JP2008080691A - セルロースアシレートフィルムの製造方法、セルロースアシレートフィルム、偏光板及び液晶表示装置 - Google Patents

セルロースアシレートフィルムの製造方法、セルロースアシレートフィルム、偏光板及び液晶表示装置 Download PDF

Info

Publication number
JP2008080691A
JP2008080691A JP2006264360A JP2006264360A JP2008080691A JP 2008080691 A JP2008080691 A JP 2008080691A JP 2006264360 A JP2006264360 A JP 2006264360A JP 2006264360 A JP2006264360 A JP 2006264360A JP 2008080691 A JP2008080691 A JP 2008080691A
Authority
JP
Japan
Prior art keywords
film
cellulose acylate
polarizing plate
roll
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006264360A
Other languages
English (en)
Inventor
Hiroko Hojo
裕子 北條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2006264360A priority Critical patent/JP2008080691A/ja
Publication of JP2008080691A publication Critical patent/JP2008080691A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

【課題】偏光異物が少なく、黄変などの色変化の生じない、生産性の高いセルロースアシレートの製造方法及び製造装置を提供すること。
【解決手段】セルロースアシレートの溶融物を金属フィルターで濾過し、溶融流延法によりフィルムを製造する方法において、金属フィルターでろ過するときのセルロースアシレートの溶融物の温度が230〜260℃で、圧力が1〜10MPaであること。
【選択図】図1

Description

本発明は、セルロースアシレートフィルムの製造方法、セルロースアシレートフィルム、該セルロースアシレートフィルムを用いた偏光板及び液晶表示装置に関する。
従来、液晶画像表示装置(LCD)は、低電圧かつ低消費電力でIC回路への直結が可能であり、しかも薄型化が可能であるから、ワードプロセッサーやパーソナルコンピュータ等の表示装置として広く使用されている。ところで、このLCDの基本的な構成は、液晶セルの両側に偏光板を設けたものである。偏光板は、一定方向の偏波面の光だけを通すので、LCDにおいては、電界による液晶の配向の変化を可視化させる重要な役割を担っており、偏光板の性能によってLCDの性能が大きく左右される。偏光板は偏光子と、偏光子の両面に積層された保護フィルムとよりなる。そして、このような偏光板の保護フィルムとして、セルロースアシレートフィルムが広く用いられている。
これらのセルロースアシレートフィルムは、これまで、専ら溶液流延法によって製造されてきた。溶液流延法とは、セルロースアシレートを溶媒に溶解した溶液を流延してフィルム形状を得た後、溶媒を蒸発・乾燥させてフィルムを得るといった製膜方法である。溶液流延法で製膜したフィルムは平面性が高いため、これを用いてムラのない高画質な液晶ディスプレイを得ることができる。
しかし溶液流延法は多量の有機溶媒を必要とし、環境負荷が大きいことも課題となっていた。セルロースアシレートフィルムは、その溶解特性から、環境負荷の大きいハロゲン系溶媒を用いて製膜されているため、特に溶剤使用量の削減が求められており、溶液流延製膜によってセルロースアシレートフィルムを増産することは困難となってきている。
また、近年、液晶表示装置の高画質化、高精細化が一段と加速している。それに伴って液晶表示装置に用いられる偏光板保護フィルムに対しても、フィルムに含まれる異物の低減に対する要求が強くなってきている。偏光板用保護フィルムに用いられるセルロースアシレートは半合成高分子であるため、不均一反応による不要成分の生成だけでなく、出発原料品質の影響を強く受ける。そのため、一般的な合成高分子に比べて、不要成分除去の必要性が高い。セルロースエステルフィルムから検出される異物には、用いる添加剤に起因するもの、製造工程において混入するゴミに起因するもの、及びセルロース中に含まれる未酢化もしくは低酢化度のセルロース繊維に起因するもの等が挙げられる。
ところで、異物の中でもセルロースアシレート中に含まれる、クロスニコル状態で光漏れを起こし、液晶画像形成装置で光漏れ故障の原因である偏光異物を取り除く技術が必要とされている。
特許文献1では、偏光異物が少なく、黄色みのないセルロースアシレートフィルムを製造することができるセルロースアシレートが提案されている。
特開2006−124642号公報
しかし、特許文献1における実施例を検討した結果、この技術を用いても昨今の非常に高い要求品質に応じたレベルの光学フィルムを得ることはできなかった。
従って、本発明が解決しようとする技術課題は、偏光異物が少なく、黄変などの色変化の生じない、生産性の高いセルロースアシレートの製造方法を提供することである。
本発明は、以下の構成により上記課題を達成することができる。
1.
セルロースアシレートの溶融物を金属フィルターで濾過した後、溶融流延法によりセルロースアシレートフィルムを製造するセルロースアシレートフィルムの製造方法において、
前記金属フィルターでろ過するときの前記セルロースアシレートの溶融物の温度が230〜260℃で、圧力が1〜10MPaであることを特徴とするセルロースアシレートフィルムの製造方法。
2.
前記金属フィルターは、ろ過精度が3〜8μmで、空隙率が63〜71%であるリーフディスク型フィルターであることを特徴とする1に記載のセルロースアシレートフィルムの製造方法。
3.
1又は2に記載の製造方法により製造されたことを特徴とするセルロースアシレートフィルム。
4.
3に記載のセルロースアシレートフィルムを偏光板用保護フィルムとして用いることを特徴とする偏光板。
5.
4に記載の偏光板を用いることを特徴とする液晶表示装置。
本発明によれば、金属フィルターでろ過するときのセルロースアシレートの溶融物の温度を230〜260℃、圧力を1〜10MPaとしたので、偏光異物が少なく、黄変のない、良好なセルロースアシレートフィルムを製造することができる。
以下本発明を実施するための最良の形態について詳細に説明するが、本発明はこれらに限定されるものではない。
本発明は、溶融製膜されたセルロースアシレートフィルムであっても、着色が少なく、偏光異物によるクロスニコル状態での光漏れ故障の発生しないセルロースアシレートフィルム、およびその製造方法に関するものである。
本発明に係わるセルロースアシレートフィルムを用いることで、高品質の偏光板用保護フィルム、反射防止フィルム、位相差フィルム等の光学フィルムを得ることができ、さらには表示品質の高い液晶表示装置を得ることができる。
本発明が対象とする光学フィルムは、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ等の各種ディスプレイ、特に液晶ディスプレイに用いられる機能フィルムのことであり、偏向板保護フィルム、位相差フィルム、反射防止フィルム、輝度向上フィルム、視野角拡大等の光学補償フィルムを含むものである。
(セルロースアシレート)
セルロースアシレート原料のセルロースとしては、特に限定はないが、綿花リンター、木材パルプやケフナ等がある。またこれらから得られた原料セルロースを任意の割合で混合して使用してもよい。セルロースアシレートは、アセチル基または炭素原子数が3〜22のアシル基を有するセルロースアシレートであることが好ましい。炭素原子数3〜22のアシル基の例には、プロピオニル(C25CO−)、n−ブチリル(C37CO−)、イソブチリル、バレリル(C49CO−)、イソバレリル、sec−バレリル、tert−バレリル、オクタノイル、ドデカノイル、オクタデカノイル及びオレオロイルが含まれる。プロピオニル及びブチリルが好ましい。セルロースアシレートとしては、セルロースアセテートが好ましく、セルローストリアセテートが特に好ましい。アシル基のアシル化剤が酸無水物や酸クロライドである場合、反応溶媒としての有機溶媒は、有機酸(例、酢酸)やメチレンクロライドが使用される。セルロースアシレートは、セルロースの水酸基の置換度が2.6〜3.0であることが好ましい。セルロースアシレートの重合度(粘度平均)は、200〜700であることが好ましく、250〜550であることが特に好ましい。これらのセルロースアシレートは、ダイセル化学工業(株)、コートルズ社、ヘキスト社、イーストマンコダック社により市販されている。写真用グレードのセルロースアシレートが好ましく用いられる。セルロースアシレートの含水率は、2質量%以下であることが好ましい。
セルロースを構成するβ−1,4結合しているグルコース単位は、2位、3位及び6位に遊離の水酸基を有している。セルロースアシレートは、これらの水酸基の一部または全部を酢酸または他の酸によりエステル化したポリマーである。アシル置換度は、2位、3位及び6位のそれぞれについて、セルロースがエステル化している割合(100%のエステル化は、1.00)を意味する。
本発明で用いるセルロースアシレートは、2位、3位のアシル置換度の合計が1.70〜1.95であり、かつ6位のアシル置換度が0.88以上であるセルロースアシレートと、2位、3位のアシル置換度の合計が1.70〜1.95であり、かつ6位のアシル置換度が0.88未満であるセルロースアシレートとをブレンドすることにより得られる。2位、3位のアシル置換度の合計が1.70以下の場合、フィルムが吸湿しやすくなり、加水分解を受けやすくなるためフィルムの耐久性が低下する。また、湿度等による寸法変化も大きくなる。逆に、1.95を越すとセルロースアシレートの有機性が上がるため溶媒との親和性が増大し、ドープの粘度が上昇してしまう。従って、2位、3位のアシル置換度の合計は、1.70〜1.95であることが好ましく、1.75〜1.88であることがさらに好ましい。
ところで6位の水酸基が2位、3位の水酸基と異なり一級水酸基であるため、水酸基の水素結合が極めて起こりやすいことが分かってきた。従って6位のアシル置換度を0.88以上とすることにより、溶剤への溶解性は著しく向上し、流延適性上好ましいドープを得ることが可能となる。6位のアシル置換度の範囲は、合成適正等を考慮すると0.88〜0.99が好ましく、0.89〜0.98がさらに好ましい。しかしながら、6位のアシル置換度を向上させると膜強度が低下するという問題があり、その両立が困難であった。また、アシル置換度が0.88よりも小さくなると溶剤への溶解性が著しく低下するため好ましくない。
さらに、2位、3位のアシル置換度の合計が1.70〜1.95であり、かつ6位のアシル置換度が0.88以上であるセルロースアシレートからなるフィルム、または2位、3位のアシル置換度の合計が1.70〜1.95であり、かつ6位のアシル置換度が0.88未満であるセルロースアシレートからなるフィルム上に薄膜を形成した光学フィルムでロール状態で保管中に皺や凹み等の平面性の劣化が起こりやすい、更には、形成した金属酸化物層にクラックが入りやすく、膜厚むらが生じやすいという問題があった。
これらの問題はセルロースアシレートをブレンドすることにより解決できることが判明した。また、6位のアシル置換度が0.88以上のセルロースアシレートは膜強度の観点からアシル置換基の炭素数は小さい方が望ましく、全てアセチル基であるほうが好ましい。なお、特開平11−5851号公報には2位、3位、6位のアセチル置換基の合計が2.67以上であり、2位、3位のアセチル置換基の合計が1.97以下のセルロースアセテートが記載されているが、このうち2位と3位の合計が1.90を超える範囲はフィルムの光学適性からは好ましい範囲を記載したものであり、流延適性からは本明細書に記載されている範囲の方がより好ましい。
セルロースアシレートの合成方法の基本的な原理は、右田他、木材化学180〜190頁(共立出版、1968年)に記載されている。代表的な合成方法は、無水酢酸−酢酸−硫酸触媒による液相酢化法である。具体的には、木材パルプ等のセルロース原料を適当量の有機酸で前処理した後、予め冷却したアシル化混液に投入してエステル化し、完全セルロースアシレート(2位、3位及び6位のアシル置換度の合計が、ほぼ3.00)を合成する。上記アシル化混液は、一般に、溶媒としての有機酸、エステル化剤としての無水有機酸及び触媒としての硫酸を含む。無水有機酸は、これと反応するセルロース及び系内に存在する水分の合計よりも、化学量論的に過剰量で使用することが普通である。アシル化反応終了後に、系内に残存している過剰の無水有機酸の加水分解及びエステル化触媒の一部の中和のために、中和剤(例えば、カルシウム、マグネシウム、鉄、アルミニウムまたは亜鉛の炭酸塩、酢酸塩または酸化物)の水溶液を添加する。次に、得られた完全セルロースアシレートを少量の酢化反応触媒(一般には、残存する硫酸)の存在下で、50〜90℃に保つことにより、ケン化熟成し、所望のアシル置換度及び重合度を有するセルロースアシレートまで変化させる。所望のセルロースアシレートが得られた時点で、系内に残存している触媒を前記のような中和剤を用いて完全に中和するか、あるいは、中和することなく、水または希硫酸中にセルロースアシレート溶液を投入(あるいは、セルロースアシレート溶液中に、水または希硫酸を投入)してセルロースアシレートを分離し、洗浄及び安定化処理によりセルロースアシレートを得る。
通常のセルロースアシレートの合成方法では、2位または3位のアシル置換度の方が、6位のアシル置換度よりも高い値になる。そのため、2位、3位のアシル置換度の合計が1.95以下とし、かつ6位のアシル置換度を0.88以上とするためには、前記の反応条件を特別に調節する必要がある。具体的な反応条件としては、硫酸触媒の量を減らし、アシル化反応の時間を長くすることが好ましい。硫酸触媒が多いと、アシル化反応の進行が速くなるが、触媒量に応じてセルロースとの間に硫酸エステルが生成し、反応終了時に遊離して残存水酸基を生じる。硫酸エステルは、反応性が高い6位により多く生成する。そのため、硫酸触媒が多いと6位のアシル置換度が小さくなる。従って、本発明に用いるセルロースアシレートを合成するためには、可能な限り硫酸触媒の量を削減し、それにより低下した反応速度を補うため、反応時間を延長する必要がある。
(可塑剤)
本発明のセルロースアシレートフィルムは、可塑剤として、下記の可塑剤が挙げられる。
多価アルコールと1価のカルボン酸からなるエステル系可塑剤、多価カルボン酸と1価のアルコールからなるエステル系可塑剤はセルロースエステルと親和性が高く好ましい。
多価アルコールエステル系の一つであるエチレングリコールエステル系の可塑剤:具体的には、エチレングリコールジアセテート、エチレングリコールジブチレート等のエチレングリコールアルキルエステル系の可塑剤、エチレングリコールジシクロプロピルカルボキシレート、エチレングリコールジシクロヘキルカルボキシレート等のエチレングリコールシクロアルキルエステル系の可塑剤、エチレングリコールジベンゾエート、エチレングリコールジ4−メチルベンゾエート等のエチレングリコールアリールエステル系の可塑剤が挙げられる。これらアルキレート基、シクロアルキレート基、アリレート基は、同一でもあっても異なっていてもよく、更に置換されていてもよい。またアルキレート基、シクロアルキレート基、アリレート基のミックスでもよく、またこれら置換基同志が共有結合で結合していてもよい。更にエチレングリコール部も置換されていてもよく、エチレングリコールエステルの部分構造が、ポリマーの一部、或いは規則的にペンダントされていてもよく、また酸化防止剤、酸掃去剤、紫外線吸収剤等の添加剤の分子構造の一部に導入されていてもよい。
多価アルコールエステル系の一つであるグリセリンエステル系の可塑剤:具体的にはトリアセチン、トリブチリン、グリセリンジアセテートカプリレート、グリセリンオレートプロピオネート等のグリセリンアルキルエステル、グリセリントリシクロプロピルカルボキシレート、グリセリントリシクロヘキシルカルボキシレート等のグリセリンシクロアルキルエステル、グリセリントリベンゾエート、グリセリン4−メチルベンゾエート等のグリセリンアリールエステル、ジグリセリンテトラアセチレート、ジグリセリンテトラプロピオネート、ジグリセリンアセテートトリカプリレート、ジグリセリンテトララウレート、等のジグリセリンアルキルエステル、ジグリセリンテトラシクロブチルカルボキシレート、ジグリセリンテトラシクロペンチルカルボキシレート等のジグリセリンシクロアルキルエステル、ジグリセリンテトラベンゾエート、ジグリセリン3−メチルベンゾエート等のジグリセリンアリールエステル等が挙げられる。これらアルキレート基、シクロアルキルカルボキシレート基、アリレート基は同一でもあっても異なっていてもよく、更に置換されていてもよい。またアルキレート基、シクロアルキルカルボキシレート基、アリレート基のミックスでもよく、またこれら置換基同志が共有結合で結合していてもよい。更にグリセリン、ジグリセリン部も置換されていてもよく、グリセリンエステル、ジグリセリンエステルの部分構造がポリマーの一部、或いは規則的にペンダントされていてもよく、また酸化防止剤、酸掃去剤、紫外線吸収剤等の添加剤の分子構造の一部に導入されていてもよい。
その他の多価アルコールエステル系の可塑剤としては、具体的には特開2003−12823号公報の段落30〜33記載の多価アルコールエステル系可塑剤が挙げられる。
これらアルキレート基、シクロアルキルカルボキシレート基、アリレート基は、同一でもあっても異なっていてもよく、更に置換されていてもよい。またアルキレート基、シクロアルキルカルボキシレート基、アリレート基のミックスでもよく、またこれら置換基同志が共有結合で結合していてもよい。更に多価アルコール部も置換されていてもよく、多価アルコールの部分構造が、ポリマーの一部、或いは規則的にペンダントされていてもよく、また酸化防止剤、酸掃去剤、紫外線吸収剤等の添加剤の分子構造の一部に導入されていてもよい。
上記多価アルコールと1価のカルボン酸からなるエステル系可塑剤の中では、アルキル多価アルコールアリールエステルが好ましく、具体的には上記のエチレングリコールジベンゾエート、グリセリントリベンゾエート、ジグリセリンテトラベンゾエート、特開2003−12823号公報の段落32記載例示化合物16が挙げられる。
多価カルボン酸エステル系の一つであるジカルボン酸エステル系の可塑剤:具体的には、ジドデシルマロネート(C1)、ジオクチルアジペート(C4)、ジブチルセバケート(C8)等のアルキルジカルボン酸アルキルエステル系の可塑剤、ジシクロペンチルサクシネート、ジシクロヘキシルアジーペート等のアルキルジカルボン酸シクロアルキルエステル系の可塑剤、ジフェニルサクシネート、ジ4−メチルフェニルグルタレート等のアルキルジカルボン酸アリールエステル系の可塑剤、ジヘキシル−1,4−シクロヘキサンジカルボキシレート、ジデシルビシクロ[2.2.1]ヘプタン−2,3−ジカルボキシレート等のシクロアルキルジカルボン酸アルキルエステル系の可塑剤、ジシクロヘキシル−1,2−シクロブタンジカルボキシレート、ジシクロプロピル−1,2−シクロヘキシルジカルボキシレート等のシクロアルキルジカルボン酸シクロアルキルエステル系の可塑剤、ジフェニル−1,1−シクロプロピルジカルボキシレート、ジ2−ナフチル−1,4−シクロヘキサンジカルボキシレート等のシクロアルキルジカルボン酸アリールエステル系の可塑剤、ジエチルフタレート、ジメチルフタレート、ジオクチルフタレート、ジブチルフタレート、ジ−2−エチルヘキシルフタレート等のアリールジカルボン酸アルキルエステル系の可塑剤、ジシクロプロピルフタレート、ジシクロヘキシルフタレート等のアリールジカルボン酸シクロアルキルエステル系の可塑剤、ジフェニルフタレート、ジ4−メチルフェニルフタレート等のアリールジカルボン酸アリールエステル系の可塑剤が挙げられる。これらアルコキシ基、シクロアルコキシ基は、同一でもあっても異なっていてもよく、また一置換でもよく、これらの置換基は更に置換されていてもよい。アルキル基、シクロアルキル基はミックスでもよく、またこれら置換基同志が共有結合で結合していてもよい。更にフタル酸の芳香環も置換されていてよく、ダイマー、トリマー、テトラマー等の多量体でもよい。またフタル酸エステルの部分構造が、ポリマーの一部、或いは規則的にポリマーへペンダントされていてもよく、酸化防止剤、酸掃去剤、紫外線吸収剤等の添加剤の分子構造の一部に導入されていてもよい。
その他の多価カルボン酸エステル系の可塑剤としては、具体的にはトリドデシルトリカルバレート、トリブチル−meso−ブタン−1,2,3,4−テトラカルボキシレート等のアルキル多価カルボン酸アルキルエステル系の可塑剤、トリシクロヘキシルトリカルバレート、トリシクロプロピル−2−ヒドロキシ−1,2,3−プロパントリカルボキシレート等のアルキル多価カルボン酸シクロアルキルエステル系の可塑剤、トリフェニル2−ヒドロキシ−1,2,3−プロパントリカルボキシレート、テトラ3−メチルフェニルテトラヒドロフラン−2,3,4,5−テトラカルボキシレート等のアルキル多価カルボン酸アリールエステル系の可塑剤、テトラヘキシル−1,2,3,4−シクロブタンテトラカルボキシレート、テトラブチル−1,2,3,4−シクロペンタンテトラカルボキシレート等のシクロアルキル多価カルボン酸アルキルエステル系の可塑剤、テトラシクロプロピル−1,2,3,4−シクロブタンテトラカルボキシレート、トリシクロヘキシル−1,3,5−シクロヘキシルトリカルボキシレート等のシクロアルキル多価カルボン酸シクロアルキルエステル系の可塑剤、トリフェニル−1,3,5−シクロヘキシルトリカルボキシレート、ヘキサ4−メチルフェニル−1,2,3,4,5,6−シクロヘキシルヘキサカルボキシレート等のシクロアルキル多価カルボン酸アリールエステル系の可塑剤、トリドデシルベンゼン−1,2,4−トリカルボキシレート、テトラオクチルベンゼン−1,2,4,5−テトラカルボキシレート等のアリール多価カルボン酸アルキルエステル系の可塑剤、トリシクロペンチルベンゼン−1,3,5−トリカルボキシレート、テトラシクロヘキシルベンゼン−1,2,3,5−テトラカルボキシレート等のアリール多価カルボン酸シクロアルキルエステル系の可塑剤トリフェニルベンゼン−1,3,5−テトラカルトキシレート、ヘキサ4−メチルフェニルベンゼン−1,2,3,4,5,6−ヘキサカルボキシレート等のアリール多価カルボン酸アリールエステル系の可塑剤が挙げられる。これらアルコキシ基、シクロアルコキシ基は、同一でもあっても異なっていてもよく、また1置換でもよく、これらの置換基は更に置換されていてもよい。アルキル基、シクロアルキル基はミックスでもよく、またこれら置換基同志が共有結合で結合していてもよい。更にフタル酸の芳香環も置換されていてよく、ダイマー、トリマー、テトラマー等の多量体でもよい。またフタル酸エステルの部分構造がポリマーの一部、或いは規則的にポリマーへペンダントされていてもよく、酸化防止剤、酸掃去剤、紫外線吸収剤等の添加剤の分子構造の一部に導入されていてもよい。
上記多価カルボン酸と1価のアルコールからなるエステル系可塑剤の中では、ジアルキルカルボン酸アルキルエステルが好ましく、具体的には上記のジオクチルアジペート、トリデシルトリカルバレートが挙げられる。
更にリン酸エステル系可塑剤、炭水化物エステル系可塑剤、ポリマー可塑剤等が挙げられる。
リン酸エステル系の可塑剤:具体的には、トリアセチルホスフェート、トリブチルホスフェート等のリン酸アルキルエステル、トリシクロベンチルホスフェート、シクロヘキシルホスフェート等のリン酸シクロアルキルエステル、トリフェニルホスフェート、トリクレジルホスフェート、クレジルフェニルホスフェート、オクチルジフェニルホスフェート、ジフェニルビフェニルホスフェート、トリオクチルホスフェート、トリブチルホスフェート、トリナフチルホスフェート、トリキシリルオスフェート、トリスオルト−ビフェニルホスフェート等のリン酸アリールエステルが挙げられる。これらの置換基は同一でもあっても異なっていてもよく、更に置換されていてもよい。またアルキル基、シクロアルキル基、アリール基のミックスでもよく、また置換基同志が共有結合で結合していてもよい。
またエチレンビス(ジメチルホスフェート)、ブチレンビス(ジエチルホスフェート)等のアルキレンビス(ジアルキルホスフェート)、エチレンビス(ジフェニルホスフェート)、プロピレンビス(ジナフチルホスフェート)等のアルキレンビス(ジアリールホスフェート)、フェニレンビス(ジブチルホスフェート)、ビフェニレンビス(ジオクチルホスフェート)等のアリーレンビス(ジアルキルホスフェート)、フェニレンビス(ジフェニルホスフェート)、ナフチレンビス(ジトルイルホスフェート)等のアリーレンビス(ジアリールホスフェート)等のリン酸エステルが挙げられる。これらの置換基は同一でもあっても異なっていてもよく、更に置換されていてもよい。またアルキル基、シクロアルキル基、アリール基のミックスでもよく、また置換基同志が共有結合で結合していてもよい。
更にリン酸エステルの部分構造が、ポリマーの一部、或いは規則的にペンダントされていてもよく、また酸化防止剤、酸掃去剤、紫外線吸収剤等の添加剤の分子構造の一部に導入されていてもよい。上記化合物の中では、リン酸アリールエステル、アリーレンビス(ジアリールホスフェート)が好ましく、具体的にはトリフェニルホスフェート、フェニレンビス(ジフェニルホスフェート)が好ましい。
次に、炭水化物エステル系可塑剤について説明する。炭水化物とは、糖類がピラノース又はフラノース(6員環又は5員環)の形態で存在する単糖類、二糖類又は三糖類を意味する。炭水化物の非限定的例としては、グルコース、サッカロース、ラクトース、セロビオース、マンノース、キシロース、リボース、ガラクトース、アラビノース、フルクトース、ソルボース、セロトリオース及びラフィノースなどが挙げられる。炭水化物エステルとは、炭水化物の水酸基とカルボン酸が脱水縮合してエステル化合物を形成したものを指し、詳しくは、炭水化物の脂肪族カルボン酸エステル、或いは芳香族カルボン酸エステルを意味する。脂肪族カルボン酸として、例えば酢酸、プロピオン酸等を挙げることができ、芳香族カルボン酸として、例えば安息香酸、トルイル酸、アニス酸等を挙げることができる。炭水化物は、その種類に応じた水酸基の数を有するが、水酸基の一部とカルボン酸が反応してエステル化合物を形成しても、水酸基の全部とカルボン酸が反応してエステル化合物を形成してもよい。本発明においては、水酸基の全部とカルボン酸が反応してエステル化合物を形成するのが好ましい。
炭水化物エステル系可塑剤として、具体的には、グルコースペンタアセテート、グルコースペンタプロピオネート、グルコースペンタブチレート、サッカロースオクタアセテート、サッカロースオクタベンゾエート等を好ましく挙げることができ、この内、サッカロースオクタアセテートがより好ましい。
ポリマー可塑剤:具体的には、脂肪族炭化水素系ポリマー、脂環式炭化水素系ポリマー、ポリアクリル酸エチル、ポリメタクリル酸メチル、メタクリル酸メチルとメタクリル酸−2−ヒドロキシエチルとの共重合体(例えば、共重合比1:99〜99:1の間の任意の比率)等のアクリル系ポリマー、ポリビニルイソブチルエーテル、ポリN−ビニルピロリドン等のビニル系ポリマー、ポリスチレン、ポリ4−ヒドロキシスチレン等のスチレン系ポリマー、ポリブチレンサクシネート、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル、ポリアミド、ポリウレタン、ポリウレア等が挙げられる。数平均分子量は1,000〜500,000程度が好ましく、特に好ましくは、5000〜200000である。1000以下では揮発性に問題が生じ、500000を超えると可塑化能力が低下し、セルロースエステルフィルムの機械的性質に悪影響を及ぼす。これらポリマー可塑剤は1種の繰り返し単位からなる単独重合体でも、複数の繰り返し構造体を有する共重合体でもよい。また、上記ポリマーを2種以上併用して用いてもよい。
なお本発明のセルロースアシレートフィルムは、着色すると光学用途として影響を与えるため、好ましくは黄色度(イエローインデックス、YI)が3.0以下、より好ましくは1.0以下である。黄色度はJIS−K7103に基づいて測定することができる。
可塑剤は、前述のセルロースエステル同様に、製造時から持ち越される、或いは保存中に発生する残留酸、無機塩、有機低分子等の不純物を除去する事が好ましく、より好ましくは純度99%以上である。残留酸、及び水としては、0.01〜100ppmであることが好ましく、セルロース樹脂を溶融製膜する上で、熱劣化を抑制でき、製膜安定性、フィルムの光学物性、機械物性が向上する。
(酸化防止剤)
セルロースエステルは、溶融製膜が行われるような高温環境下では熱だけでなく酸素によっても分解が促進されるため、本発明のセルロースアシレートフィルムにおいては安定化剤として酸化防止剤を使用することも好ましい。
本発明において有用な酸化防止剤としては、酸素による溶融成形材料の劣化を抑制する化合物であれば制限なく用いることができるが、中でも有用な酸化防止剤としては、フェノール系化合物、ヒンダードアミン系化合物、リン系化合物、イオウ系化合物、耐熱加工安定剤、酸素スカベンジャー等が挙げられ、これらの中でも、特にフェノール系化合物、ヒンダードアミン系化合物、リン系化合物、ラクトン系化合物が好ましい。
ヒンダードアミン化合物(HALS)としては、例えば、米国特許第4,619,956号明細書の第5〜11欄及び米国特許第4,839,405号明細書の第3〜5欄に記載されているように、2,2,6,6−テトラアルキルピペリジン化合物、またはそれらの酸付加塩もしくはそれらと金属化合物との錯体が好ましい。市販品としては、LA52(旭電化社製)を挙げることができる。
ラクトン系化合物としては、特開平7−233160号、特開平7−247278号記載の化合物が好ましい。
これらの安定剤は、それぞれ1種或いは2種以上組み合わせて用いることができ、その配合量は本発明の目的を損なわない範囲で適宜選択されるが、セルロースエステル100質量部に対して、通常0.001〜10.0質量部、好ましくは0.01〜5.0質量部、更に好ましくは、0.1〜3.0質量部である。
これらの化合物を配合することにより、透明性、耐熱性等を低下させることなく、溶融成型時の熱や熱酸化劣化等による成形体の着色や強度低下を防止できる。
酸化防止剤の添加量は、セルロースエステル100質量部に対して、通常0.01〜10質量部、好ましくは0.05〜5質量部、更に好ましくは0.1〜3質量部である。
(酸掃去剤)
酸掃去剤とは製造時から持ち込まれるセルロースエステル中に残留する酸(プロトン酸)をトラップする役割を担う剤である。また、セルロースエステルを溶融するとポリマー中の水分と熱により側鎖の加水分解が促進し、CAPならば酢酸やプロピオン酸が生成する。酸と化学的に結合できればよく、エポキシ、3級アミン、エーテル構造等を有する化合物が挙げられるが、これに限定されるものでない。
具体的には、米国特許第4,137,201号明細書に記載されている酸掃去剤としてのエポキシ化合物を含んでなるのが好ましい。このような酸掃去剤としてのエポキシ化合物は当該技術分野において既知であり、種々のポリグリコールのジグリシジルエーテル、特にポリグリコール1モル当たりに約8〜40モルのエチレンオキシドなどの縮合によって誘導されるポリグリコール、グリセロールのジグリシジルエーテルなど、金属エポキシ化合物(例えば、塩化ビニルポリマー組成物において、及び塩化ビニルポリマー組成物と共に、従来から利用されているもの)、エポキシ化エーテル縮合生成物、ビスフェノールAのジグリシジルエーテル(即ち、4,4′−ジヒドロキシジフェニルジメチルメタン)、エポキシ化不飽和脂肪酸エステル(特に、2〜22この炭素原子の脂肪酸の4〜2個程度の炭素原子のアルキルのエステル(例えば、ブチルエポキシステアレート)など)、及び種々のエポキシ化長鎖脂肪酸トリグリセリドなど(例えば、エポキシ化大豆油などの組成物によって代表され、例示され得る、エポキシ化植物油及び他の不飽和天然油(これらは時としてエポキシ化天然グリセリドまたは不飽和脂肪酸と称され、これらの脂肪酸は一般に12〜22個の炭素原子を含有している))が含まれる。
(紫外線吸収剤)
紫外線吸収剤としては、偏光子や表示装置の紫外線に対する劣化防止の観点から、波長370nm以下の紫外線の吸収能に優れており、且つ液晶表示性の観点から、波長400nm以上の可視光の吸収が少ないものが好ましい。
例えば、サリチル酸系紫外線吸収剤(フェニルサリシレート、p−tert−ブチルサリシレート等)あるいはベンゾフェノン系紫外線吸収剤(2,4−ジヒドロキシベンゾフェノン、2,2′−ジヒドロキシ−4,4′−ジメトキシベンゾフェノン等)、ベンゾトリアゾール系紫外線吸収剤(2−(2′−ヒドロキシ−3′−tert−ブチル−5′−メチルフェニル)−5−クロロベンゾトリアゾール、2−(2′−ヒドロキシ−3′,5′−ジ−tert−ブチルフェニル)−5−クロロベンゾトリアゾール、2−(2′−ヒドロキシ−3′,5′−ジ−tert−アミルフェニル)ベンゾトリアゾール、2−(2′−ヒドロキシ−3′−ドデシル−5′−メチルフェニル)ベンゾトリアゾール、2−(2′−ヒドロキシ−3′−tert−ブチル−5′−(2−オクチルオキシカルボニルエチル)−フェニル)−5−クロロベンゾトリアゾール、2−(2′−ヒドロキシ−3′−(1−メチル−1−フェニルエチル)−5′−(1,1,3,3,−テトラメチルブチル)−フェニル)ベンゾトリアゾール、2−(2′−ヒドロキシ−3′,5′−ジ−(1−メチル−1−フェニルエチル)−フェニル)ベンゾトリアゾール等)、シアノアクリレート系紫外線吸収剤(2′−エチルへキシル−2−シアノ−3,3−ジフェニルアクリレート、エチル−2−シアノ−3−(3′,4′−メチレンジオキシフェニル)−アクリレート等)、トリアジン系紫外線吸収剤、あるいは特開昭58−185677号、同59−149350号記載の化合物、ニッケル錯塩系化合物、無機粉体等が挙げられる。
本発明に係る紫外線吸収剤としては、透明性が高く、偏光板や液晶素子の劣化を防ぐ効果に優れたベンゾトリアゾール系紫外線吸収剤やトリアジン系紫外線吸収剤が好ましく、分光吸収スペクトルがより適切なベンゾトリアゾール系紫外線吸収剤が特に好ましい。
本発明に係る紫外線吸収剤と共に特に好ましく用いられる従来公知のベンゾトリアゾール系紫外線吸収剤は、ビス化したものであってもよく、例えば、6,6′−メチレンビス(2−(2H−ベンゾ[d][1,2,3]トリアゾール−2−イル))−4−(2,4,4,−トリメチルペンタン−2−イル)フェノール、6,6′−メチレンビス(2−(2H−ベンゾ[d][1,2,3]トリアゾール−2−イル))−4−(2−ヒドロキシエチル)フェノール等が挙げられる。
また、本発明においては、従来公知の紫外線吸収性ポリマーと組み合わせて用いることもできる。従来公知の紫外線吸収性ポリマーとしては、特に限定されないが、例えば、RUVA−93(大塚化学社製)を単独重合させたポリマー及びRUVA−93と他のモノマーとを共重合させたポリマー等が挙げられる。具体的には、RUVA−93とメチルメタクリレートを3:7の比(質量比)で共重合させたPUVA−30M、5:5の比(質量比)で共重合させたPUVA−50M等が挙げられる。更に、特開2003−113317号公報に記載のポリマー等が挙げられる。
また、市販品として、チヌビン(TINUVIN)109、チヌビン(TINUVIN)171、チヌビン(TINUVIN)360、チヌビン(TINUVIN)900、チヌビン(TINUVIN)928(いずれもチバ−スペシャルティ−ケミカルズ社製)、LA−31(旭電化社製)、RUVA−100(大塚化学社製)を用いることもできる。
ベンゾフェノン系化合物の具体例として、2,4−ジヒドロキシベンゾフェノン、2,2′−ジヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホベンゾフェノン、ビス(2−メトキシ−4−ヒドロキシ−5−ベンゾイルフェニルメタン)等を挙げることができるが、これらに限定されるものではない。
本発明においては、紫外線吸収剤は0.1〜20質量%添加することが好ましく、更に0.5〜10質量%添加することが好ましく、更に1〜5質量%添加することが好ましい。これらは2種以上を併用してもよい。
(粘度低下剤)
本発明において、溶融粘度を低減する目的として、水素結合性溶媒を添加する事ができる。水素結合性溶媒とは、J.N.イスラエルアチビリ著、「分子間力と表面力」(近藤保、大島広行訳、マグロウヒル出版、1991年)に記載されるように、電気的に陰性な原子(酸素、窒素、フッ素、塩素)と電気的に陰性な原子と共有結合した水素原子間に生ずる、水素原子媒介「結合」を生ずることができるような有機溶媒、すなわち、結合モーメントが大きく、かつ水素を含む結合、例えば、O−H(酸素水素結合)、N−H(窒素水素結合)、F−H(フッ素水素結合)を含むことで近接した分子同士が配列できるような有機溶媒をいう。これらは、セルロース樹脂の分子間水素結合よりもセルロースとの間で強い水素結合を形成する能力を有するもので、本発明で行う溶融流延法においては、用いるセルロース樹脂単独のガラス転移温度よりも、水素結合性溶媒の添加によりセルロース樹脂組成物の溶融温度を低下する事ができる、または同じ溶融温度においてセルロース樹脂よりも水素結合性溶媒を含むセルロース樹脂組成物の溶融粘度を低下する事ができる。
水素結合性溶媒としては、例えば、アルコール類:例えば、メタノール、エタノール、プロパノール、イソプロパノール、n−ブタノール、sec−ブタノール、t−ブタノール、2−エチルヘキサノール、ヘプタノール、オクタノール、ノナノール、ドデカノール、エチレングリコール、プロピレングリコール、ヘキシレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、ヘキシルセロソルブ、グリセリン等、ケトン類:アセトン、メチルエチルケトン等、カルボン酸類:例えば蟻酸、酢酸、プロピオン酸、酪酸等、エーテル類:例えば、ジエチルエーテル、テトラヒドロフラン、ジオキサン等、ピロリドン類:例えば、N−メチルピロリドン等、アミン類:例えば、トリメチルアミン、ピリジン等、等を例示することができる。これら水素結合性溶媒は、単独で、又は2種以上混合して用いることができる。これらのうちでも、アルコール、ケトン、エーテル類が好ましく、特にメタノール、エタノール、プロパノール、イソプロパノール、オクタノール、ドデカノール、エチレングリコール、グリセリン、アセトン、テトラヒドロフランが好ましい。さらに、メタノール、エタノール、プロパノール、イソプロパノール、エチレングリコール、グリセリン、アセトン、テトラヒドロフランのような水溶性溶媒が特に好ましい。ここで水溶性とは、水100gに対する溶解度が10g以上のものをいう。
(リターデーション制御剤)
本発明のセルロースアシレートフィルムにおいて配向膜を形成して液晶層を設け、セルロースアシレートフィルムと液晶層由来のリターデーションを複合化して光学補償能を付与した偏光板加工を行ってもよい。リターデーションを制御するために添加する化合物は、欧州特許第911,656A2号明細書に記載されているような、二つ以上の芳香族環を有する芳香族化合物をリターデーション制御剤として使用することもできる。また2種類以上の芳香族化合物を併用してもよい。該芳香族化合物の芳香族環には、芳香族炭化水素環に加えて、芳香族性ヘテロ環を含む。芳香族性ヘテロ環であることが特に好ましく、芳香族性ヘテロ環は一般に不飽和ヘテロ環である。中でも1,3,5−トリアジン環を有する化合物が特に好ましい。
(マット剤)
本発明のセルロースアシレートフィルムには、滑り性を付与するためにマット剤等の微粒子を添加することができ、微粒子としては、無機化合物の微粒子または有機化合物の微粒子が挙げられる。マット剤はできるだけ微粒子のものが好ましく、微粒子としては、例えば、二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、カオリン、タルク、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、リン酸カルシウム等の無機微粒子や架橋高分子微粒子を挙げることができる。中でも、二酸化ケイ素がフィルムのヘイズを低くできるので好ましい。二酸化ケイ素のような微粒子は有機物により表面処理されている場合が多いが、このようなものはフィルムのヘイズを低下できるため好ましい。
表面処理で好ましい有機物としては、ハロシラン類、アルコキシシラン類、シラザン、シロキサンなどが挙げられる。微粒子の平均粒径が大きい方が滑り性効果は大きく、反対に平均粒径の小さい方は透明性に優れる。また、微粒子の二次粒子の平均粒径は0.05〜1.0μmの範囲である。好ましい微粒子の二次粒子の平均粒径は5〜50nmが好ましく、更に好ましくは7〜14nmである。これらの微粒子はセルロースアシレートフィルム中では、セルロースアシレートフィルム表面に0.01〜1.0μmの凹凸を生成させる為に好ましく用いられる。微粒子のセルロースエステル中の含有量はセルロースエステルに対して0.005〜0.3質量%が好ましい。
二酸化ケイ素の微粒子としては、日本アエロジル(株)製のアエロジル(AEROSIL)200、200V、300、R972、R972V、R974、R202、R812、OX50、TT600等を挙げることができ、好ましくはアエロジル200V、R972、R972V、R974、R202、R812である。これらの微粒子は2種以上併用してもよい。2種以上併用する場合、任意の割合で混合して使用することができる。この場合、平均粒径や材質の異なる微粒子、例えば、アエロジル200VとR972Vを質量比で0.1:99.9〜99.9:0.1の範囲で使用できる。
上記マット剤として用いられるフィルム中の微粒子の存在は、別の目的としてフィルムの強度向上のために用いることもできる。また、フィルム中の上記微粒子の存在は、本発明のセルロースアシレートフィルムを構成するセルロースエステル自身の配向性を向上することも可能である。
(高分子材料)
本発明のセルロースアシレートフィルムはセルロースエステル以外の高分子材料やオリゴマーを適宜選択して混合してもよい。前述の高分子材料やオリゴマーはセルロースエステルと相溶性に優れるものが好ましく、フィルムにしたときの透過率が80%以上、更に好ましくは90%以上、更に好ましくは92%以上であることが好ましい。セルロースエステル以外の高分子材料やオリゴマーの少なくとも1種以上を混合する目的は、加熱溶融時の粘度制御やフィルム加工後のフィルム物性を向上するために行う意味を含んでいる。(溶融流延法)
フィルム構成材料は溶融及び製膜工程において、揮発成分が少ないまたは発生しないことが求められる。これは加熱溶融時に発泡して、フィルム内部の欠陥やフィルム表面の平面性劣化を削減または回避するためである。
フィルム構成材料が溶融されるときの揮発成分の含有量は、1質量%以下、好ましくは0.5質量%以下、さらに好ましくは0.2質量%以下、さらにより好ましくは0.1質量%以下であることが望まれる。本発明においては、示差熱質量測定装置(セイコー電子工業社製TG/DTA200)を用いて、30℃から250℃までの加熱減量を求め、その量を揮発成分の含有量としている。
用いるフィルム構成材料は、前記水分や前記溶媒等に代表される揮発成分を、製膜する前に、または加熱時に除去することが好ましい。除去する方法は、所謂公知の乾燥方法が適用でき、加熱法、減圧法、加熱減圧法等の方法で行なうことができ、空気中または不活性ガスとして窒素を選択した雰囲気下で行なってもよい。これらの公知の乾燥方法を行なうとき、フィルム構成材料が分解しない温度領域で行なうことがフィルムの品質上好ましい。
製膜前に乾燥することにより、揮発成分の発生を削減することができ、樹脂単独、または樹脂とフィルム構成材料の内、樹脂以外の少なくとも1種以上の混合物または相溶物に分割して乾燥することもできる。乾燥温度は100℃以上が好ましい。乾燥する材料にガラス転移温度を有する物が存在するときには、そのガラス転移温度よりも高い乾燥温度に加熱すると、材料が融着して取り扱いが困難になることがあるので、乾燥温度は、ガラス転移温度以下であることが好ましい。複数の物質がガラス転移温度を有する場合は、ガラス転移温度が低い方のガラス転移温度を基準とする。より好ましくは100℃以上、(ガラス転移温度−5)℃以下、さらに好ましくは110℃以上、(ガラス転移温度−20)℃以下である。乾燥時間は、好ましくは0.5〜24時間、より好ましくは1〜18時間、さらに好ましくは1.5〜12時間である。乾燥時間が0.5時間未満であると、フィルム構成材料の乾燥は十分されておらず、製膜工程において揮発成分が発生しやすく、好ましくなく、24時間を超えると、フィルム構成材料のセルロース以外の成分が偏りを生じてフィルム内部の欠陥を生じやすく、好ましくない。乾燥温度が低くなりすぎると揮発成分の除去率が低くなり、また乾燥するのに時間にかかり過ぎることになる。また、乾燥工程は2段階以上にわけてもよく、例えば、乾燥工程が、材料の保管のための予備乾燥工程と、製膜する直前〜1週間前の間に行なう直前乾燥工程を含むものであってもよい。
溶融流延成膜法は、加熱溶融する成形法に分類され、溶融押出し成形法、プレス成形法、インフレーション法、射出成形法、ブロー成形法、延伸成形法などを適用できる。これらの中で、機械的強度及び表面精度などに優れる光学フィルムを得るためには、溶融押出し法が優れている。以下、溶融押出し法を例にとり本発明のフィルムの製造方法について説明する。
図1は、本発明のセルロースアシレートフィルムの製造方法を実施する装置の全体構成を示す概略フローシートであり、図2は、流延ダイから冷却ロール部分の拡大図である。
図1と図2において、本発明によるセルロースアシレートフィルムの製造方法は、セルロース樹脂などのフィルム材料を混合した後、押出し機1を用いて、流延ダイ4から第1冷却ロール5上に溶融押し出し、第1冷却ロール5に外接させるとともに、さらに、第2冷却ロール7、第3冷却ロール8の合計3本の冷却ロールに順に外接させて、冷却固化してフィルム10とする。ついで、剥離ロール9によって剥離したフィルム10を、ついで延伸装置12によりフィルムの両端部を把持して幅方向に延伸した後、巻取り装置16により巻き取る。また、平面性を矯正するために溶融フィルムを第1冷却ロール5表面に挟圧するタッチロール6が設けられている。このタッチロール6は表面が弾性を有し、第1冷却ロール5との間でニップを形成している。タッチロール6についての詳細は後述する。
本発明によるセルロースアシレートフィルムの製造方法において、熱風や真空または減圧下で乾燥したセルロースエステル系樹脂を押出し機1を用いて押し出し、ろ過温度230〜260℃、ろ過圧力1〜10MPaで、金属フィルター2を用いて濾過し、異物を除去する。
ろ過温度が230℃未満であると、未融解物が増加して偏光異物が増加する、また、セルロースアシレートの溶融物の粘度が高いためにろ過圧力の上昇が著しく、高い圧力によって偏光異物はフィルターを通過してしまう、あるいはろ材が破損してろ過を行なうことができないという問題が生じる。
ろ過温度が260℃を越えると、セルロースアシレートが熱劣化を起こして黄変し光学フィルムとしての品質が低下する。
また、ろ過圧力が1MPa未満であると、セルロースアシレートの溶融物のろ過装置内での滞留時間が長くなり熱劣化を起こして黄変し光学フィルムとしての品質が低下する。
ろ過圧力が10MPaを越えると、高い圧力によって偏光異物はフィルターを通過してしまう、あるいはろ材が破損してろ過を行なうことができないという問題が生じる。
また、金属フィルター2としては、ろ過精度が3〜8μmで、空隙率が63%〜71%であるリーフディスク型の金属フィルターが好ましい。
ろ過精度が、3μm未満であると、ろ過圧力が上昇しやすく、また、ろ過速度が遅くなり、それに伴ってセルロースアシレートの熱劣化によるフィルムの黄変を起こしやすい。また、細かい目開きによって偏光異物は補足されずに破砕されやすくなり、ろ過による異物の除去効果が得にくい等の問題が発生しやすく、好ましくない。
ろ過精度が、8μmを越えると、フィルターは偏光異物を捕捉しにくくなり,光学フィルムとしてのセルロースアシレートフィルムの品質は低下するという問題が発生しやすく、好ましくない。
さらに、空隙率が63%未満であると、フィルターの流動抵抗が大きいため、ろ過圧力の上昇し、ろ材が破損してろ過を行なうことができないという問題が発生しやすく、好ましくない。
また、空隙率が71%を越えると、フィルターの耐圧強度が弱くなり、ろ過の際にろ材が破損するという問題が発生しやすく、好ましくない。
ここで、空隙率とは、次式で定義される量である。
空隙率(%)={1−金属フィルターの坪量(g・cm2)/金属の比重(g/cm3)/金属フィルターの厚み(cm)}×100
また、ここで、ろ過精度とは、95%以上補足可能な粒子の径を言う。
金属フィルターとしては、リーフディスク型のものであれば良く、金属繊維を網目状に編んだものや不織布のように絡ませたものであっても良い。例えば、ファインポアNF(日本精線株式会社製)等を用いることができる。
リーフディスク型の金属フィルターを用いることにより、耐圧性に優れ、限られたスペースにおいて大きなろ過面積を有効に利用できるので好ましい。
次いでろ過した溶融セルロースアシレートは、流延ダイ4に送られる。
可塑剤などの添加剤を予め混合しない場合は、押出し機の途中で練り込んでもよい。均一に添加するために、スタチックミキサー3などの混合装置を用いることが好ましい。
本発明において、セルロース樹脂と、その他必要により添加される安定化剤等の添加剤は、溶融する前に混合しておくことが好ましい。セルロース樹脂と安定化剤を最初に混合することがさらに好ましい。混合は、混合機等により行なってもよく、また、前記したようにセルロース樹脂調製過程において混合してもよい。混合機を使用する場合は、V型混合機、円錐スクリュー型混合機、水平円筒型混合機等、ヘンシェルミキサー、リボンミキサー一般的な混合機を用いることができる。
上記のようにフィルム構成材料を混合した後に、その混合物を押出し機1を用いて直接溶融してもよいが、一旦、フィルム構成材料をペレット化した後、該ペレットを押出し機1で溶融するようにしてもよい。
押出し機1から押し出され、金属フィルター2でろ過されたフィルム構成材料は、流延ダイ4に送られ、流延ダイ4のスリットからフィルム状に押し出される。流延ダイ4はシートやフィルムを製造するために用いられるものであれば特に限定はされない。流延ダイ4の材質としては、ハードクロム、炭化クロム、窒化クロム、炭化チタン、炭窒化チタン、窒化チタン、超鋼、セラミック(タングステンカーバイド、酸化アルミ、酸化クロム)などを溶射もしくはメッキし、表面加工としてバフ、#1000番手以降の砥石を用いるラッピング、#1000番手以上のダイヤモンド砥石を用いる平面切削(切削方向は樹脂の流れ方向に垂直な方向)、電解研磨、電解複合研磨などの加工を施したものなどがあげられる。流延ダイ4のリップ部の好ましい材質は、流延ダイ4と同様である。またリップ部の表面精度は0.5S以下が好ましく、0.2S以下がより好ましい。
この流延ダイ4のスリットは、そのギャップが調整可能なように構成されている。これを図3に示す。流延ダイ4のスリット32を形成する一対のリップのうち、一方は剛性の低い変形しやすいフレキシブルリップ33であり、他方は固定リップ34である。そして、多数のヒートボルト35が流延ダイ4の幅方向すなわちスリット32の長さ方向に一定ピッチで配列されている。各ヒートボルト5には、埋め込み電気ヒータ37と冷却媒体通路とを具えたブロック36が設けられ、各ヒートボルト35が各ブロック36を縦に貫通している。ヒートボルト35の基部はダイ本体31に固定され、先端はフレキシブルリップ33の外面に当接している。そしてブロック36を常時空冷しながら、埋め込み電気ヒータ37の入力を増減してブロック36の温度を上下させ、これによりヒートボルト35を熱伸縮させて、フレキシブルリップ33を変位させてフィルムの厚さを調整する。ダイ後流の所要箇所に厚さ計を設け、これによって検出されたウェブ厚さ情報を制御装置にフィードバックし、この厚さ情報を制御装置で設定厚み情報と比較し、同装置から来る補正制御量の信号によってヒートボルトの発熱体の電力又はオン率を制御するようにすることもできる。ヒートボルトは、好ましくは、長さ20〜40cm、直径7〜14mmを有し、複数、例えば数十本のヒートボルトが、好ましくはピッチ20〜40mmで配列されている。ヒートボルトの代わりに、手動で軸方向に前後動させることによりスリットギャップを調節するボルトを主体とするギャップ調節部材を設けてもよい。ギャップ調節部材によって調節されたスリットギャップは、通常200〜1000μm、好ましくは300〜800μm、より好ましくは400〜600μmである。
第1乃至第3冷却ロールは、肉厚が20〜30mm程度のシームレスな鋼管製で、表面が鏡面に仕上げられている。その内部には、冷却液を流す配管が配置されており、配管を流れる冷却液によってロール上のフィルムから熱を吸収できるように構成されている。この第1乃至第3冷却ロールの内、第1冷却ロール5が本発明の回転支持体に相当する。
一方、第1冷却ロール5に当接するタッチロール6は、表面が弾性を有し、第1冷却ロール5への押圧力によって第1冷却ロール5の表面に沿って変形し、第1ロール5との間にニップを形成する。すなわち、タッチロール6が本発明の挟圧回転体に相当する。
図4に、タッチロール6の一実施形態(以下、タッチロールA)の概略断面を示す。図に示すように、タッチロールAは、可撓性の金属スリーブ41の内部に弾性ローラ42を配したものである。
金属スリーブ41は厚さ0.3mmのステンレス製であり、可撓性を有する。金属スリーブ41が薄すぎると強度が不足し、逆に厚すぎると弾性が不足する。これらのことから、金属スリーブ41の厚さとしては、0.1mm以上1.5mm以下が好ましい。弾性ローラ42は、軸受を介して回転自在な金属製の内筒43の表面にゴム44を設けてロール状としたものである。そして、タッチロールAが第1冷却ロール5に向けて押圧されると、弾性ローラ42が金属スリーブ41を第1冷却ロール5に押しつけ、金属スリープ41及び弾性ローラ42は第1冷却ロール5の形状になじんだ形状に対応しつつ変形し、第1冷却ロールとの間にニップを形成する。金属スリーブ41の内部で弾性ローラ42との間に形成される空間には、冷却水45が流される。
図5、図6は挟圧回転体の別の実施形態であるタッチロールBを示している。タッチロールBは、可撓性を有する、シームレスなステンレス鋼管製(厚さ4mm)の外筒51と、この外筒51の内側に同一軸心状に配置された高剛性の金属内筒52とから概略構成されている。外筒51と内筒52との間の空間53には、冷却液54が流される。詳しくは、タッチロールBは、両端の回転軸55a,55bに外筒支持フランジ56a,56bが取付けられ、これら両外筒支持フランジ56a,56bの外周部間に薄肉金属外筒51が取付けられている。また、一方の回転軸55aの軸心部に形成されて流体戻り通路57を形成する流体排出孔58内に、流体供給管59が同一軸心状に配設され、この流体供給管59が薄肉金属外筒51内の軸心部に配置された流体軸筒60に接続固定されている。この流体軸筒60の両端部に内筒支持フランジ61a,61bがそれぞれ取り付けられ、これら内筒支持フランジ61a,61bの外周部間から他端側外筒支持フランジ56bにわたって約15〜20mm程度の肉厚を有する金属内筒52が取付けられている。そしてこの金属内筒52と薄肉金属外筒51との間に、たとえば10mm程度の冷却液の流送空間53が形成され、また金属内筒52に両端部近傍には、流送空間53と内筒支持フランジ61a,61b外側の中間通路62a,62bとを連通する流出口52aおよび流入口52bがそれぞれ形成されている。
また外筒51は、ゴム弾性に近い柔軟性と可撓性、復元性をもたせるために、弾性力学の薄肉円筒理論が適用できる範囲内で薄肉化が図られている。この薄肉円筒理論で評価される可撓性は、肉厚t/ロール半径rで表わされており、t/rが小さいほど可撓性が高まる。このタッチロールBではt/r≦0.03の場合に可撓性が最適の条件となる。通常、一般的に使用されているタッチロールは、ロール径R=200〜500mm(ロール半径r=R/2)、ロール有効幅L=500〜1600mmで、r/L<1で横長の形状である。そして図6に示すように、たとえばロール径R=300mm、ロール有効幅L=1200mmの場合、肉厚tの適正範囲は150×0.03=4.5mm以下であるが、溶融シート幅を1300mmに対して平均線圧を100N/cmで挟圧する場合、同一形状のゴムロールと比較して、外筒51の肉厚を3mmとすることで相当ばね定数も等しく、外筒51と冷却ロールとのニップのロール回転方向のニップ幅kも約9mmで、このゴムロールのニップ幅約12mmとほぼ近い値を示し、同じような条件下で挟圧できることがわかる。なお、このニップ幅kにおけるたわみ量は0.05〜0.1mm程度である。
ここで、t/r≦0.03としたが、一般的なロール径R=200〜500mmの場合では、特に2mm≦t≦5mmの範囲とすると、可撓性も十分に得られ、また機械加工による薄肉化も容易に実施でき、極めて実用的な範囲となる。肉厚が2mm以下では加工時の弾性変形で高精度な加工ができない。
この2mm≦t≦5mmの換算値は、一般的なロール径に対して0.008≦t/r≦0.05となるが、実用にあたってはt/r≒0.03の条件下でロール径に比例して肉厚も大きくするとよい。たとえばロール径:R=200ではt=2〜3mm、ロール径:R=500ではt=4〜5mmの範囲で選択する。
このタッチロールA,Bは不図示の付勢手段により第1冷却ロールに向けて付勢される。その付勢手段の付勢力をF、ニップにおけるフィルムの、第1冷却ロール5の回転軸に沿った方向の幅Wを除した値F/W(線圧)は、10N/cm以上150N/cmに設定される。本実施の形態によれば、タッチロールA,Bと第1冷却ロール5との間にニップが形成され、当該ニップをフィルムが通過する間に平面性を矯正すればよい。従って、タッチロールが剛体で構成され、第1冷却ロールとの間にニップが形成されない場合と比べて、小さい線圧で長時間かけてフィルムを挟圧するので、平面性をより確実に矯正することができる。すなわち、線圧が10N/cmよりも小さいと、ダイラインを十分に解消することができなくなる。逆に、線圧が150N/cmよりも大きいと、フィルムがニップを通過しにくくなり、フィルムの厚さにかえってムラができてしまう。
また、タッチロールA,Bの表面を金属で構成することにより、タッチロールの表面がゴムである場合よりもタッチロールA,Bの表面を平滑にすることができるので、平滑性の高いフィルムを得ることができる。なお、弾性ローラ42の弾性体44の材質としては、エチレンプロピレンゴム、ネオプレンゴム、シリコンゴム等を用いることができる。
さて、タッチロール6によってダイラインを良好に解消するためには、タッチロール6がフィルムを挟圧するときのフィルムの粘度が適切な範囲であることが重要となる。また、セルロース樹脂は温度による粘度の変化が比較的大きいことが知られている。従って、タッチロール6がセルロースフィルムを挟圧するときの粘度を適切な範囲に設定するためには、タッチロール6がセルロースフィルムを挟圧するときのフィルムの温度を適切な範囲に設定することが重要となる。そして本発明者は、セルロースアシレートフィルムのガラス転移温度をTgとしたとき、フィルムがタッチロール6に挟圧される直前のフィルムの温度Tを、Tg<T<Tg+110℃を満たすように設定すればよいことを見いだした。フィルム温度TがTgよりも低いとフィルムの粘度が高すぎて、ダイラインを矯正できなくなる。逆に、フィルムの温度TがTg+110℃よりも高いと、フィルム表面とロールが均一に接着せず、やはりダイラインを矯正することができない。好ましくはTg+10℃<T<Tg+90℃、さらに好ましくはTg+20℃<T<Tg+70℃である。タッチロール6がセルロースフィルムを挟圧するときのフィルムの温度を適切な範囲に設定するには、流延ダイ4から押し出された溶融物が第1冷却ロール5に接触する位置P1から第1冷却ロール5とタッチロール6とのニップの、第1冷却ロール5の回転方向に沿った長さLを調整すればよい。
本発明において、第1ロール5、第2ロール6に好ましい材質は、炭素鋼、ステンレス鋼、樹脂、などが挙げられる。また、表面精度は高くすることが好ましく表面粗さとして0.3S以下、より好ましくは0.01S以下とする。
本発明においては、流延ダイ4の開口部(リップ)から第1ロール5までの部分を70kPa以下に減圧させることにより、上記、ダイラインの矯正効果がより大きく発現することを発見した。好ましくは減圧は50kPa以上70kPa以下である。流延ダイ4の開口部(リップ)から第1ロール5までの部分の圧力を70kPa以下に保つ方法としては、特に制限はないが、流延ダイ4からロール周辺を耐圧部材で覆い、減圧するなどの方法がある。このとき、吸引装置は、装置自体が昇華物の付着場所にならないようヒーターで加熱するなどの処置を施すことが好ましい。本発明では、吸引圧が小さすぎると昇華物を効果的に吸引できないため、適当な吸引圧とする必要がある。
本発明において、Tダイ4から溶融状態のフィルム状のセルロースエステル系樹脂を、第1ロール(第1冷却ロール)5、第2冷却ロール7、及び第3冷却ロール8に順次密着させて搬送しながら冷却固化させ、未延伸のセルロースエステル系樹脂フィルム10を得る。
図1に示す本発明の実施形態では、第3冷却ロール8から剥離ロール9によって剥離した冷却固化された未延伸のフィルム10は、ダンサーロール(フィルム張力調整ロール)11を経て延伸機12に導き、そこでフィルム10を横方向(幅方向)に延伸する。この延伸により、フィルム中の分子が配向される。
フィルムを幅方向に延伸する方法は、公知のテンターなどを好ましく用いることができる。特に延伸方向を幅方向とすることで、偏光フィルムとの積層がロール形態で実施できるので好ましい。幅方向に延伸することで、セルロースエステル系樹脂フィルムからなるセルロースアシレートフィルムの遅相軸は幅方向になる。
一方、偏光フィルムの透過軸も、通常、幅方向である。偏光フィルムの透過軸とセルロースアシレートフィルムの遅相軸とが平行になるように積層した偏光板を液晶表示装置に組み込むことで、液晶表示装置の表示コントラストを高くすることができるとともに、良好な視野角が得られるのである。
フィルム構成材料のガラス転移温度Tgはフィルムを構成する材料種及び構成する材料の比率を異ならしめることにより制御できる。光学フィルムとして位相差フィルムを作製する場合、Tgは120℃以上、好ましくは135℃以上とすることが好ましい。液晶表示装置においては、画像の表示状態において、装置自身の温度上昇、例えば光源由来の温度上昇によってフィルムの温度環境が変化する。このときフィルムの使用環境温度よりもフィルムのTgが低いと、延伸によってフィルム内部に固定された分子の配向状態に由来するリタデーション値及びフィルムとしての寸法形状に大きな変化を与えることとなる。フィルムのTgが高過ぎると、フィルム構成材料をフィルム化するとき温度が高くなるために加熱するエネルギー消費が高くなり、またフィルム化するときの材料自身の分解、それによる着色が生じることがあり、従って、Tgは250℃以下が好ましい。
また延伸工程には公知の熱固定条件、冷却、緩和処理を行なってもよく、目的とする光学フィルムに要求される特性を有するように適宜調整すればよい。
位相フィルムの物性と液晶表示装置の視野角拡大のための位相フィルムの機能付与するために、上記延伸工程、熱固定処理は適宜選択して行なわれている。このような延伸工程、熱固定処理を含む場合、本発明の加熱加圧工程は、それらの延伸工程、熱固定処理の前に行なうようにする。
光学フィルムとして位相差フィルムを製造し、さらに偏光板保護フィルムの機能を複合させる場合、屈折率制御をおこなう必要が生じるが、その屈折率制御は延伸操作により行なうことが可能であり、また延伸操作が好ましい方法である。以下、その延伸方法について説明する。
位相差フィルムの延伸工程において、セルロース樹脂の1方向に1.0〜2.0倍及びフィルム面内にそれと直交する方向に1.01〜2.5倍延伸することで、必要とされるリタデーションRo及びRthを制御することができる。ここで、Roとは面内リタデーションを示し、面内の長手方向MDの屈折率と幅方向TDの屈折率との差に厚みを乗じたもの、Rthとは厚み方向リタデーションを示し、面内の屈折率(長手方向MDと幅方向TDの平均)と厚み方向の屈折率との差に厚みを乗じたものである。
延伸は、例えばフィルムの長手方向及びそれとフィルム面内で直交する方向、即ち幅方向に対して、逐次または同時に行なうことができる。このとき少なくとも1方向に対しての延伸倍率が小さ過ぎると十分な位相差が得られず、大き過ぎると延伸が困難となりフィルム破断が発生してしまう場合がある。
互いに直交する2軸方向に延伸することは、フィルムの屈折率nx、ny、nzを所定の範囲に入れるために有効な方法である。ここで、nxとは長手MD方向の屈折率、nyとは幅手TD方向の屈折率、nzとは厚み方向の屈折率である。
例えば溶融流延方向に延伸した場合、幅方向の収縮が大き過ぎると、nzの値が大きくなり過ぎてしまう。この場合、フィルムの幅収縮を抑制、あるいは幅方向にも延伸することで改善できる。幅方向に延伸する場合、幅方向で屈折率に分布が生じることがある。この分布は、テンター法を用いた場合に現れることがあり、フィルムを幅方向に延伸したことで、フィルム中央部に収縮力が発生し、端部は固定されていることにより生じる現象で、いわゆるボーイング現象と呼ばれるものと考えられる。この場合でも、流延方向に延伸することで、ボーイング現象を抑制でき、幅方向の位相差の分布を少なくできる。
互いに直行する2軸方向に延伸することにより、得られるフィルムの膜厚変動が減少できる。位相差フィルムの膜厚変動が大き過ぎると位相差のムラとなり、液晶ディスプレイに用いたとき着色等のムラが問題となることがある。
セルロース樹脂フィルムの膜厚変動は、±3%、さらに±1%の範囲とすることが好ましい。以上のような目的において、互いに直交する2軸方向に延伸する方法は有効であり、互いに直交する2軸方向の延伸倍率は、それぞれ最終的には流延方向に1.0〜2.0倍、幅方向に1.01〜2.5倍の範囲とすることが好ましく、流延方向に1.01〜1.5倍、幅方向に1.05〜2.0倍に範囲で行なうことが必要とされるリタデーション値を得るためにより好ましい。
長手方向に偏光子の吸収軸が存在する場合、幅方向に偏光子の透過軸が一致することになる。長尺状の偏光板を得るためには、位相差フィルムは、幅方向に遅相軸を得るように延伸することが好ましい。
応力に対して、正の複屈折を得るセルロース樹脂を用いる場合、上述の構成から、幅方向に延伸することで、位相差フィルムの遅相軸が幅方向に付与することができる。この場合、表示品質の向上のためには、位相差フィルムの遅相軸が、幅方向にあるほうが好ましく、目的とするリタデーション値を得るためには、式、(幅方向の延伸倍率)>(流延方向の延伸倍率)の条件を満たすことが必要である。
延伸後、フィルムの端部をスリッター13により製品となる幅にスリットして裁ち落とした後、エンボスリング14及びバックロール15よりなるナール加工装置によりナール加工(エンボッシング加工)をフィルム両端部に施し、巻取り機16によって巻き取ることにより、セルロースアシレートフィルム(元巻き)F中の貼り付きや、すり傷の発生を防止する。ナール加工の方法は、凸凹のパターンを側面に有する金属リングを加熱や加圧により加工することができる。なお、フィルム両端部のクリップの把持部分は通常、変形しており、フィルム製品として使用できないので、切除されて、原料として再利用される。
位相差フィルムを偏光板保護フィルムとする場合、該保護フィルムの厚さは、10〜500μmが好ましい。特に、下限は20μm以上、好ましくは35μm以上である。上限は150μm以下、好ましくは120μm以下である。特に好ましい範囲は25以上〜90μmである。位相差フィルムが厚いと、偏光板加工後の偏光板が厚くなり過ぎ、ノート型パソコンやモバイル型電子機器に用いる液晶表示においては、特に薄型軽量の目的に適さない。一方、位相差フィルムが薄いと、位相差フィルムとしてのリタデーションの発現が困難となり、加えてフィルムの透湿性が高くなり、偏光子を湿度から保護する能力が低下してしまうために好ましくない。
位相差フィルムの遅相軸または進相軸がフィルム面内に存在し、製膜方向とのなす角度をθ1とすると、θ1は−1°以上+1°以下、好ましくは−0.5°以上+0.5°以下となるようにする。
このθ1は配向角として定義でき、θ1の測定は、自動複屈折計KOBRA−21ADH(王子計測機器社製)を用いて行なうことができる。
θ1が各々上記関係を満たすことは、表示画像において高い輝度を得ること、光漏れを抑制または防止することに寄与し、カラー液晶表示装置においては忠実な色再現に寄与する。
本発明に係る位相差フィルムがマルチドメイン化されたVAモードに用いられるとき、位相差フィルムの配置は、位相差フィルムの進相軸がθ1として上記領域に配置することで、表示画質の向上に寄与し、偏光板及び液晶表示装置としてMVAモードとしたとき、例えば図7に示される構成をとることができる。
図7において、21a、21bは保護フィルム、22a、22bは位相差フィルム、25a、25bは偏光子、23a、23bはフィルムの遅相軸方向、24a、24bは偏光子の透過軸方向、26a、26bは偏光板、27は液晶セル、29は液晶表示装置を示している。
光学フィルムの面内方向のリタデーションRo分布は、5%以下に調整することが好ましく、より好ましくは2%以下であり、特に好ましくは、1.5%以下である。また、フィルムの厚み方向のリタデーションRt分布を10%以下に調整することが好ましいが、さらに好ましくは、2%以下であり、特に好ましくは、1.5%以下である。
位相差フィルムにおいて、リタデーション値の分布変動が小さい方が好ましく、液晶表示装置に位相差フィルムを含む偏光板を用いるとき、該リタデーション分布変動が小さいことが色ムラ等を防止する観点で好ましい。
位相差フィルムを、VAモードまたはTNモードの液晶セルの表示品質の向上に適したリタデーション値を有するように調整し、特にVAモードとして上記のマルチドメインに分割してMVAモードに好ましく用いられるようにするには、面内リタデーションRoを30nmよりも大きく、95nm以下に、かつ厚み方向リタデーションRtを70nmよりも大きく、400nm以下の値に調整することが求められる。
上記の面内リタデーションRoは、2枚の偏光板がクロスニコルに配置され、偏光板の間に液晶セルが配置された、例えば図7に示す構成であるときに、表示面の法線方向から観察するときを基準にしてクロスニコル状態にあるとき、表示面の法線から斜めに観察したとき、偏光板のクロスニコル状態からのずれが生じ、これが要因となる光漏れを、主に補償する。厚さ方向のリタデーションは、上記TNモードやVAモード、特にMVAモードにおいて液晶セルが黒表示状態であるときに、同様に斜めから見たときに認められる液晶セルの複屈折を主に補償するために寄与する。
図7に示すように、液晶表示装置において、液晶セルの上下に偏光板が二枚配置された構成である場合、図中の22a及び22bは、厚み方向リタデーションRtの配分を選択することができ、上記範囲を満たしかつ厚み方向リタデーションRtの両者の合計値が140nmよりも大きくかつ500nm以下にすることが好ましい。このとき22a及び22bの面内リタデーションRo、厚み方向リタデーションRtが両者同じであることが、工業的な偏光板の生産性向上において好ましい。特に好ましくは面内リタデーションRoが35nmよりも大きくかつ65nm以下であり、かつ厚み方向リタデーションRtが90nmよりも大きく180nm以下で、図7の構成でMVAモードの液晶セルに適用することである。
液晶表示装置において、一方の偏光板に例えば市販の偏光板保護フィルムとして面内リタデーションRo=0〜4nm及び厚み方向リタデーションRt=20〜50nmで厚さ35〜85μmのTACフィルムが、例えば図7の22bの位置で使用されている場合、他方の偏光板に配置される偏光フィルム、例えば、図7の22aに配置する位相差フィルムは、面内リタデーションRoが30nmよりも大きく95nm以下であり、かつ厚み方向リタデーションRtが140nmよりも大きく400nm以下であるものを使用するようにする。表示品質が向上し、かつフィルムの生産面からも好ましい。
〈液晶表示装置〉
本発明に係る位相差フィルムを含む偏光板は、通常の偏光板と比較して高い表示品質を発現させることができ、特にマルチドメイン型の液晶表示装置、より好ましくは複屈折モードによってマルチドメイン型の液晶表示装置への使用に適している。
本発明の偏光板は、MVA(Multi−domein Vertical Alignment)モード、PVA(Patterned Vertical Alignment)モード、CPA(Continuous Pinwheel Alignment)モード、OCB(Optical Compensated Bend)モード等に用いることができ、特定の液晶モード、偏光板の配置に限定されるものではない。
液晶表示装置はカラー化及び動画表示用の装置としても応用されつつあり、本発明により表示品質が改良され、コントラストの改善や偏光板の耐性が向上したことにより、疲れにくく忠実な動画像表示が可能となる。
本発明の位相差フィルムを含む偏光板を少なくとも含む液晶表示装置においては、本発明の位相差フィルムを含む偏光板を、液晶セルに対して、一枚配置するか、あるいは液晶セルの両側に二枚配置する。このとき偏光板に含まれる本発明の位相差フィルム側が液晶表示装置の液晶セルに面するように用いることで表示品質の向上に寄与できる。図7においては22a及び22bのフィルムが液晶表示装置の液晶セルに面することになる。
このような構成において、本発明の位相差フィルムは、液晶セルを光学的に補償することができる。本発明の偏光板を液晶表示装置に用いる場合は、液晶表示装置の偏光板の内の少なくとも一つの偏光板を、本発明の偏光板とすればよい。本発明の偏光板を用いることで、表示品質が向上し、視野角特性に優れた液晶表示装置が提供できる。
本発明の偏光板において、偏光子からみて位相差フィルムとは反対側の面には、セルロース誘導体の偏光板保護フィルムが用いられ、汎用のTACフィルムなどを用いることができる。液晶セルから遠い側に位置する偏光板保護フィルムは、表示装置の品質を向上する上で、他の機能性層を配置することも可能である。
例えば、反射防止、防眩、耐キズ、ゴミ付着防止、輝度向上のためにディスプレイとしての公知の機能層を構成物として含むフィルムや、または本発明の偏光板表面に貼付してもよいがこれらに限定されるものではない。
一般に位相差フィルムでは、上述のリタデーション値としてRoまたはRthの変動が少ないことが安定した光学特性を得るために求められている。特に複屈折モードの液晶表示装置は、これらの変動が画像のムラを引き起こす原因となることがある。
本発明に従い溶融流延製膜法により製造される長尺状位相差フィルムは、セルロース樹脂を主体として構成されるため、セルロース樹脂固有のケン化を活用してアルカリ処理工程を活用することができる。これは、偏光子を構成する樹脂がポリビニルアルコールであるとき、従来の偏光板保護フィルムと同様に完全ケン化ポリビニルアルコール水溶液を用いて本発明の位相差フィルムと貼合することができる。このために本発明は、従来の偏光板加工方法が適用できる点で優れており、特に長尺状であるロール偏光板が得られる点で優れている。
本発明により得られる製造的効果は、特に100m以上の長尺の巻物においてより顕著となり、1500m、2500m、5000mとより長尺化する程、偏光板製造の製造的効果を得る。
例えば、位相差フィルム製造において、ロール長さは、生産性と運搬性を考慮すると、10m以上5000m以下、好ましくは50m以上4500m以下であり、このときのフィルムの幅は、偏光子の幅や製造ラインに適した幅を選択することができる。0.5m以上4.0m以下、好ましくは0.6m以上3.0m以下の幅でフィルムを製造してロール状に巻き取り、偏光板加工に供してもよく、また、目的の倍幅以上のフィルムを製造してロールに巻き取った後、断裁して目的の幅のロールを得て、このようなロールを偏光板加工に用いるようにしてもよい。
本発明の位相差フィルム製造に際し、延伸の前及び/又は後で帯電防止層、ハードコート層、易滑性層、接着層、防眩層、バリアー層等の機能性層を塗設してもよい。この際、コロナ放電処理、プラズマ処理、薬液処理等の各種表面処理を必要に応じて施すことができる。
製膜工程において、カットされたフィルム両端のクリップ把持部分は、粉砕処理された後、あるいは必要に応じて造粒処理を行なった後、同じ品種のフィルム用原料としてまたは異なる品種のフィルム用原料として再利用してもよい。
前述の可塑剤、紫外線吸収剤、マット剤等の添加物濃度が異なるセルロース樹脂を含む組成物を共押出しして、積層構造の光学フィルムを作製することもできる。例えば、スキン層/コア層/スキン層といった構成の光学フィルムを作ることができる。例えば、マット剤は、スキン層に多く、またはスキン層のみに入れることができる。可塑剤、紫外線吸収剤はスキン層よりもコア層に多く入れることができ、コア層のみに入れてもよい。また、コア層とスキン層で可塑剤、紫外線吸収剤の種類を変更することもでき、例えば、スキン層に低揮発性の可塑剤及び/又は紫外線吸収剤を含ませ、コア層に可塑性に優れた可塑剤、あるいは紫外線吸収性に優れた紫外線吸収剤を添加することもできる。スキン層とコア層のガラス転移温度が異なっていても良く、スキン層のガラス転移温度よりコア層のガラス転移温度が低いことが好ましい。このとき、スキンとコアの両者のガラス転移温度を測定し、これらの体積分率より算出した平均値を上記ガラス転移温度Tgと定義して同様に扱うこともできる。また、溶融流延時のセルロースエステルを含む溶融物の粘度もスキン層とコア層で異なっていても良く、スキン層の粘度>コア層の粘度でも、コア層の粘度≧スキン層の粘度でもよい。
本発明のセルロースアシレートフィルムは、寸度安定性が、23℃55%RHに24時間放置したフィルムの寸法を基準としたとき、80℃90%RHにおける寸法の変動値が±2.0%未満であり、好ましくは1.0%未満であり、さらに好ましくは0.5%未満である。
本発明のセルロースアシレートフィルムを位相差フィルムとして偏光板の保護フィルムとして用いる際に、位相差フィルム自身に上記の範囲以上の変動を有すると、偏光板としてのリタデーションの絶対値と配向角が当初の設定とずれるために、表示品質の向上能の減少あるいは表示品質の劣化を引き起こすことがある。
本発明の位相差フィルムは偏光板保護フィルム用として用いることができる。偏光板保護フィルムとして用いる場合、偏光板の作製方法は特に限定されず、一般的な方法で作製することができる。得られた位相差フィルムをアルカリ処理し、ポリビニルアルコールフィルムを沃素溶液中に浸漬延伸して作製した偏光子の両面に完全鹸化ポリビニルアルコール水溶液を用いて、偏光子の両面に偏光板保護フィルムを貼り合わせる方法があり、少なくとも片面に本発明の偏光板保護フィルムである位相差フィルムが偏光子に直接貼合する。
上記アルカリ処理の代わりに特開平6−94915号公報、特開平6−118232号公報に記載されているような易接着加工を施して偏光板加工を行なってもよい。
偏光板は偏光子及びその両面を保護する保護フィルムで構成されており、さらに該偏光板の一方の面にプロテクトフィルムを、反対面にセパレートフィルムを貼合して構成することができる。プロテクトフィルム及びセパレートフィルムは偏光板出荷時、製品検査時等において偏光板を保護する目的で用いられる。この場合、プロテクトフィルムは、偏光板の表面を保護する目的で貼合され、偏光板を液晶板へ貼合する面の反対面側に用いられる。また、セパレートフィルムは液晶板へ貼合する接着層をカバーする目的で用いられ、偏光板を液晶セルへ貼合する面側に用いられる。
以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
(ペレットの作成)
セルロースアセテートプロピオネート 100質量部
(アセチル基の置換度1.95、プロピオニル基の置換度0.7、数平均分子量75000、温度130℃で5時間乾燥、ガラス転移温点Tg=174℃)
トリメチロールプロパントリス(3,4,5−トリメトキシベンゾエート)
10質量部
IRGANOX−1010(チバスペシャルティケミカルズ社製) 1質量部
SumilizerGP(住友化学社製) 1質量部
上記材料に、マット剤としてシリカ粒子(アエロジルR972V(日本アエロジル社製))0.05質量部、紫外線吸収剤として、TINUVIN360(チバスペシャルティケミカルズ社製)0.5質量部を加え、窒素ガスを封入したV型混合機で30分混合した後、ストランドダイを取り付けた2軸押し出し機(PCM30(株)池貝社製)を用いて240℃で溶融させ、長さ4mm、直径3mmの円筒形のペレットを作製した。この時のせん断速度は、25(/s)に設定した。
(フィルムの作製)
フィルム製膜は図1に示す製造装置で行った。
第1冷却ロール及び第2冷却ロールは直径40cmのステンレス製とし、表面にハードクロムメッキを施した。又、内部には温度調整用のオイル(冷却用流体)を循環させて、ロール表面温度を制御した。弾性タッチロールは、直径20cmとし、内筒と外筒はステンレス製とし、外筒の表面にはハードクロムメッキを施した。外筒の肉厚は2mmとし、内筒と外筒との間の空間に温度調整用のオイル(冷却用流体)を循環させて弾性タッチロールの表面温度を制御した。
得られたペレット(水分率50ppm)を、1軸押出機において溶融させ、リーフディスク型金属フィルターを用いて加圧ろ過を行った。
リーフディスク型金属フィルターとしては、ファインポアNF(日本精線株式会社製)を用いた。
ろ過精度、空隙率、ろ過温度、ろ過圧力を表1に示す。
Tダイからフィルム状に表面温度100℃の第1冷却ロール上に溶融温度250℃でフィルム状に溶融押し出しドロー比20で、膜厚80μmのキャストフィルムを得た。この際、Tダイのリップクリアランス1.5mm、リップ部平均表面粗さRa0.01μmのTダイを用いた。また押出機中間部のホッパー開口部から、滑り剤としてシリカ微粒子を、0.1質量部となるよう添加した。
更に、第1冷却ロール上でフィルムを2mm厚の金属表面を有する弾性タッチロールを線圧10kg/cmで押圧した。押圧時のタッチロール側のフィルム温度は、180℃±1℃であった。(ここでいう押圧時のタッチロール側のフィルム温度は、第1ロール(冷却ロール)上のタッチロールが接する位置のフィルムの温度を、非接触温度計を用いて、タッチロールを後退させてタッチロールがない状態で50cm離れた位置から幅方向に10点測定したフィルム表面温度の平均値を指す。)このフィルムのガラス転移温度Tgは136℃であった。(セイコー(株)製、DSC6200を用いてDSC法(窒素中、昇温温度10℃/分)によりダイスから押し出されたフィルムのガラス転移温度を測定した。)
なお、弾性タッチロールの表面温度は100℃、第2冷却ロールの表面温度は30℃とした。弾性タッチロール、第1冷却ロール、第2冷却ロールの各ロールの表面温度は、ロールにフィルムが最初に接する位置から回転方向に対して90°手前の位置のロール表面の温度を非接触温度計を用いて幅方向に10点測定した平均値を各ロールの表面温度とした。
得られたフィルムを予熱ゾーン、延伸ゾーン、保持ゾーン、冷却ゾーン(各ゾーン間には各ゾーン間の断熱を確実にするためのニュートラルゾーンも有する)を有するテンターに導入し、巾方向に160℃で1.3倍延伸した後、巾方向に2%緩和しながら70℃まで冷却し、その後クリップから開放し、クリップ把持部を裁ち落として、フィルム両端に幅10mm、高さ5μmのナーリング加工を施し、幅1430mmにスリットした膜厚80μmのフィルムF−1を得た。この際、予熱温度、保持温度を調整し延伸によるボーイング現象を防止した。得られたフィルムから残留溶媒は検出されなかった。
(評価)
フィルムの評価として、1日製造後の偏光異物個数(個/cm2)と光漏れの評価を行った。また、初期よりフィルム黄変又はフィルタ破損しているものについては、偏光異物個数、光漏れの評価をせず、備考欄に初期黄変又は初期ろ材破損と記した。また、10日間製造後のフィルム変化、及びフィルタの状況を観察し、備考欄に示した。
(偏光異物個数の観察)
上記製造方法で製膜されたセルロースアセテートプロピオネートフィルムを、偏光板を直交させた偏光顕微鏡をもちいて倍率40倍で観察した。1cm2あたりに観察される10μm以上の光って見える異物の数を10カ所目視でカウントし、平均値を出した。
(光漏れの観察)
上記製造方法で製膜されたセルロースアセテートプロピオネートフィルムを、図7に示す液晶表示装置を用いて、全面黒表示をさせ、この時の光漏れを目視により、観察した。
評価は、
◎:目視で全く光漏れは認められないレベル
○:目視でほとんど光漏れは認められないレベル
△:目視で光漏れは認められるが製品として問題とならないレベル
×:製品として問題となる光漏れのレベル
で評価した。
評価結果を表1に示す。
Figure 2008080691
表1の実施例1〜20の結果から、セルロースアシレートの溶融物の温度が230〜260℃で、圧力が1〜10MPaであることが好ましいことが分かる。
また、実施例1〜1と実施例18〜21の結果から、ろ過精度が3〜8μmで、空隙率が63〜71%であるリーフディスク型金属フィルターを用いることがより好ましい。さらに好ましくは、実施例5〜8と実施例10、19、20の結果から、ろ過精度が5〜6μmで空隙率が65〜68%の範囲であると言える。
(偏光子の作製)
厚さ120μmの長尺ロールポリビニルアルコールフィルムを沃素1質量部、ホウ酸4質量部を含む水溶液100質量部に浸漬し、50℃で6倍に搬送方向に延伸して偏光子を作製した。
偏光子の両側に上記作製したセルロースアシレートフィルムを、アルカリケン化処理面を偏光子側とし完全鹸化型ポリビニルアルコール5質量%水溶液を接着剤として両面から貼合し、偏光板用保護フィルムが貼合された偏光板を作製した。
(液晶表示装置としての特性評価)
32型TFT型カラー液晶ディスプレーベガ(ソニー社製)の偏光板を剥がし、上記で作製した各々の偏光板を液晶セルのサイズに合わせて断裁した。液晶セルを挟むようにして、前記作製した偏光板2枚を偏光板の偏光軸がもとと変わらないように互いに直交するように貼り付け、32型TFT型カラー液晶ディスプレーを作製し、セルロースアシレートフィルムの偏光板としての特性を評価したところ、本発明のセルロースアシレートフィルムから作製した偏光板はコントラストも高く、優れた表示性を示した。これにより、液晶ディスプレーなどの画像表示装置用の偏光板として優れていることが確認された。
本発明のセルロースアシレートフィルムの製造方法を実施する装置の1つの実施形態を示す概略フローシートである。 図1の製造装置の要部拡大フローシートである。 図3(a)は流延ダイの要部の外観図、図3(b)は流延ダイの要部の断面図である。 挟圧回転体の第1実施形態の断面図である。 挟圧回転体の第2実施形態の回転軸に垂直な平面での断面図である。 挟圧回転体の第2実施形態の回転軸を含む平面での断面図である。 液晶表示装置の構成図の概略を示す分解斜視図である。
符号の説明
1 押出し機
2 フィルター
3 スタチックミキサー
4 流延ダイ
5 回転支持体(第1冷却ロール)
6 挟圧回転体(タッチロール)
7 回転支持体(第2冷却ロール)
8 回転支持体(第3冷却ロール)
9、11、13、14、15 搬送ロール
10 セルロースアシレートフィルム
16 巻取り装置
21a、21b 保護フィルム
22a、22b 位相差フィルム
23a、23b フィルムの遅相軸方向
24a、24b 偏光子の透過軸方向
25a、25b 偏光子
26a、26b 偏光板
27 液晶セル
29 液晶表示装置
31 ダイ本体
32 スリット
41 金属スリーブ
42 弾性ローラ
43 金属製の内筒
44 ゴム
45 冷却水
51 外筒
52 内筒
53 空間
54 冷却液
55a、55b 回転軸
56a、56b 外筒支持フランジ
60 流体軸筒
61a、61b 内筒支持フランジ
62a、62b 中間通路

Claims (5)

  1. セルロースアシレートの溶融物を金属フィルターで濾過した後、溶融流延法によりセルロースアシレートフィルムを製造するセルロースアシレートフィルムの製造方法において、
    前記金属フィルターでろ過するときの前記セルロースアシレートの溶融物の温度が230〜260℃で、圧力が1〜10MPaであることを特徴とするセルロースアシレートフィルムの製造方法。
  2. 前記金属フィルターは、ろ過精度が3〜8μmで、空隙率が63〜71%であるリーフディスク型フィルターであることを特徴とする請求項1に記載のセルロースアシレートフィルムの製造方法。
  3. 請求項1又は請求項2に記載の製造方法により製造されたことを特徴とするセルロースアシレートフィルム。
  4. 請求項3に記載のセルロースアシレートフィルムを偏光板用保護フィルムとして用いることを特徴とする偏光板。
  5. 請求項4に記載の偏光板を用いることを特徴とする液晶表示装置。
JP2006264360A 2006-09-28 2006-09-28 セルロースアシレートフィルムの製造方法、セルロースアシレートフィルム、偏光板及び液晶表示装置 Pending JP2008080691A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006264360A JP2008080691A (ja) 2006-09-28 2006-09-28 セルロースアシレートフィルムの製造方法、セルロースアシレートフィルム、偏光板及び液晶表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006264360A JP2008080691A (ja) 2006-09-28 2006-09-28 セルロースアシレートフィルムの製造方法、セルロースアシレートフィルム、偏光板及び液晶表示装置

Publications (1)

Publication Number Publication Date
JP2008080691A true JP2008080691A (ja) 2008-04-10

Family

ID=39352024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006264360A Pending JP2008080691A (ja) 2006-09-28 2006-09-28 セルロースアシレートフィルムの製造方法、セルロースアシレートフィルム、偏光板及び液晶表示装置

Country Status (1)

Country Link
JP (1) JP2008080691A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040333A1 (ja) * 2009-09-30 2011-04-07 富士フイルム株式会社 セルロースアシレートフィルム、位相差フィルム、偏光板および液晶表示装置
JP2016218479A (ja) * 2011-06-03 2016-12-22 コニカミノルタ株式会社 位相差フィルム、その製造方法、偏光板、及び液晶表示装置
CN113524736A (zh) * 2021-06-09 2021-10-22 广州市环友高分子新材料有限公司 一种环保型tpu薄膜生产***

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040333A1 (ja) * 2009-09-30 2011-04-07 富士フイルム株式会社 セルロースアシレートフィルム、位相差フィルム、偏光板および液晶表示装置
JP2011094098A (ja) * 2009-09-30 2011-05-12 Fujifilm Corp セルロースアシレートフィルム、位相差フィルム、偏光板および液晶表示装置
CN102612536A (zh) * 2009-09-30 2012-07-25 富士胶片株式会社 纤维素酰化物膜、延迟膜、偏振片和液晶显示装置
JP2016218479A (ja) * 2011-06-03 2016-12-22 コニカミノルタ株式会社 位相差フィルム、その製造方法、偏光板、及び液晶表示装置
CN113524736A (zh) * 2021-06-09 2021-10-22 广州市环友高分子新材料有限公司 一种环保型tpu薄膜生产***
CN113524736B (zh) * 2021-06-09 2023-01-10 广州市环友高分子新材料有限公司 一种环保型tpu薄膜生产***

Similar Documents

Publication Publication Date Title
JP5186267B2 (ja) セルロースアシレートフイルム及びその製造方法、並びに、偏光板、液晶表示板用光学補償フイルム、反射防止フイルム及び液晶表示装置
JP5532046B2 (ja) ハードコートフィルムの製造方法及び液晶パネルの製造方法
JP5023837B2 (ja) セルロースエステルフィルム、セルロースエステルフィルムの製造方法、それを用いた偏光板、及び液晶表示装置
JP5234103B2 (ja) 光学フィルム、光学フィルムの製造方法、それを用いた偏光板及び液晶表示装置
JP5212043B2 (ja) 光学フィルムの製造方法、光学フィルム、偏光板、及び表示装置
KR101228650B1 (ko) 광학 필름, 그의 제조 방법, 편광판 및 액정 표시 장치
JP5348832B2 (ja) 光学フィルムおよびその製造方法、偏光板、光学補償フィルム、反射防止フィルム、並びに液晶表示装置
JP4947050B2 (ja) 光学フィルム、光学フィルムの製造方法、それを用いた偏光板、及び液晶表示装置
JP5401987B2 (ja) セルロースアシレートフィルムの製造方法、セルロースアシレートフィルム、偏光板及び液晶表示装置
KR101352739B1 (ko) 광학 필름, 광학 필름의 제조 방법, 편광판 및 액정 표시 장치
JP4747985B2 (ja) 光学フィルム、それを用いた偏光板及び液晶表示装置
JP5182098B2 (ja) 光学フィルム、及びそれを用いた偏光板及び液晶表示装置
WO2010001677A1 (ja) 光学フィルム、光学フィルムの製造方法、偏光板及びそれを用いた液晶表示装置
JP5458527B2 (ja) 光学フィルムの製造方法
JP2008080691A (ja) セルロースアシレートフィルムの製造方法、セルロースアシレートフィルム、偏光板及び液晶表示装置
JP2009160796A (ja) 光学フィルム、その製造方法、光学フィルムを用いた偏光板、及び表示装置
JP5018372B2 (ja) 樹脂フィルムの製造方法
JP2008087398A (ja) セルロースアシレートフィルムの製造方法、セルロースアシレートフィルム、偏光板及び液晶表示装置
JP2008238535A (ja) 樹脂フィルムの製造方法、セルロースアシレートフィルム、偏光板及び液晶表示装置
JP2012215706A (ja) セルロースアシレートフィルム、偏光板及び液晶表示装置
JP2007056093A (ja) ディスプレー用光学セルロースエステルフィルムの製造方法、ディスプレー用光学セルロースエステルフィルム、偏光板及び液晶表示装置
JP5012497B2 (ja) 光学フィルム、光学フィルムの製造方法、それを用いた偏光板、及び液晶表示装置
JP2008143873A (ja) ホスホナイト化合物、その精製方法、それを用いたセルロースエステルフィルム、偏光板及び液晶表示装置
JP4770620B2 (ja) 光学フィルム、それを用いた偏光板及び液晶表示装置並びに光学フィルムの製造方法
JP5381269B2 (ja) 光学フィルム、光学フィルムの製造方法、偏光板及び液晶表示装置