A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide electroconductive zinc oxide fine particles excellent in aging stability of the electric conductivity and a method for producing thereof. <P>SOLUTION: The electroconductive zinc oxide fine particles in which a dopant component is doped with zinc oxide is produced by a production method comprising (a) dissolving a water-soluble compound of zinc and a water-soluble compound of dopant component in water, (b) controlling pH of the liquid to 10-14 by adding alkali to liquid obtained by the step (a), (c) heating liquid obtained by the step (b) at 200-600°C under pressure of 10-50 MPa (gauge pressure), and (d) controlling pH of the liquid obtained by the step (c) to 4-10. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、導電性酸化亜鉛微粒子の製造方法および導電性酸化亜鉛微粒子に関する。   The present invention relates to a method for producing conductive zinc oxide fine particles and conductive zinc oxide fine particles.

酸化亜鉛に、アルミニウム、ガリウム等のドーパント成分をドープさせることにより、酸化亜鉛の導電性が増大する。
酸化亜鉛にドーパント成分がドープした導電性酸化亜鉛は、プラスチック等の帯電防止剤として用いられており、たとえば、塗料、成形品等に含まれている。導電性酸化亜鉛は、他の導電性酸化物と比較して、原料の資源量が豊富である;毒性が少ない;無色であるため着色の際の自由度が大きい;透明な成形品が得られる等の利点を有する。
Doping zinc oxide with a dopant component such as aluminum or gallium increases the conductivity of zinc oxide.
Conductive zinc oxide in which a dopant component is doped into zinc oxide is used as an antistatic agent for plastics and the like, and is contained in, for example, paints and molded articles. Conductive zinc oxide has abundant resources of raw materials compared to other conductive oxides; less toxic; colorless and has a high degree of freedom in coloring; transparent molded product is obtained And so on.

導電性酸化亜鉛の製造方法としては、下記方法が知られている。
(1)亜鉛粉末を蒸発させ、亜鉛蒸気にドーピング成分を含有するエーロゾルを供給し、同時に亜鉛およびドーピング成分を酸化させた後、冷却ガスによって冷却する方法(特許文献1)。
(2)酸化亜鉛を含む水スラリーに二酸化炭素ガスを吹き込み、塩基性炭酸亜鉛を合成し、該塩基性炭酸亜鉛を加熱分解する際にドーパント成分の酸化物または水酸化物を添加する方法(特許文献2)。
The following methods are known as methods for producing conductive zinc oxide.
(1) A method of evaporating zinc powder, supplying an aerosol containing a doping component to zinc vapor, simultaneously oxidizing zinc and the doping component, and then cooling with a cooling gas (Patent Document 1).
(2) A method in which carbon dioxide gas is blown into an aqueous slurry containing zinc oxide to synthesize basic zinc carbonate, and a dopant component oxide or hydroxide is added when the basic zinc carbonate is thermally decomposed (patent) Reference 2).

しかし、(1)、(2)の方法で得られた導電性酸化亜鉛は、空気中の水分の影響を受けて結晶構造が破壊され、経時的に導電性が悪化する問題を有する。
特表2005−534607号公報 特開2002−201024号公報
However, the conductive zinc oxide obtained by the methods (1) and (2) has a problem that the crystal structure is destroyed by the influence of moisture in the air and the conductivity deteriorates with time.
JP 2005-534607 A JP 2002-201024 A

本発明は、導電性の経時安定性に優れる導電性酸化亜鉛微粒子およびその製造方法を提供する。   The present invention provides conductive zinc oxide fine particles having excellent conductivity stability over time and a method for producing the same.

本発明の導電性酸化亜鉛微粒子の製造方法は、酸化亜鉛にドーパント成分がドープした導電性酸化亜鉛微粒子の製造方法であって、下記(a)〜(d)工程を有することを特徴とする。
(a)亜鉛の水溶性化合物およびドーパント成分の水溶性化合物を水に溶解する工程。
(b)前記(a)工程にて得られた液にアルカリを加えて、該液のpHを10〜14に調整する工程。
(c)前記(b)工程にて得られた液を、10〜50MPa(ゲージ圧)の圧力下、200〜600℃に加熱する工程。
(d)前記(c)工程にて得られた液のpHを4〜10に調整する工程。
The method for producing conductive zinc oxide fine particles of the present invention is a method for producing conductive zinc oxide fine particles in which zinc oxide is doped with a dopant component, and includes the following steps (a) to (d).
(A) A step of dissolving a water-soluble compound of zinc and a water-soluble compound of a dopant component in water.
(B) A step of adjusting the pH of the liquid to 10 to 14 by adding alkali to the liquid obtained in the step (a).
(C) A step of heating the liquid obtained in the step (b) to 200 to 600 ° C. under a pressure of 10 to 50 MPa (gauge pressure).
(D) A step of adjusting the pH of the liquid obtained in the step (c) to 4 to 10.

前記ドーパント成分は、アルミニウムもしくはガリウム、またはその両方であることが好ましい。
本発明の導電性酸化亜鉛微粒子は、本発明の導電性酸化亜鉛微粒子の製造方法によって得られたものである。
本発明の導電性酸化亜鉛微粒子の平均粒子径は、100nm以下が好ましい。
ドーパント成分の割合は、亜鉛とドーパント成分との合計(100原子%)のうち、0.1〜10原子%であることが好ましい。
The dopant component is preferably aluminum, gallium, or both.
The conductive zinc oxide fine particles of the present invention are obtained by the method for producing conductive zinc oxide fine particles of the present invention.
The average particle diameter of the conductive zinc oxide fine particles of the present invention is preferably 100 nm or less.
It is preferable that the ratio of a dopant component is 0.1-10 atomic% among the sum (100 atomic%) of zinc and a dopant component.

本発明の導電性酸化亜鉛微粒子は、導電性の経時安定性に優れる。
本発明の導電性酸化亜鉛微粒子の製造方法によれば、導電性の経時安定性に優れる導電性酸化亜鉛微粒子を製造できる。
The conductive zinc oxide fine particles of the present invention are excellent in conductivity stability over time.
According to the method for producing conductive zinc oxide fine particles of the present invention, conductive zinc oxide fine particles having excellent conductivity stability over time can be produced.

<導電性酸化亜鉛微粒子の製造方法>
本発明の導電性酸化亜鉛微粒子の製造方法は、酸化亜鉛にドーパント成分がドープした導電性酸化亜鉛微粒子の製造方法であって、下記(a)〜(d)工程を有する方法である。必要に応じて、さらに(e)工程を有してもよい。
(a)亜鉛の水溶性化合物およびドーパント成分の水溶性化合物を水に溶解する工程。
(b)前記(a)工程にて得られた液(以下、A液と記す。)にアルカリを加えて、A液のpHを10〜14に調整する工程。
(c)前記(b)工程にて得られた液(以下、B液と記す。)を、10〜50MPa(ゲージ圧)の圧力下、200〜600℃に加熱する工程。
(d)前記(c)工程にて得られた液(以下、C液と記す。)のpHを4〜10に調整する工程。
(e)必要に応じて、前記(d)工程にて得られた液(以下、D液と記す。)から導電性酸化亜鉛微粒子を回収する工程。
<Method for producing conductive zinc oxide fine particles>
The method for producing conductive zinc oxide fine particles of the present invention is a method for producing conductive zinc oxide fine particles in which a dopant component is doped in zinc oxide, and includes the following steps (a) to (d). You may have a process (e) further as needed.
(A) A step of dissolving a water-soluble compound of zinc and a water-soluble compound of a dopant component in water.
(B) A step of adjusting the pH of the A solution to 10 to 14 by adding an alkali to the solution obtained in the step (a) (hereinafter referred to as A solution).
(C) A step of heating the liquid obtained in the step (b) (hereinafter referred to as B liquid) to 200 to 600 ° C. under a pressure of 10 to 50 MPa (gauge pressure).
(D) The process of adjusting the pH of the liquid (henceforth C liquid) obtained at the said (c) process to 4-10.
(E) A step of collecting conductive zinc oxide fine particles from the liquid obtained in the step (d) (hereinafter referred to as D liquid) as necessary.

(a)工程:
ドーパント成分としては、アルミニウム、ガリウム、イットリウム、インジウム、スカンジウム、チタニウム、ジルコニウム、ハフニウムが挙げられ、導電性酸化亜鉛の導電性が良好であることから、アルミニウムまたはガリウムが好ましい。ドーパント成分は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(A) Process:
Examples of the dopant component include aluminum, gallium, yttrium, indium, scandium, titanium, zirconium, and hafnium. Aluminum or gallium is preferable because the conductivity of the conductive zinc oxide is good. A dopant component may be used individually by 1 type, and may be used in combination of 2 or more type.

亜鉛の水溶性化合物としては、亜鉛の硫酸塩、硝酸塩、酢酸塩、塩化物、臭化物、ヨウ化物等が挙げられる。
ドーパント成分の水溶性化合物としては、ドーパント成分の硫酸塩、硝酸塩、酢酸塩、塩化物、臭化物、ヨウ化物等が挙げられる。
亜鉛の水溶性化合物とドーパント成分の水溶性化合物との割合は、最終的に得られる導電性酸化亜鉛微粒子に含まれるドーパント成分の割合が、亜鉛とドーパント成分との合計(100原子%)のうち、0.1〜10原子%となる割合が好ましい。
Examples of the water-soluble compound of zinc include zinc sulfate, nitrate, acetate, chloride, bromide, iodide and the like.
Examples of the water-soluble compound of the dopant component include sulfate, nitrate, acetate, chloride, bromide, iodide and the like of the dopant component.
The ratio of the water-soluble compound of zinc and the water-soluble compound of the dopant component is such that the ratio of the dopant component contained in the finally obtained conductive zinc oxide fine particles is the total of zinc and the dopant component (100 atomic%). The ratio which becomes 0.1-10 atomic% is preferable.

A液中の亜鉛の水溶性化合物およびドーパント成分の水溶性化合物の合計の濃度は、0.001〜1モル/リットルが好ましい。水溶性化合物の合計の濃度が0.001モル/リットル以上であれば、水の量が抑えられ、また、導電性酸化亜鉛微粒子の生産性が向上する。水溶性化合物の濃度が1モル/リットル以下であれば、導電性酸化亜鉛微粒子の凝集を抑制でき、導電性酸化亜鉛微粒子の平均粒子径を100nm以下に制御しやすい。   The total concentration of the water-soluble compound of zinc and the water-soluble compound of the dopant component in the liquid A is preferably 0.001 to 1 mol / liter. When the total concentration of the water-soluble compounds is 0.001 mol / liter or more, the amount of water is suppressed, and the productivity of the conductive zinc oxide fine particles is improved. When the concentration of the water-soluble compound is 1 mol / liter or less, aggregation of the conductive zinc oxide fine particles can be suppressed, and the average particle diameter of the conductive zinc oxide fine particles can be easily controlled to 100 nm or less.

(b)工程:
A液のpHを10〜14に調整することにより、亜鉛の水酸化物とドーパント成分の水酸化物との複合水酸化物が形成される。その結果、最終的に、酸化亜鉛にドーパント成分が均一にドープした導電性酸化亜鉛微粒子が得られる。酸化亜鉛にドーパント成分が均一にドープすることにより、導電性酸化亜鉛微粒子の導電性は良好となる。A液のpHは、(d)工程にてC液のpHを4〜10に調整しやすい点から、10〜12に調整することが好ましい。
(B) Process:
By adjusting the pH of the A liquid to 10 to 14, a composite hydroxide of zinc hydroxide and dopant component hydroxide is formed. As a result, finally, conductive zinc oxide fine particles in which the dopant component is uniformly doped in zinc oxide are obtained. When the dopant component is uniformly doped into zinc oxide, the conductivity of the conductive zinc oxide fine particles is improved. The pH of the A liquid is preferably adjusted to 10 to 12 because the pH of the C liquid is easily adjusted to 4 to 10 in the step (d).

アルカリとしては、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム、水酸化リチウム、アンモニア等が挙げられる。
アルカリは、アルカリ水溶液にしてからA液に加えてもよく、水溶液にすることなくA液にそのまま加えてもよい。短時間で均一に混合できる点から、アルカリ水溶液をA液に加えることが好ましい。
Examples of the alkali include sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, lithium hydroxide, and ammonia.
The alkali may be added to the solution A after forming an alkali aqueous solution, or may be added to the solution A as it is without forming an aqueous solution. It is preferable to add alkaline aqueous solution to A liquid from the point which can mix uniformly in a short time.

(c)工程:
B液を、高圧下にて高温に加熱することにより、複合水酸化物から導電性酸化亜鉛への水熱反応が良好に進行する。その結果、結晶性の高い導電性酸化亜鉛微粒子が得られる。結晶性の高い導電性酸化亜鉛微粒子は、空気中の水分によって結晶構造が破壊されにくく、導電性の経時安定性に優れる。
(C) Process:
By heating the B liquid to a high temperature under high pressure, the hydrothermal reaction from the composite hydroxide to the conductive zinc oxide proceeds well. As a result, conductive zinc oxide fine particles with high crystallinity are obtained. The conductive zinc oxide fine particles having high crystallinity are not easily destroyed by moisture in the air, and are excellent in electrical stability over time.

加熱時の圧力は、ゲージ圧で10〜50MPaであり、15〜40MPaが好ましく、25〜35MPaがより好ましい。圧力が10MPa以上であれば、水の密度が大きくなって水熱反応が進行しやすくなり、結晶性の高い導電性酸化亜鉛微粒子を得やすくなる。圧力が50MPa以下であれば、特殊な耐圧性の製造装置を用意する必要がない。
加圧方法としては、(i)送液管の上流から液をポンプで送液しながら下流の背圧弁を調整して送液管内の圧力を上げる方法、(ii)密封できる容器に液を入れ、加熱により圧力を上げる方法等が挙げられ、生産性、粒子径制御の点から、(i)の方法が好ましい。
The pressure at the time of heating is 10-50 MPa by gauge pressure, 15-40 MPa is preferable and 25-35 MPa is more preferable. If the pressure is 10 MPa or more, the density of water increases and the hydrothermal reaction easily proceeds, and it becomes easy to obtain conductive zinc oxide fine particles with high crystallinity. If the pressure is 50 MPa or less, it is not necessary to prepare a special pressure-resistant manufacturing apparatus.
As a pressurizing method, (i) a method of increasing the pressure in the liquid feeding pipe by adjusting a downstream back pressure valve while pumping liquid from the upstream of the liquid feeding pipe, and (ii) putting the liquid in a sealable container The method of raising a pressure by heating etc. is mentioned, and the method of (i) is preferable from the point of productivity and particle diameter control.

加熱温度は、200〜600℃であり、250〜500℃が好ましく、300〜400℃がより好ましい。加熱温度が300℃以上であれば、水熱反応が進行しやすくなり、結晶性の高い導電性酸化亜鉛微粒子を得やすくなる。加熱温度が600℃以下であれば、特殊な耐熱性の製造装置を用意する必要がない。
加熱方法としては、B液と別途用意した高温の水とを混合する方法;B液を電気炉、熱交換器、ジャケット等の加熱手段にて加熱する方法等が挙げられる。
The heating temperature is 200 to 600 ° C, preferably 250 to 500 ° C, and more preferably 300 to 400 ° C. If heating temperature is 300 degreeC or more, a hydrothermal reaction will advance easily and it will become easy to obtain electroconductive zinc oxide fine particles with high crystallinity. If the heating temperature is 600 ° C. or lower, it is not necessary to prepare a special heat-resistant manufacturing apparatus.
Examples of the heating method include a method of mixing the liquid B and separately prepared high-temperature water; a method of heating the liquid B by heating means such as an electric furnace, a heat exchanger, and a jacket.

加熱時間は、1ミリ秒〜10分が好ましく、1〜100秒がより好ましい。加熱時間が1ミリ秒以上であれば、結晶性の高い導電性酸化亜鉛微粒子を得やすくなる。加熱時間が10分以下であれば、平均粒子径が100nm以下である導電性酸化亜鉛微粒子を得やすくなる。   The heating time is preferably 1 millisecond to 10 minutes, and more preferably 1 to 100 seconds. When the heating time is 1 millisecond or more, it becomes easy to obtain conductive zinc oxide fine particles having high crystallinity. When the heating time is 10 minutes or less, it becomes easy to obtain conductive zinc oxide fine particles having an average particle diameter of 100 nm or less.

(d)工程:
C液のpHを4〜10に調整することにより、得られる導電性酸化亜鉛微粒子の表面が腐食(水酸化亜鉛に変化)しにくくなる。その結果、導電性酸化亜鉛微粒子の表面は高い結晶性を長時間維持でき、粉体の状態で空気中にて保存した場合であっても導電性が低下しにくい。C液のpHは、導電性酸化亜鉛微粒子の表面の腐食を充分に抑制する点から、5〜9に調整することが好ましい。
(D) Process:
By adjusting the pH of the liquid C to 4 to 10, the surface of the obtained conductive zinc oxide fine particles is unlikely to corrode (change to zinc hydroxide). As a result, the surface of the conductive zinc oxide fine particles can maintain high crystallinity for a long time, and even when stored in the air in the form of a powder, the conductivity is not easily lowered. The pH of the liquid C is preferably adjusted to 5 to 9 from the viewpoint of sufficiently suppressing the corrosion of the surface of the conductive zinc oxide fine particles.

C液のpHの調整方法としては、酸を加える方法、水で希釈する方法等が挙げられ、酸を加える方法が好ましい。
酸としては、硝酸、塩酸、硫酸、ギ酸、酢酸、プロピオン酸、クエン酸、マレイン酸、マロン酸等が挙げられ、高温での安定性、製造装置の防食の点から、硝酸または硫酸が好ましい。
酸は、酸水溶液にしてからC液に加えてもよく、水溶液にすることなくC液にそのまま加えてもよい。短時間で均一に混合できる点から、酸水溶液をC液に加えることが好ましい。
Examples of a method for adjusting the pH of solution C include a method of adding an acid, a method of diluting with water, and the like, and a method of adding an acid is preferable.
Examples of the acid include nitric acid, hydrochloric acid, sulfuric acid, formic acid, acetic acid, propionic acid, citric acid, maleic acid, malonic acid and the like, and nitric acid or sulfuric acid is preferred from the viewpoint of stability at high temperature and corrosion prevention of the production apparatus.
The acid may be added to the solution C after forming an acid aqueous solution, or may be added to the solution C as it is without forming an aqueous solution. It is preferable to add an aqueous acid solution to the C liquid from the viewpoint that it can be uniformly mixed in a short time.

(d)工程においては、C液を冷却することが好ましい。冷却方法としては、C液に酸水溶液を冷却水として加える方法;C液のpHを4〜10に調整した後、熱交換器、ジャケット等の冷却手段にて冷却する方法等が挙げられる。
(d)工程においては、C液を常圧まで減圧してもよい。
In the step (d), it is preferable to cool the liquid C. Examples of the cooling method include a method of adding an acid aqueous solution as cooling water to the liquid C; a method of adjusting the pH of the liquid C to 4 to 10 and then cooling with a cooling means such as a heat exchanger or a jacket.
In step (d), the liquid C may be reduced to normal pressure.

(e)工程:
D液をそのまま導電性酸化亜鉛微粒子の分散液として用いてもよく、D液から導電性酸化亜鉛微粒子を回収してもよい。
回収方法としては、フィルタ等を用いてD液をろ過する方法、遠心分離をする方法、凝集剤を添加して沈殿させる方法等が挙げられる。
回収された導電性酸化亜鉛微粒子を、水、アルコール等の有機溶媒等にて洗浄してもよい。
(E) Process:
The D liquid may be used as it is as a dispersion of conductive zinc oxide fine particles, or the conductive zinc oxide fine particles may be recovered from the D liquid.
Examples of the recovery method include a method of filtering the D solution using a filter or the like, a method of centrifuging, a method of adding a flocculant and precipitating.
The collected conductive zinc oxide fine particles may be washed with an organic solvent such as water or alcohol.

<導電性酸化亜鉛微粒子>
本発明の導電性酸化亜鉛微粒子は、本発明の導電性酸化亜鉛微粒子の製造方法によって得られた導電性酸化亜鉛微粒子である。
導電性酸化亜鉛微粒子は、酸化亜鉛の結晶格子中における亜鉛の一部がドーパント成分に置き換わった結晶構造を有する。結晶格子中における亜鉛の一部が価数の異なる原子で置き換えられるため、キャリアが生成し、該キャリアの移動によって導電性が発現する。
<Conductive zinc oxide fine particles>
The conductive zinc oxide fine particles of the present invention are conductive zinc oxide fine particles obtained by the method for producing conductive zinc oxide fine particles of the present invention.
The conductive zinc oxide fine particles have a crystal structure in which a part of zinc in the crystal lattice of zinc oxide is replaced with a dopant component. Since a part of zinc in the crystal lattice is replaced with an atom having a different valence, carriers are generated, and conductivity is exhibited by movement of the carriers.

導電性酸化亜鉛微粒子としては、ガリウムドープ酸化亜鉛、アルミニウムドープ酸化亜鉛、イットリウムドープ酸化亜鉛、インジウムドープ酸化亜鉛、スカンジウムドープ酸化亜鉛、チタニウムドープ酸化亜鉛、ジルコニウムドープ酸化亜鉛、ハフニウムドープ酸化亜鉛が挙げられ、導電性に優れる点から、ガリウムドープ酸化亜鉛、アルミニウムドープ酸化亜鉛が好ましい。
導電性酸化亜鉛微粒子は、分散液における凝集を抑制する点から、保護剤で被覆されていてもよい。
Examples of the conductive zinc oxide fine particles include gallium-doped zinc oxide, aluminum-doped zinc oxide, yttrium-doped zinc oxide, indium-doped zinc oxide, scandium-doped zinc oxide, titanium-doped zinc oxide, zirconium-doped zinc oxide, and hafnium-doped zinc oxide. From the viewpoint of excellent conductivity, gallium-doped zinc oxide and aluminum-doped zinc oxide are preferable.
The conductive zinc oxide fine particles may be coated with a protective agent from the viewpoint of suppressing aggregation in the dispersion.

導電性酸化亜鉛微粒子の平均粒子径は、100nm以下であり、30〜70nmが好ましい。導電性酸化亜鉛微粒子の平均粒子径が100nm以下であれば、光散乱の効果が小さくなり、透明性を実現できる。導電性酸化亜鉛微粒子の平均粒子径は、無作為に抽出した100個の導電性酸化亜鉛微粒子の粒子径を、透過型電子顕微鏡(TEM)または走査型電子顕微鏡(SEM)を用いて測定し、該粒子径を平均した値である。   The average particle diameter of the conductive zinc oxide fine particles is 100 nm or less, and preferably 30 to 70 nm. When the average particle diameter of the conductive zinc oxide fine particles is 100 nm or less, the effect of light scattering is reduced, and transparency can be realized. The average particle diameter of the conductive zinc oxide fine particles was measured by using a transmission electron microscope (TEM) or a scanning electron microscope (SEM) to measure the particle diameter of 100 conductive zinc oxide fine particles randomly extracted. It is a value obtained by averaging the particle diameter.

導電性酸化亜鉛微粒子に含まれるドーパント成分の割合は、亜鉛とドーパント成分との合計(100原子%)のうち、0.1〜10原子%が好ましい。ドーパント成分の割合が0.1原子%以上であれば、導電性酸化亜鉛微粒子の導電性が良好となる。ドーパント成分の割合が10原子%以下であれば、導電性酸化亜鉛微粒子の導電性の悪化を抑制できる。   As for the ratio of the dopant component contained in electroconductive zinc oxide fine particles, 0.1-10 atomic% is preferable among the sum total (100 atomic%) of zinc and a dopant component. If the ratio of a dopant component is 0.1 atomic% or more, the electroconductivity of electroconductive zinc oxide fine particle will become favorable. If the ratio of a dopant component is 10 atomic% or less, the electroconductive deterioration of electroconductive zinc oxide microparticles | fine-particles can be suppressed.

以上説明した本発明の導電性酸化亜鉛微粒子の製造方法によって得られる導電性酸化亜鉛微粒子は、結晶性が高く、かつ高い結晶性を長時間維持できるため、空気中で保存した場合であっても水分によって結晶構造が破壊されにくい。よって、導電性酸化亜鉛微粒子の導電性が低下しにくい。   Since the conductive zinc oxide fine particles obtained by the method for producing conductive zinc oxide fine particles of the present invention described above have high crystallinity and can maintain high crystallinity for a long time, even when stored in air. The crystal structure is not easily destroyed by moisture. Therefore, the conductivity of the conductive zinc oxide fine particles is unlikely to decrease.

以下、実施例により本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されない。
例1、2は実施例であり、例3〜5は比較例である。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.
Examples 1 and 2 are examples, and examples 3 to 5 are comparative examples.

(導電性酸化亜鉛微粒子の同定)
導電性酸化亜鉛微粒子の同定は、X線回折装置(リガク機器社製、RINT2500)を用いて行う。
(Identification of conductive zinc oxide fine particles)
Identification of the conductive zinc oxide fine particles is performed using an X-ray diffractometer (RINT2500, manufactured by Rigaku Equipment Co., Ltd.).

(導電性酸化亜鉛微粒子の平均粒子径)
導電性酸化亜鉛微粒子の平均粒子径は、無作為に抽出した100個の微粒子の粒子径を、透過型電子顕微鏡(日立製作所社製、H−9000)または走査型電子顕微鏡(日立製作所社製、S−800)を用いて測定し、該粒子径を平均して求める。
(Average particle diameter of conductive zinc oxide fine particles)
The average particle size of the conductive zinc oxide fine particles is the same as the particle size of 100 randomly extracted fine particles, a transmission electron microscope (Hitachi Ltd., H-9000) or a scanning electron microscope (Hitachi Ltd., S-800), and the average particle size is determined.

(導電性)
導電性は、導電性酸化亜鉛の抵抗値から評価する。
加圧器を用いて導電性酸化亜鉛微粒子を圧粉体に成形し、圧粉体の両端間の抵抗値を抵抗計(横河電機社製、デジタルマルチメータ 7544−02型)を用いて測定する。抵抗値は、導電性酸化亜鉛微粒子の回収直後、および圧粉体を空気中で1週間放置した後に測定する。
(Conductivity)
The conductivity is evaluated from the resistance value of the conductive zinc oxide.
The conductive zinc oxide fine particles are molded into a green compact using a pressurizer, and the resistance value between both ends of the green compact is measured using a resistance meter (Yokogawa Electric Corp., Digital Multimeter 7544-02 type). . The resistance value is measured immediately after collecting the conductive zinc oxide fine particles and after the green compact is left in the air for one week.

(製造装置)
導電性酸化亜鉛微粒子の製造装置としては、図1の概略図に示す製造装置を用いる。製造装置1は、主流路10と;主流路10に合流するアルカリ水溶液供給流路12と;アルカリ水溶液供給流路12よりも下流側で主流路10に合流する水供給流路14と;水供給流路14よりも下流側で主流路10に合流する酸水溶液供給流路16と;主流路10にA液を送液するHPLC無脈流ポンプ20と;アルカリ水溶液供給流路12にアルカリ水溶液を送液するHPLC無脈流ポンプ22と;水供給流路14に水を送液するHPLC無脈流ポンプ24と;酸水溶液供給流路16に酸水溶液を送液するHPLC無脈流ポンプ26と;主流路10と水供給流路14との合流点と、主流路10と酸水溶液供給流路16との合流点との間の主流路10に設けられた電気炉30と;水供給流路14の途中に設けられた電気炉34と;主流路10と酸水溶液供給流路16との合流点よりも下流側の主流路10に設けられた水冷ジャケット40と;水冷ジャケット40よりも下流側の主流路10に設けられたフィルタ50と;フィルタ50よりも下流側の主流路10に設けられた背圧弁60と;主流路10と水供給流路14との合流点の前後、および主流路10と酸水溶液供給流路16との合流点の前後に設けられた熱電対72、74、76、78とを具備する。
(Manufacturing equipment)
As a manufacturing apparatus for conductive zinc oxide fine particles, the manufacturing apparatus shown in the schematic diagram of FIG. 1 is used. The manufacturing apparatus 1 includes a main flow path 10; an alkaline aqueous solution supply flow path 12 that merges with the main flow path 10; a water supply flow path 14 that merges with the main flow path 10 on the downstream side of the alkaline aqueous solution supply flow path 12; An acid aqueous solution supply channel 16 that joins the main channel 10 downstream of the channel 14; an HPLC non-pulsating pump 20 that sends the liquid A to the main channel 10; An HPLC non-pulsating pump 22 for feeding liquid; an HPLC non-pulsating pump 24 for feeding water to the water supply channel 14; and an HPLC non-pulsating pump 26 for feeding an acid aqueous solution to the acid aqueous solution supply channel 16 An electric furnace 30 provided in the main flow path 10 between the confluence of the main flow path 10 and the water supply flow path 14 and the confluence of the main flow path 10 and the acid aqueous solution supply flow path 16; Electric furnace 34 provided in the middle of 14; main flow path 1 A water cooling jacket 40 provided in the main flow path 10 on the downstream side of the confluence of the water solution and the acid aqueous solution supply flow path 16; a filter 50 provided in the main flow path 10 on the downstream side of the water cooling jacket 40; And a back pressure valve 60 provided in the downstream main flow path 10; before and after the confluence of the main flow path 10 and the water supply flow path 14, and before and after the confluence of the main flow path 10 and the acid aqueous solution supply flow path 16. And provided thermocouples 72, 74, 76, 78.

〔例1〕
ガラス容器内にて硝酸亜鉛を蒸留水で溶解して、0.01モル/リットルの硝酸亜鉛水溶液を得る。また、ガラス容器内にて硝酸アルミニウムを蒸留水で溶解して0.01モル/リットルの硝酸アルミニウム水溶液を得る。ガラス容器内にて硝酸亜鉛水溶液および硝酸アルミニウム水溶液を、硝酸亜鉛:硝酸アルミニウム=95:5(モル比)となるように混合し、A液を調製する。
[Example 1]
Zinc nitrate is dissolved with distilled water in a glass container to obtain a 0.01 mol / liter aqueous zinc nitrate solution. Also, aluminum nitrate is dissolved with distilled water in a glass container to obtain a 0.01 mol / liter aluminum nitrate aqueous solution. In a glass container, a zinc nitrate aqueous solution and an aluminum nitrate aqueous solution are mixed so that zinc nitrate: aluminum nitrate = 95: 5 (molar ratio) to prepare solution A.

以後、製造装置1の各ポンプの運転中においては、各流路内の圧力を、背圧弁60を用いて常に30MPa(ゲージ圧)に調整する。
A液をHPLC無脈流ポンプ20で主流路10に送液しながら、A液のpHが12に調整される量の、0.1モル/リットルの水酸化ナトリウム水溶液をHPLC無脈流ポンプ20でアルカリ水溶液供給流路12に送液し、主流路10とアルカリ水溶液供給流路12との合流点にてA液と水酸化ナトリウム水溶液とを混合し、B液を得る。
Thereafter, during operation of each pump of the manufacturing apparatus 1, the pressure in each flow path is always adjusted to 30 MPa (gauge pressure) using the back pressure valve 60.
While the A liquid is sent to the main flow path 10 by the HPLC pulsating flow pump 20, a 0.1 mol / liter sodium hydroxide aqueous solution in an amount such that the pH of the A liquid is adjusted to 12 is supplied to the HPLC pulsating flow pump 20. The liquid A is fed to the alkaline aqueous solution supply flow path 12 and the liquid A and the aqueous sodium hydroxide solution are mixed at the junction of the main flow path 10 and the alkaline aqueous solution supply flow path 12 to obtain liquid B.

同時に、水をHPLC無脈流ポンプ24で水供給流路14に送液し、B液と水とを混合した際にB液が400℃まで加熱されるような温度となるまで電気炉34で水を加熱し、高温の水を得た後、主流路10と水供給流路14との合流点にてB液と高温の水とを混合し、B液を400℃まで加熱する。該B液を、電気炉30で400℃に保持しながら、電気炉30内の主流路10を1秒で通過させ、C液を得る。   At the same time, water is sent to the water supply flow path 14 by the HPLC non-pulsating pump 24, and when the B liquid and water are mixed, the electric furnace 34 is heated until the temperature becomes such that the B liquid is heated to 400 ° C. After the water is heated to obtain high-temperature water, the B liquid and the high-temperature water are mixed at the junction of the main flow path 10 and the water supply flow path 14, and the B liquid is heated to 400 ° C. While the B liquid is kept at 400 ° C. in the electric furnace 30, the main flow path 10 in the electric furnace 30 is passed in 1 second to obtain a C liquid.

同時に、C液のpHが7に調整される量の、0.1モル/リットルの硝酸水溶液をHPLC無脈流ポンプ26で酸水溶液供給流路16に送液し、主流路10と酸水溶液供給流路16との合流点にてC液と硝酸水溶液とを混合し、さらに冷却ジャケット40で冷却し、D液を得る。
フィルタ50にてD液から導電性酸化亜鉛微粒子を回収する。
At the same time, a 0.1 mol / liter nitric acid aqueous solution whose amount is adjusted to pH 7 is fed to the acid aqueous solution supply channel 16 by the HPLC non-pulsating pump 26 to supply the main channel 10 and the acid aqueous solution. The liquid C and the aqueous nitric acid solution are mixed at the junction with the flow path 16 and further cooled by the cooling jacket 40 to obtain liquid D.
The conductive zinc oxide fine particles are collected from the liquid D by the filter 50.

導電性酸化亜鉛微粒子をX線回折により同定し、酸化亜鉛の結晶形を有することを確認する。
導電性酸化亜鉛微粒子の平均粒子径および圧粉体の抵抗を測定する。結果を表1に示す。
導電性酸化亜鉛微粒子に含まれるアルミニウムの割合は、亜鉛とアルミニウムとの合計(100原子%)のうち、5原子%である。
Conductive zinc oxide fine particles are identified by X-ray diffraction to confirm that they have a zinc oxide crystal form.
The average particle diameter of the conductive zinc oxide fine particles and the resistance of the green compact are measured. The results are shown in Table 1.
The proportion of aluminum contained in the conductive zinc oxide fine particles is 5 atomic% in the total of zinc and aluminum (100 atomic%).

〔例2〕
硝酸アルミニウムの代わりに硝酸ガリウムを用いる以外は、例1と同様にして導電性酸化亜鉛微粒子を得る。
導電性酸化亜鉛微粒子をX線回折により同定し、酸化亜鉛の結晶形を有することを確認する。
導電性酸化亜鉛微粒子の平均粒子径および圧粉体の抵抗を測定する。結果を表1に示す。
導電性酸化亜鉛微粒子に含まれるガリウムの割合は、亜鉛とガリウムとの合計(100原子%)のうち、5原子%である。
[Example 2]
Conductive zinc oxide fine particles are obtained in the same manner as in Example 1 except that gallium nitrate is used instead of aluminum nitrate.
Conductive zinc oxide fine particles are identified by X-ray diffraction to confirm that they have a zinc oxide crystal form.
The average particle diameter of the conductive zinc oxide fine particles and the resistance of the green compact are measured. The results are shown in Table 1.
The proportion of gallium contained in the conductive zinc oxide fine particles is 5 atomic% in the total of zinc and gallium (100 atomic%).

〔例3〕
水酸化ナトリウム水溶液を供給しない以外は、例1と同様にして導電性酸化亜鉛微粒子を得る。
導電性酸化亜鉛微粒子をX線回折により同定し、酸化亜鉛の結晶形および酸化アルミニウムの結晶形の両方を有することを確認する。
導電性酸化亜鉛微粒子の平均粒子径および圧粉体の抵抗を測定する。結果を表1に示す。
[Example 3]
Conductive zinc oxide fine particles are obtained in the same manner as in Example 1 except that no sodium hydroxide aqueous solution is supplied.
Conductive zinc oxide fine particles are identified by X-ray diffraction and confirmed to have both a zinc oxide crystal form and an aluminum oxide crystal form.
The average particle diameter of the conductive zinc oxide fine particles and the resistance of the green compact are measured. The results are shown in Table 1.

〔例4〕
硝酸水溶液を供給しない以外は、例1と同様にして製造を行う。
導電性酸化亜鉛微粒子をX線回折により同定し、酸化亜鉛の結晶形を有することを確認する。
導電性酸化亜鉛微粒子の平均粒子径および圧粉体の抵抗を測定する。結果を表1に示す。
[Example 4]
Manufacture is carried out in the same manner as in Example 1 except that no nitric acid aqueous solution is supplied.
Conductive zinc oxide fine particles are identified by X-ray diffraction to confirm that they have a zinc oxide crystal form.
The average particle diameter of the conductive zinc oxide fine particles and the resistance of the green compact are measured. The results are shown in Table 1.

〔例5〕
市販の導電性酸化亜鉛微粒子(ハクスイテック社製、パゼット)を圧粉体に成形する。該圧粉体の抵抗を測定する。結果を表1に示す。
[Example 5]
Commercially available conductive zinc oxide fine particles (manufactured by Hakusui Tech Co., Ltd., passette) are formed into a green compact. The resistance of the green compact is measured. The results are shown in Table 1.

Figure 2008088030
Figure 2008088030

本発明の導電性酸化亜鉛微粒子の製造方法によれば、空気中での経時安定性に優れる導電性酸化亜鉛微粒子を製造でき、該導電性酸化亜鉛微粒子はプラスチック等の帯電防止剤に有用である。   According to the method for producing conductive zinc oxide fine particles of the present invention, conductive zinc oxide fine particles having excellent temporal stability in air can be produced, and the conductive zinc oxide fine particles are useful for antistatic agents such as plastics. .

実施例で用いる導電性酸化亜鉛微粒子の製造装置を示す概略図である。It is the schematic which shows the manufacturing apparatus of the electroconductive zinc oxide microparticles | fine-particles used in an Example.

Claims (5)

酸化亜鉛にドーパント成分がドープした導電性酸化亜鉛微粒子の製造方法であって、
下記(a)〜(d)工程を有する、導電性酸化亜鉛微粒子の製造方法。
(a)亜鉛の水溶性化合物およびドーパント成分の水溶性化合物を水に溶解する工程。
(b)前記(a)工程にて得られた液にアルカリを加えて、該液のpHを10〜14に調整する工程。
(c)前記(b)工程にて得られた液を、10〜50MPa(ゲージ圧)の圧力下、200〜600℃に加熱する工程。
(d)前記(c)工程にて得られた液のpHを4〜10に調整する工程。
A method for producing conductive zinc oxide fine particles in which a dopant component is doped in zinc oxide,
The manufacturing method of electroconductive zinc oxide microparticles | fine-particles which has the following (a)-(d) process.
(A) A step of dissolving a water-soluble compound of zinc and a water-soluble compound of a dopant component in water.
(B) A step of adjusting the pH of the liquid to 10 to 14 by adding alkali to the liquid obtained in the step (a).
(C) A step of heating the liquid obtained in the step (b) to 200 to 600 ° C. under a pressure of 10 to 50 MPa (gauge pressure).
(D) A step of adjusting the pH of the liquid obtained in the step (c) to 4 to 10.
前記ドーパント成分が、アルミニウムもしくはガリウム、またはその両方である、請求項1記載の導電性酸化亜鉛微粒子の製造方法。   The method for producing conductive zinc oxide fine particles according to claim 1, wherein the dopant component is aluminum, gallium, or both. 請求項1または2に記載の製造方法によって得られた、導電性酸化亜鉛微粒子。   Conductive zinc oxide fine particles obtained by the production method according to claim 1 or 2. 平均粒子径が、100nm以下である、請求項3に記載の導電性酸化亜鉛微粒子。   Conductive zinc oxide fine particles according to claim 3, wherein the average particle diameter is 100 nm or less. ドーパント成分の割合が、亜鉛とドーパント成分との合計(100原子%)のうち、0.1〜10原子%である、請求項3または4に記載の導電性酸化亜鉛微粒子。   5. The conductive zinc oxide fine particles according to claim 3, wherein the proportion of the dopant component is 0.1 to 10 atom% in the total of zinc and the dopant component (100 atom%).
JP2006272914A 2006-10-04 2006-10-04 Method for producing electroconductive zinc oxide fine particle and electroconductive zinc oxide fine particle Withdrawn JP2008088030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006272914A JP2008088030A (en) 2006-10-04 2006-10-04 Method for producing electroconductive zinc oxide fine particle and electroconductive zinc oxide fine particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006272914A JP2008088030A (en) 2006-10-04 2006-10-04 Method for producing electroconductive zinc oxide fine particle and electroconductive zinc oxide fine particle

Publications (1)

Publication Number Publication Date
JP2008088030A true JP2008088030A (en) 2008-04-17

Family

ID=39372554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006272914A Withdrawn JP2008088030A (en) 2006-10-04 2006-10-04 Method for producing electroconductive zinc oxide fine particle and electroconductive zinc oxide fine particle

Country Status (1)

Country Link
JP (1) JP2008088030A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010282119A (en) * 2009-06-08 2010-12-16 Canon Inc Charging member, process cartridge, and image forming apparatus
JP2012532820A (en) * 2009-07-08 2012-12-20 オセ−テクノロジーズ ビーブイ Method for producing and treating nanosized doped zinc oxide particles
JP2015078109A (en) * 2013-09-10 2015-04-23 トヨタ自動車株式会社 METHOD FOR SYNTHESIZING ZnO:Ga NANOPARTICLES AND METHOD FOR PRODUCING ZnO:Ga FILM
JP2019510844A (en) * 2016-02-18 2019-04-18 ジーンズインク エスア Ink formulations based on (semi) conductive nanoparticles

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010282119A (en) * 2009-06-08 2010-12-16 Canon Inc Charging member, process cartridge, and image forming apparatus
JP2012532820A (en) * 2009-07-08 2012-12-20 オセ−テクノロジーズ ビーブイ Method for producing and treating nanosized doped zinc oxide particles
JP2015078109A (en) * 2013-09-10 2015-04-23 トヨタ自動車株式会社 METHOD FOR SYNTHESIZING ZnO:Ga NANOPARTICLES AND METHOD FOR PRODUCING ZnO:Ga FILM
JP2019510844A (en) * 2016-02-18 2019-04-18 ジーンズインク エスア Ink formulations based on (semi) conductive nanoparticles
JP7061571B2 (en) 2016-02-18 2022-04-28 ジーンズインク エスア (Semi) Ink formulation based on conductive nanoparticles

Similar Documents

Publication Publication Date Title
Wang et al. Wet chemical synthesis of ultralong and straight single-crystalline ZnO nanowires and their excellent UV emission properties
Nouroozi et al. Synthesis and characterization of brush-like ZnO nanorods using albumen as biotemplate
Vinod et al. Hexagonal nanoplatelets of CuSe synthesized through facile solution phase reaction
CN101407334B (en) Method for synthesizing rod-like nano-zinc oxide
CN104555952B (en) A kind of preparation method of the bar-shaped bismuth telluride nano material of nanoscale
Feng et al. Wet chemistry synthesis of ZnO crystals with hexamethylenetetramine (HMTA): Understanding the role of HMTA in the formation of ZnO crystals
Xie et al. Understanding formation mechanism of titanate nanowires through hydrothermal treatment of various Ti-containing precursors in basic solutions
CN105600818B (en) The method and products obtained therefrom of a kind of stannic oxide nanometer powder prepared rich in Lacking oxygen
JP2008088030A (en) Method for producing electroconductive zinc oxide fine particle and electroconductive zinc oxide fine particle
JP4496026B2 (en) Method for producing metallic copper fine particles
Gao et al. Shape-controlled synthesis of octahedral α-NaYF 4 and its rare earth doped submicrometer particles in acetic acid
CN104591265B (en) The method preparing copper-zinc-tin-sulfur nano particles
JP2019142762A (en) Production method of composite tungsten oxide particle and composite tungsten oxide particle
CN101407333A (en) Method for synthesizing flower-like nanostructure composed of zinc oxide nano-rod
JP2006016236A (en) Method for producing metal oxide nanoparticle
Wang et al. Co-doping of tellurium with bismuth enhances stability and photoluminescence quantum yield of Cs 2 AgInCl 6 double perovskite nanocrystals
Boopathi et al. Co-precipitation synthesis, structural and luminescent behavior of erbium doped gadolinium oxide (Er3+: Gd2O3) nanorods
JP2012532820A (en) Method for producing and treating nanosized doped zinc oxide particles
Li et al. Controllable growth of superfine silver nanowires by self-seeding polyol process
Park et al. Synthesis of hierarchical copper oxide composites prepared via electrical explosion of the wire in liquids method
KR20090018456A (en) The ag-zno nanocomposite and fabricating method thereof
JP4372654B2 (en) Method for producing rod-shaped conductive tin-containing indium oxide fine powder
Mo et al. Synthetic and effect of annealing on the luminescent properties of ZnO nanowire
Li et al. Facile solution-based synthesis and optical properties of Co3O4 Nanoparticles at low-temperature
Li et al. Synthesis and thermal properties of Lu 2 Ti 2 O 7 nano-wires

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100105