JP2008066018A - Counter electrode, its manufacturing method, and photoelectric conversion element - Google Patents

Counter electrode, its manufacturing method, and photoelectric conversion element Download PDF

Info

Publication number
JP2008066018A
JP2008066018A JP2006240003A JP2006240003A JP2008066018A JP 2008066018 A JP2008066018 A JP 2008066018A JP 2006240003 A JP2006240003 A JP 2006240003A JP 2006240003 A JP2006240003 A JP 2006240003A JP 2008066018 A JP2008066018 A JP 2008066018A
Authority
JP
Japan
Prior art keywords
counter electrode
substrate
photoelectric conversion
oxide semiconductor
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006240003A
Other languages
Japanese (ja)
Other versions
JP5122099B2 (en
Inventor
Hiroki Usui
弘紀 臼井
Takayuki Kitamura
隆之 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2006240003A priority Critical patent/JP5122099B2/en
Publication of JP2008066018A publication Critical patent/JP2008066018A/en
Application granted granted Critical
Publication of JP5122099B2 publication Critical patent/JP5122099B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a counter electrode in which the counter electrode having strong adhesion performance between carbon particles without containing impurities is obtained without causing deterioration such as the oxidation of a substrate. <P>SOLUTION: This manufacturing method of a counter electrode manufactures the counter electrode which constitutes, in a substrate, a photoelectric conversion element which has an action pole having an oxide semiconductor porous layer on which carried with sensitized dyes on at least at its one part, a counter electrode which is arranged opposed to the oxide semiconductor porous layer of the action pole, and an electrolyte which is arranged at least at a part between the action pole and the counter electrode. Carbon nano-tubes are electro-deposited on the conductive substrate while the conductive substrate is immersed into a solution in which carbon nano-tubes are dispersed in an organic solvent. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光電変換素子を構成する対極及びその製造方法、並びに光電変換素子に関する。   The present invention relates to a counter electrode constituting a photoelectric conversion element, a manufacturing method thereof, and a photoelectric conversion element.

色素増感型太陽電池は、スイスのグレッツェルらのグループなどから提案されたもので、安価で高い光電変換効率を得られる光電変換素子として着目されている(非特許文献1を参照)。   The dye-sensitized solar cell has been proposed by a group such as Gretzel et al. In Switzerland, and has attracted attention as a photoelectric conversion element that can obtain high photoelectric conversion efficiency at low cost (see Non-Patent Document 1).

図3は、従来の色素増感型太陽電池の一例を示す断面図である。
この色素増感型太陽電池100は、増感色素を担持させた多孔質半導体層103が一方の面に形成された第一基材101と、透明導電層104が形成された第二基材105と、これらの間に封入された例えばゲル状電解質からなる電解質層を主な構成要素としている。
FIG. 3 is a cross-sectional view showing an example of a conventional dye-sensitized solar cell.
This dye-sensitized solar cell 100 includes a first base material 101 on which a porous semiconductor layer 103 carrying a sensitizing dye is formed on one surface, and a second base material 105 on which a transparent conductive layer 104 is formed. The main component is an electrolyte layer made of, for example, a gel electrolyte sealed between them.

第一基材101としては、光透過性の板材が用いられ、第一基材101の色素増感半導体層103と接する面には導電性を持たせるために透明導電層102が配置されており、第一基材101、透明導電層102および多孔質半導体層103により作用極108をなす。
第二基材105としては、電解質層106と接する側の面には導電性を持たせるために例えば炭素や白金などからなる導電層104が設けられ、第二基材および導電層104により対極109を構成している。
As the first base material 101, a light transmissive plate material is used, and a transparent conductive layer 102 is disposed on the surface of the first base material 101 in contact with the dye-sensitized semiconductor layer 103 in order to provide conductivity. The working electrode 108 is formed by the first substrate 101, the transparent conductive layer 102, and the porous semiconductor layer 103.
As the second base material 105, a conductive layer 104 made of, for example, carbon or platinum is provided on the surface on the side in contact with the electrolyte layer 106, and the counter electrode 109 is formed by the second base material and the conductive layer 104. Is configured.

多孔質半導体層103と導電層104が対向するように、第一基材101と第二基材105を所定の間隔をおいて配置し、両基板間の周辺部に熱可塑性樹脂からなる封止剤107を設ける。そして、この封止剤107を介して2つの基板101、105を貼り合わせてセルを積み上げ、電解液の注入口110を介して、両極108、109間にヨウ素・ヨウ化物イオンなどの酸化・還元極を含む有機電解液を充填し、電荷移送用の電解質層106を形成したものが挙げられる。   The first base material 101 and the second base material 105 are arranged at a predetermined interval so that the porous semiconductor layer 103 and the conductive layer 104 face each other, and a sealing portion made of a thermoplastic resin is provided at the periphery between the two substrates. Agent 107 is provided. The two substrates 101 and 105 are bonded to each other through the sealant 107 and the cells are stacked, and oxidation / reduction of iodine / iodide ions or the like between the electrodes 108 and 109 through the electrolyte inlet 110 is performed. An example is one in which an organic electrolyte solution containing an electrode is filled and an electrolyte layer 106 for charge transfer is formed.

このような光電変換素子では、窓極として機能する作用極側から入射した太陽光などの入射光によって、多孔質半導体層103が増感されて、作用極と対極との間に起電力を生じさせることにより、光エネルギーが電力に変換される。   In such a photoelectric conversion element, the porous semiconductor layer 103 is sensitized by incident light such as sunlight incident from the side of the working electrode that functions as a window electrode, and an electromotive force is generated between the working electrode and the counter electrode. As a result, light energy is converted into electric power.

従来のように、対極に白金を担持させた導電性のガラス電極基板、または金属基板を用いた場合、白金は高価であり、また成膜方法の一つとしてスパッタ法など真空プロセスを用いる場合もあり、製造コストが非常に高くなってしまう。
また、白金膜を有する電極を対極として用いた場合、長期使用中に白金膜が脱理、溶解し、発電特性が低下してしまうことがある。
As in the past, when a conductive glass electrode substrate or metal substrate with platinum supported on the counter electrode is used, platinum is expensive, and a vacuum process such as sputtering may be used as one of the film formation methods. Yes, the manufacturing cost becomes very high.
In addition, when an electrode having a platinum film is used as a counter electrode, the platinum film may be removed and dissolved during long-term use, and power generation characteristics may deteriorate.

一方、カーボン粉末を含むペーストを基板に塗布し焼成させて対極を作製する場合、高温で焼成するとカーボンが酸化してしまう、あるいは基板の劣化を招くことがあるため、低温で焼成させなければならない。そのため基板とカーボン、カーボン粒子とカーボン粒子同士の密着力が低いという欠点がある。密着力を上げるために有機バインダー等を含むペーストを用いる場合もあるが、作製された多孔質カーボン電極内にバインダーが残ってしまうため、電極反応に有効なカーボンの面積が減ってしまうという問題がある(特許文献3参照)。   On the other hand, when a paste containing carbon powder is applied to a substrate and baked to produce a counter electrode, if baked at a high temperature, the carbon may be oxidized or the substrate may be deteriorated. . Therefore, there exists a fault that the adhesive force of a board | substrate and carbon and carbon particle and carbon particle is low. In some cases, a paste containing an organic binder or the like is used to increase the adhesion, but the binder remains in the produced porous carbon electrode, so that the area of carbon effective for the electrode reaction is reduced. Yes (see Patent Document 3).

特許文献4には、カーボン膜を対極として用いているが、支持基板を別途用意する必要があり、しかも基板と別途接着する必要がある。
特許第2664194号公報 特開2001−160427号公報 特開2004−127849号公報 特開2004−111216号公報 O’ Regan B, Gratzel M. A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 1991;353:737-739
In Patent Document 4, a carbon film is used as a counter electrode. However, it is necessary to prepare a support substrate separately and to adhere to the substrate separately.
Japanese Patent No. 2664194 JP 2001-160427 A Japanese Patent Laid-Open No. 2004-127849 Japanese Patent Laid-Open No. 2004-111216 O 'Regan B, Gratzel M. A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 1991; 353: 737-739

本発明は、このような従来の実情に鑑みて提案されたものであり、基板の酸化等の劣化を招くことなく、不純物を含まずカーボン粒子同士の密着性が強い対極が得られる対極の製造方法を提供することを第一の目的とする。
また、本発明は、不純物を含まずカーボン粒子同士の密着性が強く、長期安定性に優れた対極を提供することを第二の目的とする。
さらに、本発明は、上記対極を備えることで、長期にわたって優れた発電特性を有する光電変換素子を提供することを第三の目的とする。
The present invention has been proposed in view of such a conventional situation, and does not cause deterioration such as oxidation of the substrate, and manufacture of a counter electrode that can obtain a counter electrode that does not contain impurities and has strong adhesion between carbon particles. The primary purpose is to provide a method.
The second object of the present invention is to provide a counter electrode that does not contain impurities and has high adhesion between carbon particles and is excellent in long-term stability.
Furthermore, this invention makes it the 3rd objective to provide the photoelectric conversion element which has the power generation characteristic excellent over the long term by providing the said counter electrode.

本発明の請求項1に記載の対極の製造方法は、基板上に、少なくとも一部に増感色素が担持された酸化物半導体多孔質層を有する作用極と、前記作用極の酸化物半導体多孔質層と対向して配された対極と、前記作用極と前記対極との間の少なくとも一部に配された電解質と、を備えてなる光電変換素子を構成する対極の製造方法であって、有機溶媒にカーボンナノチューブを分散させてなる溶液中に導電性基板を浸漬させながら、前記導電性基板上にカーボンナノチューブを電着させることを特徴とする。
本発明の請求項2に記載の対極の製造方法は、請求項1において、前記溶液は、酸処理したカーボンナノチューブを有機溶媒中に分散させ、さらに遠心分離処理を施すことにより調製されることを特徴とする。
本発明の請求項3に記載の対極は、基板上に、少なくとも一部に増感色素が担持された酸化物半導体多孔質層を有する作用極と、前記作用極の酸化物半導体多孔質層と対向して配された対極と、前記作用極と前記対極との間の少なくとも一部に配された電解質と、を備えてなる光電変換素子を構成する対極であって、導電性基板と、該導電性基板上に載置されたカーボンナノチューブからなり、前記カーボンナノチューブは、その長手方向が前記導電性基板の一面に対して略平行に配向されていることを特徴とする。
本発明の請求項4に記載の光電変換素子は、基板上に、少なくとも一部に増感色素が担持された酸化物半導体多孔質層を有する作用極と、前記作用極の酸化物半導体多孔質層と対向して配された対極と、前記作用極と前記対極との間の少なくとも一部に配された電解質と、を備えてなる光電変換素子であって、前記対極は、導電性基板と、該導電性基板上に載置されたカーボンナノチューブからなり、前記カーボンナノチューブは、その長手方向が、前記導電性基板の一面に対して略平行に配向されていることを特徴とする。
According to a first aspect of the present invention, there is provided a counter electrode manufacturing method comprising: a working electrode having an oxide semiconductor porous layer on which a sensitizing dye is supported at least partially on a substrate; A counter electrode disposed opposite to the material layer, and an electrolyte disposed in at least a part between the working electrode and the counter electrode, and a method for producing a counter electrode comprising a photoelectric conversion element comprising: The carbon nanotubes are electrodeposited on the conductive substrate while the conductive substrate is immersed in a solution obtained by dispersing the carbon nanotubes in an organic solvent.
The method for producing a counter electrode according to claim 2 of the present invention is that, in claim 1, the solution is prepared by dispersing acid-treated carbon nanotubes in an organic solvent and further performing a centrifugal separation treatment. Features.
The counter electrode according to claim 3 of the present invention includes a working electrode having an oxide semiconductor porous layer on which a sensitizing dye is supported at least partially on a substrate, and an oxide semiconductor porous layer of the working electrode; A counter electrode comprising a counter electrode disposed oppositely and an electrolyte disposed in at least a part between the working electrode and the counter electrode, wherein the counter electrode comprises a conductive substrate; It is composed of carbon nanotubes placed on a conductive substrate, and the carbon nanotubes are oriented substantially parallel to one surface of the conductive substrate.
According to a fourth aspect of the present invention, there is provided a photoelectric conversion element comprising a working electrode having an oxide semiconductor porous layer on which a sensitizing dye is supported at least partially on a substrate, and the oxide semiconductor porous of the working electrode. A counter electrode disposed opposite to the layer, and an electrolyte disposed on at least a portion between the working electrode and the counter electrode, wherein the counter electrode includes a conductive substrate The carbon nanotubes are placed on the conductive substrate, and the carbon nanotubes are oriented substantially parallel to one surface of the conductive substrate.

本発明では、カーボンナノチューブを溶液中で電着させることで、常温で製造できるので、基板の劣化を招くことがない。また、バインダーを用いないので、不純物を含まずにカーボンナノチューブを基板上に載置することができる。これにより、カーボン粒子同士の密着性も強い対極が得られる対極の製造方法を提供することができる。
また、本発明では、基板上にカーボンナノチューブを載置することで、不純物を含まず、カーボン粒子同士の密着性が強くなる。これにより、電極反応に寄与するカーボンの面積を損なうことがなく、長期安定性に優れた対極を提供することができる。
さらに、本発明では、上記対極を備えることで、長期にわたって優れた発電特性を有する光電変換素子を提供することができる。
In the present invention, since carbon nanotubes can be produced at room temperature by electrodeposition in a solution, the substrate is not deteriorated. Further, since no binder is used, the carbon nanotubes can be placed on the substrate without containing impurities. Thereby, the manufacturing method of the counter electrode which can obtain the counter electrode with the strong adhesiveness of carbon particles can be provided.
Further, in the present invention, by placing the carbon nanotube on the substrate, impurities are not included and the adhesion between the carbon particles is enhanced. Thereby, the counter electrode excellent in long-term stability can be provided without impairing the area of carbon contributing to the electrode reaction.
Furthermore, in this invention, the photoelectric conversion element which has the power generation characteristic excellent over the long term can be provided by providing the said counter electrode.

以下、本発明に係る対極および光電変換素子の一実施形態を図面に基づいて説明する。   Hereinafter, an embodiment of a counter electrode and a photoelectric conversion element according to the present invention will be described with reference to the drawings.

図1は、本発明に係る対極の一実施形態を示す概略断面図である。
本発明の対極1は、導電性基板2と、該導電性基板2上に載置されたカーボンナノチューブ3からなり、前記カーボンナノチューブ3は、その長手方向が前記導電性基板の一面に対して略平行に配向されていることを特徴とする。
FIG. 1 is a schematic cross-sectional view showing an embodiment of a counter electrode according to the present invention.
The counter electrode 1 of the present invention comprises a conductive substrate 2 and carbon nanotubes 3 placed on the conductive substrate 2, and the carbon nanotubes 3 have a longitudinal direction substantially opposite to one surface of the conductive substrate. It is characterized by being oriented in parallel.

前記カーボンナノチューブ3は、後述するように、電着により、導電性基板2上に載置されている。
導電性基板2上にカーボンナノチューブ3を電着することで、カーボンナノチューブ3以外の不純物を含むことなく、カーボン同士の密着力が向上する。これにより、電極反応に寄与するカーボンの面積を損なうことがなく、長期安定性に優れた対極1となる。
As will be described later, the carbon nanotubes 3 are placed on the conductive substrate 2 by electrodeposition.
By electrodepositing the carbon nanotubes 3 on the conductive substrate 2, the adhesion between carbons is improved without containing impurities other than the carbon nanotubes 3. Thereby, it becomes the counter electrode 1 excellent in long-term stability, without impairing the area of carbon which contributes to an electrode reaction.

また、前記カーボンナノチューブ3は、その長手方向が前記導電性基板2の一面に対して略平行に配向されていることで、基板に対して立っているカーボンナノチューブ3はない。すなわち対極1の表面は平滑な面が得られる。これにより作用極(発電層)と対極が内部で短絡することのない対極が得られる。   The carbon nanotubes 3 are not standing on the substrate because the longitudinal direction of the carbon nanotubes 3 is oriented substantially parallel to one surface of the conductive substrate 2. That is, the surface of the counter electrode 1 is a smooth surface. Thereby, a counter electrode in which the working electrode (power generation layer) and the counter electrode are not short-circuited inside is obtained.

導電性基板2は、例えばチタン基板のように、基板それ自体が導電体からなるものであってもよいし、例えばFTOガラス基板のように、絶縁基板の表面に導電膜を形成したものであってもよい。   The conductive substrate 2 may be made of a conductive material, such as a titanium substrate, or a conductive film formed on the surface of an insulating substrate, such as an FTO glass substrate. May be.

本発明では、対極1に従来の炭素膜や白金膜に替えて、カーボンナノチューブ3を採用している。
カーボンナノチューブは、グラファイトシートを円筒状に丸めた構造を持ち、直径が0.7〜50nm程度で長さが数μmあり、中空構造を持つ非常にアスペクト比の大きな材料である。カーボンナノチューブの電気的性質としては、直径やカイラリティーに依存して金属から半導体的性質を示し、また機械的性質としては、大きなヤング率を有し、かつバックリングによっても応力を緩和できる特徴を合わせ有する材料である。さらに、ダングリングボンドを有しないため化学的に安定であり、且つ、炭素原子のみから構成されるため環境に優しい材料としても注目されている。
In the present invention, a carbon nanotube 3 is adopted as the counter electrode 1 instead of a conventional carbon film or platinum film.
A carbon nanotube has a structure in which a graphite sheet is rolled into a cylindrical shape, has a diameter of about 0.7 to 50 nm, a length of several μm, and has a hollow structure and a very large aspect ratio. The electrical properties of carbon nanotubes show semiconducting properties from metals depending on the diameter and chirality, and the mechanical properties have a large Young's modulus and the ability to relieve stress by buckling. It is a material that has both. Further, since it does not have dangling bonds, it is chemically stable, and since it is composed of only carbon atoms, it has attracted attention as an environmentally friendly material.

カーボンナノチューブは上記のようなユニークな物性から、電子源としては電子放出源やフラットパネルディスプレイに、電子材料としてはナノスケールデバイスやリチウム電池の電極材料に、またプローブ探針、ガス貯蔵材、ナノスケール試験管、樹脂強化のための添加材等への応用が期待されている。   Carbon nanotubes have unique properties as described above, and as electron sources, they are used as electron emission sources and flat panel displays, as electronic materials, as electrode materials for nanoscale devices and lithium batteries, and as probe probes, gas storage materials, and nanomaterials. Applications to scale test tubes and additives for resin reinforcement are expected.

カーボンナノチューブは、グラフェンシートが円筒形状または円錐台形状に形成された筒状構造を有する。詳しくは、グラフェンシートが1層である単層カーボンナノチューブ(SWCNT:single-wall carbon nanotubes)や、グラフェンシートが多層(2層以上)である多層カーボンナノチューブ(MWCNT:multi-wall carbon nanotubes) などがあり、いずれも本発明の対極用として利用できる。   The carbon nanotube has a cylindrical structure in which a graphene sheet is formed in a cylindrical shape or a truncated cone shape. Specifically, single-wall carbon nanotubes (SWCNT) with a single graphene sheet, multi-wall carbon nanotubes (MWCNT) with multiple (two or more) graphene sheets, etc. Yes, both can be used for the counter electrode of the present invention.

単層カーボンナノチューブの場合、直径が約0.5nm〜10nm、長さが約10nm〜1μmのものがあり、多層カーボンナノチューブの場合、直径が約1nm〜100nm、長さが約50nm〜50μmのものがある。
本発明で用いるカーボンナノチューブ3の直径は0.5〜50nm、長さは0.1〜500μm程度のものが適する。
Single-walled carbon nanotubes have a diameter of about 0.5 nm to 10 nm and a length of about 10 nm to 1 μm, and multi-walled carbon nanotubes have a diameter of about 1 nm to 100 nm and a length of about 50 nm to 50 μm. There is.
The carbon nanotube 3 used in the present invention is suitably 0.5 to 50 nm in diameter and 0.1 to 500 μm in length.

カーボンナノチューブは公知の化学気相法(CVD法)で作製することが可能である。例えば、特開2001−220674号公報には、シリコン基板上にニッケル、コバルト、鉄などの金属をスパッタあるいは蒸着により成膜後、不活性雰囲気、水素雰囲気もしくは真空中で好ましくは500〜900℃の温度で1〜60分加熱して、次いでアセチレン、エチレン等の炭化水素ガスまたはアルコールガスを原料として用いて、一般的な化学気相法(CVD)を使用して成膜すると、直径が5〜75nm、長さが0.1〜500μmのカーボンナノチューブがシリコン基板上に成長することが開示されている。   Carbon nanotubes can be produced by a known chemical vapor deposition method (CVD method). For example, in Japanese Patent Application Laid-Open No. 2001-220673, a metal such as nickel, cobalt, or iron is formed on a silicon substrate by sputtering or vapor deposition, and is preferably 500 to 900 ° C. in an inert atmosphere, hydrogen atmosphere, or vacuum. When heated at a temperature for 1 to 60 minutes and then formed using a general chemical vapor deposition (CVD) method using a hydrocarbon gas such as acetylene or ethylene or an alcohol gas as a raw material, the diameter is 5 to 5 It is disclosed that carbon nanotubes having a length of 75 nm and a length of 0.1 to 500 μm are grown on a silicon substrate.

CVD法でカーボンナノチューブを形成するに際して、温度や時間を制御することによりカーボンナノチューブの長さや太さを制御することができる。   When forming carbon nanotubes by CVD, the length and thickness of the carbon nanotubes can be controlled by controlling the temperature and time.

本発明で使用するカーボンナノチューブ3の直径は約0.5〜50nm、長さは約0.1〜500μmであることが好ましい。カーボンナノチューブ3の長さが適正範囲を外れると、電着させることが困難となる。   The diameter of the carbon nanotube 3 used in the present invention is preferably about 0.5 to 50 nm, and the length is preferably about 0.1 to 500 μm. If the length of the carbon nanotube 3 is out of the proper range, it is difficult to perform electrodeposition.

次に、本発明の対極1の製造方法について説明する。
本発明の対極1の製造方法は、有機溶媒にカーボンナノチューブ3を分散させてなる溶液中に導電性基板2を浸漬させながら、前記導電性基板2上にカーボンナノチューブ3を電着させることを特徴とする。
有機溶媒中で導電性基板2上にカーボンナノチューブ3を電着させることにより、常温で作製することができるので、基板の酸化などによる劣化を抑制することができる。
Next, the manufacturing method of the counter electrode 1 of this invention is demonstrated.
The manufacturing method of the counter electrode 1 of the present invention is characterized in that the carbon nanotubes 3 are electrodeposited on the conductive substrate 2 while the conductive substrate 2 is immersed in a solution in which the carbon nanotubes 3 are dispersed in an organic solvent. And
By electrodepositing the carbon nanotubes 3 on the conductive substrate 2 in an organic solvent, the carbon nanotubes 3 can be produced at room temperature, so that deterioration due to oxidation or the like of the substrate can be suppressed.

本発明では、カーボンナノチューブ3の電着を有機溶媒を用いて行う。酸、アルカリ等を用いないため、基板を腐食、エッチングすることなく、また、常温で作業できるため、基板の酸化等の劣化を招くこともない。また、有機溶媒を用いることで、電着に使用される分散溶液中への水分の混入を防ぐことができるため、カーボン同士の密着性が向上する。   In the present invention, electrodeposition of the carbon nanotube 3 is performed using an organic solvent. Since no acid, alkali, or the like is used, the substrate is not corroded or etched, and the substrate can be operated at room temperature, so that the substrate is not oxidized or deteriorated. Moreover, since the mixing of water into the dispersion solution used for electrodeposition can be prevented by using an organic solvent, the adhesion between carbons is improved.

前記溶液は、酸処理したカーボンナノチューブ3を有機溶媒中に分散させ、さらに遠心分離処理を施すことにより調製される。
カーボンナノチューブ3の酸処理の方法としては、例えば、文献(Adv.mater.2005,17,2192)に記載の方法等が挙げられる。
前記溶液の調製に用いられる有機溶媒としては、例えば、ジメチルホルムアミド(N,N-Dimethylformamide:DMF)の他に、ジメチルアセトアミド(Dimethylacetamide:DMAc)、イソプロピルアルコール(Isopropyl Alcohol :IPA)、メチルイソブチルケトン(Methyl Iso-Butyl Ketone:MIBK)、N−メチルピロリドン(n-Methylpyrollidone:NMP)等が用いられる。
また、電着溶液を遠心分離処理することにより、カーボンナノチューブ3以外のアモルファスカーボンや、その他の不純物を分離することができる。この溶液を用いることで、カーボンナノチューブ3以外の不純物を含まない対極1を作製することができる。
The solution is prepared by dispersing the acid-treated carbon nanotubes 3 in an organic solvent and further performing a centrifugal separation treatment.
Examples of the acid treatment method for the carbon nanotube 3 include a method described in literature (Adv. Mater. 2005, 17, 2192).
Examples of the organic solvent used for the preparation of the solution include dimethylformamide (DMF), dimethylacetamide (DMAc), isopropyl alcohol (Isopropyl Alcohol: IPA), methyl isobutyl ketone (N, N-dimethylformamide: DMF), and the like. Methyl Iso-Butyl Ketone (MIBK), N-methylpyrrolidone (NMP), etc. are used.
Moreover, amorphous carbon other than the carbon nanotube 3 and other impurities can be separated by centrifuging the electrodeposition solution. By using this solution, the counter electrode 1 containing no impurities other than the carbon nanotubes 3 can be produced.

図2は、本発明に係る光電変換素子の一実施形態を示す概略断面図である。
本発明の光電変換素子10は、透明基板11と、その一主面上に形成された透明導電膜12と、少なくとも一部に増感色素が担持された酸化物半導体多孔質層13を有する作用極14と、前記作用極14の酸化物半導体多孔質層13と対向して配された対極1と、前記作用極14と前記対極1との間の少なくとも一部に配された電解質層15と、を備えてなる。
光電変換素子10において、電解質層15を作用極14と対極1で挟んでなる積層体が、その外周部が封止部材16によって接着、一体化されて光電変換素子として機能する。
FIG. 2 is a schematic cross-sectional view showing one embodiment of the photoelectric conversion element according to the present invention.
The photoelectric conversion element 10 of the present invention has a transparent substrate 11, a transparent conductive film 12 formed on one main surface thereof, and an oxide semiconductor porous layer 13 in which a sensitizing dye is supported at least partially. An electrode 14, a counter electrode 1 disposed opposite to the oxide semiconductor porous layer 13 of the working electrode 14, and an electrolyte layer 15 disposed on at least a part between the working electrode 14 and the counter electrode 1. , Provided.
In the photoelectric conversion element 10, a laminate in which the electrolyte layer 15 is sandwiched between the working electrode 14 and the counter electrode 1 is bonded and integrated by a sealing member 16 to function as a photoelectric conversion element.

上述したように、本発明の光電変換素子10において、前記対極1は、導電性基板2と、該導電性基板2上に載置されたカーボンナノチューブ3からなり、前記カーボンナノチューブ3は、その長手方向が、前記導電性基板2の一面に対して略平行に配向されている。
この対極1は、前記カーボンナノチューブ3が電着により導電性基板2上に載置されることで、不純物を含むことなく、カーボン同士の密着力が向上する。これにより、長期安定性に優れた対極となる。
そして本発明の光電変換素子10は、上記対極1を用いることで、長期にわたって優れた発電特性を有するものとなる。
As described above, in the photoelectric conversion element 10 of the present invention, the counter electrode 1 includes the conductive substrate 2 and the carbon nanotubes 3 placed on the conductive substrate 2, and the carbon nanotubes 3 have their longitudinal lengths. The direction is oriented substantially parallel to one surface of the conductive substrate 2.
In the counter electrode 1, the carbon nanotubes 3 are placed on the conductive substrate 2 by electrodeposition, so that the adhesion between carbons is improved without containing impurities. Thereby, it becomes a counter electrode excellent in long-term stability.
The photoelectric conversion element 10 of the present invention has excellent power generation characteristics over a long period of time by using the counter electrode 1.

作用極14は、透明基材11、および、その主面上に形成された透明導電膜12と、増感色素を担持させた多孔質酸化物半導体層13とから概略構成されている。   The working electrode 14 is roughly composed of a transparent substrate 11, a transparent conductive film 12 formed on the main surface, and a porous oxide semiconductor layer 13 carrying a sensitizing dye.

透明基材11としては、光透過性の素材からなる基板が用いられ、ガラス、ポリエチレンテレフタレート、ポリカーボネート、ポリエーテルスルホンなど、通常、光電変換素子の透明基材として用いられるものであればいかなるものでも用いることができる。透明基材11は、これらの中から電解液への耐性などを考慮して適宜選択される。また、透明基材11としては、用途上、できる限り光透過性に優れる基板が好ましく、透過率が90%以上の基板がより好ましい。   As the transparent base material 11, a substrate made of a light-transmitting material is used, and any glass, polyethylene terephthalate, polycarbonate, polyethersulfone, or the like that is usually used as a transparent base material for photoelectric conversion elements can be used. Can be used. The transparent substrate 11 is appropriately selected from these in consideration of resistance to the electrolytic solution. Moreover, as a transparent base material 11, the board | substrate which is as excellent in a light transmittance as possible is preferable on a use, and the board | substrate whose transmittance | permeability is 90% or more is more preferable.

透明導電膜12は、透明基材11に導電性を付与するために、その一方の面に形成された薄膜である。透明導電性基板の透明性を著しく損なわない構造とするために、透明導電膜12は、導電性金属酸化物からなる薄膜であることが好ましい。
透明導電膜12を形成する導電性金属酸化物としては、例えば、スズ添加酸化インジウム(ITO)、フッ素添加酸化スズ(FTO)、酸化スズ(SnO)などが用いられる。これらの中でも、成膜が容易かつ製造コストが安価であるという観点から、ITO、FTOが好ましい。また、透明導電膜12は、ITOのみからなる単層の膜、または、ITOからなる膜にFTOからなる膜が積層されてなる積層膜であることが好ましい。
The transparent conductive film 12 is a thin film formed on one surface of the transparent substrate 11 in order to impart conductivity. In order to obtain a structure that does not significantly impair the transparency of the transparent conductive substrate, the transparent conductive film 12 is preferably a thin film made of a conductive metal oxide.
Examples of the conductive metal oxide that forms the transparent conductive film 12 include tin-added indium oxide (ITO), fluorine-added tin oxide (FTO), and tin oxide (SnO 2 ). Among these, ITO and FTO are preferable from the viewpoint of easy film formation and low manufacturing costs. The transparent conductive film 12 is preferably a single layer film made of only ITO or a laminated film in which a film made of FTO is laminated on a film made of ITO.

透明導電膜12を、FTOのみからなる単層の膜、または、ITOからなる膜にFTOからなる膜が積層されてなる積層膜とすることにより、可視域における光の吸収量が少なく、導電率が高い透明導電性基板を構成することができる。   By making the transparent conductive film 12 a single-layer film made of only FTO or a laminated film in which a film made of FTO is laminated on a film made of ITO, the amount of light absorbed in the visible region is small, and the conductivity A transparent conductive substrate having a high thickness can be formed.

多孔質酸化物半導体層13は、透明導電膜12の上に設けられており、その表面には増感色素が担持されている。多孔質酸化物半導体層13を形成する半導体としては特に限定されず、通常、光電変換素子用の多孔質酸化物半導体を形成するのに用いられるものであれば、いかなるものでも用いることができる。このような半導体としては、例えば、酸化チタン(TiO)、酸化スズ(SnO)、酸化タングステン(WO)、酸化亜鉛(ZnO)、酸化ニオブ(Nb)などを用いることができる。 The porous oxide semiconductor layer 13 is provided on the transparent conductive film 12, and a sensitizing dye is supported on the surface thereof. The semiconductor for forming the porous oxide semiconductor layer 13 is not particularly limited, and any semiconductor can be used as long as it is generally used for forming a porous oxide semiconductor for a photoelectric conversion element. As such a semiconductor, for example, titanium oxide (TiO 2 ), tin oxide (SnO 2 ), tungsten oxide (WO 3 ), zinc oxide (ZnO), niobium oxide (Nb 2 O 5 ), or the like can be used. .

多孔質酸化物半導体層13を形成する方法としては、例えば、市販の酸化物半導体微粒子を所望の分散媒に分散させた分散液、あるいは、ゾル−ゲル法により調製できるコロイド溶液を、必要に応じて所望の添加剤を添加した後、スクリーンプリント法、インクジェットプリント法、ロールコート法、ドクターブレード法、スプレー塗布法など公知の塗布方法により塗布した後、このポリマーマイクロビーズを加熱処理や化学処理により除去して空隙を形成させ多孔質化する方法などを適用することができる。   As a method for forming the porous oxide semiconductor layer 13, for example, a dispersion obtained by dispersing commercially available oxide semiconductor fine particles in a desired dispersion medium, or a colloidal solution that can be prepared by a sol-gel method is used as necessary. After adding desired additives, the polymer microbeads are applied by heat treatment or chemical treatment after coating by a known coating method such as screen printing method, ink jet printing method, roll coating method, doctor blade method, spray coating method, etc. It is possible to apply a method of removing the void to form a porous structure.

増感色素としては、ビピリジン構造、ターピリジン構造などを配位子に含むルテニウム錯体、ポリフィリン、フタロシアニンなどの含金属錯体、エオシン、ローダミン、メロシアニンなどの有機色素などを適用することができ、これらの中から、用途、使用半導体に適した挙動を示すものを特に限定なく選ぶことができる。   As the sensitizing dye, a ruthenium complex containing a bipyridine structure, a terpyridine structure or the like as a ligand, a metal-containing complex such as porphyrin or phthalocyanine, or an organic dye such as eosin, rhodamine or merocyanine can be applied. Therefore, those exhibiting behavior suitable for the intended use and the semiconductor used can be selected without particular limitation.

電解質層15は、多孔質酸化物半導体層13内に電解液を含浸させてなるものか、または、多孔質酸化物半導体層13内に電解液を含浸させた後に、この電解液を適当なゲル化剤を用いてゲル化(擬固体化)して、多孔質酸化物半導体層13と一体に形成されてなるもの、あるいは、イオン液体、酸化物半導体粒子および導電性粒子を含むゲル状の電解質が用いられる。   The electrolyte layer 15 is formed by impregnating a porous oxide semiconductor layer 13 with an electrolytic solution, or after impregnating the porous oxide semiconductor layer 13 with an electrolytic solution, the electrolytic solution is applied to an appropriate gel. Gelled (pseudo-solidified) using an agent and formed integrally with the porous oxide semiconductor layer 13, or a gel electrolyte containing an ionic liquid, oxide semiconductor particles, and conductive particles Is used.

上記電解液としては、ヨウ素、ヨウ化物イオン、ターシャリ−ブチルピリジンなどの電解質成分が、エチレンカーボネートやメトキシアセトニトリルなどの有機溶媒に溶解されてなるものが用いられる。
この電解液をゲル化する際に用いられるゲル化剤としては、ポリフッ化ビニリデン、ポリエチレンオキサイド誘導体、アミノ酸誘導体などが挙げられる。
As said electrolyte solution, what melt | dissolved electrolyte components, such as an iodine, iodide ion, and tertiary butyl pyridine, in organic solvents, such as ethylene carbonate and methoxyacetonitrile, is used.
Examples of the gelling agent used for gelling the electrolytic solution include polyvinylidene fluoride, a polyethylene oxide derivative, and an amino acid derivative.

上記イオン液体としては、特に限定されるものではないが、室温で液体であり、四級化された窒素原子を有する化合物をカチオンまたはアニオンとした常温溶融性塩が挙げられる。
常温溶融性塩のカチオンとしては、四級化イミダゾリウム誘導体、四級化ピリジニウム誘導体、四級化アンモニウム誘導体などが挙げられる。
常温溶融塩のアニオンとしては、BF 、PF 、F(HF) 、ビストリフルオロメチルスルホニルイミド[N(CFSO ]、ヨウ化物イオンなどが挙げられる。
イオン液体の具体例としては、四級化イミダゾリウム系カチオンとヨウ化物イオンまたはビストリフルオロメチルスルホニルイミドイオンなどからなる塩類を挙げることができる。
Although it does not specifically limit as said ionic liquid, Room temperature meltable salt which is a liquid at room temperature and uses the compound which has the quaternized nitrogen atom as a cation or an anion is mentioned.
Examples of the cation of the room temperature melting salt include quaternized imidazolium derivatives, quaternized pyridinium derivatives, quaternized ammonium derivatives and the like.
Examples of the anion of the room temperature molten salt include BF 4 , PF 6 , F (HF) n , bistrifluoromethylsulfonylimide [N (CF 3 SO 2 ) 2 ], iodide ions, and the like.
Specific examples of the ionic liquid include salts composed of quaternized imidazolium-based cations and iodide ions or bistrifluoromethylsulfonylimide ions.

上記酸化物半導体粒子としては、物質の種類や粒子サイズなどが特に限定されないが、イオン液体を主体とする電解液との混和製に優れ、この電解液をゲル化させるようなものが用いられる。また、酸化物半導体粒子は、電解質の半導電性を低下させることがなく、電解質に含まれる他の共存成分に対する化学的安定性に優れることが必要である。特に、電解質がヨウ素/ヨウ化物イオンや、臭素/臭化物イオンなどの酸化還元対を含む場合であっても、酸化物半導体粒子は、酸化反応による劣化を生じないものが好ましい。
このような酸化物半導体粒子としては、TiO、SnO、WO、ZnO、Nb、In、ZrO、Ta、La、SrTiO、Y、Ho、Bi、CeO、Alからなる群から選択される1種または2種以上の混合物が好ましく、二酸化チタン微粒子(ナノ粒子)が特に好ましい。この二酸化チタンの平均粒径は2nm〜1000nm程度が好ましい。
The oxide semiconductor particles are not particularly limited in terms of the type and particle size of the substance, but those that are excellent in mixing with an electrolytic solution mainly composed of an ionic liquid and that gel the electrolytic solution are used. Further, the oxide semiconductor particles are required to have excellent chemical stability against other coexisting components contained in the electrolyte without reducing the semiconductivity of the electrolyte. In particular, even when the electrolyte contains a redox pair such as iodine / iodide ions or bromine / bromide ions, the oxide semiconductor particles are preferably those that do not deteriorate due to an oxidation reaction.
Examples of such oxide semiconductor particles include TiO 2 , SnO 2 , WO 3 , ZnO, Nb 2 O 5 , In 2 O 3 , ZrO 2 , Ta 2 O 5 , La 2 O 3 , SrTiO 3 , Y 2 O. 3 , Ho 2 O 3 , Bi 2 O 3 , CeO 2 , Al 2 O 3 are preferably selected from one or a mixture of two or more, and titanium dioxide fine particles (nanoparticles) are particularly preferable. The average particle diameter of the titanium dioxide is preferably about 2 nm to 1000 nm.

上記導電性微粒子としては、導電体や半導体など、導電性を有する粒子が用いられる。この導電性粒子の比抵抗の範囲は、好ましくは1.0×10−2Ω・cm以下であり、より好ましくは、1.0×10−3Ω・cm以下である。また、導電性粒子の種類や粒子サイズなどは特に限定されないが、イオン液体を主体とする電解液との混和性に優れ、この電解液をゲル化するようなものが用いられる。さらに、電解質中で酸化被膜(絶縁被膜)などを形成して導電性を低下させることがなく、電解質に含まれる他の共存成分に対する化学的安定性に優れることが必要である。特に、電解質がヨウ素/ヨウ化物イオンや、臭素/臭化物イオンなどの酸化還元対を含む場合でも、酸化反応による劣化を生じないものが好ましい。
このような導電性微粒子としては、カーボンを主体とする物質からなるものが挙げられ、具体例としては、カーボンナノチューブ、カーボンファイバ、カーボンブラックなどの粒子を例示できる。これらの物質の製造方法はいずれも公知であり、また、市販品を用いることもできる。
As the conductive fine particles, conductive particles such as a conductor and a semiconductor are used. The range of the specific resistance of the conductive particles is preferably 1.0 × 10 −2 Ω · cm or less, and more preferably 1.0 × 10 −3 Ω · cm or less. Further, the type and particle size of the conductive particles are not particularly limited, and those that are excellent in miscibility with an electrolytic solution mainly composed of an ionic liquid and that gel this electrolytic solution are used. Furthermore, it is necessary that the oxide film (insulating film) or the like is not formed in the electrolyte to lower the conductivity, and that the chemical stability against other coexisting components contained in the electrolyte is excellent. In particular, even when the electrolyte contains an oxidation / reduction pair such as iodine / iodide ion or bromine / bromide ion, an electrolyte that does not deteriorate due to oxidation reaction is preferable.
Examples of such conductive fine particles include those composed mainly of carbon, and specific examples include particles such as carbon nanotubes, carbon fibers, and carbon black. All methods for producing these substances are known, and commercially available products can also be used.

封止部材16としては、対極1を構成する導電性基板2に対する接着性に優れるものであれば特に限定されないが、例えば、分子鎖中にカルボン酸基を有する熱可塑性樹脂からなる接着剤などが望ましく、具体的には、ハイミラン(三井デュポンリケミカル社製)、バイネル(三井デュポンリケミカル社製)、アロンアルファ(東亞合成社製)などが挙げられる。   The sealing member 16 is not particularly limited as long as it has excellent adhesion to the conductive substrate 2 constituting the counter electrode 1. For example, an adhesive made of a thermoplastic resin having a carboxylic acid group in the molecular chain is used. Desirably, specifically, high Milan (made by Mitsui DuPont Chemical), binel (made by Mitsui DuPont Chemical), Aron Alpha (made by Toagosei Co., Ltd.), etc. are mentioned.

次に、この実施形態の光電変換素子10の製造方法について説明する。
まず、透明基材11の一方の面の全域を覆うように透明導電膜12を形成し、透明導電性基板を作製する。
透明導電膜12を形成する方法としては、特に限定されるものではなく、例えば、スパッタリング法、CVD(化学気相成長)法、スプレー熱分解法(SPD法)、蒸着法などの薄膜形成法が挙げられる。
Next, the manufacturing method of the photoelectric conversion element 10 of this embodiment is demonstrated.
First, the transparent conductive film 12 is formed so as to cover the entire area of one surface of the transparent substrate 11, and a transparent conductive substrate is produced.
The method for forming the transparent conductive film 12 is not particularly limited, and examples thereof include thin film forming methods such as sputtering, CVD (chemical vapor deposition), spray pyrolysis (SPD), and vapor deposition. Can be mentioned.

その中でも、前記透明導電膜12は、スプレー熱分解法により形成されたものであることが好ましい。透明導電膜12を、スプレー熱分解法により形成することで、容易にヘーズ率を制御することができる。また、スプレー熱分解法は、減圧システムが不要なため、製造工程の簡素化低コスト化を図ることができるので好適である。   Among them, the transparent conductive film 12 is preferably formed by a spray pyrolysis method. By forming the transparent conductive film 12 by spray pyrolysis, the haze rate can be easily controlled. In addition, the spray pyrolysis method is preferable because it does not require a decompression system and can simplify the manufacturing process and reduce costs.

次いで、透明導電膜12を覆うように、多孔質酸化物半導体層13を形成する。この多孔質酸化物半導体層13の形成は、主に塗布工程と乾燥・焼成工程からなる。
塗布工程とは、例えばTiO粉末と界面活性剤を所定の比率で混ぜ合わせてなるTiOコロイドのペーストを、親水性化を図った透明導電膜12の表面に塗布するものである。その際、親水性化を図った透明導電膜12の表面に塗布するものである。その際、塗布法としては、加圧手段(例えば、ガラス棒)を用いて前記コロイドを透明導電膜12上に押し付けながら、塗布されたコロイドが均一な厚さを保つように、加圧手段を透明導電膜12の上空を移動させる方法が挙げられる。
Next, the porous oxide semiconductor layer 13 is formed so as to cover the transparent conductive film 12. The formation of the porous oxide semiconductor layer 13 mainly includes a coating process and a drying / firing process.
The coating process is a process in which, for example, a paste of TiO 2 colloid obtained by mixing TiO 2 powder and a surfactant at a predetermined ratio is applied to the surface of the transparent conductive film 12 that has been made hydrophilic. At that time, it is applied to the surface of the transparent conductive film 12 which has been made hydrophilic. At this time, as a coating method, a pressing means is used so that the applied colloid maintains a uniform thickness while pressing the colloid on the transparent conductive film 12 using a pressing means (for example, a glass rod). A method of moving the sky above the transparent conductive film 12 is exemplified.

乾燥・焼成工程とは、例えば大気雰囲気中におよそ30分間、室温にて放置し、塗布されたコロイドを乾燥させた後、電気炉を用いおよそ30分間、350℃の温度にて焼成する方法が挙げられる。   The drying / firing process is, for example, a method in which the coated colloid is allowed to stand at room temperature for about 30 minutes in an air atmosphere and dried, and then fired at a temperature of 350 ° C. for about 30 minutes using an electric furnace. Can be mentioned.

次に、この塗布工程と乾燥・焼成工程により形成された多孔質酸化物半導体層13に対して色素担持を行う。
色素担持用の色素溶液は、例えばアセトニトリルとt−ブタノールを容積比で1:1とした溶媒に対して極微量のN719粉末を加えて調整したものを予め準備しておく。
シャーレ状の容器内に入れた色素溶媒に、別途電気炉にて120〜150℃程度に加熱処理した多孔質酸化物半導体層13を浸した状態とし、暗所にて一昼夜(およそ20時間)浸漬する。その後、色素溶液から取り出した多孔質酸化物半導体層13は、アセトニトリルとt−ブタノールからなる混合溶液を用い洗浄する。
上述した工程により、色素担持したTiO薄膜からなる多孔質酸化物半導体層13を透明基材11上に設けてなる作用極14(窓極とも呼ぶ)を得る。
Next, the dye is supported on the porous oxide semiconductor layer 13 formed by the coating process and the drying / firing process.
As the dye solution for supporting the dye, for example, a solution prepared by adding an extremely small amount of N719 powder to a solvent of acetonitrile and t-butanol in a volume ratio of 1: 1 is prepared in advance.
The porous oxide semiconductor layer 13 that has been separately heated in an electric furnace at about 120 to 150 ° C. is immersed in a dye solvent placed in a petri dish-like container, and immersed in a dark place for a whole day and night (approximately 20 hours). To do. Thereafter, the porous oxide semiconductor layer 13 taken out from the dye solution is washed using a mixed solution of acetonitrile and t-butanol.
Through the above-described steps, a working electrode 14 (also called a window electrode) obtained by providing the porous oxide semiconductor layer 13 made of a dye-supported TiO 2 thin film on the transparent substrate 11 is obtained.

色素担持させたTiO薄膜からなる多孔質酸化物半導体層13が上方をなすように作用極14を配置し、この多孔質酸化物半導体層13と導電性基板2が対向するように、対極1を作用極14に重ねて設ける。その後、すなわち作用極14と対極1の重なった側面部を被覆するように封止材16を配する。
封止材16が固化した後、積層体20の空隙、すなわち作用極14と対極12と封止材16で囲まれた空間内に、対極12に設けた注入口から電解質溶液を注入する。これにより色素増感型の光電変換素子10が形成される。
The working electrode 14 is disposed so that the porous oxide semiconductor layer 13 made of a dye-supported TiO 2 thin film is located above, and the counter electrode 1 is disposed so that the porous oxide semiconductor layer 13 and the conductive substrate 2 face each other. Is provided on the working electrode 14. After that, the sealing material 16 is disposed so as to cover the side surface portion where the working electrode 14 and the counter electrode 1 overlap.
After the sealing material 16 is solidified, the electrolyte solution is injected from the inlet provided in the counter electrode 12 into the space of the laminate 20, that is, the space surrounded by the working electrode 14, the counter electrode 12, and the sealing material 16. Thereby, the dye-sensitized photoelectric conversion element 10 is formed.

このようにして得られる光電変換素子は、カーボンナノチューブを電着させることで、不純物を含まずカーボン同士の密着力を向上させた対極を用いることで、長期にわたって優れた発電特性を有するものとなる。   The photoelectric conversion element thus obtained has excellent power generation characteristics over a long period of time by electrodepositing carbon nanotubes and using a counter electrode that does not contain impurities and has improved adhesion between carbons. .

以上、本発明の対極およびその製造方法、並びに光電変換素子について説明してきたが、本発明は上記の例に限定されるものではなく、必要に応じて適宜変更が可能である。   As mentioned above, although the counter electrode of this invention, its manufacturing method, and the photoelectric conversion element were demonstrated, this invention is not limited to said example, It can change suitably as needed.

以下のようにして、色素増感型の光電変換素子を作製した。
<実施例1>
(対極)
文献(Adv.mater.2005,17,2192)に記載の方法を参考に、単層ナノチューブ(SWCNT)を硝酸と硫酸を混ぜた混酸中で超音波処理を施し、さらに過酸化水素と硫酸の混酸に浸し、これらの処理を施した単層ナノチューブを、N,N−ジメチルホルムアミド(N,N−Dimethylformamide :DMF)に分散させた。さらに、カーボンナノチューブを分散させたDMF溶液を、45000G、30分間遠心分離処理を行い、不純物を分離した。
この溶液にチタン基板2枚を入れ、直流電圧1.5Vを10分間流して、陽極側のチタン基板に、カーボンナノチューブを電着させた。このカーボンナノチューブを電着させたチタン基板を対極として用いた。
A dye-sensitized photoelectric conversion element was produced as follows.
<Example 1>
(Counter electrode)
Referring to the method described in the literature (Adv.mater.2005, 17, 2192), single-walled nanotubes (SWCNT) were sonicated in a mixed acid mixture of nitric acid and sulfuric acid, and then mixed acid of hydrogen peroxide and sulfuric acid. The single-walled nanotubes soaked in and treated with these were dispersed in N, N-dimethylformamide (DMF). Further, the DMF solution in which the carbon nanotubes were dispersed was centrifuged at 45000 G for 30 minutes to separate impurities.
Two titanium substrates were put into this solution, and a DC voltage of 1.5 V was passed for 10 minutes to electrodeposit carbon nanotubes on the anode side titanium substrate. A titanium substrate electrodeposited with the carbon nanotubes was used as a counter electrode.

(作用極)
透明電極基板として、フッ素ドープSnO(FTO)膜付きガラス基板を用い、この透明電極基板のFTO膜(導電層)側の表面に、平均粒径20nmの酸化チタンのスラリー状の分散水溶液を塗布し、乾燥後、450℃にて1時間加熱処理することにより、厚さ7μmの酸化物半導体多孔質膜を形成した。さらにルテニウム錯体(N3色素またはブラックダイ色素)のエタノール溶液中に1晩浸漬して色素を担持させ、作用極を作製した。
(Working electrode)
A glass substrate with a fluorine-doped SnO 2 (FTO) film is used as the transparent electrode substrate, and a slurry-like dispersion aqueous solution of titanium oxide having an average particle diameter of 20 nm is applied to the surface of the transparent electrode substrate on the FTO film (conductive layer) side. Then, after drying, the oxide semiconductor porous film having a thickness of 7 μm was formed by heat treatment at 450 ° C. for 1 hour. Further, the working electrode was prepared by immersing the ruthenium complex (N3 dye or black dye dye) in an ethanol solution overnight to support the dye.

(電解質)
ヨウ素/ヨウ化物イオンレドックス対を含有するアセトニトリル、またはイオン液体[1−エチル−3−メチルイミダゾリウムビス(トリフルオロメチルスルホニル)イミド](EMIm−TFSI)からなる電解液を調製した。さらに作製したイオン液体電解液に酸化チタンのナノ粒子を混ぜ、ナノコンポジットゲルを作製した。
(Electrolytes)
An electrolyte solution consisting of acetonitrile containing an iodine / iodide ion redox couple or ionic liquid [1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide] (EMIm-TFSI) was prepared. Further, titanium oxide nanoparticles were mixed with the prepared ionic liquid electrolyte to prepare a nanocomposite gel.

以上のようにして得られた作用極と対極との間に電解質を介在させて積層し、色素増感型の光電変換素子を作製した。   A dye-sensitized photoelectric conversion element was manufactured by laminating an electrolyte between the working electrode and the counter electrode obtained as described above.

<実施例2>
チタン基板に替えてFTOガラス基板を用いたこと以外は、実施例1と同様にして対極を作製した。
この対極を用いて、実施例1と同様にして光電変換素子を作製した。
<Example 2>
A counter electrode was produced in the same manner as in Example 1 except that an FTO glass substrate was used instead of the titanium substrate.
Using this counter electrode, a photoelectric conversion element was produced in the same manner as in Example 1.

<比較例1>
従来の方法により、FTOガラス基板上に炭素膜を成膜することで対極を作製した。
この対極を用いて、実施例1と同様にして光電変換素子を作製した。
<Comparative Example 1>
A counter electrode was produced by forming a carbon film on an FTO glass substrate by a conventional method.
Using this counter electrode, a photoelectric conversion element was produced in the same manner as in Example 1.

<比較例2>
カーボンナノチューブを分散させたDMF溶液に、遠心分離処理を施さなかったこと以外は、実施例1と同様にして対極を作製した。
この対極を用いて、実施例1と同様にして光電変換素子を作製した。
<Comparative example 2>
A counter electrode was produced in the same manner as in Example 1 except that the DMF solution in which the carbon nanotubes were dispersed was not subjected to the centrifugal separation treatment.
Using this counter electrode, a photoelectric conversion element was produced in the same manner as in Example 1.

以上のようにして作成された、各実施例および比較例の光電変換素子について、評価試験を行った。
(対極の密着性)
基板に成膜した膜の密着力の評価はクロスカット試験(JIS K 5600)を行った。マス目が9割以上残っている場合を○、9割りより少ない場合を×とした。
An evaluation test was performed on the photoelectric conversion elements of Examples and Comparative Examples prepared as described above.
(Counter electrode adhesion)
A cross-cut test (JIS K 5600) was performed to evaluate the adhesion of the film formed on the substrate. A case where 90% or more of the squares remained was marked as ◯, and a case where the squares were smaller than 90% was marked as x.

(光電変換効率)
各実施例および比較例の光電変換素子について、光電変換効率を測定した。
(長期安定性)
作製直後のセルと1000時間光照射後のセルの光電変換効率の変化を調べた。1000時間光照射後の光電変換効率が初期変換効率に対して低下率が10%以内の場合を「変化なし」とした。
以上の評価結果を表1に示す。
(Photoelectric conversion efficiency)
The photoelectric conversion efficiency was measured about the photoelectric conversion element of each Example and the comparative example.
(Long-term stability)
Changes in photoelectric conversion efficiency between the cell immediately after fabrication and the cell after 1000 hours of light irradiation were examined. A case where the photoelectric conversion efficiency after 1000 hours of light irradiation was within 10% of the initial conversion efficiency was defined as “no change”.
The above evaluation results are shown in Table 1.

Figure 2008066018
Figure 2008066018

表1から明らかなように、FTOガラス基板上に炭素膜を成膜した従来の対極では、対極の密着性およびセルの長期安定性が十分ではないことがわかる。これに対し、基板上にカーボンナノチューブを電着させた実施例の対極では、対極の密着性が向上し、長期安定性にも優れたセルが得られていることがわかる。また、光電変換効率も高い値が得られている。
しかしながら、CNT分散溶液に対して遠心分離処理を施さなかった比較例1では、不純物が混入してしまい、対極の密着性およびセルの長期安定性が低下してしまっている。また、光電変換効率も低下してしまっている。
As is apparent from Table 1, it can be seen that the conventional counter electrode in which a carbon film is formed on an FTO glass substrate does not have sufficient adhesion of the counter electrode and long-term stability of the cell. On the other hand, in the counter electrode of the example in which carbon nanotubes are electrodeposited on the substrate, it can be seen that a cell with improved counter electrode adhesion and excellent long-term stability is obtained. Moreover, the photoelectric conversion efficiency has a high value.
However, in Comparative Example 1 in which the CNT dispersion solution was not subjected to the centrifugal separation treatment, impurities were mixed in, and the adhesion of the counter electrode and the long-term stability of the cell were lowered. Moreover, the photoelectric conversion efficiency has also fallen.

以上の結果から明らかなように、本発明では、カーボンナノチューブを溶液中で電着させることで、不純物を含まずカーボン粒子同士の密着性が強い対極を得ることができることがわかる。また、上記対極を用いることで、長期にわたって優れた発電特性を有する光電変換素子を得ることができることがわかる。   As is apparent from the above results, in the present invention, it is understood that a counter electrode having no adhesion and having strong adhesion between carbon particles can be obtained by electrodepositing carbon nanotubes in a solution. Moreover, it turns out that the photoelectric conversion element which has the electric power generation characteristic excellent over the long term can be obtained by using the said counter electrode.

本発明は、光電変換素子および光電変換素子を構成する対極およびその製造方法に適用可能である。   The present invention is applicable to a photoelectric conversion element, a counter electrode constituting the photoelectric conversion element, and a manufacturing method thereof.

本発明に係る対極の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the counter electrode which concerns on this invention. 本発明に係る光電変換素子の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the photoelectric conversion element which concerns on this invention. 従来の色素増感型太陽電池の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the conventional dye-sensitized solar cell.

符号の説明Explanation of symbols

1 対極、2 導電性基板、3 カーボンナノチューブ、 10 光電変換素子、11 透明基材、12 透明導電膜、13 多孔質酸化物半導体層、14 作用極(窓極)、15 電解質層、16 封止部材。   DESCRIPTION OF SYMBOLS 1 Counter electrode, 2 Conductive substrate, 3 Carbon nanotube, 10 Photoelectric conversion element, 11 Transparent base material, 12 Transparent electrically conductive film, 13 Porous oxide semiconductor layer, 14 Working electrode (window electrode), 15 Electrolyte layer, 16 Sealing Element.

Claims (4)

基板上に、少なくとも一部に増感色素が担持された酸化物半導体多孔質層を有する作用極と、前記作用極の酸化物半導体多孔質層と対向して配された対極と、前記作用極と前記対極との間の少なくとも一部に配された電解質と、を備えてなる光電変換素子を構成する対極の製造方法であって、
有機溶媒にカーボンナノチューブを分散させてなる溶液中に導電性基板を浸漬させながら、前記導電性基板上にカーボンナノチューブを電着させることを特徴とする対極の製造方法。
A working electrode having an oxide semiconductor porous layer on which at least a part of a sensitizing dye is supported on a substrate, a counter electrode disposed opposite to the oxide semiconductor porous layer of the working electrode, and the working electrode And an electrolyte disposed in at least a portion between the counter electrode, and a method of manufacturing a counter electrode comprising a photoelectric conversion element comprising:
A method for producing a counter electrode, wherein carbon nanotubes are electrodeposited on the conductive substrate while the conductive substrate is immersed in a solution obtained by dispersing carbon nanotubes in an organic solvent.
前記溶液は、酸処理したカーボンナノチューブを有機溶媒中に分散させ、さらに遠心分離処理を施すことにより調製されることを特徴とする請求項1に記載の対極の製造方法。   2. The method for producing a counter electrode according to claim 1, wherein the solution is prepared by dispersing acid-treated carbon nanotubes in an organic solvent and further performing a centrifugal separation treatment. 基板上に、少なくとも一部に増感色素が担持された酸化物半導体多孔質層を有する作用極と、前記作用極の酸化物半導体多孔質層と対向して配された対極と、前記作用極と前記対極との間の少なくとも一部に配された電解質と、を備えてなる光電変換素子を構成する対極であって、
導電性基板と、該導電性基板上に載置されたカーボンナノチューブからなり、
前記カーボンナノチューブは、その長手方向が前記導電性基板の一面に対して略平行に配向されていることを特徴とする対極。
A working electrode having an oxide semiconductor porous layer on which at least a part of a sensitizing dye is supported on a substrate, a counter electrode disposed opposite to the oxide semiconductor porous layer of the working electrode, and the working electrode And an electrolyte disposed in at least a part between the counter electrode and a counter electrode constituting a photoelectric conversion element comprising:
A conductive substrate and a carbon nanotube placed on the conductive substrate;
The carbon nanotube has a longitudinal direction oriented substantially parallel to one surface of the conductive substrate.
基板上に、少なくとも一部に増感色素が担持された酸化物半導体多孔質層を有する作用極と、前記作用極の酸化物半導体多孔質層と対向して配された対極と、前記作用極と前記対極との間の少なくとも一部に配された電解質と、を備えてなる光電変換素子であって、
前記対極は、導電性基板と、該導電性基板上に載置されたカーボンナノチューブからなり、
前記カーボンナノチューブは、その長手方向が、前記導電性基板の一面に対して略平行に配向されていることを特徴とする光電変換素子。
A working electrode having an oxide semiconductor porous layer on which at least a part of a sensitizing dye is supported on a substrate, a counter electrode disposed opposite to the oxide semiconductor porous layer of the working electrode, and the working electrode And an electrolyte disposed in at least a part between the counter electrode, and a photoelectric conversion element comprising:
The counter electrode is composed of a conductive substrate and a carbon nanotube placed on the conductive substrate,
The photoelectric conversion element, wherein a longitudinal direction of the carbon nanotube is oriented substantially parallel to one surface of the conductive substrate.
JP2006240003A 2006-09-05 2006-09-05 Manufacturing method of counter electrode Active JP5122099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006240003A JP5122099B2 (en) 2006-09-05 2006-09-05 Manufacturing method of counter electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006240003A JP5122099B2 (en) 2006-09-05 2006-09-05 Manufacturing method of counter electrode

Publications (2)

Publication Number Publication Date
JP2008066018A true JP2008066018A (en) 2008-03-21
JP5122099B2 JP5122099B2 (en) 2013-01-16

Family

ID=39288572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006240003A Active JP5122099B2 (en) 2006-09-05 2006-09-05 Manufacturing method of counter electrode

Country Status (1)

Country Link
JP (1) JP5122099B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101023020B1 (en) 2009-07-17 2011-03-24 한국과학기술원 Inverted transparent organic solar cell and method for manufacturing thereof
KR101023021B1 (en) 2009-07-17 2011-03-24 한국과학기술원 Inverted organic solar cell and method for manufacturing thereof
KR101191959B1 (en) * 2010-09-30 2012-10-17 한국과학기술연구원 Dye sensitized solar cell and method for manufacturing the same
WO2013035207A1 (en) * 2011-09-05 2013-03-14 Nec Corporation Graphene counter electrode for dye sensitized solar cell
JP2014120219A (en) * 2012-12-13 2014-06-30 Nippon Zeon Co Ltd Counter electrode for dye sensitizing solar cell, dye sensitizing solar cell, and solar cell module
JP2014130734A (en) * 2012-12-28 2014-07-10 Peccell Technologies Inc Dye-sensitized photoelectric conversion element, and dye-sensitized solar battery
JP5835633B1 (en) * 2014-06-30 2015-12-24 光村印刷株式会社 Method for producing conductive substrate
CN114229966A (en) * 2021-12-17 2022-03-25 东北电力大学 Nickel/hydroxylated multi-walled carbon nanotube/titanium composite electrode and preparation method and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004319661A (en) * 2003-04-15 2004-11-11 Fujikura Ltd Photoelectric conversion device, its manufacturing method substrate therefor, and its manufacturing method
JP2005093075A (en) * 2003-07-14 2005-04-07 Fujikura Ltd Electrolyte composition, and photoelectric conversion element and dye-sensitized solar cell using the same
JP2006107842A (en) * 2004-10-01 2006-04-20 Nippon Oil Corp Electrode substrate and dye-sensitized solar battery
JP2006107885A (en) * 2004-10-04 2006-04-20 Sharp Corp Dye-sensitized solar battery and dye-sensitized solar battery module
JP2006134631A (en) * 2004-11-04 2006-05-25 Sony Corp Dye-sensitized photoelectric conversion element and its manufacturing method
JP2006202562A (en) * 2005-01-19 2006-08-03 Japan Carlit Co Ltd:The Catalyst electrode, and dye-sensitized solar cell with it
JP2006202721A (en) * 2004-12-22 2006-08-03 Fujikura Ltd Counter electrode for photoelectric conversion element and photoelectric conversion element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004319661A (en) * 2003-04-15 2004-11-11 Fujikura Ltd Photoelectric conversion device, its manufacturing method substrate therefor, and its manufacturing method
JP2005093075A (en) * 2003-07-14 2005-04-07 Fujikura Ltd Electrolyte composition, and photoelectric conversion element and dye-sensitized solar cell using the same
JP2006107842A (en) * 2004-10-01 2006-04-20 Nippon Oil Corp Electrode substrate and dye-sensitized solar battery
JP2006107885A (en) * 2004-10-04 2006-04-20 Sharp Corp Dye-sensitized solar battery and dye-sensitized solar battery module
JP2006134631A (en) * 2004-11-04 2006-05-25 Sony Corp Dye-sensitized photoelectric conversion element and its manufacturing method
JP2006202721A (en) * 2004-12-22 2006-08-03 Fujikura Ltd Counter electrode for photoelectric conversion element and photoelectric conversion element
JP2006202562A (en) * 2005-01-19 2006-08-03 Japan Carlit Co Ltd:The Catalyst electrode, and dye-sensitized solar cell with it

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101023020B1 (en) 2009-07-17 2011-03-24 한국과학기술원 Inverted transparent organic solar cell and method for manufacturing thereof
KR101023021B1 (en) 2009-07-17 2011-03-24 한국과학기술원 Inverted organic solar cell and method for manufacturing thereof
KR101191959B1 (en) * 2010-09-30 2012-10-17 한국과학기술연구원 Dye sensitized solar cell and method for manufacturing the same
WO2013035207A1 (en) * 2011-09-05 2013-03-14 Nec Corporation Graphene counter electrode for dye sensitized solar cell
JP2014120219A (en) * 2012-12-13 2014-06-30 Nippon Zeon Co Ltd Counter electrode for dye sensitizing solar cell, dye sensitizing solar cell, and solar cell module
JP2014130734A (en) * 2012-12-28 2014-07-10 Peccell Technologies Inc Dye-sensitized photoelectric conversion element, and dye-sensitized solar battery
JP5835633B1 (en) * 2014-06-30 2015-12-24 光村印刷株式会社 Method for producing conductive substrate
CN114229966A (en) * 2021-12-17 2022-03-25 东北电力大学 Nickel/hydroxylated multi-walled carbon nanotube/titanium composite electrode and preparation method and application thereof
CN114229966B (en) * 2021-12-17 2023-10-13 东北电力大学 Nickel/hydroxylation multiwall carbon nanotube/titanium composite electrode and preparation method and application thereof

Also Published As

Publication number Publication date
JP5122099B2 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
KR101145322B1 (en) Counter electrode for photoelectric converter and photoelectric converter
Cruz et al. Reduced graphene oxide films as transparent counter-electrodes for dye-sensitized solar cells
JP5122099B2 (en) Manufacturing method of counter electrode
JP5324558B2 (en) Counter electrode and photoelectric conversion element having the counter electrode
JP2008021651A (en) Solar cell using carbon nanotube carried with catalyst and its manufacturing method
Pan et al. Carbon nanostructured fibers as counter electrodes in wire-shaped dye-sensitized solar cells
JP2008004550A (en) Surface modification method for counter electrode, and counter electrode with modified surface
US20170140878A1 (en) Counter electrode for dye-sensitized solar cell, dye-sensitized solar cell, and solar cell module
JPWO2003103085A1 (en) Photoelectric conversion element
JP2004111216A (en) Dye-sensitized solar cell and nano-carbon electrode
JP2012059599A (en) Carbon based electrode and electrochemical device
Chew et al. Performance studies of ZnO and multi walled carbon nanotubes-based counter electrodes with gel polymer electrolyte for dye-sensitized solar cell
JP2009048946A (en) Dye-sensitized photoelectric conversion element
JP5114499B2 (en) Photoelectric conversion element
Siwach et al. Effect of carbonaceous counter electrodes on the performance of ZnO-graphene nanocomposites based dye sensitized solar cells
CN100533850C (en) Counter electrode for photoelectric converter and photoelectric converter
Zhang et al. Poly (o-phenylenediamine)/MWNTs composite film as a hole conductor in solid-state dye-sensitized solar cells
Seo et al. High electrocatalytic activity of low-loaded transparent carbon nanotube assemblies for Co II/III-mediated dye-sensitized solar cells
Kouhnavard et al. An Efficient Metal‐Free Hydrophilic Carbon as a Counter Electrode for Dye‐Sensitized Solar Cells
Al-bahrani et al. Layer-by-layer deposition of CNT− and CNT+ hybrid films for platinum free counters electrodes of dye-sensitized-solar-cells
Maiaugree et al. Influence of Acid Modification Multiwall Carbon Nanotube Counter Electrodes on the Glass and Flexible Dye‐Sensitized Solar Cell Performance
JP5128076B2 (en) Dye-sensitized solar cell and method for producing the same
JP6155615B2 (en) Counter electrode for dye-sensitized solar cell, dye-sensitized solar cell, and solar cell module
JP5191631B2 (en) Method for manufacturing counter electrode and method for manufacturing photoelectric conversion element
Das et al. Dye-Sensitized Solar Cell with Electrophoretic Deposited Photocatalytic Carbon Nanotube Counter Electrode: Nanotube Density and Cell Performance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121024

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5122099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250