JP2008060241A - 高抵抗希土類系永久磁石 - Google Patents

高抵抗希土類系永久磁石 Download PDF

Info

Publication number
JP2008060241A
JP2008060241A JP2006233804A JP2006233804A JP2008060241A JP 2008060241 A JP2008060241 A JP 2008060241A JP 2006233804 A JP2006233804 A JP 2006233804A JP 2006233804 A JP2006233804 A JP 2006233804A JP 2008060241 A JP2008060241 A JP 2008060241A
Authority
JP
Japan
Prior art keywords
rare earth
magnet
fluoride layer
particles
earth fluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006233804A
Other languages
English (en)
Other versions
JP4700578B2 (ja
Inventor
Satoru Hirozawa
哲 広沢
Sensuke Nozawa
宣介 野澤
Matahiro Komuro
又洋 小室
Yuuichi Satsuu
祐一 佐通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006233804A priority Critical patent/JP4700578B2/ja
Publication of JP2008060241A publication Critical patent/JP2008060241A/ja
Application granted granted Critical
Publication of JP4700578B2 publication Critical patent/JP4700578B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

【課題】 高い電気抵抗が付与されているとともに優れた磁気特性を発揮する高抵抗希土類系永久磁石とその製造方法を提供すること。
【解決手段】 本発明の高抵抗希土類系永久磁石は、希土類フッ化物を絶縁層として用い、磁石組成を最適化することで、相対密度が98%以上、固有保磁力が800kA/m以上、体積抵抗率が2μΩm以上という優れた特性を有する。
【選択図】 図1

Description

本発明は、エレベータ、電動自動車、ハイブリッド自動車などに使用される高速回転機を構成する、体積抵抗率の高い希土類系永久磁石に関する。
Nd−Fe−B系磁石に代表されるR−Fe−B系磁石(R:Yを含む希土類元素)などの希土類系磁石は、高い磁気特性を有していることから、スピンドルモータやステッピングモータなどのモータに多く用いられ、近年、モータの小型化に伴いその需要が増加している。
中でも、所定の組成を有する希土類系磁石合金を水素中で加熱して水素を吸蔵させた後、脱水素処理し、次いで冷却してから粉砕することによって得られる、磁気的異方性を有するHDDR(Hydrogenation-Disproportionation-Desorption-Recombination)磁石粉末(例えば特許文献1や特許文献2などを参照)を用いて所定形状に加熱成形したボンド磁石は、磁気特性に優れることから、これまで磁気的等方性希土類系ボンド磁石などが用いられていた製品への応用展開に注目が高まっている。
しかしながら、希土類系ボンド磁石は、樹脂バインダを含んでいるために希土類系焼結磁石に比較すれば磁気特性が低くなる。HDDR磁石粉末から高密度化バルク磁石を製造することができれば、その優れた磁気特性を有効に発揮させることができるので望ましいことであり、それについては特許文献3や特許文献4で提案されている。
ところが、高密度化バルク磁石は樹脂バインダを用いたボンド磁石に比べて電気抵抗が低い。一般的なNd−Fe−B系焼結磁石の体積抵抗率は1.2μΩm程度であるが、高密度化バルク磁石の体積抵抗率もこれと同等である。このため、モータに組み込んだ場合、渦電流損が増大し、モータ効率を低下させる問題が生じる。そこで、希土類系永久磁石の電気抵抗を高めて、この問題を解決する技術が各種提案されている。
例えば、特許文献5には、希土類系永久磁石用粉末粒子がSiO粒子およびAl粒子の少なくとも一方で結着された構造を有する希土類系永久磁石が提案されている。この提案に基づけば、磁石粒子の間にSiO粒子およびAl粒子の少なくとも一方が存在していると、磁石の電気抵抗を高めることができる。しかしながら、SiO粒子およびAl粒子を希土類系永久磁石に対して単独で加えると、磁石の電気抵抗を上昇させることができても、その一方で磁気特性の大幅な低下を引き起こしてしまう。これでは、中〜大出力モータには適用が難しい。
この問題を解決するために、磁石中で希土類フッ化物を絶縁層として用いる技術が特許文献6で提案されている。この技術は優れたものとして評価されているが、希土類フッ化物の粉末を用いるため、十分な絶縁を確保するには絶縁層の厚みを0.1μm(100nm)以上とする必要があり、よってその体積比率を低く設定できないので磁石成分の体積比率が相対的に低下し、必ずしも充分高い磁気特性が得られない。
そこで、特許文献7には、磁石中で希土類フッ化物の絶縁層を100nm以下の薄さで形成し得る手法が開示されている。特許文献7の技術に依れば、磁石成分の体積比率を極度に低下させることなく体積抵抗率の高い希土類系永久磁石を製造することができる。しかしながら、特許文献7では、磁石の電気抵抗を高めることに主眼が置かれていることから、電気抵抗を高めた上で優れた磁気特性を発揮させるための磁石組成の最適化に関する検討は為されていない。
特公平6−82575号公報 特公平7−68561号公報 特開平4−246803号公報 特開平4−253304号公報 特開平10−321427号公報 特開2006−66853号公報 特開2006−66870号公報
そこで本発明は、高い電気抵抗が付与されているとともに優れた磁気特性を発揮する高抵抗希土類系永久磁石とその製造方法を提供することを目的とする。
発明者らは上記の点に鑑み、磁石中で希土類フッ化物を絶縁層として用いたHDDRバルク磁石に関する検討を詳細に行ったところ、その製造工程で希土類フッ化物層とHDDR磁石粉末が化学反応し、該化学反応が得られる磁石の磁気特性に影響を及ぼすようであること、そのため、希土類フッ化物層を設けることで高い電気抵抗が付与されたHDDRバルク磁石においては、磁気特性を最大限に発揮できる磁石組成が限定されていることを知見した。
上記の知見に基づいてなされた本発明の高抵抗希土類系永久磁石は、請求項1記載の通り、
主として、NdFe14B型結晶構造を有する磁石粒子と、該磁石粒子の表面に存在する希土類フッ化物層によって構成され、
相対密度が磁石粒子の体積比率と希土類フッ化物層の体積比率の合計から算定される真密度の98%以上であり、
磁石粒子は平均粒子径が20μm〜150μmであり、
組成式:R(Fe1−mCo1−x−y−z(RはPrおよびNdの少なくとも1つが70%以上を占め、残部がある場合には残部はランタニド系列の元素から選ばれる少なくとも1つからなる。Qは、BまたはBをCで部分置換したもの。MはTi,V,Cr,Mn,Ni,Cu,Al,Ga,In,Sn,Ta,Zr,Nb,Mo,Wからなる群から選ばれる少なくとも1つからなる。
xは12at%〜18at%、
yは5.5at%〜8at%、
zは0at%〜10at%、
mは0〜0.2である)を満足し、
磁石粒子を構成するNdFe14B型結晶相は平均結晶粒径が200nm〜700nmであり、
磁石粒子の磁化容易方向が粒子内部で特定方向に概ね揃っており、
磁石としての固有保磁力が800kA/m以上であり、体積抵抗率が2μΩm以上であることを特徴とする。
また、請求項2記載の高抵抗希土類系永久磁石は、請求項1記載の高抵抗希土類系永久磁石において、磁石粒子の体積比率と希土類フッ化物層の体積比率の合計に対する希土類フッ化物層の体積比率の割合が0.1%〜10%であることを特徴とする。
また、請求項3記載の高抵抗希土類系永久磁石は、請求項1または2記載の高抵抗希土類系永久磁石において、希土類フッ化物層が希土類元素としてLa,Ce,Pr,Nd,Tb,Dy,Hoからなる群から選ばれる少なくとも1つを含み、その含有量が希土類フッ化物層に含まれる希土類元素全体の少なくとも50at%以上であることを特徴とする。
また、請求項4記載の高抵抗希土類系永久磁石は、請求項1から3のいずれかに記載の高抵抗希土類系永久磁石において、残留磁束密度が磁石粒子の体積比率と希土類フッ化物層の体積比率の合計から算定される飽和磁気分極の80%以上であることを特徴とする。
また、請求項5記載の高抵抗希土類系永久磁石は、請求項1から4のいずれかに記載の高抵抗希土類系永久磁石において、希土類フッ化物層の平均厚みが10nm〜5μmであることを特徴とする。
また、本発明の高抵抗希土類系永久磁石の製造方法は、請求項6記載の通り、
組成式:R(Fe1−mCo1−x−y−z(RはPrおよびNdの少なくとも1つが70%以上を占め、残部がある場合には残部はランタニド系列の元素から選ばれる少なくとも1つからなる。Qは、BまたはBをCで部分置換したもの。MはTi,V,Cr,Mn,Ni,Cu,Al,Ga,In,Sn,Ta,Zr,Nb,Mo,Wからなる群から選ばれる少なくとも1つからなる。
xは12at%〜18at%、
yは5.5at%〜8at%、
zは0at%〜10at%、
mは0〜0.2である)を満足し、
平均粒子径が20μm〜150μmであるNdFe14B型結晶構造を有する磁石粒子をHDDR法によって製造し、
該磁石粒子の表面に希土類フッ化物層を形成し、
表面に希土類フッ化物層を有する磁石粒子を、温度を600℃〜900℃にしてから20MPa〜200MPaの圧力を印加して熱間成形を行い、相対密度が磁石粒子の体積比率と希土類フッ化物層の体積比率の合計から算定される真密度の98%以上とすることを特徴とする。
また、請求項7記載の製造方法は、請求項6記載の製造方法において、熱間成形を行う前に磁界配向を行うことを特徴とする。
本発明によれば、希土類フッ化物を絶縁層として用いることで高い電気抵抗が付与されているとともに、磁石組成が最適化されていることで優れた磁気特性を発揮する高抵抗希土類系永久磁石とその製造方法を提供することができる。
以下、本発明の高抵抗希土類系永久磁石とその製造方法について説明する。
<出発合金の組成>
本発明の高抵抗希土類系永久磁石を製造するために用いる出発合金は、
組成式:R(Fe1−mCo1−x−y−z(RはPrおよびNdの少なくとも1つが70%以上を占め、残部がある場合には残部はランタニド系列の元素から選ばれる少なくとも1つからなる。Qは、BまたはBをCで部分置換したもの。MはTi,V,Cr,Mn,Ni,Cu,Al,Ga,In,Sn,Ta,Zr,Nb,Mo,Wからなる群から選ばれる少なくとも1つからなる。
xは12at%〜18at%、
yは5.5at%〜8at%、
zは0at%〜10at%、
mは0〜0.2である)を満足する組成を有するものである。ここで、ランタニド系列の元素としては、例えば、La,Ce,Sm,Gd,Tb,Dy,Ho,Er,Tm,Ybが挙げられる。
本発明者らの検討によると、希土類フッ化物を絶縁層として用いたHDDRバルク磁石においては、HDDR磁石粒子の表面に形成した希土類フッ化物層が磁石粒子と化学反応することにより、磁石粒子の磁気特性に影響を与えるようである。具体的には、希土類フッ化物がHDDR磁石粒子に含まれるRを奪う形で反応する(例えばRF→RF)。この反応による磁石粒子のRの減少量自体は無視し得るが、高密度化バルク磁石として800kA/m以上の固有保磁力(HcJ)を得るためには、出発合金中のRの含有量は12at%以上必要であることがわかった(磁石粒子のRの減少量は無視し得るので出発合金中のRの含有量が磁石粒子のRの含有量に相当する)。なお、Rの含有量が増えるに従い、残留磁束密度(B)は減少するので、Rの含有量の上限は18at%以下とする。800kA/mよりさらに良好な固有保磁力と、高い残留磁束密度を両立させるためには、Rの含有量は、12.6at%〜18at%が好ましく、12.6at%〜14at%がより好ましく、12.8at%〜13.8at%がさらに好ましい。高い保磁力を得るためには、Rの一部にDyやTbを含ませることが有効であるが、Dyおよび/またはTbの増加は、HDDR反応の進行を阻害するため、その置換量はR全体に対して30at%以下とすることが好ましい。
Qは、BまたはBをCで部分置換したものであり、その含有量は、5.5at%〜8at%とするが、5.8at%〜6.5at%が好ましい。
また、磁石の磁気特性の向上などを目的として、鉄族遷移金属であるTi,V,Cr,Mn,Ni,Cuや、Al,Ga,In,Sn,Ta,Zr,Nb,Mo,Wを含んでいてもよい。ただし、その含有量の増加は、特に磁化の低下を招く。従って、その含有量は総量で全体の10at%以下とする。
Feは、Nd−Fe−B系永久磁石の主要成分であり、最も大きな強磁性的に結合する原子磁気モーメントを持ち、しかも、価格が低廉であるので、その含有量はできるだけ多いことが好ましい。なお、Feの一部をCoで置換することによりキュリー温度を上昇させることができる。Coの含有量がFeの含有量とCoの含有量の合計の約20%までであれば、室温近傍における磁化が大きく低下することはない。
CoはHDDR法における合金の水素化反応に対して直接的に影響を与える元素であり、Coの含有量によってその適正反応条件が大きく異なる。Coの含有量が少ないと水素化反応における平衡水素圧力が低下し、多いと増加する傾向がある。これは水素圧力が一定の条件下では、Coの含有量が少ないと適正反応温度が低下し、多いと上昇することと等価である。Coの含有量が約5at%よりも少ない場合、水素化反応を進行させる通常の温度以下の全ての温度範囲において平衡水素圧力が大気圧を下回る。よって、大気圧中で昇温すると適正反応速度で反応させることができなくなる結果、高い磁気特性を有するHDDR磁石粉末が得られなくなる。ただし、この場合には、水素分圧が平衡水素圧力以下の気体中または真空中で昇温した後、適正反応温度で水素を導入する方法を取り得る。従って、Coの含有量の下限値は0at%であってもよい。一方、Coの含有量の上限値は次のように考える。即ち、Coの含有量がCoの含有量とFeの含有量の合計の約20%よりも多い場合、平衡水素圧力が高くなり、それに伴い水素の使用量が圧力に比例して増加するので好ましくなく、また、処理設備に対して炉内を十分に加圧できるだけの強度設計が必要となるので、設備コストの増加を招く。従って、Coの含有量の上限値はCoの含有量とFeの含有量の合計の約20%とすることが好ましい。
<出発合金粉末の作製方法>
出発合金は、公知の合金作製方法、例えば、ブックモールド法や、遠心鋳造法、ストリップキャスト法、アトマイズ法、拡散還元法などによって得ることができる。
これらの方法で得られる合金に対して、マクロ偏析の解消や結晶粒の粗大化、α−Fe相の減少などを目的として、均質化熱処理を行ってもよい。
これらの方法で得られる合金は、合金組織中に同一結晶方向を向いたNdFe14B型化合物相領域が20μm以上ある金属組織を有していることが、最終的に高い磁気特性、特に飽和磁束密度(Br)を得る上で重要である。
これらの方法で得られた合金は、公知の方法で粉砕され、出発合金粉末となる。粉砕方法としては、ジョークラッシャーなどを用いた機械的粉砕法や、水素吸蔵崩壊法が主に用いられる。本発明の効果を十分に得るためには、粉砕によって得られる出発合金粉末の平均粒径は、10μm〜500μmが好ましく、30μm〜150μmがより好ましい。
<HDDR処理>
HDDR処理は、HD処理(水素化:Hydrogenationと不均化:Disproportionation)およびDR処理(脱水素化:Desorptionと再結合化:Recombination)からなり、これらの処理は、連続的または非連続的(例えばHD処理とDR処理を別の設備で実施するなど)に行われる。
HD処理は、Hガス中またはHガスと不活性ガス(例えばArやHeなど)の混合ガス中、750℃〜950℃で行なわれる。HD処理時の水素分圧は、合金組成によって適宜選定されるが、通常、10kPa〜500kPaである。処理時間は、通常、10分〜10時間、典型的には20分〜5時間である。
HD処理を行った後、DR処理を行う。DR処理時の雰囲気の制御方法(雰囲気ガス種、圧力、温度、時間)は、公知の方法を適宜採用すればよいが、例えば、不活性ガス(例えばArやHeなど)雰囲気中や真空雰囲気中において、処理温度750℃〜900℃、処理時間10分〜5時間といった方法が挙げられる。なお、DR処理時の雰囲気を、例えば、水素分圧を段階的に下げたり、減圧圧力を段階的に下げたりするなどして、段階的に制御してもよいことは言うまでもない。
<解砕、粉砕>
DR処理が終了した後に室温まで冷却されたHDDR磁石粉末は、弱い凝集体となっている場合がある。この場合には、公知の方法で磁石粉末の解砕を行えばよい。また、最終的な目的に応じてさらに粉砕による粒度調整を行っても構わない。粉砕方法は、公知の粉砕技術を用いることができるが、粉砕時の磁石粉末の酸化を抑制するためには、Arなどの不活性ガス雰囲気中で粉砕を行うことが好ましい。
以上のHDDR処理により得られる磁石粒子は、NdFe14B型結晶構造を有し、平均結晶粒径が200nm〜700nmである多数の一次粒子を内包し、それらの一次結晶粒の磁化容易方向が特定方向に配向しており、800kA/m以上の固有保磁力を有する平均粒子径が20μm〜150μmの二次粒子である。
<磁石粒子の表面への希土類フッ化物層の形成>
磁石粒子の表面に形成する絶縁層としての希土類フッ化物層は、例えば、LaF,CeF,PrF,NdF,NdF,SmF,EuF,GdF,TbF,DyF,HoF,ErF,YbF,LuFなどの希土類フッ化物からなる。絶縁層を構成する化合物として希土類フッ化物を用いることで、Nd−Fe−B系HDDR磁石粉末の優れた磁気特性を維持させたまま、緻密化して高密度化バルク磁石を製造することができる。希土類フッ化物層に含まれる希土類元素は1種類であってもよいし複数種類であってもよい。希土類フッ化物層が希土類元素としてLa,Ce,Pr,Nd,Tb,Dy,Hoからなる群から選ばれる少なくとも1つを含み、その含有量が希土類フッ化物層に含まれる希土類元素全体の少なくとも50at%以上とした場合、磁気特性に優れたバルク磁石が得られやすくなる。とりわけ好適な希土類元素はPr,Nd,Tb,Dyであり、これらの希土類元素からなる群から選ばれる少なくとも1つを選択することで、通常の方法でHDDR磁石粉末を用いて製造されたボンド磁石と同等またはそれ以上の保磁力を有するホットプレスバルク磁石を得ることができる。なお、希土類フッ化物は、希土類元素とフッ素とで構成されるものであるが、これらの他に、酸素,窒素,炭素などが構成元素として含まれていてもよい。また、希土類フッ化物層には、希土類フッ化物に加え、MgFやCaFなどのアルカリ土類フッ化物が含まれていてもよい。磁石成分の体積比率を極度に低下させることなく高い電気抵抗を付与するためには、磁石粒子の体積比率と希土類フッ化物層の体積比率の合計に対する希土類フッ化物層の体積比率の割合は0.1%〜10%であることが好ましく、また、希土類フッ化物層の平均厚みは10nm〜5μmであることが好ましい。
希土類フッ化物層は、HDDR処理した磁石粒子の表面に、スパッタリング法、蒸着法、溶射法、溶液を利用した塗布法などの手法により形成することができる。これらの手法の中では、工業的操業の容易さと操業の効率性の観点から溶液を利用した塗布法を採用することが好ましい。
溶液を利用した塗布法では、希土類フッ化物を含む溶液(溶媒としてはアルコールが例示される)を用いて希土類フッ化物層を磁石粒子の表面に形成する。この方法によれば、後の工程で加熱して固体化することで希土類フッ化物層となる被膜が、溶液中で磁石粒子の表面全体乃至一部において成長しながら表面に沿って形成される。磁石粒子の表面の溶媒を除去した後、この希土類フッ化物被膜を表面に有する磁石粒子を好適には400℃〜800℃で加熱することで、希土類フッ化物被膜を固体化し、希土類フッ化物層とする。この加熱温度の上限は、HDDR磁石粉末の磁気特性の低下を回避し、かつ、希土類フッ化物層と磁石粒子との間で起こる化学反応の進行による絶縁性の低下を回避するための観点から設定される。溶液中で磁石粒子の表面に希土類フッ化物被膜を成長させる際、予め磁石粒子の表面に酸化層を形成しておいて、その酸化層を下地にして希土類フッ化物被膜を成長させたり、予め磁石粒子と異なる組成の希土類元素を含む層を磁石粒子の表面に形成しておいて、その層を下地にして希土類フッ化物被膜を成長させたりすることで、希土類フッ化物層が磁石粒子の表面に直接的に形成されないようにしてもよい。希土類フッ化物被膜をこのような下地の表面に形成して加熱処理を行った場合、下地である酸化層の一部が希土類フッ化物層と混合したり、磁石粒子と異なる組成の希土類元素を含む層の一部が希土類フッ化物層と相互拡散を起こしたりし、希土類フッ化物層の厚みが厚くなる。このような下地の厚みと希土類フッ化物層の厚みの関係は、加熱処理の熱履歴により変化するが、下地の厚みよりも希土類フッ化物層の厚みの方が厚くなると、損失低減効果が低下する傾向がある。なお、このような両者の厚みの関係は、磁石粒子の表面や粒界の表面などの比較的平坦な場所における関係であり、粒界3重点や磁石粒子の突起部などの特殊な場所における関係ではない。ここで、「比較的平坦な場所」とは、磁石粒子の鋭角部でない部分であり、希土類フッ化物層の厚みがその平均厚みの−50%〜+200%の範囲内にある場所である。溶液を利用した塗布法を採用した場合、希土類フッ化物層の厚みがその平均厚みの−50%〜+200%の範囲内にある場所の面積が、磁石粒子の表面全体の面積の50%以上にすることが可能である。
<希土類フッ化物層を表面に有する磁石粒子を用いたバルク磁石化>
公知の方法によって熱間成形を行うことで高密度化することにより行う。なお、磁石の高性能化を図るために、熱間成形を行う前に異方性付加のための磁界配向を行ってもよい。こうすることで、磁石の残留磁束密度を磁石粒子の体積比率と希土類フッ化物層の体積比率の合計から算定される飽和磁気分極(Js)の80%以上とすることができる。
磁界配向を効率的に行うためには、希土類フッ化物層を形成したHDDR磁石粉末は充分に解砕し、粉体として流動する状態かつ磁石粒子が磁界によるトルクで回転して配向できる状態にしておく必要がある。このような磁石粉末を磁界の存在下で型の中で圧縮成形して磁化容易方向が整列した仮成形体を得る。この時、磁石粒子の表面に存在する希土類フッ化物層が圧下力により破壊されてしまって磁石粒子間の絶縁性がとれなくなることを回避するため、成形圧力を調整することが重要である。
HDDR磁石粉末のバルク磁石化は、具体的には、例えば、真空容器内で非酸化性雰囲気(例えばArなどを用いた不活性ガス雰囲気)下、温度を600℃〜900℃にしてから20MPa〜200MPaの圧力を印加して熱間成形を行って緻密化することにより行う。成形時間は標準的には30分〜120分である。このように、成形圧力を加熱開始時から印加したり、成形温度に到達させる途中で印加したりするのではなく、成形温度に到達させてから印加するのは次の理由による。HDDR磁石粒子は、室温近傍では塑性変形しにくく脆いため、室温近傍で過大な圧力を印加すると、磁石粒子が壊れてしまう性質を有する。従って、希土類フッ化物層が表面に存在するHDDR磁石粒子に室温近傍で成形圧力を印加すると、希土類フッ化物層も破壊されてしまって膜としての連続性が失われ、もはや得られる成形体が高い電気抵抗を保持することは困難となる。これに対し、HDDR磁石粒子は、高温では塑性変形しやすくなる。その変形メカニズムは、磁石粒子の内部にNdに富む液相成分が生成することによる粒界すべりであると考えられている。この変形メカニズムにより磁石粒子が塑性変形できる温度は約600℃以上である。これに加え、今般、本発明者らは、HDDR磁石粒子が塑性変形可能となる温度域において、希土類フッ化物層が展延性を獲得することを実験によりはじめて知見した。よって、成形圧力の印加を成形温度に到達させた後に行うことで、HDDR磁石粒子を塑性変形させることが可能になるとともに、その表面に存在する希土類フッ化物層を展延させることが可能になる。従って、成形温度未満では緻密化を目的とする成形圧力を印加せず、成形温度に到達させた後にはじめて成形圧力を印加することにより、磁石粒子の表面に希土類フッ化物層が存在することによる絶縁性を確保した状態で、磁石粒子間の隙間を埋めるように磁石粒子を塑性変形させてバルク磁石の緻密化が可能になる。
こうして得られる本発明の高密度化磁石は、磁石粒子を構成するNdFe14B型結晶相の平均結晶粒径が200nm〜700nmであること、それらの磁化容易方向が特定方向に配向していること、平均粒子径が20μm〜150μmの磁石粒子の表面には希土類フッ化物層が絶縁層として存在していることといった構成要素が、隙間無く圧密化されることで得られるものであり、相対密度がNdFe14B型結晶構造を有する磁石粒子の体積比率と希土類フッ化物層の体積比率の合計から算定される真密度の98%以上で、磁石粒子の磁化容易方向が粒子内部で特定方向に概ね揃っており、磁石としての固有保磁力が800kA/m以上であり、体積抵抗率が2μΩm以上である磁石の内部組織が形成される。
なお、磁石粒子の体積比率と希土類フッ化物層の体積比率の合計(含有体積比率)から算定される真密度に対する相対密度X(%)は、得られた磁石の密度Vを測定し、磁石粒子(真密度A)の体積比率と希土類フッ化物層(真密度B)の体積比率の合計αから算定される真密度を100%として、以下の式により算出することができる。
(数1)
X(%)={V/(A×(100−α)+(B×α))}×100
以下、本発明を実施例によってさらに詳細に説明するが、本発明はこれに限定して解釈されるものではない。
実施例A:
例えば特許文献1や特許文献2などに記載の方法に順じ、組成式:NdDyCo16Zr0.09Ga0.56.5Febal(Nd含有量xが12.4at%〜12.9at%でDy含有量yが0と0.3at%)を満足する組成の4種類の合金を作製し、HDDR処理を施して、表1に示す磁気特性を有する平均粒子径が約80μmの磁石粒子(HDDR磁石粉末)を得た。
Figure 2008060241
以下のプロセスにより上記の磁石粒子の表面に希土類フッ化物層を形成した。
(1)Ndフッ化物層を形成するためのNdF被膜形成処理液を次のようにして調製した。最初に水に溶解度の高いNd塩(例えば酢酸ネオジム水和物など)を水と混合し、攪拌溶解させ、その後、希釈したフッ化水素酸(1wt%〜10wt%)を徐々に添加した。このような操作により液中にゲル状沈殿のNdフッ化物(NdF)が生成した溶液をさらに攪拌し、遠心分離後、上澄み液を除去し、メタノールを添加した。このようにして得られたNdFを含むメタノール溶液を攪拌し、遠心分離後、上澄み液を除去し、再びメタノールを添加することで、腐食性イオンを除去したNdFを含むメタノール溶液を得、これを処理液とした。
(2)HDDR磁石粉末100gに対してNdF被膜形成処理液を10mL添加し、磁石粉末全体が濡れるのが確認できるまで混合した。
(3)NdF被膜形成処理液で処理したHDDR磁石粉末(NdF被膜が表面に形成された磁石粒子)から、270Pa〜670Paの減圧下で、メタノールを除去した。
(4)メタノールを除去した磁石粉末を石英製ボートに移し、1.3×10−3Paの減圧下で、200℃×30分の熱処理と400℃×30分の熱処理を行った。
(5)熱処理を行った磁石粉末を蓋付き容器に移し、1.3×10−3Paの減圧下で、400℃〜800℃×30分の熱処理を行い、磁石粒子の表面に形成されたNdF被膜を固体化し、NdF層とした。
上記のようにして磁石粒子の表面に形成されたNdF層は、磁石粉末と反応することにより一部がNdFに変化していた。磁石粒子の体積比率とNdF層の体積比率の合計に対するNdF層の体積比率の割合は約3%で、その平均厚みは約600nmであった。
NdF層を形成したHDDR磁石粉末を、ホットプレス用金型に無配向で装填し、真空ホットプレス装置を用いて真空雰囲気(<10−3Pa)中で設定到達温度700℃まで昇温速度10℃/minで加熱し、設定温度到達後にプレス圧50MPaを印加した。温度700℃、プレス圧50MPaを60分間保持し、緻密な磁石体を作製した。この磁石体を破壊して粉砕し、分析したところ、得られた磁石体は約2000ppmの酸素を不可避の不純物として含んでおり、また、磁石体断面のEPMA分析に依れば希土類フッ酸化物の生成が示唆された。
得られた磁石体(実施例1〜実施例4)の磁気特性と相対密度を表2に示す。表2から明らかなように、実施例の磁石体の固有保持力は、原料として用いたHDDR磁石粉末のそれとほぼ同等の優れた値であった。また、4種類の実施例の磁石体の体積抵抗率は2.2〜2.4μΩmであった。なお、Nd含有量xが11.8at%の合金を用いて実施例と同様にして作製した磁石体では、固有保持力も残留磁束密度も低い値であった(比較例1)。一方、Nd含有量xが18.1at%の合金を用いて実施例と同様にして作製した磁石体では、固有保持力は優れた値であったが、残留磁束密度は低い値であった(比較例2)。
Figure 2008060241
実施例B:
例えば特許文献1や特許文献2などに記載の方法に順じ、組成式:Nd12.1Dy0.9CoGa0.56.5Febalを満足する組成の合金を作製し、HDDR処理を施して、表3に示す磁気特性を有する平均粒子径が約80μmの磁石粒子(HDDR磁石粉末)を得た。磁石粉末のサンプルとして、実施例Aと同様にして磁石粉末の表面に平均厚みが約800nmのNdF層を形成したサンプルとNdF層を形成していないサンプル(即ちHDDR磁石粉末そのもの)を用意し、真空雰囲気中で表4に示す4種類の熱間成形条件を用いて緻密化を行うことで磁石体を作製した。
Figure 2008060241
Figure 2008060241
得られた磁石体の磁気特性と相対密度を表5に示す。表5から明らかなように、NdF層を形成したHDDR磁石粉末を用いると、相対密度が低いほど体積抵抗率(比抵抗)は高い値となる一方、固有保持力は低い値となるが、相対密度が98%以上の緻密化された磁石体において、800kA/m以上の固有保持力を得るためには、設定温度到達後にプレス圧を印加して熱間成形を行う必要があることがわかった。また、得られた磁石体について、10kHz,2.5Aの条件下で高周波発熱測定を行った結果を図1に示す。図1から明らかなように、体積抵抗率が高くなるほど渦電流による発熱が抑制されることが確認できた。
Figure 2008060241
本発明は、希土類フッ化物を絶縁層として用いることで高い電気抵抗が付与されているとともに、磁石組成が最適化されていることで優れた磁気特性を発揮する高抵抗希土類系永久磁石とその製造方法を提供することができる点において産業上の利用可能性を有する。
実施例Bにおいて得られた磁石体について高周波発熱測定を行った結果を示すグラフである。

Claims (7)

  1. 主として、NdFe14B型結晶構造を有する磁石粒子と、該磁石粒子の表面に存在する希土類フッ化物層によって構成され、
    相対密度が磁石粒子の体積比率と希土類フッ化物層の体積比率の合計から算定される真密度の98%以上であり、
    磁石粒子は平均粒子径が20μm〜150μmであり、
    組成式:R(Fe1−mCo1−x−y−z(RはPrおよびNdの少なくとも1つが70%以上を占め、残部がある場合には残部はランタニド系列の元素から選ばれる少なくとも1つからなる。Qは、BまたはBをCで部分置換したもの。MはTi,V,Cr,Mn,Ni,Cu,Al,Ga,In,Sn,Ta,Zr,Nb,Mo,Wからなる群から選ばれる少なくとも1つからなる。
    xは12at%〜18at%、
    yは5.5at%〜8at%、
    zは0at%〜10at%、
    mは0〜0.2である)を満足し、
    磁石粒子を構成するNdFe14B型結晶相は平均結晶粒径が200nm〜700nmであり、
    磁石粒子の磁化容易方向が粒子内部で特定方向に概ね揃っており、
    磁石としての固有保磁力が800kA/m以上であり、体積抵抗率が2μΩm以上であることを特徴とする、高抵抗希土類系永久磁石。
  2. 磁石粒子の体積比率と希土類フッ化物層の体積比率の合計に対する希土類フッ化物層の体積比率の割合が0.1%〜10%であることを特徴とする、請求項1記載の高抵抗希土類系永久磁石。
  3. 希土類フッ化物層が希土類元素としてLa,Ce,Pr,Nd,Tb,Dy,Hoからなる群から選ばれる少なくとも1つを含み、その含有量が希土類フッ化物層に含まれる希土類元素全体の少なくとも50at%以上であることを特徴とする、請求項1または2記載の高抵抗希土類系永久磁石。
  4. 残留磁束密度が磁石粒子の体積比率と希土類フッ化物層の体積比率の合計から算定される飽和磁気分極の80%以上であることを特徴とする、請求項1から3のいずれかに記載の高抵抗希土類系永久磁石。
  5. 希土類フッ化物層の平均厚みが10nm〜5μmであることを特徴とする、請求項1から4のいずれかに記載の高抵抗希土類系永久磁石。
  6. 組成式:R(Fe1−mCo1−x−y−z(RはPrおよびNdの少なくとも1つが70%以上を占め、残部がある場合には残部はランタニド系列の元素から選ばれる少なくとも1つからなる。Qは、BまたはBをCで部分置換したもの。MはTi,V,Cr,Mn,Ni,Cu,Al,Ga,In,Sn,Ta,Zr,Nb,Mo,Wからなる群から選ばれる少なくとも1つからなる。
    xは12at%〜18at%、
    yは5.5at%〜8at%、
    zは0at%〜10at%、
    mは0〜0.2である)を満足し、
    平均粒子径が20μm〜150μmであるNdFe14B型結晶構造を有する磁石粒子をHDDR法によって製造し、
    該磁石粒子の表面に希土類フッ化物層を形成し、
    表面に希土類フッ化物層を有する磁石粒子を、温度を600℃〜900℃にしてから20MPa〜200MPaの圧力を印加して熱間成形を行い、相対密度が磁石粒子の体積比率と希土類フッ化物層の体積比率の合計から算定される真密度の98%以上とすることを特徴とする、高抵抗希土類系永久磁石の製造方法。
  7. 熱間成形を行う前に磁界配向を行うことを特徴とする、請求項6記載の製造方法。
JP2006233804A 2006-08-30 2006-08-30 高抵抗希土類系永久磁石の製造方法 Expired - Fee Related JP4700578B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006233804A JP4700578B2 (ja) 2006-08-30 2006-08-30 高抵抗希土類系永久磁石の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006233804A JP4700578B2 (ja) 2006-08-30 2006-08-30 高抵抗希土類系永久磁石の製造方法

Publications (2)

Publication Number Publication Date
JP2008060241A true JP2008060241A (ja) 2008-03-13
JP4700578B2 JP4700578B2 (ja) 2011-06-15

Family

ID=39242653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006233804A Expired - Fee Related JP4700578B2 (ja) 2006-08-30 2006-08-30 高抵抗希土類系永久磁石の製造方法

Country Status (1)

Country Link
JP (1) JP4700578B2 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010258412A (ja) * 2009-03-30 2010-11-11 Tdk Corp 希土類磁石の製造方法
JP2011091119A (ja) * 2009-10-20 2011-05-06 Honda Motor Co Ltd 永久磁石の製造方法
JP2012049492A (ja) * 2010-07-30 2012-03-08 Hitachi Metals Ltd 希土類永久磁石の製造方法
JP2012142388A (ja) * 2010-12-28 2012-07-26 Toyota Motor Corp 希土類磁石の製造方法
JP2014195072A (ja) * 2013-03-15 2014-10-09 Gm Grobal Technology Operations Llc 低減されたジスプロシウムまたはテルビウムを用いてホットプレスを使用するND−Fe−B磁石の製造
CN104952580A (zh) * 2015-02-15 2015-09-30 宁波招宝磁业有限公司 一种耐腐蚀烧结钕铁硼磁体及其制备方法
JP5856953B2 (ja) * 2010-05-20 2016-02-10 国立研究開発法人物質・材料研究機構 希土類永久磁石の製造方法および希土類永久磁石
US9786419B2 (en) 2013-10-09 2017-10-10 Ford Global Technologies, Llc Grain boundary diffusion process for rare-earth magnets
EP4390981A1 (en) * 2022-12-13 2024-06-26 Yantai Zhenghai Magnetic Material Co., Ltd. R-t-b based permanent magnet material, preparation method therefor and use thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09186010A (ja) * 1995-08-23 1997-07-15 Hitachi Metals Ltd 高電気抵抗希土類磁石およびその製造方法
JPH10163055A (ja) * 1996-11-29 1998-06-19 Hitachi Metals Ltd 高電気抵抗希土類永久磁石の製造方法
JP2003022905A (ja) * 2001-07-10 2003-01-24 Daido Steel Co Ltd 高抵抗希土類磁石とその製造方法
JP2006066870A (ja) * 2004-07-28 2006-03-09 Hitachi Ltd 希土類磁石
JP2007005668A (ja) * 2005-06-27 2007-01-11 Nissan Motor Co Ltd 希土類磁石及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09186010A (ja) * 1995-08-23 1997-07-15 Hitachi Metals Ltd 高電気抵抗希土類磁石およびその製造方法
JPH10163055A (ja) * 1996-11-29 1998-06-19 Hitachi Metals Ltd 高電気抵抗希土類永久磁石の製造方法
JP2003022905A (ja) * 2001-07-10 2003-01-24 Daido Steel Co Ltd 高抵抗希土類磁石とその製造方法
JP2006066870A (ja) * 2004-07-28 2006-03-09 Hitachi Ltd 希土類磁石
JP2007005668A (ja) * 2005-06-27 2007-01-11 Nissan Motor Co Ltd 希土類磁石及びその製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010258412A (ja) * 2009-03-30 2010-11-11 Tdk Corp 希土類磁石の製造方法
JP2011091119A (ja) * 2009-10-20 2011-05-06 Honda Motor Co Ltd 永久磁石の製造方法
JP5856953B2 (ja) * 2010-05-20 2016-02-10 国立研究開発法人物質・材料研究機構 希土類永久磁石の製造方法および希土類永久磁石
JP2012049492A (ja) * 2010-07-30 2012-03-08 Hitachi Metals Ltd 希土類永久磁石の製造方法
JP2012142388A (ja) * 2010-12-28 2012-07-26 Toyota Motor Corp 希土類磁石の製造方法
JP2014195072A (ja) * 2013-03-15 2014-10-09 Gm Grobal Technology Operations Llc 低減されたジスプロシウムまたはテルビウムを用いてホットプレスを使用するND−Fe−B磁石の製造
US9786419B2 (en) 2013-10-09 2017-10-10 Ford Global Technologies, Llc Grain boundary diffusion process for rare-earth magnets
US10290407B2 (en) 2013-10-09 2019-05-14 Ford Global Technologies, Llc Grain boundary diffusion process for rare-earth magnets
CN104952580A (zh) * 2015-02-15 2015-09-30 宁波招宝磁业有限公司 一种耐腐蚀烧结钕铁硼磁体及其制备方法
EP4390981A1 (en) * 2022-12-13 2024-06-26 Yantai Zhenghai Magnetic Material Co., Ltd. R-t-b based permanent magnet material, preparation method therefor and use thereof

Also Published As

Publication number Publication date
JP4700578B2 (ja) 2011-06-15

Similar Documents

Publication Publication Date Title
JP5259351B2 (ja) 永久磁石とそれを用いた永久磁石モータおよび発電機
JP5304907B2 (ja) R−Fe−B系微細結晶高密度磁石
JP5767788B2 (ja) R−t−b系希土類永久磁石、モーター、自動車、発電機、風力発電装置
JP4700578B2 (ja) 高抵抗希土類系永久磁石の製造方法
TWI391961B (zh) R-T-B-C type rare earth sintered magnet and a manufacturing method thereof
JP2021533557A (ja) 高い耐久性および高い保磁力を有するCe含有焼結希土類永久磁石、およびその調製方法
WO2012036294A1 (ja) 希土類磁石の製造方法
WO2012002059A1 (ja) R-t-b系希土類永久磁石、モーター、自動車、発電機、風力発電装置
JP4805998B2 (ja) 永久磁石とそれを用いた永久磁石モータおよび発電機
JP6848735B2 (ja) R−t−b系希土類永久磁石
CN109935432B (zh) R-t-b系永久磁铁
JP4371188B2 (ja) 高比電気抵抗性希土類磁石及びその製造方法
JP6091957B2 (ja) 永久磁石とそれを用いたモータおよび発電機
JP5288277B2 (ja) R−t−b系永久磁石の製造方法
JP2008263179A (ja) 希土類永久磁石及びその製造方法
JP6451900B2 (ja) R−Fe−B系焼結磁石及びその製造方法
JP2006303435A (ja) 傾斜機能性希土類永久磁石
JP4951703B2 (ja) R−t−b系希土類永久磁石用合金材料、r−t−b系希土類永久磁石の製造方法およびモーター
JP5288276B2 (ja) R−t−b系永久磁石の製造方法
JP2000096102A (ja) 耐熱希土類合金異方性磁石粉末
JP6142793B2 (ja) 希土類磁石
JP6506182B2 (ja) 希土類含有合金鋳片、その製造法及び焼結磁石
JP4784173B2 (ja) 希土類磁石及びその製造方法
WO2004030000A1 (ja) R−t−b系希土類永久磁石の製造方法
WO2012029527A1 (ja) R-t-b系希土類永久磁石用合金材料、r-t-b系希土類永久磁石の製造方法およびモーター

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080417

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110304

LAPS Cancellation because of no payment of annual fees