JP2005235782A - Method of electron beam analysis - Google Patents

Method of electron beam analysis Download PDF

Info

Publication number
JP2005235782A
JP2005235782A JP2005108144A JP2005108144A JP2005235782A JP 2005235782 A JP2005235782 A JP 2005235782A JP 2005108144 A JP2005108144 A JP 2005108144A JP 2005108144 A JP2005108144 A JP 2005108144A JP 2005235782 A JP2005235782 A JP 2005235782A
Authority
JP
Japan
Prior art keywords
sample
electron beam
scanning
analysis
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005108144A
Other languages
Japanese (ja)
Other versions
JP3904021B2 (en
Inventor
Hisaya Murakoshi
久弥 村越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005108144A priority Critical patent/JP3904021B2/en
Publication of JP2005235782A publication Critical patent/JP2005235782A/en
Application granted granted Critical
Publication of JP3904021B2 publication Critical patent/JP3904021B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electron beam analyzer for carrying out accurate elemental analysis, without displacing the position to be analyzed. <P>SOLUTION: The position to be analyzed by characteristic X-rays or Auger electrons is corrected by measuring the amount of sample displacement, by a position detecting means having high detection efficiency, such as secondary electrons, passed electrons or the like. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は電子線による分析方法および装置に係り、特に試料の元素組成を正確に分析する電子線分析方法および装置に関する。   The present invention relates to an electron beam analysis method and apparatus, and more particularly to an electron beam analysis method and apparatus for accurately analyzing the elemental composition of a sample.

試料に電子線を照射して、試料より発生する特性X線やオージェ電子などのエネルギースペクトルを計測することにより、試料の元素組成を分析することができる。分析の位置分解能を向上させるためには、電子線を試料上に極微小プローブにして照射する必要がある。電界放出型電子銃を搭載した電子顕微鏡では、電子線プローブのサイズを1nm以下に絞ることができるので、1nm領域での元素組成も分析できるようになった。しかし、検出される信号が弱いため、高精度分析のためには、測定に多大な時間を要していた。   The elemental composition of the sample can be analyzed by irradiating the sample with an electron beam and measuring an energy spectrum such as characteristic X-rays or Auger electrons generated from the sample. In order to improve the position resolution of the analysis, it is necessary to irradiate the sample with an electron beam as a very small probe. In an electron microscope equipped with a field emission electron gun, the size of the electron beam probe can be reduced to 1 nm or less, so that the elemental composition in the 1 nm region can be analyzed. However, since the detected signal is weak, a long time is required for measurement for high-accuracy analysis.

そのため、試料台や電子線の安定度不足から、分析中に電子線の試料照射位置が分析開始の位置からずれる恐れがあった。さらに、特性X線やオージェ電子などの分析信号が微弱なので、分析信号自身から分析位置の変化を検出することもほとんど不可能であった。このため、位置分解能の高い正確な分析ができなくなるという問題が生じていた。   For this reason, the sample irradiation position of the electron beam may deviate from the analysis start position during the analysis due to insufficient stability of the sample stage and the electron beam. Furthermore, since analysis signals such as characteristic X-rays and Auger electrons are weak, it is almost impossible to detect a change in analysis position from the analysis signal itself. Therefore, there has been a problem that accurate analysis with high position resolution cannot be performed.

本発明は特性X線あるいはオージェ電子より検出効率が高い二次電子あるいは透過電子等の検出手段により、短時間で試料変位量を計測して分析位置を補正することを特徴とするものである。   The present invention is characterized in that the analysis position is corrected by measuring the amount of sample displacement in a short time by detection means such as secondary electrons or transmission electrons having higher detection efficiency than characteristic X-rays or Auger electrons.

以上説明したように、本発明の電子線分析装置では、特性X線あるいはオージェ電子より検出効率が高い二次電子あるいは透過電子等の情報検出手段により試料変位量を計測して分析位置を補正することにより正確な分析を行うことができる。   As described above, in the electron beam analyzer of the present invention, the analysis position is corrected by measuring the amount of sample displacement by information detection means such as secondary electrons or transmission electrons having higher detection efficiency than characteristic X-rays or Auger electrons. Therefore, an accurate analysis can be performed.

〈実施例1〉
図1に本発明の一実施例の電子線分析装置を示す。この実施例は電子源として電界放出電子源を用いた走査型透過電子顕微鏡を用いた実施例である。電界放出電子源1から放出された電子線は、静電レンズ2により所望の加速電圧まで加速された後、コンデンサーレンズ3,対物レンズ5で試料7へ照射される。電子線は偏向器4により、試料7上を二次元的に走査される。
<Example 1>
FIG. 1 shows an electron beam analyzer according to an embodiment of the present invention. In this embodiment, a scanning transmission electron microscope using a field emission electron source as an electron source is used. The electron beam emitted from the field emission electron source 1 is accelerated to a desired acceleration voltage by the electrostatic lens 2, and then irradiated to the sample 7 by the condenser lens 3 and the objective lens 5. The electron beam is scanned two-dimensionally on the sample 7 by the deflector 4.

試料7を透過した透過電子14は検出器15で検出された後、信号増幅器21で増幅される。増幅された映像信号は制御部24を通して表示装置25に供給されて輝度変調信号となる。電子線の偏向走査は制御部24により、偏向信号発生器10から送られる偏向信号で電子線を制御することによって行われる。同時に
、表示装置25には電子線走査と同期した偏向信号が供給され、試料走査像が表示装置25に形成される。以上は走査型透過電子顕微鏡の基本構成である。
The transmitted electrons 14 that have passed through the sample 7 are detected by the detector 15 and then amplified by the signal amplifier 21. The amplified video signal is supplied to the display device 25 through the control unit 24 and becomes a luminance modulation signal. The electron beam deflection scanning is performed by the control unit 24 controlling the electron beam with a deflection signal sent from the deflection signal generator 10. At the same time, a deflection signal synchronized with the electron beam scanning is supplied to the display device 25, and a sample scan image is formed on the display device 25. The above is the basic configuration of the scanning transmission electron microscope.

次に、図2を用いて、本発明による分析手順について説明する。まず、制御部24により偏向信号発生器10を通じて偏向器4に供給される偏向信号により、電子線を試料上に定められた倍率で走査することにより、表示装置25には図2(a)に示すような試料走査像が得られる。この走査像を得るための走査時間は1秒以内であり、この像より分析試料を観察する。   Next, the analysis procedure according to the present invention will be described with reference to FIG. First, the scanning device 25 scans the electron beam at a predetermined magnification by the deflection signal supplied to the deflector 4 through the deflection signal generator 10 by the control unit 24, whereby the display device 25 has the configuration shown in FIG. A sample scan image as shown is obtained. The scanning time for obtaining this scanned image is within 1 second, and the analysis sample is observed from this image.

走査像上には、図2(b)に示すようなクロスマーカが輝度変調信号に重畳されて表示され、クロスマーカを分析位置に合わせることにより分析位置の決定を行う。この走査像は例えば制御部24内の1024画素×1024画素のビデオメモリA(図示せず)に記憶される。   On the scanned image, a cross marker as shown in FIG. 2B is displayed superimposed on the luminance modulation signal, and the analysis position is determined by matching the cross marker to the analysis position. This scanned image is stored in a video memory A (not shown) of 1024 pixels × 1024 pixels in the control unit 24, for example.

次に、分析開始の信号を制御部24に送ると、制御部24はクロスマーカのアドレスに対応した位置、すなわち分析位置に電子線を静止したまま試料照射する(図2(c))。電子線照射による励起により試料より発生した特性X線12は
X線検出器13で検出されて、例えば図5のような特性X線スペクトルが得られる。着目する元素に対応する特性X線の強度比より元素分布の情報が得られる。
Next, when an analysis start signal is sent to the control unit 24, the control unit 24 irradiates the sample with the electron beam stationary at the position corresponding to the address of the cross marker, that is, the analysis position (FIG. 2 (c)). A characteristic X-ray 12 generated from the sample by excitation by electron beam irradiation is detected by an X-ray detector 13 to obtain a characteristic X-ray spectrum as shown in FIG. 5, for example. Information on element distribution is obtained from the intensity ratio of characteristic X-rays corresponding to the element of interest.

X線検出系のエネルギー分解能を高い条件で計測するためには、通常X線計数率は1000cps 程度にする必要がある。一方、計数率の揺らぎは計数率の平方根で表されるので、例えば、0.3%の精度で分析するためには計数が100,000カウント必要となり、計測時間は少なくとも100秒程度必要になる。試料台のドリフト量を0.02nm/secとすると、0.2nm の位置ずれを補正するためには、10秒間隔で補正しなければならない。   In order to measure the energy resolution of the X-ray detection system under high conditions, the X-ray count rate usually needs to be about 1000 cps. On the other hand, the fluctuation of the count rate is expressed by the square root of the count rate. For example, in order to analyze with an accuracy of 0.3%, it is necessary to count 100,000 counts, and the measurement time is required to be at least about 100 seconds. If the drift amount of the sample stage is 0.02 nm / sec, correction must be made at 10-second intervals in order to correct a positional deviation of 0.2 nm.

そこで10秒ほど電子線を静止して分析した後、X線検出信号の取り込みを停止して、同じ倍率で電子線を試料走査して再び試料走査像を求め、制御部24内の1024画素×1024画素のビデオメモリB(図示せず)に記憶させる(図2(d))。前回の走査像との位置ずれは、例えばビデオメモリAとビデオメモ
リBに記憶された試料走査像の相互相関をとることによって、試料のドリフト量を計算することができる。
Therefore, after the electron beam is stopped and analyzed for about 10 seconds, the acquisition of the X-ray detection signal is stopped, the sample is scanned with the electron beam at the same magnification, and a sample scan image is obtained again. It is stored in a video memory B (not shown) of 1024 pixels (FIG. 2 (d)). The positional deviation from the previous scanning image can be calculated by taking the cross-correlation between the sample scanning images stored in the video memory A and the video memory B, for example.

次の分析には、計算されたドリフト量に相当する励磁電流を走査コイルに加算して供給することによって、図2(e)に示すように電子線照射位置を補正する
。この補正を10秒間の分析毎に行うことによって、位置ずれのない正確な分析を行うことができる。
In the next analysis, an excitation current corresponding to the calculated drift amount is added to the scanning coil and supplied, thereby correcting the electron beam irradiation position as shown in FIG. By performing this correction every 10 seconds of analysis, it is possible to perform accurate analysis without positional deviation.

〈実施例2〉
第二実施例はX線の面分析の位置補正に関するものである。図3を用いて、本発明による分析手順について述べる。
<Example 2>
The second embodiment relates to position correction for X-ray surface analysis. The analysis procedure according to the present invention will be described with reference to FIG.

まず、図3(a)に示すような試料走査像により分析位置を観察し、面分析位置を決定する。この走査像を得るための走査時間は1秒以内である。走査像は例えば1024画素×1024画素のビデオメモリAに記憶される。   First, an analysis position is observed with a sample scanning image as shown in FIG. The scanning time for obtaining this scanned image is within 1 second. The scanned image is stored in the video memory A of 1024 pixels × 1024 pixels, for example.

次に、例えば、64nm×64nmの領域を1nm間隔に電子線を走査して、約40秒でこの領域を分析する。特定元素xの特性X線エネルギーに対応したエネルギー領域E1,E2間の信号量がアドレスと対応づけて64画素×64画素のビデオメモリM1に記憶されるとともに、表示部25には輝度変調されて表示される(図3(b))。   Next, for example, an area of 64 nm × 64 nm is scanned with an electron beam at 1 nm intervals, and this area is analyzed in about 40 seconds. The amount of signal between the energy regions E1 and E2 corresponding to the characteristic X-ray energy of the specific element x is stored in the video memory M1 of 64 × 64 pixels in association with the address, and the display unit 25 is brightness-modulated. Is displayed (FIG. 3B).

ここで分析を停止して、分析位置を確認するための試料走査を行う。この走査像は1024画素×1024画素のビデオメモリBに記憶される(図3(c))。例えばビデオメモリAとBに記憶された試料走査像の相互相関をとることによって、試料のドリフト量dを計算することができる。   Here, the analysis is stopped, and a sample scan for confirming the analysis position is performed. This scanned image is stored in a video memory B of 1024 pixels × 1024 pixels (FIG. 3C). For example, the sample drift amount d can be calculated by taking the cross-correlation of the sample scan images stored in the video memories A and B.

次の分析には、計算されたドリフト量に相当する励磁電流を走査コイルに加算して供給することによって、図3(d)に示すように電子線照射位置をずらして照射し、分析位置のずれを補正する。この補正を定められた時間間隔毎に行うことによって、位置ずれのない正確な分析を行うことができる(図3(e))。   In the next analysis, an excitation current corresponding to the calculated drift amount is added to the scanning coil and supplied, so that the electron beam irradiation position is shifted as shown in FIG. Correct the deviation. By performing this correction at predetermined time intervals, accurate analysis without positional deviation can be performed (FIG. 3 (e)).

〈実施例3〉
第三実施例はX線の面分析の位置補正に関するものである。図4を用いて、本発明による分析手順について述べる。
<Example 3>
The third embodiment relates to position correction for X-ray surface analysis. The analysis procedure according to the present invention will be described with reference to FIG.

まず、試料走査像により分析位置を観察し、面分析位置を決定する。次に、電子線を試料に走査して照射する。特定元素zの特性X線エネルギーに対応したエネルギー領域E1,E2間の信号量がアドレスと対応づけて128画素×128画素のビデオメモリM1に記憶されるとともに表示部24には輝度変調されて表示される。また同時に得られる透過走査像も128画素×128画素のビデオメモリA1に格納される(図4(a))。   First, the analysis position is observed from the sample scanning image, and the surface analysis position is determined. Next, an electron beam is scanned and irradiated. The amount of signal between the energy regions E1 and E2 corresponding to the characteristic X-ray energy of the specific element z is stored in the 128 × 128 pixel video memory M1 in association with the address, and the display unit 24 displays the luminance modulated. Is done. The transmission scanning image obtained at the same time is also stored in the 128 × 128 pixel video memory A1 (FIG. 4A).

次に、同じように試料走査して再び試料走査像が128画素×128画素のビデオメモリA2に、X線像が128画素×128画素のビデオメモリM2に、それぞれ格納される(図4(b))。このような走査をN回行い、N番目の試料走
査像が128画素×128画素のビデオメモリAnに、X線像が128画素×
128画素のビデオメモリMnに、それぞれ格納される(図4(c))。
Next, the sample is scanned in the same manner, and the sample scan image is again stored in the video memory A2 of 128 pixels × 128 pixels, and the X-ray image is stored in the video memory M2 of 128 pixels × 128 pixels (FIG. 4B). )). Such scanning is performed N times, and the N-th sample scanning image is stored in the video memory An of 128 pixels × 128 pixels, and the X-ray image is 128 pixels × 128 pixels.
Each is stored in a 128-pixel video memory Mn (FIG. 4C).

試料のドリフト量はまず透過走査像A1に対し、A2との相互相関をとることによって、A1に対する試料のドリフト量d2を計算する。透過走査像A1に対する相互相関をAnまで行い、A1に対するN番目の透過走査像Anのドリフト量dNまで計算する。次に128画素×128画素のX線像M1の所望の領域例えば、中央の64画素×64画素を選択し、この画像に対しドリフト量d2だけずらして64画素×64画素のX線像M2が重ねられる。この操作をN−1回行い、N番目のX線像MnがX線像M1にドリフト量dnだけずらして重ねられる(図4(d))。   First, the sample drift amount d2 with respect to A1 is calculated by taking a cross-correlation with A2 with respect to the transmission scanning image A1. The cross-correlation with respect to the transmission scanning image A1 is performed up to An, and the drift amount dN of the Nth transmission scanning image An with respect to A1 is calculated. Next, a desired region of the X-ray image M1 of 128 pixels × 128 pixels, for example, the central 64 pixels × 64 pixels is selected, and an X-ray image M2 of 64 pixels × 64 pixels is shifted from this image by a drift amount d2. Overlaid. This operation is performed N-1 times, and the Nth X-ray image Mn is superimposed on the X-ray image M1 while being shifted by the drift amount dn (FIG. 4D).

上記の操作は、新しい画像を取り込む毎に行うか、あるいは全ての画像を取り込んだ後に行ってもよい。これらの操作により、分析位置ずれのない条件でSNの良いX線像が得られ、高精度な二次元元素分析を行うことができる。   The above operation may be performed every time a new image is captured, or may be performed after all images are captured. By these operations, an X-ray image having a good SN can be obtained under the condition that there is no deviation in analysis position, and high-precision two-dimensional elemental analysis can be performed.

なお、本実施例では透過走査像を格納するビデオメモリとX線像を格納するビデオメモリの画素数を等しくしたが、単位画素に検出されるX線カウント数を増加させる目的で、X線像を格納するビデオメモリの画素数を透過走査像を格納するビデオメモリの画素数より少なくしてもよい。   In this embodiment, the number of pixels of the video memory for storing the transmission scanning image and the number of the video memory for storing the X-ray image are made equal, but for the purpose of increasing the number of X-ray counts detected by the unit pixel, May be smaller than the number of pixels of the video memory storing the transmission scan image.

以上の実施例では、試料の位置検出手段として試料を透過した透過電子14を透過電子検出器15で検出していたが、試料から発生した二次電子16を二次電子検出器17で検出して得られる二次電子像を用いる走査型電子顕微鏡においても、同様な構成で本発明を実施することができる。   In the above embodiment, the transmitted electrons 14 transmitted through the sample are detected by the transmitted electron detector 15 as the sample position detecting means. However, the secondary electrons 16 generated from the sample are detected by the secondary electron detector 17. Even in a scanning electron microscope using a secondary electron image obtained in this manner, the present invention can be implemented with a similar configuration.

また、以上の実施例では、試料の分析手段として試料より発生した特性X線
12をX線検出器13で検出して用いていたが、試料より発生したオージェ電子18をオージェ電子検出器19で検出して得られるスペクトルを用いても、同様な構成で本発明を実施することができる。
In the above embodiment, the characteristic X-rays 12 generated from the sample are detected and used by the X-ray detector 13 as the sample analysis means. However, the Auger electrons 18 generated from the sample are detected by the Auger electron detector 19. Even if a spectrum obtained by detection is used, the present invention can be implemented with a similar configuration.

本発明の実施例を示す電子線分析装置のブロック図。The block diagram of the electron beam analyzer which shows the Example of this invention. 本発明の第一実施例の分析手順を示す説明図。Explanatory drawing which shows the analysis procedure of the 1st Example of this invention. 本発明の第二実施例の分析手順を示す説明図。Explanatory drawing which shows the analysis procedure of 2nd Example of this invention. 本発明の第三実施例の分析手順を示す説明図。Explanatory drawing which shows the analysis procedure of the 3rd Example of this invention. 特性X線スペクトルを示すスペクトル図。The spectrum figure which shows a characteristic X-ray spectrum.

符号の説明Explanation of symbols

1…電界放出電子源、2…静電レンズ、3…コンデンサーレンズ、4…偏向器
、5…対物レンズ、6…絞り、7…試料、8…高圧電源、9…コンデンサーレンズ駆動電源、10…偏向信号発生器、11…対物レンズ駆動電源、12…X線、13…X線検出器、14…透過電子、15…透過電子検出器、16…二次電子、17…二次電子検出器、18…オージェ電子、19…オージェ電子検出器、20…増幅器、21…増幅器、22…増幅器、23…増幅器、24…制御部、25…表示部。

DESCRIPTION OF SYMBOLS 1 ... Field emission electron source, 2 ... Electrostatic lens, 3 ... Condenser lens, 4 ... Deflector, 5 ... Objective lens, 6 ... Aperture, 7 ... Sample, 8 ... High voltage power supply, 9 ... Condenser lens drive power supply, 10 ... Deflection signal generator, 11 ... Objective lens drive power supply, 12 ... X-ray, 13 ... X-ray detector, 14 ... Transmission electron, 15 ... Transmission electron detector, 16 ... Secondary electron, 17 ... Secondary electron detector, 18 ... Auger electrons, 19 ... Auger electron detector, 20 ... amplifier, 21 ... amplifier, 22 ... amplifier, 23 ... amplifier, 24 ... control unit, 25 ... display unit.

Claims (9)

電子線を試料に照射し、試料から発生する特性X線あるいはオージェ電子を検出して試料の元素組成を分析する電子線分析装置において、特性X線あるいはオージェ電子より検出効率が高い位置検出手段により試料変位量を計測して分析位置を補正することを特徴とする電子線分析装置。   In an electron beam analyzer that irradiates a sample with an electron beam and detects the characteristic X-rays or Auger electrons generated from the sample to analyze the elemental composition of the sample, the position detection means has a higher detection efficiency than the characteristic X-rays or Auger electrons. An electron beam analyzer characterized by measuring the amount of sample displacement and correcting the analysis position. 請求項1記載の電子線分析装置において、位置検出手段は電子線で試料上を走査して得られる二次電子あるいは透過電子を検出する手段からなることを特徴とする電子線分析装置。   2. The electron beam analyzer according to claim 1, wherein the position detecting means comprises means for detecting secondary electrons or transmitted electrons obtained by scanning the sample with an electron beam. 請求項2記載の電子線分析装置において、電子線で試料上を走査している間は元素組成分析を行わないことを特徴とする電子線分析装置。   3. The electron beam analyzer according to claim 2, wherein element composition analysis is not performed while scanning the sample with an electron beam. 電子線を試料上に走査し、試料から発生する特性X線あるいはオージェ電子の信号から試料の元素組成の二次元分布像を表示する電子線分析装置において、上記信号と独立して検出される上記信号より検出効率が高い位置検出手段により試料変位量を計測して電子線走査位置を補正することを特徴とする電子線分析装置。   In the electron beam analyzer which scans the electron beam on the sample and displays a two-dimensional distribution image of the elemental composition of the sample from the characteristic X-ray or Auger electron signal generated from the sample, the above-mentioned signal detected independently of the signal An electron beam analyzer characterized by measuring a sample displacement amount by a position detection means having a detection efficiency higher than that of a signal and correcting an electron beam scanning position. 請求項4記載の電子線分析装置において、位置検出手段は試料上を走査して得られる二次電子あるいは透過電子であることを特徴とする電子線分析装置。   5. The electron beam analyzer according to claim 4, wherein the position detecting means is a secondary electron or a transmitted electron obtained by scanning the sample. 電子線を試料に照射し、試料から発生する特性X線等の信号から試料の元素組成等を分析する電子線分析装置において、上記信号より検出効率が高い位置検出手段により試料変位量を計測して分析位置を補正することを特徴とする電子線分析方法。   In an electron beam analyzer that irradiates a sample with an electron beam and analyzes the elemental composition of the sample from signals such as characteristic X-rays generated from the sample, the amount of sample displacement is measured by a position detection means that has higher detection efficiency than the above signal. And correcting the analysis position. 請求項6記載の電子線分析方法において、位置検出手段は試料上を走査して得られる二次電子走査像あるいは透過走査像であることを特徴とする電子線分析方法。   7. The electron beam analysis method according to claim 6, wherein the position detecting means is a secondary electron scanning image or a transmission scanning image obtained by scanning the sample. 請求項7記載の電子線分析方法において、試料上を走査している間は特性X線等の信号を検出しないことを特徴とする電子線分析方法。   8. The electron beam analysis method according to claim 7, wherein signals such as characteristic X-rays are not detected while scanning on the sample. 電子線を試料上に走査し、試料から発生する特性X線等の信号から試料の元素組成等の二次元分布像を表示する電子線分析方法において、上記信号と独立して検出される上記信号より検出効率が高い位置検出手段により試料変位量を計測して電子線走査位置を補正することを特徴とする電子線分析方法。   In the electron beam analysis method for scanning a sample with an electron beam and displaying a two-dimensional distribution image of the elemental composition of the sample from a signal such as characteristic X-rays generated from the sample, the signal detected independently of the signal An electron beam analysis method comprising correcting a scanning position of an electron beam by measuring a sample displacement amount by a position detection means having higher detection efficiency.
JP2005108144A 2005-04-05 2005-04-05 Electron beam analysis method Expired - Fee Related JP3904021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005108144A JP3904021B2 (en) 2005-04-05 2005-04-05 Electron beam analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005108144A JP3904021B2 (en) 2005-04-05 2005-04-05 Electron beam analysis method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001280892A Division JP3741012B2 (en) 2001-09-17 2001-09-17 Electron beam analysis method

Publications (2)

Publication Number Publication Date
JP2005235782A true JP2005235782A (en) 2005-09-02
JP3904021B2 JP3904021B2 (en) 2007-04-11

Family

ID=35018459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005108144A Expired - Fee Related JP3904021B2 (en) 2005-04-05 2005-04-05 Electron beam analysis method

Country Status (1)

Country Link
JP (1) JP3904021B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007298397A (en) * 2006-04-28 2007-11-15 Shimadzu Corp Surface analyzer
JP2009517842A (en) * 2005-12-02 2009-04-30 アリス コーポレーション Ion source, system and method
JP2011510321A (en) * 2008-01-22 2011-03-31 アプライド マテリアルズ イスラエル リミテッド System and method for material analysis of fine elements
US8110814B2 (en) 2003-10-16 2012-02-07 Alis Corporation Ion sources, systems and methods
US9159527B2 (en) 2003-10-16 2015-10-13 Carl Zeiss Microscopy, Llc Systems and methods for a gas field ionization source

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8110814B2 (en) 2003-10-16 2012-02-07 Alis Corporation Ion sources, systems and methods
US9159527B2 (en) 2003-10-16 2015-10-13 Carl Zeiss Microscopy, Llc Systems and methods for a gas field ionization source
JP2009517842A (en) * 2005-12-02 2009-04-30 アリス コーポレーション Ion source, system and method
JP2007298397A (en) * 2006-04-28 2007-11-15 Shimadzu Corp Surface analyzer
JP4692374B2 (en) * 2006-04-28 2011-06-01 株式会社島津製作所 Surface analyzer
JP2011510321A (en) * 2008-01-22 2011-03-31 アプライド マテリアルズ イスラエル リミテッド System and method for material analysis of fine elements

Also Published As

Publication number Publication date
JP3904021B2 (en) 2007-04-11

Similar Documents

Publication Publication Date Title
JP4464857B2 (en) Charged particle beam equipment
US7435957B2 (en) Charged particle beam equipment and charged particle microscopy
EP2511937B1 (en) Electron microscope
JP4504946B2 (en) Charged particle beam equipment
JP2006332296A (en) Focus correction method in electronic beam applied circuit pattern inspection
EP1672672A2 (en) Charged particle beam apparatus, method of displaying sample image, and method of measuring image shift sensitivity
JP3904021B2 (en) Electron beam analysis method
JP3454052B2 (en) Electron beam analyzer
US20060192119A1 (en) Method of measurement accuracy improvement by control of pattern shrinkage
JP4144035B2 (en) TFT array inspection system
JP2008123990A (en) Electron beam system, and method of operating the same
JPH042955A (en) Surface analyzer
JP3741012B2 (en) Electron beam analysis method
JP2009002658A (en) Observation method of membrane sample
JP2002286663A (en) Sample analysis and sample observation apparatus
JP5248759B2 (en) Particle beam analyzer
JP2002015691A (en) Scanning electron microscope
JP2010015731A (en) Scanning electron microscope, and method of improving image therefore
JP5174483B2 (en) Charged particle beam apparatus and method for knowing charged state of sample surface
JP2009158104A (en) Charged particle beam device
JPH07260716A (en) Electron beam analyzer
JP2007214148A (en) Observing apparatus for scanning transmission electron image of electron microscope mounted with energy filter
JP2005251697A (en) Scanning electron microscope and acceleration voltage optimization method in scanning electron microscope
JPH0465616A (en) Electron beam length measuring method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070101

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees