JP2008061453A - 車載用モータ制御装置 - Google Patents

車載用モータ制御装置 Download PDF

Info

Publication number
JP2008061453A
JP2008061453A JP2006237887A JP2006237887A JP2008061453A JP 2008061453 A JP2008061453 A JP 2008061453A JP 2006237887 A JP2006237887 A JP 2006237887A JP 2006237887 A JP2006237887 A JP 2006237887A JP 2008061453 A JP2008061453 A JP 2008061453A
Authority
JP
Japan
Prior art keywords
motor
energization
temperature
power supply
supply voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006237887A
Other languages
English (en)
Inventor
Takuya Tamaru
卓也 田丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006237887A priority Critical patent/JP2008061453A/ja
Priority to US11/896,602 priority patent/US20080054835A1/en
Publication of JP2008061453A publication Critical patent/JP2008061453A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/08Reluctance motors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

【課題】 モータの個体差(各種バラツキ等)に拘わらず適切なトルクを発生させる。
【解決手段】 シフトレンジ切換機構の駆動源としてのSRモータとこれを制御するモータ制御ECUとが一体構成された切換制御装置に対し、工場出荷時に初期組付け誤差学習を行う。具体的には、モータコイルのインピーダンスについて実測値と設計中心値との差をインピーダンス補正量α、発生トルクについて設計中心値と実測値との比をトルク補正係数Aとして算出し、メモリに格納しておく。市場にて実際に使用される際は、まず、モータ温度学習処理を行ってモータの温度を算出する。その際、インピーダンス補正量αによってコイルの個体差(巻数や径の違い)が吸収される。次に、得られた温度と電源電圧に基づいて目標トルクを設定し、それに応じた通電パターンが算出される。目標トルク設定の際、トルク補正係数Aによってモータ個体差(寸法バラツキなど)が吸収される。
【選択図】 図5

Description

本発明は、ロータと複数相のコイルが配設されたステータとを有し、通電対象の相を順次切り換えながらコイルへの通電を行うことでロータを回転させるよう構成された車載モータの駆動を制御する車載用モータ制御装置に関する。
従来より、車両の各種アクチュエータを駆動するための駆動源として各種モータが利用されている。特に近年、スイッチトリラクタンスモータ(以下「SRモータ」と略す)に代表されるリラクタンス型のモータは、永久磁石が不要で構造が簡単であることや、高温環境下での使用や高速回転が可能であるなどの利点があることから、車両のシフトレンジ切換機構や電気自動車など、幅広い分野でその利用が普及しつつある。
SRモータを制御する方法としては、例えば、エンコーダ出力波形を元に通電相の切り換えパターンを設け、この切り換えパターンに従って各相へ通電を行う方法がある(例えば、特許文献1参照。)。
特開2004−129452号公報。
しかしながら、特許文献1に記載されたSRモータの制御方法のように、エンコーダ出力波形を元に通電相切り換えパターンを設定するだけでは、SRモータが搭載される車両の環境やSRモータの構成部品の各種バラツキの程度によっては適切なトルク制御ができないおそれがある。
通常、モータを制御するにあたっては、モータの使用環境(例えば周囲温度)や公差などの各種条件(以下「固有条件」ともいう)が最悪な場合(例えば高温時や組み付け時の寸法バラツキが公差範囲の下限である場合)にも要求トルクを満足するように制御装置を設計する。即ち、高温になればなるほどモータのインピーダンスは大きくなって電流が流れにくくなり、トルクも小さくなる。また、同じ環境であってもロータとステータの隙間寸法が設計中心値よりも大きいほど(つまり公差範囲の下限に近づくほど)、得られるトルクは小さくなる。そのため、上記のように環境や公差などの固有条件が悪い場合であっても、要求トルクを満足するように、制御装置を設計するようにしている。
ところが、上記のようにモータの固有条件が最悪の場合を見越して設計すると、逆に低温時や組み付け時の寸法バラツキが公差範囲の上限に近いといった好条件の場合は、必要以上に大きなトルクが発生してしまい、モータにより駆動される被駆動部材(制御対象)を故障させてしまうおそれがある。
この問題を解決するためには適切なトルク制御を実施する必要があり、その一手法として、コイルに流れる電流値を検出し、その電流値をモニタしながら電流値を調整する電流フィードバック(以下「電流F/B」と略す)制御がある。具体的な回路例を図16に示す。図16は、U相コイル81、V相コイル82、およびW相コイル83の三相コイルを備えたSRモータを制御する制御回路を簡略化して示したものである。
図16に示す如く、SRモータの各相コイル81,82,83の通電経路にはそれぞれ、当該各相コイル81,82,83への通電をON・OFFするためのスイッチング素子であるMOSFET(以下単に「FET」という)84,85,86が接続されると共に、その下流側にはそれぞれ、各相の通電電流を検出するための電流検出用抵抗87,88,89が接続されている。そして、これら各電流検出用抵抗87,88,89の一端(上流側)にはそれぞれ電流検出回路91,92,93に接続されており、これら各電流検出回路91,92,93から、各相コイル81,82,83に流れる通電電流値(実際には電流値に応じた値の電圧値)が出力され、A/D変換器97を介してCPU96へ入力される。CPU96は、A/D変換器97を介して入力された各相コイル81,82,83の通電電流値をモニタすることにより、電流F/B制御を実現する。図17は、SRモータの各相コイル81,82,83への通電パターン(通電相切り換え)の一例を示すものである。図中、「ON」は対応する相のFETがONして当該相のコイルに通電されている期間であることを示し、「OFF」は対応する相のFETがOFFして当該相のコイルへの通電がなされていない期間であることを示す。
しかしながら、この電流F/Bによる制御法では、モータの各相コイル81,82,83の通電経路毎に電流検出用抵抗及び電流検出回路を設ける必要があるため、回路が大型化してしまうという問題があった。
これを解決すべく、各相コイル81,82,83に共通の一つの電流検出用抵抗及び電流検出回路を設けることも考えられる。つまり、三つのFET81,82,83のソースをいずれも一つの電流検出用抵抗に接続し、この電流検出用抵抗およびこれに接続された電流検出回路のみを用いて、通電電流を検出するのである。
しかし、SRモータのように通電相を順次切り換えながら通電するモータの場合、一般的には、図17に示すように、2つ以上の相に同時に通電(オーバーラップ通電)する期間が存在する。そのため、一つの電流検出用抵抗及び電流検出回路をもって各相に流れる通電電流を個別に検出することは困難であり、実際の製品に採用されることは皆無である。
本発明は上記課題に鑑みなされたものであり、モータの使用環境や組み付け状態(個体差・寸法バラツキ)などの固有条件の違いにかかわらず、簡単な構成で、モータに適切なトルクを発生させることが可能な車載用モータ制御装置を提供することを目的とする。
上記課題を解決するためになされた請求項1記載の車載用モータ制御装置は、車両に搭載され、ロータと、複数相のコイルが配設されたステータとを有し、通電対象の相を順次切り換えながらコイルへの通電を行うことでロータを回転させるよう構成されたモータの駆動を制御するものであり、モータの温度を検出する温度検出手段と、モータの電源電圧を検出する電源電圧検出手段と、温度検出手段により検出されたモータの温度と電源電圧検出手段により検出されたモータの電源電圧に基づいてモータが発生すべき目標トルクを設定する目標トルク設定手段と、この目標トルク設定手段にて設定された目標トルクが得られるようにモータへの通電を行う実通電手段とを備えたことを特徴とする。
つまり、モータが実際に通電・駆動される際のモータの温度と電源電圧を検出し、その検出された実際の温度と電源電圧に応じた適切な目標トルクを設定する。そして、その設定された目標トルクが得られるように実際の通電が行われるのである。
従って、上記構成の車載用モータ制御装置によれば、温度と電源電圧に応じて目標トルクを設定することで温度に応じた適切な通電制御を行うことができるため、モータが使用される温度の大小にかかわらず、簡単な構成でモータに適切なトルクを発生させることができる。
なお、目標トルク設定手段による目標トルクの具体的な設定方法は種々考えられ、例えば、温度が低いほどコイルのインピーダンスが減少して電流が流れやすくなることから、温度と目標トルクが反比例するように設定してトルクが過剰になるのを予め防止するようにしてもよい。逆に、温度が低いほど電流が流れやすくなる(つまり大きなトルクが得られる)ことから、温度が低いほど目標トルクも大きく設定して大きなトルクを得るようにしてもよい。但し、いずれの場合も、後述する請求項5記載のように、目標トルクの上限値を設け、その上限値を超えるような値は目標トルクとして設定しないようにするのが好ましい。
ところで、モータの温度を検出する温度検出手段としては、例えば、モータ近傍或いはそのコイル近傍に半導体温度センサ等の温度検出器を設置し、温度を直接検出することが一例として挙げられる。
しかしながら、このような温度検出器は、一般に、幅広い温度範囲(例えば−40℃〜120℃)の全般に渡って均一な特性を得ることができない。そのため、幅広い範囲で変化する温度を均一な精度で検出するためには、例えば低温用、中温用、高温用と温度範囲によって使い分けるなどの対策が必要となるが、そうなると制御装置の大型化やコストアップを招いてしまう。しかも、半導体温度センサによる温度検出だと、正確に検出できるのはセンサを取り付けた部分の温度だけであるため、モータのコイル全体の温度を正確に検出することは実際上不可能に近い。
そこで、温度検出手段は、例えば請求項2に記載のように、モータにおける何れか一つの相又は複数相のコイルへ相毎に所定の基準通電パターンで通電を行う基準通電手段と、複数相のコイルに共通で用いられ、基準通電手段による通電時の通電電流を検出する通電電流検出手段と、電源電圧検出手段により検出された電源電圧と通電電流検出手段により検出された通電電流に基づいて、基準通電手段により通電されたコイルのインピーダンスを算出するインピーダンス算出手段と、インピーダンス算出手段により算出されたコイルのインピーダンスと、予め設定された基準温度における当該コイルのインピーダンスの設計中心値である基準インピーダンスとに基づいて、当該コイルの温度を算出するコイル温度算出手段とを備えた構成とし、コイル温度算出手段により算出された温度をモータの温度として検出するようにするとよい。
インピーダンス算出手段によるインピーダンスの算出は、よく知られたオームの法則によって容易に行うことができる。また、コイル温度算出手段による温度の算出も、温度係数を用いて温度に応じたインピーダンス(抵抗値)を導出する周知の演算式を利用して容易に行うことができる。具体例を挙げると、インピーダンス算出手段により算出されたインピーダンスをR、設計上の基準温度をT0、この基準温度T0での基準インピーダンスをR0、温度係数をβ、算出すべき温度をTとしたとき、インピーダンスRは下記式(1)にて表される。
R=R0*{1+β(T−T0)}・・・(1)
この式(1)はよく知られた式であり、この式(1)を用いることで、コイルの実際の温度Tを演算により得ることができるのである。
つまり本発明(請求項2)は、上述した半導体温度センサ等の温度検出器を別途設けて温度を検出するのではなく、実際のインピーダンスRを算出して、その算出したRをもとに上記式(1)を利用して実際の温度Tを検出(算出)するのである。そのため、温度センサ等を必要としないごく簡単な構成(上記演算に必要な構成)でコイルの温度を正確に検出することができる。
ここで、コイル温度算出手段がコイルの温度を算出する際には上記のようにコイルの基準インピーダンスが用いられるわけだが、この基準インピーダンスはあくまでも設計上の中心値であるため、実際のモータの基準インピーダンスは必ずしもこの基準インピーダンスに一致しているとは限らない。むしろ、モータ個々の個体差(コイルの巻数やコイルの太さの違いなど)によって、実際の基準インピーダンスは、程度の差こそあれ設計中心値からずれているのが一般的である。
そこで、例えば請求項3記載のように、基準温度の環境下におけるコイルの実際のインピーダンスと該コイルの基準インピーダンス(設計上の中心値)との比又は差分を基準インピーダンス補正量として算出する基準インピーダンス補正量算出手段と、基準インピーダンス補正量算出手段により算出された基準インピーダンス補正量を記憶する第1記憶手段とを備えることで、基準インピーダンス補正量を予め得るようにするとよい。その上で、コイル温度算出手段は、基準インピーダンスを第1記憶手段に記憶されている基準インピーダンス補正量によって補正し、該補正後の基準インピーダンスを用いてコイルの温度の算出を行うようにするとよい。
基準インピーダンス補正量による基準インピーダンスの補正は、例えば、基準インピーダンス補正量が上記「比」であれば、基準インピーダンスにその基準インピーダンス補正量を乗じればよい。また例えば、基準インピーダンス補正量が上記「差分」であれば、基準インピーダンスにその基準インピーダンス補正量を加算すればよい。例えば基準インピーダンス補正量が上記「差分」である場合、上記式(1)は、下記式(2)のように表すことができる。なお、αは基準インピーダンス補正量である。
R=(R0+α)*{1+β(T−T0)}・・・(2)
このように構成された請求項3記載の車載用モータ制御装置によれば、基準インピーダンスとして一律に設計上の中心値を用いるのではなく、モータの実際の基準インピーダンスを用いてコイルの温度を算出するため、モータの個体差(コイルの巻数や径の違い)に拘わらずコイルの温度を正確に検出することが可能となる。この結果、実通電手段は、正確に検出されたコイルの温度に基づいて設定された目標トルクに応じた通電を行うこととなるため、より適切な通電が行われることとなる。
なお、基準温度の環境下におけるコイルの実際のインピーダンスは、例えば請求項4記載のように、基準温度の環境下において、基準通電手段、通電電流検出手段、及びインピーダンス算出手段を動作させることにより得ることができる。即ち、基準温度の環境下で上記のようにインピーダンス算出手段によって算出されたインピーダンスが、そのモータ(コイル)の実際の基準インピーダンスとなる。
目標トルク設定手段による目標トルクの具体的な設定方法は、上述したように種々考えられるが、例えば請求項5記載のように、目標トルク設定手段は、温度検出手段により検出された温度の環境下で電源電圧検出手段により検出された電源電圧を電源としてモータへ通電を行った場合に得ることが可能なトルクの値であって、且つ、予め設定したトルク上限値以下の値を、目標トルクとして設定するようにするとよい。即ち、モータの使用環境や組み付け状態などの固有条件が良好で大きなトルクを発生させることができる場合であっても、トルク上限値を超える値は目標トルクとしては設定しないようにする。
このように目標トルクに上限を設けることで、モータの使用環境や個体差によらず過大なトルクの発生を防ぐことができる。
目標トルク設定手段は、例えば請求項6記載のように、温度検出手段により検出された温度と電源電圧検出手段により検出された電源電圧に基づき、目標トルクマップを参照することによって目標トルクを設定するようにするとよい。目標トルクマップは、モータの温度及び電源電圧の値毎に対応した目標トルクが設定されたものである。
このように目標トルク参照マップを備えると共にこの目標トルク参照マップを用いて目標トルクを設定することで、適切な目標トルクの設定を容易に行うことができる。
ここで、目標トルク設定手段によって設定される目標トルクについても、上記基準インピーダンスと同じように、モータ個々の個体差に応じて適宜補正するのが好ましい。即ち、同じ温度、同じ電源電圧でモータへの通電を行うとしても、モータの個体差(ロータやステータ等の各部材の寸法バラツキや組み付け時の各部材間の寸法バラツキなど)によって、発生するトルクも当然ながらモータ毎に異なる。そのため、モータの個体差に関係なく温度と電源電圧に応じて一律に目標トルクを設定すると、モータによっては、設定値を大きく超えるトルクが発生したり、逆に設定値を大きく下回るトルクしか発生しなかったりすることが予想される。
そこで、例えば請求項7記載のように、目標トルクを補正するためのトルク補正量を算出するトルク補正量算出手段と、このトルク補正量算出手段により算出されたトルク補正量を記憶する第2記憶手段と、目標トルク設定手段により設定された目標トルクを第2記憶手段に記憶されているトルク補正量によって補正する目標トルク補正手段とを備えるとよい。トルク補正量算出手段は、基準温度の環境下で所定の通電パターンで通電を行った場合にモータに発生するトルクの設計中心値である基準トルクと、基準温度の環境下で実際に上記所定の通電パターンで通電を行ったときに計測して得られたモータの実測トルクとの比又は差分を、トルク補正量として算出する。そして、実通電手段は、目標トルク補正手段による補正後の目標トルクが得られるようにモータへの通電を行うようにするとよい。
より具体的には、実通電手段による実際の通電が行われる(つまりモータが実際に使用される)のに先立って、トルク補正量算出手段によるトルク補正量の算出とその算出したトルク補正量の第2記憶手段への記憶を行っておく。その上で、実通電手段による実際の通電が行われる際に、目標トルク設定手段にて設定された目標トルクを目標トルク補正手段が補正し、その補正後の目標トルクに基づいて実通電手段が通電を行う。
トルク補正量による目標トルクの補正は、例えば、トルク補正量が上記「比」であれば、目標トルクにそのトルク補正量を乗じればよい。また例えば、トルク補正量が上記「差分」であれば、目標トルクにそのトルク補正量を加算すればよい。
このように構成された請求項7記載の車載用モータ制御装置によれば、目標トルク設定手段により設定された目標トルク(設計中心値)をそのまま用いるのではなく、その目標トルクをモータの個体差に応じて補正したものを用いて、実通電手段がモータへの通電を行うため、モータの個体差(各種寸法バラツキなど)に拘わらずより適切な通電を行うことが可能となる。
実通電手段により通電を行うにあたっては、例えば請求項8記載のように、実通電手段が相順に通電を行う際の各相の通電期間における通電パターンである実通電パターンが電源電圧及び目標トルク毎に設定された実通電パターンマップを備えるとよい。そして、実通電手段は、電源電圧検出手段により検出された電源電圧と目標トルク設定手段により設定された目標トルク(目標トルク補正手段を備えている場合は補正後の目標トルク)に基づき、上記実通電パターンマップを参照することによって、その参照した実通電パターンに従ってモータへの通電を行うようにするとよい。
つまり、上述した目標トルクマップと同様、通電パターンを設定する際も、電源電圧と目標トルクに対してマップ化された実通電パターンマップを用いるのである。これにより、電源電圧が検出されると共に目標トルクが設定されれば、一義的に実通電パターンが決定されることとなるため、適切な通電パターンの決定を容易に行うことができる。
また、実通電手段が各相のコイルに通電を行う際の各相毎の通電パターンは、例えば、図17に示したように通電期間中は常時連続して通電を行うようにするとともに目標トルクに応じてその連続通電の通電期間を可変とするようにしてもよいし、また例えば、通電期間全体に渡ってデューティ通電すると共にそのデューティ比を目標トルクに応じて可変とするようにしてもよく、種々の通電パターンを設定することができるが、例えば請求項9記載のように、連続通電する期間とデューティ通電する期間を共に有するようにしてもよい。
即ち、実通電パターンは、通電期間の開始から一定期間連続して通電する連続通電期間と、該連続通電期間の後に所定のデューティ比にてデューティ通電するデューティ通電期間とを有する。そして、実通電パターンマップには、連続通電期間及びデューティ通電期間の少なくとも一方が、電源電圧及び目標トルク毎に設定されている。
通電対象たるコイルは電源に対して誘導性の負荷であるため、通電開始直後は十分な電流が流れず、通電電流値は徐々に上昇していく。そのため、通電開始直後からすぐに所望のトルクを得ることは困難である。よって、ただでさえ通電開始直後から所望のトルクを得られないにも拘わらず、通電開始直後からデューティ通電すると、所望のトルクが得られるまでの時間が長くなってしまう。
そこで、通電開始から一定期間は連続通電することによって、通電開始後できる限り迅速に所望のトルクを発生させることができるようにするのである。そして、通電電流値が十分に上昇した後は、逆に過剰なトルクが発生しないよう、デューティ通電するのである。
このように、各相コイルの通電パターンをいずれも上記のような通電パターンとすることで、トルク変動を抑制すると共に適切な値のトルクを発生させることが可能となる。
上述した本発明の車載用モータ制御装置は、更に、例えば請求項10記載のように、車両に搭載された内燃機関の始動用の電動機が動作中であるか否かを判断する始動用電動機動作判断手段を備え、電源電圧検出手段は、この始動用電動機動作判断手段によって電動機が動作中であると判断されている間は記電源電圧の検出を行わないようにするとよい。なお、ここでいう電源電圧の検出を行わない、とは、文字通り電源電圧の検出動作自体を行わないことはもちろん、検出はするもののその検出結果を無効として利用しないことも含むものとする。
始動用の電動機が動作している間は、電源電圧が低下して、モータへの通電を正常に行うことが困難であるが、本発明(請求項10)では始動用の電動機が動作している間は電源電圧の検出を行わないため、モータの誤動作を回避することができ、モータ制御装置の品質、信頼性が向上する。
また、例えば請求項11記載のように、電源電圧検出手段によって検出された電源電圧が正常な値であるか否かを判断する電源電圧判断手段を備え、この電源電圧判断手段によって正常な値ではないと判断されたならば、該判断された電源電圧を無効とするようにしてもよい。
電源電圧が正常か否かの具体的判断手法は種々考えられ、例えば、予め許容範囲を決めておいて、検出された電源電圧がその許容範囲内に入っているか否かによって判断するようにしてもよい。また例えば、一定時間間隔で複数サンプリングし、その全て或いは平均値が許容範囲内に入っているか否かによって判断してもよい。
このように電源電圧判断手段を備えることで、例えば電源が瞬断されるといった異常が生じても、正常でない電源電圧は無効とされるため、モータの誤動作を回避することができ、モータ制御装置の品質、信頼性が向上する。
また、本発明におけるモータとしては種々考えられるが、例えば請求項12記載のようにスイッチトリラクタンスモータを使用するようにしてもよい。スイッチトリラクタンスモータは、永久磁石が不要で構造が簡単、安価であり、温度環境等に対する耐久性・信頼性も高いという利点があるため、車両への搭載に適したモータである。
また、モータによって駆動される駆動対象も種々考えられるが、例えば請求項13に記載のように、モータは、車両の自動変速機のシフトレンジを切り換えるシフトレンジ切換機構に搭載され、該シフトレンジの切り換えの際に必要なトルクを発生することにより該シフトレンジ切換機構を駆動するものとして用いることができる。この場合、シフトレンジ切換機構に適切なトルクを与えることができ、シフトレンジの切り換えが良好に行われることとなる。
更に、本発明の車載用モータ制御装置は、例えば請求項14記載のように、モータと一体化された構成にしてもよい。つまり、制御対象であるモータと、このモータを制御するための装置とを一体化(モジュール化)するのである。このようにモータと一体化された車載用モータ制御装置によれば、一体化されたモータの電気的特性、機械的特性に応じた各種情報を各車載用モータ制御装置が確実に持つことができるため、モータの個体差が確実に吸収されると共に、より確実に適切な制御を行うことが可能となる。なお、ここでいう各種情報としては、例えば目標トルク、基準インピーダンス補正量(請求項3)、目標トルクマップ(請求項6)、トルク補正量(請求項7)、実通電パターン(請求項8)などがある。また、仮にモータとこれを制御する制御装置が物理的に離れた状態で設定され、相互がハーネス等によって接続された構成であると、ハーネスによる電圧降下の影響でトルク制御の精度が低下するおそれがあるが、モータと制御装置とを一体化することで、このような電圧降下による影響を向陵する必要がなく、目標トルクに対して精度良く制御を行うことができる。また、制御応答性も向上する。
以下、本発明を車両のシフトレンジ切換機構に適用した一実施形態を図面に基づいて説明する。
まず、本実施形態のシフトレンジ切換機構1の構成を、図1に基づいて説明する。シフトレンジ切換機構1は、運転者によるシフトレバー(図示略)の操作に応じてシフトレンジを切り換えるものであり、駆動源としての切換駆動装置3を備えている。なお、以下の説明では、説明の簡略化のため、シフトレンジ切換動作全体のうちパーキングレンジ(以下「Pレンジ」と略す)とそれ以外のレンジ(以下「NotPレンジ」と略す)のいずれか一方に切り換える動作に絞って説明する。
切換駆動装置3の詳細構成(図2等参照)は後述するが、概略を説明すると、スイッチトリラクタンスモータ(SRモータ)33と、出力シャフト11と、SRモータ33の駆動を制御する電子制御装置(ECU)であるモータ制御ECU35とを備えている。また、切換駆動装置3は、出力シャフト11の回転位置を検出するための出力シャフトセンサ(図示略)を備えている。
切換駆動装置3の出力シャフト11には、ディテントレバー12が固定されている。このディテントレバー12にはL字形のパーキングロッド15が固定され、このパーキングロッド15の先端部に設けられた円錘体16がロックレバー19に当接している。このロックレバー19は、円錘体16の位置に応じて軸20を中心にして上下動してパーキングギヤ18をロック/ロック解除するようになっている。パーキングギヤ18は、自動変速機(図示略)の出力軸に設けられ、このパーキングギヤ18がロックレバー19によってロックされると、車両の駆動輪が回り止めされた状態(パーキング状態)に保持される。
一方、ディテントレバー12をPレンジとNotPレンジに保持するためのディテントバネ21が支持ベース14に固定されており、このディテントバネ21の先端には、係合部21aが設けられている。そして、ディテントバネ21の係合部21aがディテントレバー12のPレンジ保持凹部22に嵌まり込んだときに、ディテントレバー12がPレンジの位置に保持され、ディテントバネ21の係合部21aがディテントレバー12のNotPレンジ保持凹部23に嵌まり込んだときに、ディテントレバー12がNotPレンジの位置に保持されるようになっている。
Pレンジでは、パーキングロッド15がロックレバー19に接近する方向に移動して、円錘体16の太い部分がロックレバー19を押し上げてロックレバー19の凸部19aがパーキングギヤ18に嵌まり込んでパーキングギヤ18をロックした状態となる。これにより、自動変速機の出力軸(駆動輪)がロックされた状態(パーキング状態)に保持されることとなる。
一方、NotPレンジでは、パーキングロッド15がロックレバー19から離れる方向に移動して、円錘体16の太い部分がロックレバー19から抜け出てロックレバー19が下降し、それによって、ロックレバー19の凸部19aがパーキングギヤ18から外れる。これにより、パーキングギヤ18のロックが解除され、自動変速機の出力軸が回転可能な状態(走行可能な状態)に保持されることとなる。
次に、切換駆動装置3の構成について、図2に基づいて説明する。図2に示す如く、切換駆動装置3は、主としてSRモータ33と、出力シャフト11と、モータ制御ECU35とを備えている。モータ制御ECU35は、SRモータ33を駆動制御するための各種回路等が形成されている(図4参照。詳細は後述。)。
SRモータ33は、図2及び図3に示す如く、ステータ36とロータ38が共に突極構造を持つモータで、永久磁石が不要で構造が簡単であることや、高温環境下での使用や高速回転が可能であるなどの利点があり、本実施形態のようなシフトレンジ切換機構1のほか、電気自動車など、広い分野でその利用が普及しつつある。
円筒状のステータ36の内周部には12個の突極36aが等間隔に形成され、これに対するロータ38の外周部には8個の突極38aが等間隔に形成されており、ロータ38の回転に伴って、ロータ38の各突極38aがステータ36の各突極36aと微小ギャップを介して順番に対向するようになっている。ステータ36の12個の突極36aには、U相コイル5、V相コイル6、W相コイル7がこの順番で各々4つ巻回されている。つまり、図3から明らかなように、ステータ36の外周に沿って、U相コイル5→V相コイル6→W相コイル7→U相コイル5→V相コイル6→W相コイル7→U相コイル5→・・・という順番で、各相コイルが各々4つの突極36aに巻回されているのである。各相の4つのコイルは、図4に示すように並列接続されている。そのため、例えばU相コイル5への通電時は、4つのU相コイル5に並列通電されることになる。V相、W相についても同様である。
また、切換駆動装置3は、SRモータ33とモータ制御ECU35とがケース31及びカバー32からなる筐体内に一体的に収納された構成となっている。つまり、本実施形態の切換駆動装置3は、SRモータ33とこれを駆動制御するためのモータ制御ECU35とが一体化された、機電一体型の構成となっている。そして、SRモータ33のロータ38のシャフト39は、ケース31内において、減速機構41を介して出力シャフト11に連結されている。
モータ制御ECU35は、CPU51や駆動素子56,57,58等(図4参照)などの、SRモータ33の駆動を制御するための各種回路を構成する複数の部品44が、回路基板43上に搭載されてなるものである。また、切換駆動装置3には、当該切換駆動装置3の製造工場出荷時に外部検査装置66(図4参照。詳細は後述。)と接続したり、あるいは車両に搭載された際に車両内の他の装置と相互接続するための外部接続コネクタ46が備えられている。この外部接続コネクタ46は、一端が回路基板43上の所定の配線パターンに接続された端子ピン47を複数有し、これら各端子ピン47によって、モータ制御ECU35と外部の接続対象とが電気的に接続される。
次に、切換駆動装置3の電気的構成について、図4に基づいて説明する。図示の如く、SRモータ33は、並列接続された4つのU相コイル5と、並列接続された4つのV相コイル6と、並列接続された4つのW相コイル7とが、Y結線されている。そして各相のコイルの一端はいずれも電源電圧Vb(+B)に接続され、他端はいずれもモータ制御ECU35内のスイッチング素子に接続されている。
即ち、モータ制御ECU35内には、各相コイル5,6,7への通電を個別にON・OFFするためのスイッチング素子としての、三つのFET56,57,58が設けられている。このうち一つのFET56は、ドレインがU相コイル5の一端に接続されている。また、別のFET57は、ドレインがV相コイル6の一端に接続されている。また、残り一つのFET58は、ドレインがW相コイル7の一端に接続されている。そして、各FET56,57,58のゲートはいずれもモータ駆動回路55に接続されている。また、各FET56,57,58のソースはいずれも、電流検出用抵抗59の一端に接続されると共に電流検出回路60にも接続されている。電流検出用抵抗59の他端は接地電位に接続されている。
従って、U相コイル5への通電は、このU相コイル5に接続されたFET56がONすることにより行われ、このFET56がONすると、車両に搭載されたバッテリ(図示略)を電源(電圧電圧Vb)として4つのU相コイル5への通電が行われる。同様に、V相コイル6への通電は、このV相コイル6に接続されたFET57がONすることにより行われ、このFET57がONすると、車両に搭載されたバッテリを電源(電圧電圧Vb)として4つのV相コイル6への通電が行われる。同様に、W相コイル7への通電は、このW相コイル7に接続されたFET57がONすることにより行われ、このFET57がONすると、車両に搭載されたバッテリを電源(電圧電圧Vb)として4つのW相コイル7への通電が行われる。
また、電流検出用抵抗59は、後述する初期組付け誤差学習処理(図6)やモータ温度学習処理(図8)においてSRモータ33のいずれかの相のコイルへ通電を行った際にその通電電流値を検出するためのものであり、この電流検出用抵抗59の一端(接地側とは反対側)の電圧値(通電電流の値に応じた電圧値)が電流検出回路60に入力される。そして、入力された電圧値はこの電流検出回路60で適宜増幅されて、A/D変換器61へ入力される。
なお、本実施形態における、電流検出用抵抗59による通電電流の検出は、図16で説明した従来の通電電流検出とはその目的が異なるものである。即ち、従来の通電電流検出は、SRモータの電流FB制御を目的として行ったものであるのに対し、本実施形態では、電流FB制御を目的とはしていない。本実施形態では、後述するように、工場出荷時におけるSRモータ33のインピーダンス補正量αやトルク補正係数Aの算出、さらには実際に車両に搭載されて使用される際のモータ温度学習(SRモータ33の温度算出)の際に使用されるのであるが、これらについての詳細は後述する。
モータ制御ECU35は、SRモータ33の制御全般を統括するCPU51、各種制御プログラムやSRモータ33の各相コイル5,6,7への通電パターンを導出する際に用いられる各種マップなどが格納されたROM52、CPU53による各種演算の実行時に用いられるRAM53、各種プログラムや上述したインピーダンス補正量α,トルク補正係数Aなどの各種データが格納される、電気的に書き換え可能な不揮発性メモリであるEEPROM54、CPU51の指令に基づいて各FET56,57,58のゲートを駆動する(各FETをON・OFFさせる)ことによりSRモータ33を駆動するモータ駆動回路55、電源電圧Vb(バッテリの電圧)を検出する電源電圧検出回路62、この電源電圧検出回路62にて検出された検出値(電源電圧Vbに応じた電圧値)や電流検出回路60の出力電圧をA/D変換するA/D変換器61などを備え、これらがデータバス63を介して相互接続されている。また、データバス63には外部インタフェース64が接続されており、この外部インタフェース64を介して外部検査装置66とモータ制御ECU35が接続可能に構成されている。このような構成により、モータ制御ECU35は、図示しないシフト切換え制御部からの指令や、図示しないエンコーダ等のモータの作動に関する情報を検出するセンサ等の情報から、各相コイル5,6,7への通電を制御し、SRモータ33の駆動を制御する。尚、本実施形態では、トルク制御に特化し、以下説明するものであり、他の制御に関する説明は割愛する。
外部検査装置66は、後述するように、切換駆動装置3が工場にて製造され出荷される際(工場出荷時)にインピーダンス補正量α及びトルク補正係数Aを算出する際に用いられる。インピーダンス補正量αは、SRモータ33のコイルのインピーダンス(本例ではU相コイル5のインピーダンス)に関し、同じ温度環境下における、実際の値と設計上の中心値R0との差を表すものである。言い換えれば、コイルの巻数や径について設計上の中心値と実際の値とのバラツキを補正するためのものである。また、トルク補正係数Aは、同じ温度環境下において、SRモータ33に所定パターン(本例では図17に示した従来の通電パターン)で実際に通電したときの実際の発生トルクと設計上のトルク中心値との比を表すものである。言い換えれば、SRモータ33を構成する各部品(ステータ36やロータ38など)の寸法バラツキやこれら各部品の組み付け状態における部品相互間の寸法バラツキなどの組み付けバラツキを補正するためのものである。
既述の通り、SRモータ33の周囲温度によって各相コイル5,6,7のインピーダンスは変化する。また、インピーダンスが一定であっても電源電圧Vbが変化すると当然ながら電流値も変化する。そのため、温度や電源電圧に関係なく一律に目標トルクを設定し、その目標トルクが得られるような通電パターンで通電を行うと、実際に得られるトルクは温度や電源電圧に応じて異なるものとなり、所望のトルクが得られなかったり或いは必要以上の過大なトルクが発生したりするおそれがある。
そこで本実施形態では、SRモータ33の温度Tを実際に検出して、検出された実際の温度Tに応じた適切な目標トルクを導出し、その目標トルクに応じた通電パターンにてSRモータ33への通電を行うようにしている。そして、温度検出にあたっては、温度センサなどの検出用部材を別途設けるのではなく、SRモータ33に実際に通電(検査用通電)することによってそのときの実際のインピーダンスRを算出し、その算出されたインピーダンスRを用いて温度Tを算出するようにしている。この温度Tの算出の際に、インピーダンス補正量αが用いられるのである。
また、同じ環境であっても、モータの個体差(ロータやステータ等の各部材の寸法バラツキや組み付け時の各部材間の寸法バラツキなど)によって、発生するトルクも当然ながらモータ毎に異なる。そのため、同じ目標トルクを設定しても実際に発生するトルクはモータによって異なる。
そこで本実施形態では、温度T及び電源電圧Vbに応じて目標トルクを導出する際、まず、SRモータ33を構成する各部品の寸法や組付け寸法が設計中心値通りの理想的な状態である場合の目標トルクを目標トルク仮値TR0として導出する。そして、この目標トルク仮値TR0をトルク補正係数Aによって補正したものを、真の目標トルクである目標トルク真値TRとしている。
なお、図示は省略したが、SRモータ33には、ロータ38の回転位置を検出するためのエンコーダが設けられている。CPU51は、そのエンコーダによる検出信号に応じてSRモータ33の通電相を順次切り換え、ロータ38を回転駆動するようにしている。
次に、本実施形態の切換駆動装置3に対し、工場出荷時から実際に車両に搭載されて使用されるに至って行われる各種処理について、図5に基づいて説明する。図5に示す如く、まず、製造工場において製造された切換駆動装置3は、その工場出荷時に、初期組付け誤差学習が行われる。この初期組付け誤差学習は、モータ制御ECU35に外部検査装置66を接続して、モータ制御ECU35と外部検査装置66との協働により行われる。また、この初期組付け誤差学習処理は、モータ制御ECU35を予め設定した設計上の基準温度T0の環境下で行われる。その処理の詳細を図6に示す。
図6は、初期組付け誤差学習処理を示すフローチャートである。この初期組付け誤差学習処理は、モータ制御ECU35と外部検査装置66とを相互に接続すると各々において実行開始されるものであり、このうちモータ制御ECU35において実行される初期組付け誤差学習処理は定期的に実行されるものである。
外部検査装置66においてこの初期組付け誤差学習処理が開始されると、まず検査モードとして「mode=1」を示す指令をモータ制御ECU35へ出力し(S310)、モータ制御ECU35からインピーダンス補正量αの算出通知が入力されるのを待つ(S320)。
一方のモータ制御ECU35においては、初期組付け誤差学習処理が開始されると、まず自身の検査モードが「mode=1」に設定されているか否かが判断される(S110)。モータ制御ECU35は、外部検査装置66から検査モードの設定指令が入力されるとその指令に従って自身の検査モードを設定するよう構成されている。そのため、上述した外部検査装置66からの「mode=1」の設定指令によって自身が「mode=1」に設定されているならば(S110:YES)、SRモータ33のコイルへの通電を行う(S120)。
ここでの通電は、本実施形態では、図7に示す基準通電パターンにて行われる。即ち、あくまでも出荷前の学習用として、U相コイル5に対する通電を一定期間行うだけであり、CPU51がモータ駆動回路55へ基準通電パターンに応じた指令を出力することによってモータ駆動回路55がFET56をONさせるのである。なお、通電対象をU相コイル5としたのはあくまでも一例であり、V相コイル6にしてもよいしW相コイル7にしてもよい。
そして、この基準通電パターンによる通電中にその通電電流I0を検出し(S130)、さらに電源電圧Vbを検出する(S140)。つまり、電流検出回路60及び電源電圧検出回路62によって検出されA/D変換器61によってA/D変換された通電電流I0及び電源電圧Vbを取り込み、RAM53へ一時的に格納しておくのである。そして、これら取り込んだ通電電流I0及び電源電圧Vbに基づき、コイル(ここではU相コイル5)の初期インピーダンスを算出する(S150)。この算出は、よく知られたオームの法則を用いてVb/I0の除算を行うことにより容易に行うことができる。
そして、算出された初期インピーダンスと基準インピーダンスR0との差分を、インピーダンス補正量αとして算出する(S160)。基準インピーダンスR0は、基準温度T0の環境下におけるU相コイル5の設計上のインピーダンス、即ち設計中心値である。
このようにして算出されたインピーダンス補正量αは、EEPROM54へ格納される(S170)。そして、外部検査装置66へ、インピーダンス補正量αを算出した旨の通知を出力して(S180)、検査モードを一旦リセットする(S190)。
外部検査装置66では、このS170によるモータ制御ECU35からの通知が入力されると(S320:YES)、検査モードとして「mode=2」を示す指令をモータ制御ECU35へ出力し(S330)、モータ制御ECU35から初期トルクが入力されるのを待つ(S340)。
インピーダンス補正量αの算出後、外部検査装置66からモータ制御ECU35へ「mode=2」の設定指令が入力されることにより、モータ制御ECU35の検査モードが「mode=2」に設定されたならば(S200:YES)、SRモータ33の各相コイル5,6,7への通電を行い、実際にSRモータ33を駆動させる(S210)。ここでの通電は、上述したS120での通電とは異なり、図17に示した従来の通電パターンによる通電である。つまり、従来と同様にSRモータ33への通電を行うのである。
そして、この通電中に、外部のトルク計測装置(図示略)を用いて、SRモータ33の初期トルクを計測する(S220)。つまり、基準温度T0の環境下で従来同様に通電を行った場合に発生するトルクを実測するのである。そして、トルク計測装置による初期トルクの計測後は、その計測された初期トルク値を外部検査装置66に入力する。
外部検査装置66では、初期トルクが入力されると(S340:YES)、予め設定された基準トルクと入力された初期トルクとの比をトルク補正係数Aとして算出する(S350)。基準トルクは、基準温度T0の環境下において図17の通電パターンで通電した場合における設計上のトルク値、即ち設計中心値である。外部検査装置66は、算出されたトルク補正係数Aをモータ制御ECU35へ出力するとともに(S360)、初期組付け学習処理の終了を示す終了通知がモータ制御ECU35から入力されるのを待つ(S370)。
モータ制御ECU35では、外部検査装置66からトルク補正係数Aが入力されると(S230:YES)、その入力されたトルク補正係数AをEEPROM54へ格納する(S240)。そして、外部検査装置66へ終了通知を出力し(S250)、検査モードをリセットして(S190)、この初期組付け誤差学習処理を終了する。外部検査装置66においても、モータ制御ECU35からの終了通知が入力されると(S370)、初期組付け誤差学習処理を終了する。終了後はもちろん、モータ制御ECU35から外部検査装置66を切り離す。
これにより、モータ制御ECU35のEEPROM54には、当該モータ制御ECU35と一体化されたSRモータ33に対応したインピーダンス補正量αおよびトルク補正係数Aが格納された状態となる。そして、切換駆動装置3は、このようにα値及びA値が格納された状態で工場から出荷されることとなる。
図5に戻り、工場出荷時に初期組付け誤差学習が行われた切換駆動装置3は、市場に出て実際に車両に搭載され、車両において使用されることになるが、その実際の使用時に、モータ温度学習及び通電パターン算出が行われる。
まず、モータ温度学習について、図8に基づいて説明する。図8は、モータ制御ECU35のCPU51にて実行される、モータ学習処理を示すフローチャートである。モータ制御ECU35では、CPU51がROM52からこのモータ学習処理プログラムを読み出し、このプログラムに従って処理を実行する。このモータ学習処理は、車両のイグニションスイッチのON後、一定時間間隔で継続して行われるものである。
この処理が開始されると、まず、スタータ信号がONであるか否か、即ち、車両のエンジンを始動させるための図示しないスタータ(始動用電動機)が動作中であるか否かが判断される(S410)。モータ制御ECU35には、図4では図示を省略したものの、上記スタータ信号も入力されるよう構成されている。
このとき、スタータ信号がONならば、スタータが動作中で電源電圧Vbが低下している(安定していない)ことから、このモータ温度学習処理を一旦終了する。一方、スタータが動作しておらずスタータ信号がOFFである場合は(S410:NO)、電源電圧Vbを検出する(S420)。そして、この検出した電源電圧Vbが正常か否かを判断する(S430)。
本実施形態では、正常時の電源電圧Vbは12Vであるため、例えば6〜16Vの範囲内にあるか否かをもって正常かどうかの判断を行う。その判断対象も、電源電圧Vbをただ一つだけ検出してそれに対して正常か否かを判断してもよいし、所定の間隔で複数の電源電圧Vbを検出してそれら全てが上記範囲内にあるか否か、或いはそれらの平均値が上記範囲内に有るか否かによって判断するようにしてもよい。
検出した電源電圧Vbが正常でなければ(S430:NO)、このモータ温度学習処理を一旦終了するが、検出した電源電圧Vbが正常ならば(S430:YES)、その電源電圧VbをRAM53へ一時的に格納する(S440)。そして、図7に示した基準通電パターンにてU相コイル5への通電を行い(S450)、そのときの通電電流I0を検出して(S460)、その検出した通電電流I0をRAM53へ一時的に格納する(S470)。
このようにして通電電流I0及び電源電圧Vbが得られたら、その得られた各値に基づき、U相コイル5のインピーダンスRを算出する(S480)。この算出も、よく知られたオームの法則を用いてVb/I0の除算を行うことにより容易に行うことができる。この結果得られたインピーダンスRは、SRモータ33が実際に置かれている環境(温度)下での当該SRモータ33の実際のインピーダンス(詳しくはU相コイル5の実際のインピーダンス)である。
そして、上記のインピーダンスRを用いて、SRモータ33の温度Tを算出する(S490)。具体的には、設計上の基準温度T0でのU相コイル5の基準インピーダンスをR0、温度係数をβ、算出すべき温度をTとしたとき、インピーダンスRは下記式(3)にて表される。
R=(R0+α)*{1+β(T−T0)}・・・(3)
この式(3)は、インピーダンスと温度との関係を表す周知の式であり、この式(3)を用いることで、コイルの実際の温度Tを演算により得ることができる。例えば、上記式(3)を左辺がTだけの式に変形すれば、その変形後の式を用いて温度Tを容易に算出できる。
なお、U相コイル5の基準インピーダンスが仮に設計上の中心値R0と一致しているならば、上記式(3)の右辺中のαは不要なのであるが、既述のように、実際にはコイルの巻数や径などの各種バラツキによって、実際の基準インピーダンスは設計上の中心値R0とは一致しない。そのため、工場出荷時の初期組付け誤差学習処理(図6)によって算出したインピーダンス補正量αを用いて基準インピーダンスを補正しているのである。
このようにしてU相コイル5の温度T(即ち算出した時点での実際の温度)が得られたら、その得られた温度TをSRモータ33の温度TとしてRAM53へ格納し(S500)、一旦このモータ温度学習処理を終了する。そして、モータ温度学習処理が終了すると、引き続き図9の通電パターン算出処理に移行する。
次に、その通電パターン算出処理について、図9に基づいて説明する。通電パターン算出処理が開始されると、まず、RAM53に格納されているモータ温度T及び電源電圧Vbを取得する(S610、S620)。そしてこれらモータ温度T及び電源電圧Vbに基づき、図10の目標トルク参照マップを参照することにより、仮の目標トルクである目標トルク仮値TR0を導出する(S630)。
目標トルク参照マップは、図10に示すように、電源電圧Vbの値毎に、温度Tに対する目標トルク仮値TR0との関係を示したものである。この目標トルク参照マップは、SRモータ33の温度T及び電源電圧Vbの条件を変えながら図17に示した従来の通電パターンにて通電したときのSRモータ33のトルクを計測し、その計測結果を目標トルク仮値TR0としたものである。即ち、例えば90℃の温度環境の下で電源電圧Vbを12Vとして通電したときのトルクの実測値が16.9N・mであったため、その実測トルク値をそのまま、当該温度環境及び電源電圧のときの目標トルク仮値TR0としたのである。つまり、従来と同様の通電パターンで得られるトルク値をとりあえずの仮の目標トルクとして設定するためのマップである。
但し、必要以上のトルクが発生してシフトレンジ切換機構1に故障等の悪影響を及ぼすことのないよう、目標トルク仮値TR0には上限値(本実施形態では20N・m)を定め、この上限値以下の範囲内で目標トルク仮値TR0を設定するようにしている。そのため、例えば電源電圧Vb=14Vの場合、温度Tが90℃より低くなると実測トルクは20N・mを超えてどんどん上昇していくのであるが、20N・mを超える分については全て、20N・mに制限されている。このようにして得られた目標トルク参照マップを用いることで、電源電圧Vb及びモータ温度Tに応じた適切な目標トルク仮値TR0が導出されることとなる。なお、図10では、電源電圧Vbとして8V,10V,12V,14V,16Vの5種類のみを図示しているが、電源電圧Vbがこれ以外の値の場合は、上記5種類のいずれか2つ以上の特性を用いたリニア補完等によって、目標トルク仮値TR0を導出すればよい。
図10の目標トルク参照マップにより目標トルク仮値TR0の導出後は、EEPROM54に格納されているトルク補正係数Aを取得する(S640)。そして、このトルク補正係数Aを用いて上記の目標トルク仮値TR0を補正することにより、真の目標トルクである目標トルク真値TRを算出する(S650)。この目標トルク真値TRは、下記式(4)により容易に算出できる。
TR=A*TR0・・・(4)
目標トルク真値TRの算出後は、図12に示す通電パターン参照マップに基づいて、SRモータ33の各相コイル5,6,7に対する実際の通電パターンを導出する(S660)。
ここで、本実施形態のSRモータ33の通電パターンについて、図11に基づいて具体的に説明する。図11は、本発明の実通電パターンに相当するものであって、一回の通電期間中(図17でいえば各相がONされる通電期間)の通電パターンを示すものであり、各相コイル5,6,7に共通のものである。
図示の如く、従来は一回の通電期間中は連続してONしていたのに対し、本実施形態では、通電期間全体のうち、通電開始から所定の過励磁通電時間ST0が経過するまでは連続通電(ON)し、その後、通電開始時から通電タイミングST2が経過した時点からは、所定のデューティ比にてデューティ波形周期をST1とするデューティ通電を行う。
本実施形態では、デューティ通電期間におけるデューティ比およびそのデューティ波形周期ST1は、電源電圧Vbやモータ温度Tに関係なく一定であるものとし、過励磁通電時間ST0を、電源電圧Vbやモータ温度Tに応じて可変とするようにしている。なお、過励磁通電時間ST0の終了時からデューティ通電開始時までの期間は、本実施形態では10msec一定としている。つまり、過励磁通電時間ST0が終了してから10msec経過した時点が、デューティ通電の開始タイミング(即ち通電タイミングST2)である。そのため、S660における通電パターンの導出処理は、実質的には、そのときの電源電圧Vb及びモータ温度Tに対応した過励磁通電時間ST0を図12の通電パターン参照マップから導出する処理、ということになる。
図12の通電パターン参照マップは、電源電圧Vb毎に、目標トルク真値TRに対する過励磁通電時間ST0の関係を示したものである。このマップは、実際にSRモータ33へ通電を行ってそのときのトルクを計測しつつ、トルク値が通電開始から目標トルク真値TRに到達するまでに要した時間を計測して、その計測結果に基づいて得られたものである。なお、ある一定のマージンを見込んで、上限値(10msec)と下限値(4msec)を設定しており、この範囲内に収まるようなマップとしている。これにより、いかなる条件の下でも過不足ない過励磁通電時間ST0を設定でき、必要十分なトルクを発生させることができる。
このようにして通電パターンが得られたら、その得られた通電パターンに従って、各相コイル5,6,7への実際の通電が行われる。具体的には、図13に示すような通電パターンにて通電が行われる。この通電により、シフトレンジ切換機構1が適切に駆動されることとなる。
以上説明した本実施形態のシフトレンジ切換機構1によれば、SRモータ33の温度Tと電源電圧Vbに応じた適切な目標トルクを設定することで、温度T及び電源電圧Vbに応じた適切な通電制御を行うことができるため、SRモータ33の使用温度や電源電圧Vbの大小にかかわらず、SRモータ33に適切なトルクを発生させることができる。そのため、シフトレンジ切換機構1を構成する各部品に過大な負荷をかけるおそれがなく、製品の品質・信頼性が向上する。
しかも、温度Tを検出する手法として、半導体温度センサ等の検出器を設けることなく、コイルのインピーダンスRを算出してその値を元に数値演算により温度Tを算出するようにしている。そのため、物理的な構成部品を増やすことなく、しかも正確に、温度Tを検出することが可能となる。
また、温度Tを算出する際には、既述の通り、算出対象のコイルの基準温度T0での基準インピーダンスR0(設計中心値)が用いられるが、その値をインピーダンス補正量αによって補正し、その補正後の基準インピーダンス(R0+α)を用いて温度Tを算出するようにしている。そのため、SRモータの個体差(コイルの巻数や径など)がこの補正により吸収され、より正確に温度Tの算出を行うことが可能となる。そして、このように正確に算出された温度Tを用いて目標トルクを設定することで、SRモータ33を精度良く制御することが可能となる。
しかも、目標トルク(目標トルク仮値TR0)を設定するにあたっては、図11の目標トルク参照マップを用いるようにしているため、適切な目標トルクを容易に設定することができる。
更に、本実施形態では、温度T及び電源電圧Vbに応じた適切な目標トルクを目標トルク参照マップから導出するようにしている。しかも、目標トルク参照マップにて導出された目標トルクはあくまでも仮の値(目標トルク仮値TR0)として位置付け、この目標トルク仮値TR0をトルク補正係数Aによって補正することで、真の目標トルクである目標トルク真値TRを得るようにしている。
つまり、SRモータ33の個体差(寸法バラツキなど)をトルク補正係数Aによって吸収することで、個々のSRモータ33に対応したより適切な目標トルクを設定するようにしている。そのため、SRモータ33の個体差に拘わらずより適切な通電を行うことが可能となる。
また、シフトレンジ切り換えのための実際の通電時(SRモータ33の駆動時)には各相コイル5,6,7への通電をオーバーラップさせるものの(図13参照)、インピーダンス補正量α算出時の通電(図6のS130)や温度T算出時の通電(図8のS460)はいずれも、いずれか一つの相(本実施形態ではU相コイル5)への単独通電であるため、電流検出用抵抗59及び電流検出回路60は各相共通の一つだけで済む。そのため、モータ制御ECU35の大型化を大幅に抑制することができ、ひいては、切換駆動装置3全体の小型化が可能となる。
更に、本実施形態における各相の通電期間における通電パターンは、通電期間の開始から過励磁通電時間ST0が経過するまでは連続的に通電し、この過励磁通電時間ST0が終了して一定期間経過後(通電期間の開始から通電タイミングST2経過後)は所定のデューティ比にてデューティ通電するようにしている。そして、過励磁通電時間ST0を、目標トルク真値TR及び電源電圧Vbに応じて通電パターン参照マップに基づいて導出するようにしている。そのため、SRモータ33の温度Tや個体差に応じた適切な通電パターンをより容易に導出できるのに加え、より迅速に所望のトルクを得ることができる(過励磁通電時間ST0による)と共に必要以上のトルクが発生しないように抑制することもできる(デューティ通電による)ため、トルク変動の少ない、より適切なトルク制御が実現される。
また、車両の長期間使用による熱ストレスによって、コイルそのものや、SRモータ33と電源を接続するハーネス、コネクタ等の外部部品の電気的特性も変化するが、本実施形態の切換駆動装置3によれば、結果として、そういった外部要因を加味した適切な電流を流すことができる。そのため、車両部品の経時変化に応じたトルク制御が可能となる。
なお、EEPROM54は本発明の第1記憶手段及び第2記憶手段に相当し、図10の目標トルク参照マップは本発明の目標トルクマップに相当し、図12の通電パターン参照マップは本発明の実通電パターンマップに相当し、インピーダンス補正量αは本発明の基準インピーダンス補正量に相当し、トルク補正係数Aは本発明のトルク補正量に相当する。
また、図8のモータ温度学習処理は本発明の温度検出手段が実行する処理に相当する。また、図6のS120及び図8のS450はいずれも本発明の基準通電手段が実行する処理に相当し、図6のS150及び図8のS480はいずれも本発明のインピーダンス算出手段が実行する処理に相当し、図6のS160は本発明の基準インピーダンス補正量算出手段が実行する処理に相当し、図6のS350は本発明のトルク補正量算出手段が実行する処理に相当し、図9のS630は本発明の目標トルク設定手段が実行する処理に相当し、図9のS640〜S650の処理は本発明の目標トルク補正手段が実行する処理に相当し、図9のS660の処理は本発明の実通電手段が実行する処理に相当する。
以上、本発明の実施の形態について説明したが、本発明の実施の形態は、上記実施形態に何ら限定されるものではなく、本発明の技術的範囲に属する限り種々の形態を採り得ることはいうまでもない。
例えば、図6のS120の通電(インピーダンス補正量α算出時の通電)及び図8のS450の通電(モータ温度T算出時の通電)はいずれも、図7に示す基準通電パターン、即ち、各相コイル5,6,7のうちいずれか一相(本例ではU相)にのみ通電するようにしたが、これはあくまでも一例であり、図14に示すように、各相コイル5,6,7にそれぞれ通電を行うようにしてもよい。つまり、各相毎にインピーダンス補正量αを算出し、それに基づいて各相毎に個別に温度Tを算出するのである。
このように各相毎に温度Tを算出した場合は、例えばその平均値をとったり或いは中間値をとって、それに応じた目標トルク仮値TR0を目標トルク参照マップから導出するようにするとよい。このように各相毎に温度Tを算出してそれらに基づいて目標トルク仮値TR0を導出するようにすれば、温度学習の精度向上、ひいては目標トルク仮値TR0の算出精度の向上が可能となり、製品の品質や信頼性がより向上する。
また、上記実施形態では、SRモータ33の実際の通電パターンとして、図11を用いて説明したように、過励磁通電時間ST0のみを可変とするようにし、その他のデューティ波形周期ST1や通電タイミングST2はいずれも固定値としたが、これはあくまでも一例であり、過励磁通電時間ST0とデューティ波形周期ST1の双方を可変とするようにしてもよい。
また例えば、図15に示すように、過励磁通電時間ST0は固定値として、その後のデューティ通電期間におけるデューティ比ST3を可変とするようにしてもよい。その場合の変化の傾向は、図12に示した過励磁通電時間ST0の変化傾向と同様のものとすることができる。或いは、過励磁通電時間ST0とデューティ比ST3の双方を可変とするようにしてもよい。
また、図10に示した目標トルク参照マップは、温度と目標トルク仮値TR0が反比例する傾向であったが、これもあくまでも一例であって、上限値(20N・m)より低い値であって、且つ、実際に発生させることが可能なトルク値を目標トルク仮値TR0として設定できる限り、種々のマップを用いることができる。
更に、上記実施形態では、インピーダンス補正量αは「差分」、トルク補正係数Aは「比」としたが、これもあくまでも一例であって、差分又は比のどちらでもよい。
尚、上記実施形態では、温度の検出を、SRモータ33あるいは各相コイル5,6,7の温度を直接検出せず、温度に関するパラメータから間接的に求めるようにしているが、SRモータ33あるいは各相コイル5,6,7の温度を直接検出すべく、SRモータ33近傍あるいは各相コイル5,6,7の近傍に温度センサを設ける、あるいはモータ制御ECU35内部あるいはその近傍に温度センサを設けて、SRモータ33或いは各相コイル5,6,7の温度を直接検出する、あるいはSRモータ33或いは各相コイル5,6,7の温度を代用する温度を直接検出するようにしても良い。この場合、図6等に示される初期出荷時の検査工程や、図8等に示される温度算出の制御フローを無くす、あるいは簡略化することができ、作業性向上や、CPU51の演算負荷低減、メモリ容量に対してメリットがあるなど、他の効果が期待できる。
本実施形態のシフトレンジ切換機構の概略構成を示す斜視図である。 切換駆動装置の概略構成を示す断面図である。 SRモータの構成を説明するための説明図である。 切換駆動装置の電気的構成を示す説明図である。 工場出荷時から実際に使用される際に至って切換駆動装置において実行される処理の流れを示す説明図である。 工場出荷時に行われる初期組付け誤差学習処理を示すフローチャートである。 インピーダンスを算出する際の基準通電パターンを示す説明図である。 車両搭載後に実行されるモータ温度学習処理を示すフローチャートである。 モータ温度学習処理の結果を用いて実行される通電パターン算出処理を示すフローチャートである。 目標トルク参照マップを示すグラフである。 通電パターンの設定内容を示す説明図である。 通電パターン参照マップを示すグラフである。 本実施形態のSRモータ全体の通電パターンを示す説明図である。 基準通電パターンの変形例を示す説明図である。 通電パターンの設定内容の変形例を示す説明図である。 従来のモータ制御回路の概略構成を示す説明図である。 従来のSRモータ全体の通電パターンを示す説明図である。
符号の説明
1…シフトレンジ切換機構、3…切換駆動装置、5…U相コイル、6…V相コイル、7…W相コイル、11…出力シャフト、31…ケース、32…カバー、33…SRモータ、35…モータ制御ECU、36…ステータ、36a,38a…突極、38…ロータ、39…シャフト、41…減速機構、44…部品、46…外部接続コネクタ、47…端子ピン、51…CPU、52…ROM、53…RAM、54…EEPROM、55…モータ駆動回路、56、57,58…MOSFET、59…電流検出用抵抗、60…電流検出回路、61…A/D変換器、62…電源電圧検出回路、63…データバス、64…外部インタフェース、66…外部検査装置

Claims (14)

  1. 車両に搭載され、ロータと、複数相のコイルが配設されたステータとを有し、通電対象の相を順次切り換えながら前記コイルへの通電を行うことで前記ロータを回転させるよう構成されたモータの駆動を制御する車載用モータ制御装置であって、
    前記モータの温度を検出する温度検出手段と、
    前記モータの電源電圧を検出する電源電圧検出手段と、
    前記温度検出手段により検出された前記モータの温度と前記電源電圧検出手段により検出された前記モータの電源電圧に基づいて、前記モータが発生すべき目標トルクを設定する目標トルク設定手段と、
    前記目標トルク設定手段にて設定された前記目標トルクが得られるように前記モータへの通電を行う実通電手段と、
    を備えたことを特徴とする車載用モータ制御装置。
  2. 請求項1記載の車載用モータ制御装置であって、
    前記温度検出手段は、
    前記モータにおける何れか一つの相又は複数相のコイルへ相毎に所定の基準通電パターンで通電を行う基準通電手段と、
    前記複数相のコイルに共通で用いられ、前記基準通電手段による通電時の通電電流を検出する通電電流検出手段と、
    前記電源電圧検出手段により検出された電源電圧と前記通電電流検出手段により検出された通電電流に基づいて、前記基準通電手段により通電された前記コイルのインピーダンスを算出するインピーダンス算出手段と、
    前記インピーダンス算出手段により算出された前記コイルのインピーダンスと、予め設定された基準温度における当該コイルのインピーダンスの設計中心値である基準インピーダンスとに基づいて、当該コイルの温度を算出するコイル温度算出手段と、
    を備え、前記コイル温度算出手段により算出された温度を前記モータの温度として検出する
    ことを特徴とする車載用モータ制御装置。
  3. 請求項2記載の車載用モータ制御装置であって、
    前記基準温度の環境下における前記コイルの実際のインピーダンスと該コイルの前記基準インピーダンスとの比又は差分を基準インピーダンス補正量として算出する基準インピーダンス補正量算出手段と、
    前記基準インピーダンス補正量算出手段により算出された前記基準インピーダンス補正量を記憶する第1記憶手段と、
    を備え、
    前記コイル温度算出手段は、前記基準インピーダンスを前記第1記憶手段に記憶されている前記基準インピーダンス補正量によって補正し、該補正後の基準インピーダンスを用いて前記コイルの温度の算出を行う
    ことを特徴とする車載用モータ制御装置。
  4. 請求項3記載の車載用モータ制御装置であって、
    前記基準温度の環境下における前記コイルの実際のインピーダンスは、前記基準温度の環境下で前記基準通電手段、前記通電電流検出手段、前記インピーダンス算出手段を動作させることによって前記インピーダンス算出手段により算出されたものである
    ことを特徴とする車載用モータ制御装置。
  5. 請求項1〜4いずれかに記載の車載用モータ制御装置であって、
    前記目標トルク設定手段は、前記温度検出手段により検出された温度の環境下で前記電源電圧検出手段により検出された電源電圧を電源として前記モータへ通電を行った場合に得ることが可能なトルクの値であって、且つ、予め設定したトルク上限値以下の値を、前記目標トルクとして設定する
    ことを特徴とする車載用モータ制御装置。
  6. 請求項5記載の車載用モータ制御装置であって、
    前記モータの温度及び前記電源電圧の値毎に対応した前記目標トルクが設定された目標トルクマップを備え、
    前記目標トルク設定手段は、前記温度検出手段により検出された温度と前記電源電圧検出手段により検出された電源電圧に基づき、前記目標トルクマップを参照することにより、前記目標トルクを設定する
    ことを特徴とする車載用モータ制御装置。
  7. 請求項1〜6いずれかに記載の車載用モータ制御装置であって、
    前記基準温度の環境下で所定の通電パターンで通電を行った場合に前記モータに発生するトルクの設計中心値である基準トルクと、前記基準温度の環境下で実際に前記所定の通電パターンで通電を行ったときに計測して得られた前記モータの実測トルクとの比又は差分をトルク補正量として算出するトルク補正量算出手段と、
    前記トルク補正量算出手段により算出された前記トルク補正量を記憶する第2記憶手段と、
    前記目標トルク設定手段により設定された目標トルクを前記第2記憶手段に記憶されている前記トルク補正量によって補正する目標トルク補正手段と、
    を備え、
    前記実通電手段は、前記目標トルク補正手段による補正後の目標トルクが得られるように前記モータへの通電を行う
    ことを特徴とする車載用モータ制御装置。
  8. 請求項1〜7いずれかに記載の車載用モータ制御装置であって、
    前記実通電手段が前記相順に通電を行う際の各相の通電期間における通電パターンである実通電パターンが、前記電源電圧及び前記目標トルク毎に設定された実通電パターンマップを備え、
    前記実通電手段は、前記電源電圧検出手段により検出された電源電圧と前記目標トルク設定手段により設定された目標トルクに基づき、前記実通電パターンマップを参照することにより、該参照した実通電パターンに従って前記モータへの通電を行う
    ことを特徴とする車載用モータ制御装置。
  9. 請求項8記載の車載用モータ制御装置であって、
    前記実通電パターンは、前記通電期間の開始から一定期間連続して通電する連続通電期間と、該連続通電期間の後に所定のデューティ比にてデューティ通電するデューティ通電期間とを有し、
    前記実通電パターンマップには、前記連続通電期間及び前記デューティ通電期間の少なくとも一方が、前記電源電圧及び前記目標トルク毎に設定されている
    ことを特徴とする車載用モータ制御装置。
  10. 請求項1〜9いずれかに記載の車載用モータ制御装置であって、
    前記車両に搭載された内燃機関の始動用の電動機が動作中であるか否かを判断する始動用電動機動作判断手段を備え、
    前記電源電圧検出手段は、前記始動用電動機動作判断手段によって前記電動機が動作中であると判断されている間は、前記電源電圧の検出を行わない
    ことを特徴とする車載用モータ制御装置。
  11. 請求項1〜10いずれかに記載の車載用モータ制御装置であって、
    前記電源電圧検出手段によって検出された電源電圧が正常な値であるか否かを判断する電源電圧判断手段を備え、
    前記電源電圧判断手段によって正常な値ではないと判断されたならば、該判断された電源電圧を無効とする
    ことを特徴とする車載用モータ制御装置。
  12. 請求項1〜11いずれかに記載の車載用モータ制御装置であって、
    前記モータはスイッチトリラクタンスモータであることを特徴とする車載用モータ制御装置。
  13. 請求項1〜12いずれかに記載の車載用モータ制御装置であって、
    前記モータは、車両の自動変速機のシフトレンジを切り換えるシフトレンジ切換機構に搭載され、該シフトレンジの切り換えの際に必要なトルクを発生することにより該シフトレンジ切換機構を駆動する
    ことを特徴とする車載用モータ制御装置。
  14. 請求項1〜13いずれかに記載の車載用モータ制御装置であって、
    当該車載用モータ制御装置は、前記モータと一体化されて構成されていることを特徴とする車載用モータ制御装置。
JP2006237887A 2006-09-01 2006-09-01 車載用モータ制御装置 Pending JP2008061453A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006237887A JP2008061453A (ja) 2006-09-01 2006-09-01 車載用モータ制御装置
US11/896,602 US20080054835A1 (en) 2006-09-01 2007-09-04 Method and apparatus for controlling motor for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006237887A JP2008061453A (ja) 2006-09-01 2006-09-01 車載用モータ制御装置

Publications (1)

Publication Number Publication Date
JP2008061453A true JP2008061453A (ja) 2008-03-13

Family

ID=39150540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006237887A Pending JP2008061453A (ja) 2006-09-01 2006-09-01 車載用モータ制御装置

Country Status (2)

Country Link
US (1) US20080054835A1 (ja)
JP (1) JP2008061453A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014117153A (ja) * 2012-12-11 2014-06-26 Nidec Sr Drives Ltd 電気機械における抵抗の推定

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7950303B2 (en) * 2007-10-24 2011-05-31 Ford Global Technologies, Llc Transmission temperature sensing and control
US7991524B2 (en) * 2008-01-02 2011-08-02 GM Global Technology Operations LLC Temperature sensor diagnostics
US8544580B2 (en) 2010-05-18 2013-10-01 The Hong Kong Polytechnic University In-wheel switched reluctance motor drive
JP2012103497A (ja) * 2010-11-10 2012-05-31 Rohm Co Ltd レンズ制御装置及びこれを用いた撮像装置
JP5409680B2 (ja) * 2011-03-23 2014-02-05 トヨタ自動車株式会社 回転電機システム
JP5985178B2 (ja) * 2011-11-24 2016-09-06 Ntn株式会社 モータの制御装置
JP5477437B2 (ja) * 2011-12-06 2014-04-23 株式会社デンソー シフトレンジ切替装置
US9018878B2 (en) 2012-07-23 2015-04-28 Caterpillar Inc. Derating vehicle electric drive motor and generator components
KR102383699B1 (ko) * 2013-11-13 2022-04-06 브룩스 오토메이션 인코퍼레이티드 브러쉬리스 전기 기계 제어 방법 및 장치
US9413163B2 (en) * 2014-06-19 2016-08-09 Texas Instruments Incorporated Motor fault detector
US9242576B1 (en) * 2014-07-25 2016-01-26 GM Global Technology Operations LLC Method and apparatus for controlling an electric machine
JP6462503B2 (ja) * 2015-06-17 2019-01-30 株式会社ミツバ エンジンスタータシステム
KR20180057141A (ko) * 2016-11-22 2018-05-30 현대자동차주식회사 계자권선형 모터 제어 시스템 및 방법
CN113931038B (zh) * 2021-10-19 2023-01-13 湖南三一中益机械有限公司 摊铺机的输料***的卡料控制方法、装置及摊铺机

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5847042B2 (ja) * 1977-03-08 1983-10-20 株式会社日立製作所 異常検知方法
JP3089958B2 (ja) * 1994-12-06 2000-09-18 三菱自動車工業株式会社 電気自動車の制動制御装置
JP3710673B2 (ja) * 2000-03-17 2005-10-26 三菱電機株式会社 車載用電動機制御装置
JP4660941B2 (ja) * 2001-02-23 2011-03-30 アイシン精機株式会社 電動モータの制御装置
US7161314B2 (en) * 2002-10-07 2007-01-09 Denso Corporation Motor control apparatus having current supply phase correction
JP4554997B2 (ja) * 2004-06-10 2010-09-29 日産自動車株式会社 車両の駆動力制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014117153A (ja) * 2012-12-11 2014-06-26 Nidec Sr Drives Ltd 電気機械における抵抗の推定

Also Published As

Publication number Publication date
US20080054835A1 (en) 2008-03-06

Similar Documents

Publication Publication Date Title
JP2008061453A (ja) 車載用モータ制御装置
CN107444481B (zh) 旋转检测设备和使用其的电动助力转向设备
JP5958519B2 (ja) 制御装置、および、これを用いたシフトバイワイヤシステム
JP4333751B2 (ja) ブラシレスモータの駆動装置
US9573622B2 (en) Rotational angle detecting device and electric power steering device using the same
JP4783752B2 (ja) レゾルバ
US7960933B2 (en) Motor control apparatus
CN109328278B (zh) 档位范围控制装置
JP5831766B2 (ja) 制御装置、および、これを用いたシフトバイワイヤシステム
US20150239496A1 (en) Rotational angle detecting device and electric power steering device using the same
EP3613650B1 (en) Vehicle control apparatus
US11459025B2 (en) Detection unit
WO2017175843A1 (ja) 回転検出装置、および、これを用いた電動パワーステアリング装置
US10844952B2 (en) Shift range control apparatus
JP5929878B2 (ja) 制御装置、および、これを用いたシフトバイワイヤシステム
US10879820B2 (en) Control device for brushless DC servo motor
JP2012502614A (ja) 電気モータを制御するための装置および方法
JP5138962B2 (ja) モータ制御方法及びモータ制御装置
CN111591339B (zh) 控制电路以及马达控制装置
JP2009131069A (ja) モータ制御装置
JP4333661B2 (ja) 電動パワーステアリング装置
JP2004190839A (ja) 位置切換制御装置
JP2020202691A (ja) 直流分巻モータの制御装置及びモータユニット
JP2005020877A (ja) 車載モータ制御装置
JP2019207205A (ja) 回転検出装置、および、これを用いた電動パワーステアリング装置