JP2008056512A - Method of manufacturing activated carbon - Google Patents

Method of manufacturing activated carbon Download PDF

Info

Publication number
JP2008056512A
JP2008056512A JP2006233081A JP2006233081A JP2008056512A JP 2008056512 A JP2008056512 A JP 2008056512A JP 2006233081 A JP2006233081 A JP 2006233081A JP 2006233081 A JP2006233081 A JP 2006233081A JP 2008056512 A JP2008056512 A JP 2008056512A
Authority
JP
Japan
Prior art keywords
metal
activated carbon
metal salt
residue
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006233081A
Other languages
Japanese (ja)
Other versions
JP5150828B2 (en
Inventor
Koichi Yamaguchi
浩一 山口
Shigeto Akita
重人 秋田
Takehiko Kinoshita
武彦 木下
Hideki Hayashi
英樹 林
Koji Hirano
幸治 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CITY OF NAGOYA
Original Assignee
CITY OF NAGOYA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CITY OF NAGOYA filed Critical CITY OF NAGOYA
Priority to JP2006233081A priority Critical patent/JP5150828B2/en
Publication of JP2008056512A publication Critical patent/JP2008056512A/en
Application granted granted Critical
Publication of JP5150828B2 publication Critical patent/JP5150828B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing good-quality and also inexpensive activated carbon by an energy saving process as compared with a conventional method enabling the effective utilization of a pyrolysis residue of a rubber product containing heavy metals such as a waste tire and a waste plastic. <P>SOLUTION: The activated carbon is obtained through a mixing step of mixing the pyrolysis residue of the rubber product and a halogen-containing plastic, a heating step of obtaining a heat-treated substance by heat-treating the mixture obtained at the mixing step under an almost oxygen-free condition, a metal salt recovering step of recovering a metal salt extract solution by adding water or dilute acid to the heat-treated substance, a metal removing step of eluting a residual metal component contained in an extraction residue remaining at the metal salt recovering step with acid and a step of washing the residue after removing the metal remaining after the metal removing step and drying the residue. The metal salt formed at the heating step is used as an activation chemical and the metal salt extract solution obtained by selectively recovering the metal salt at the metal recovering step is added at the mixing step to reuse. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、廃タイヤに代表される重金属を含む廃ゴム製品およびハロゲン含有プラスチックの混合物からの活性炭の製造方法に関する。   The present invention relates to a method for producing activated carbon from a mixture of waste rubber products containing heavy metals represented by waste tires and halogen-containing plastics.

ゴム製品は自動車部品を始めとして建築関連、精密機械、家電機器、工作機械、医療、電力、通信、電子機器、印刷などの産業を網羅しており、製品の高性能化や機能複合化によりその需要は今後も増大していくものと考えられる。ゴム産業の中でもタイヤ産業は最も大きな生産割合を占めており、自動車産業の根幹を担う産業の一つとして現在のモータリゼーション社会を支えている。使用済みタイヤ、すなわち廃タイヤの排出量は年間100万トンにも達しており、廃タイヤの不法投棄が社会問題として顕在化していることから、廃タイヤの適切かつ効率的な処理方法の開発が望まれている。廃タイヤは重油や石炭と同程度の熱量を持っていることから、その大半が燃料、或いは熱分解による油回収などといった熱エネルギー用途として利用されている。熱分解により副生する熱分解残渣には亜鉛、鉄などタイヤ由来の重金属が濃縮される。このような重金属を含む残渣については埋め立て処理が一般的であったが、リサイクルの観点においては熱分解残渣に含まれる炭素および重金属成分の有効利用が好ましい。 Rubber products cover industries such as automobile parts, architecture-related, precision machinery, home appliances, machine tools, medical, power, communications, electronic equipment, printing, etc. Demand is expected to increase in the future. The tire industry occupies the largest proportion of the rubber industry, and supports the current motorization society as one of the industries that play a key role in the automobile industry. Since the amount of used tires, that is, waste tires, has reached 1 million tons per year, and illegal dumping of waste tires has become a social issue, the development of appropriate and efficient treatment methods for waste tires has been developed. It is desired. Since waste tires have the same amount of heat as heavy oil and coal, most of them are used for thermal energy applications such as fuel or oil recovery by thermal decomposition. Heavy metals derived from tires such as zinc and iron are concentrated in the pyrolysis residue by-produced by pyrolysis. For such residues containing heavy metals, landfill treatment has been common, but from the viewpoint of recycling, the effective use of carbon and heavy metal components contained in the pyrolysis residues is preferred.

一方、廃プラスチックのリサイクル技術の開発も持続発展可能な社会の構築における重要な課題である。ハロゲン含有プラスチックの中でもポリ塩化ビニル(塩ビ樹脂)は、比較的安価であり、耐候性や難燃性などに優れるなどの特徴から広く利用されている。しかし、焼却時には熱分解により塩化水素ガスが発生し、焼却炉などの処理施設を損傷させ、環境汚染を引き起こす原因になると指摘されていることから適切な処理法の開発が望まれている。   On the other hand, the development of waste plastic recycling technology is also an important issue in building a sustainable society. Among halogen-containing plastics, polyvinyl chloride (vinyl chloride resin) is widely used because it is relatively inexpensive and has excellent weather resistance and flame retardancy. However, since it has been pointed out that hydrogen chloride gas is generated by thermal decomposition during incineration, damaging treatment facilities such as incinerators and causing environmental pollution, the development of appropriate treatment methods is desired.

活性炭の製造は有機物を含む廃棄物の資源化方法の一つである。代表的な廃ゴム製品である廃タイヤについては、これまでにタイヤおよびその熱分解残渣を原料として用いた事例が報告されている。例えば、廃タイヤ残渣に対して、塩酸処理による残渣中の重金属の除去および水蒸気賦活処理という2つの処理を行うことにより活性炭を得る方法が提案されている。(特許文献1)また、熱分解残渣に含まれる酸化亜鉛を水素もしくは一酸化炭素の還元ガスを用いて金属亜鉛に還元し、それを気化させて除去したのち、ガス賦活により活性炭を得る方法が提案されている。(特許文献2)しかし、このようなガス賦活法では高温かつ長時間の賦活処理が必要であるためにエネルギー消費が大きいだけでなく、賦活過程で炭素成分が失われてしまうために活性炭の収率が低くなる。他には、廃タイヤチップに賦活薬剤として水酸化カリウムを添加して熱処理したのち、酸洗浄して活性炭を得る方法が提案されている。(特許文献3) このような薬剤を活性炭製造に用いる薬剤賦活法では薬剤の回収・再利用が重要であるが、この文献の手法では廃タイヤに対して重量で約3倍の水酸化カリウムを必要とするだけではなく、賦活処理後に水酸化カリウムが炭酸カリウムとなり薬剤の再利用が困難であるという観点から好ましくない。
特開平6−144819号公報 特開平8−48511号公報 特開2003−34518号公報
The production of activated carbon is one of the methods for recycling organic waste. With regard to waste tires, which are representative waste rubber products, there have been reported examples of using tires and their thermal decomposition residues as raw materials. For example, a method has been proposed in which activated carbon is obtained by performing two treatments, such as removal of heavy metals in the residue by hydrochloric acid treatment and steam activation treatment, on the waste tire residue. (Patent Document 1) Further, there is a method in which zinc oxide contained in a thermal decomposition residue is reduced to metallic zinc by using a hydrogen or carbon monoxide reducing gas, and is vaporized and removed, and then activated carbon is obtained by gas activation. Proposed. However, such a gas activation method requires a high-temperature and long-time activation treatment, which not only consumes a large amount of energy, but also loses carbon components during the activation process. The rate is lowered. In addition, a method has been proposed in which potassium hydroxide is added as an activating agent to a waste tire chip and heat treated, and then washed with an acid to obtain activated carbon. (Patent Document 3) In the drug activation method using such a drug for the production of activated carbon, it is important to collect and reuse the drug. However, in the method of this document, about three times as much potassium hydroxide by weight as the waste tire is used. Not only is it necessary, but it is not preferable from the viewpoint that potassium hydroxide becomes potassium carbonate after activation treatment and it is difficult to reuse the drug.
Japanese Patent Laid-Open No. 6-144819 JP-A-8-48511 JP 2003-34518 A

一方、ハロゲン含有プラスチックである塩ビ樹脂を含む製品のリサイクル手法は大別して塩ビ樹脂として再生利用するマテリアルリサイクルと製品原料などとして再利用するケミカルリサイクルの二つがある。前者は塩ビパイプや農業用フィルムを中心に取り組まれているが、異物の分離が困難などの理由から再生可能な製品の種類に限りがある。後者は熱分解などにより油や燃料ガス、カーボンなどの回収を目的とするものである。例えば、ロータリーキルンなどを用いて廃塩ビ樹脂を熱分解させて塩酸を回収すると共に高炉還元剤を得る方法(特許文献4)、加圧・高温条件の有機溶媒中で分解させて芳香族化合物を得る方法(非特許文献1)、酸化カルシウムと混合してメカノケミカル処理することで脱塩素処理する方法(特許文献5)などが提案されている。また、塩ビ系樹脂廃材に炭酸カルシウムを添加して熱処理し、続いて酸洗浄、水蒸気賦活を行うことにより活性炭を作成する方法が提案されている。(特許文献6)しかし、これらの手法により塩ビ樹脂が混入している廃プラスチックを処理した場合には回収される製品の付加価値がそれほど高くなく、得られる製品の付加価値化のためには多くの薬品やエネルギーを必要とする、といったことから有効利用の点で未だ満足のいくものではない。
特開平10−71384号公報 特開平11−124463号公報 特開2005−206423号公報 T. Kamo et al., Polym. Degrad. Stab., Vol. 87, pp.95-102 (2005).
On the other hand, recycling methods for products containing a vinyl resin, which is a halogen-containing plastic, can be broadly divided into two types: material recycling for recycling as PVC resin and chemical recycling for recycling as raw material for products. The former is focused on PVC pipes and agricultural films, but there are limits to the types of products that can be recycled because of the difficulty in separating foreign matter. The latter is intended to recover oil, fuel gas, carbon, etc. by thermal decomposition. For example, waste vinyl chloride resin is thermally decomposed using a rotary kiln and the like to recover hydrochloric acid and obtain a blast furnace reducing agent (Patent Document 4), and decompose in an organic solvent under pressure and high temperature to obtain an aromatic compound A method (Non-Patent Document 1), a method of dechlorination by mixing with calcium oxide and performing a mechanochemical treatment (Patent Document 5), and the like have been proposed. In addition, a method has been proposed in which activated carbon is prepared by adding calcium carbonate to a PVC resin waste material and heat-treating it, followed by acid cleaning and steam activation. (Patent Document 6) However, when waste plastic mixed with a vinyl chloride resin is processed by these methods, the added value of the recovered product is not so high. Because it requires chemicals and energy, it is still not satisfactory in terms of effective use.
Japanese Patent Laid-Open No. 10-71384 Japanese Patent Laid-Open No. 11-124463 JP 2005-206423 A T. Kamo et al., Polym. Degrad. Stab., Vol. 87, pp. 95-102 (2005).

本発明の目的は、廃タイヤなど重金属を含有する廃ゴム製品より発生する熱分解残渣、ならびに廃プラスチックの有効利用を可能とする、良質かつ安価な活性炭の製造方法を提供することである。 An object of the present invention is to provide a high-quality and inexpensive method for producing activated carbon, which enables effective use of thermal decomposition residues generated from waste rubber products containing heavy metals such as waste tires, and waste plastics.

本発明の活性炭の製造方法は、ゴム製品の熱分解残渣と、ハロゲン含有プラスチックとを混合する混合工程と、混合工程で得られた混合物を略酸素のない条件下で加熱処理して加熱処理物を得る加熱工程と該加熱処理物に水又は希酸を加えて金属塩抽出液を回収する金属塩回収工程と、該金属塩回収工程において残った抽出残渣に含まれる残留金属成分を酸で溶出させる金属除去工程と、金属除去工程後に残った金属除去後残渣を水洗し、乾燥して活性炭を得る工程を備え、前記金属回収工程で回収した金属塩抽出液を前記混合工程において添加することを特徴とする。   The activated carbon production method of the present invention includes a mixing step of mixing a thermal decomposition residue of a rubber product and a halogen-containing plastic, and a heat treatment product obtained by heat-treating the mixture obtained in the mixing step under conditions substantially free of oxygen. A metal salt recovery step of recovering a metal salt extract by adding water or dilute acid to the heat-treated product, and eluting residual metal components contained in the extraction residue remaining in the metal salt recovery step with an acid A step of removing the metal, and a step of washing the post-metal removal residue remaining after the metal removal step and drying to obtain activated carbon, and adding the metal salt extract recovered in the metal recovery step in the mixing step Features.

本発明の活性炭製造方法では、まず混合工程において、ゴム製品の熱分解残渣とハロゲン含有プラスチックを混合する。そして、加熱工程において、混合工程で得られた混合物を略酸素のない条件下で熱処理する。これによりハロゲン含有プラスチックが熱分解し、発生するハロゲン化水素が熱分解残渣に含まれる一部の金属化合物と反応することで賦活薬剤として作用する金属ハロゲン化物が生成する。この加熱工程により多孔質化された炭素を含む加熱処理物が得られる。そして、金属塩回収工程において加熱処理物に水又は希酸を加えることにより、賦活薬剤である金属ハロゲン化物を選択的に抽出し回収するとともに抽出残渣を得る。次の金属除去工程では、抽出残渣中に残存する金属類を溶解可能な酸を用いて溶解させ、残った金属除去後残渣を水洗し、乾燥して活性炭を得る。 In the activated carbon production method of the present invention, first, in the mixing step, the thermal decomposition residue of the rubber product and the halogen-containing plastic are mixed. Then, in the heating step, the mixture obtained in the mixing step is heat-treated under conditions that are substantially free of oxygen. As a result, the halogen-containing plastic is thermally decomposed, and the generated hydrogen halide reacts with a part of the metal compound contained in the thermal decomposition residue, thereby generating a metal halide that acts as an activator. A heat-treated product containing porous carbon is obtained by this heating step. And in a metal salt collection | recovery process, by adding water or a dilute acid to a heat processing thing, the metal halide which is an activator is selectively extracted and collect | recovered, and an extraction residue is obtained. In the next metal removal step, the metals remaining in the extraction residue are dissolved using an acid capable of dissolving, and the remaining metal removal residue is washed with water and dried to obtain activated carbon.

本発明の活性炭製造方法では、加熱工程で生成した賦活薬剤を金属回収工程で回収し、得られた金属塩抽出液を混合工程において添加する。これにより良質の活性炭が得られる。また、ゴム熱分解残渣に含まれる金属成分を賦活薬剤源として利用することから、処理コストの低減が可能となる。 In the activated carbon production method of the present invention, the activation agent generated in the heating step is recovered in the metal recovery step, and the obtained metal salt extract is added in the mixing step. Thereby, good quality activated carbon is obtained. Further, since the metal component contained in the rubber pyrolysis residue is used as an activation chemical source, the processing cost can be reduced.

ゴム製品としては、タイヤが最も大量に使用、排出されていることから、廃タイヤであることがコストおよび環境の観点から好ましい。   As rubber products, tires are used and discharged in the largest amount, and therefore, waste tires are preferable from the viewpoint of cost and environment.

ハロゲン含有プラスチックは塩ビ樹脂や、ポリ塩化ビニリデン等を用いることができるが、中でも生産量および排出量が最も多い塩ビ樹脂が好適に用いられる。   As the halogen-containing plastic, a vinyl chloride resin, polyvinylidene chloride, or the like can be used. Among them, the vinyl chloride resin having the largest production and discharge is preferably used.

ゴム製品には亜鉛化合物が含まれていることが望ましい。ゴム製品熱分解残渣に含まれる亜鉛化合物がハロゲン含有プラスチックの熱分解で発生したハロゲン化水素と反応することで賦活薬剤として作用する亜鉛塩が得られることによる。   It is desirable that the rubber product contains a zinc compound. This is because the zinc compound contained in the thermal decomposition residue of the rubber product reacts with the hydrogen halide generated by the thermal decomposition of the halogen-containing plastic to obtain a zinc salt that acts as an activator.

加熱工程における加熱温度は経時的に上昇させることが好ましい。一気に温度を上昇させると加熱工程で発生するハロゲン化水素がゴム製品の熱分解残渣に吸収されずに放出されることや、ハロゲン化プラスチックの熱分解によりハロゲン化水素だけではなく有機物がガス化して逸散する等の点から好ましくない。ここで、加熱温度を経時的に上昇させるとは、熱処理する温度を2条件、あるいはそれ以上の条件に設定して段階的に温度を上昇させることを意味するが、ゆっくりと昇温させて加熱してもよい。   The heating temperature in the heating step is preferably increased with time. If the temperature is raised at once, hydrogen halide generated in the heating process is released without being absorbed by the thermal decomposition residue of the rubber product, and not only hydrogen halide but also organic substances are gasified due to thermal decomposition of the halogenated plastic. It is not preferable in terms of dissipation. Here, increasing the heating temperature with time means that the temperature for heat treatment is set to two conditions or more, and the temperature is increased stepwise. May be.

以上に説明したように、本発明によれば、重金属を含有する廃ゴム製品の熱分解残渣を塩ビ樹脂などのハロゲン含有プラスチックあるいはそれを含む廃プラスチックを原料として良好な吸着性能を有する活性炭が得られる。この活性炭製造法の特徴は異なる種類の廃棄物を同時に処理できること、また、賦活薬剤として作用する金属塩化物が加熱工程で生成するため、その金属塩化物を金属塩回収工程において抽出・回収して利用できるために原則的に賦活薬剤のコストを必要としない点である。このため、処理プロセスの高効率化に加え、処理コストおよび消費エネルギーの低減を図ることが可能となる。 As described above, according to the present invention, activated carbon having good adsorption performance can be obtained by using, as a raw material, a halogen-containing plastic such as a vinyl chloride resin or a waste plastic containing it as a thermal decomposition residue of waste rubber products containing heavy metals. It is done. The feature of this activated carbon production method is that different types of waste can be treated at the same time, and metal chlorides that act as activators are produced in the heating process, so the metal chlorides are extracted and recovered in the metal salt recovery process. In principle, it does not require the cost of an activating drug to be available. For this reason, in addition to the high efficiency of the processing process, it is possible to reduce the processing cost and energy consumption.

以下にゴム製品がタイヤ、ハロゲン含有プラスチックが塩ビ樹脂の場合を取り上げ、本発明の活性炭製造方法について説明する。 The case where the rubber product is a tire and the halogen-containing plastic is a vinyl chloride resin will be described below, and the activated carbon production method of the present invention will be described.

タイヤ熱分解残渣は、ボイラーなどにおいて燃料利用した際に副生する灰やタイヤの熱分解による油回収の処理後に発生するものなどである。重金属の含有量は亜鉛が2〜50wt%、鉄が1〜10wt%の範囲である。このタイヤ熱分解残渣は粉砕して粉末状にしたものを用いるのが望ましい。また、予め磁気選別によって鉄分を除去しておくことが望ましい。 The tire pyrolysis residue is ash generated when fuel is used in a boiler or the like or generated after oil recovery processing by pyrolysis of the tire. The heavy metal content ranges from 2 to 50 wt% for zinc and from 1 to 10 wt% for iron. The tire pyrolysis residue is preferably pulverized and powdered. Moreover, it is desirable to remove iron by magnetic sorting beforehand.

塩ビ樹脂は硬質、軟質のいずれでもよいが、活性炭製造の目的上、灰分となる割合が少ないものが望ましく、数mm程度の寸法になるように予め破砕しておくことが望ましい。 The vinyl chloride resin may be either hard or soft, but for the purpose of producing activated carbon, it is desirable that the ratio of ash content is small, and it is desirable that the resin be crushed in advance to have a size of about several millimeters.

混合工程において、タイヤ熱分解残渣と塩ビ含有樹脂を混合する。その混合比率については、通常、タイヤ熱分解残渣に対して塩ビ樹脂が0.1〜10倍量の範囲であり、タイヤ熱分解残渣の塩化水素ガス吸収性能や塩ビ含有樹脂からの塩化水素ガス発生量などを考慮して設定する。 In the mixing step, the tire pyrolysis residue and the vinyl chloride-containing resin are mixed. The mixing ratio is usually 0.1 to 10 times the amount of vinyl chloride resin relative to the tire pyrolysis residue, and the hydrogen chloride gas absorption performance of the tire pyrolysis residue and the generation of hydrogen chloride gas from the vinyl chloride-containing resin Set in consideration of the amount.

得られる活性炭の吸着性能を向上させるため、混合物の重量に対して塩化亜鉛水溶液を塩化亜鉛の重量比として0.5〜4倍の範囲で添加してもよい。この塩化亜鉛水溶液は後述するように活性炭製造プロセスの過程で副生するものを利用するのが好ましい。 In order to improve the adsorption performance of the obtained activated carbon, an aqueous zinc chloride solution may be added in a range of 0.5 to 4 times the weight ratio of zinc chloride to the weight of the mixture. As this zinc chloride aqueous solution, it is preferable to use what is by-produced during the activated carbon production process as will be described later.

混合工程で得られた混合物を加熱工程において熱処理する。ここでは熱処理は2段階に分けて行う。まず、不活性ガス気流中において180〜300℃の温度で加熱する。これにより塩ビ樹脂の熱分解によって発生する塩化水素ガスがタイヤ熱分解残渣に吸収されることにより、タイヤ熱分解残渣中の亜鉛化合物がその塩化物に変化する。加熱処理の時間は温度や混合物の組成などにより適宜調節することになるが、通常1時間以内で良い。 The mixture obtained in the mixing step is heat-treated in the heating step. Here, the heat treatment is performed in two stages. First, heating is performed at a temperature of 180 to 300 ° C. in an inert gas stream. As a result, the hydrogen chloride gas generated by the thermal decomposition of the vinyl chloride resin is absorbed by the tire thermal decomposition residue, whereby the zinc compound in the tire thermal decomposition residue is changed to the chloride. The heat treatment time is appropriately adjusted depending on the temperature, the composition of the mixture, etc., but it is usually within 1 hour.

さらに、この熱処理した混合物を450〜750℃の温度で15〜150分加熱することで混合物中の炭素成分の賦活処理を行う。 Furthermore, the carbon component in the mixture is activated by heating the heat-treated mixture at a temperature of 450 to 750 ° C. for 15 to 150 minutes.

こうして得られた加熱処理物は冷却したのち金属塩回収工程において水あるいは0.1mol/L以下の希酸を用いて処理する。これにより加熱処理物の重金属成分のうち亜鉛が選択的に抽出され塩化亜鉛の濃厚水溶液が回収される。この金属塩回収工程では塩酸、硫酸などの鉱酸や酢酸、クエン酸などの有機酸を用いることができ、塩酸が好適に使用される。この水溶液は、前述したように混合工程において添加するために用いるが、金属亜鉛の回収などの別プロセスに供してもよい。 The heat-treated product thus obtained is cooled and then treated with water or dilute acid of 0.1 mol / L or less in the metal salt recovery step. Thereby, zinc is selectively extracted from the heavy metal components of the heat-treated product, and a concentrated aqueous solution of zinc chloride is recovered. In this metal salt recovery step, mineral acids such as hydrochloric acid and sulfuric acid and organic acids such as acetic acid and citric acid can be used, and hydrochloric acid is preferably used. This aqueous solution is used for addition in the mixing step as described above, but may be subjected to another process such as recovery of metallic zinc.

続いて、金属除去工程において抽出残渣に残留している重金属を除去するために酸を用いて洗浄する。この金属除去工程に用いられる酸は塩酸、硫酸などの鉱酸や酢酸、クエン酸などの有機酸が挙げられるが、特に限定されない。その後、温水で洗浄、乾燥することにより粉末状の活性炭が得られる。 Subsequently, in order to remove heavy metals remaining in the extraction residue in the metal removal step, washing is performed using an acid. Examples of the acid used in the metal removal step include mineral acids such as hydrochloric acid and sulfuric acid, and organic acids such as acetic acid and citric acid, but are not particularly limited. Thereafter, the powdered activated carbon is obtained by washing with hot water and drying.

図1は本発明の実施形態について例示したものであるが、亜鉛以外の元素を金属成分として含むゴム製品あるいはポリ塩化ビニリデンなどの他のハロゲン含有プラスチックを用いた場合でも、加熱工程において賦活薬剤として作用する金属塩が生成すれば同様の効果が得られるものと推測される。 FIG. 1 exemplifies an embodiment of the present invention. However, even when a rubber product containing an element other than zinc as a metal component or other halogen-containing plastics such as polyvinylidene chloride is used as an activator in the heating step. It is presumed that the same effect can be obtained if a working metal salt is produced.

以下に本発明の具体的な実施例について説明する。
なお、得られた活性炭の評価法はJIS K1474、JWWA K113に準拠した。比表面積の測定にはQuantachrome社製Autosorb−1を用いた。相対圧が0.05から0.25の液体窒素温度における窒素ガス吸着量に対してBET式を適用することにより比表面積を算出した。
Specific examples of the present invention will be described below.
In addition, the evaluation method of the obtained activated carbon was based on JIS K1474 and JWWA K113. For measuring the specific surface area, Autosorb-1 manufactured by Quantachrome was used. The specific surface area was calculated by applying the BET equation to the nitrogen gas adsorption amount at a liquid nitrogen temperature with a relative pressure of 0.05 to 0.25.

(実施例1)
タイヤ熱分解残渣と市販の塩ビ樹脂を重量比1:1で混合した。この混合物を窒素ガス気流中にて200℃、1時間熱処理した。続いて、650℃、2時間の熱処理を行った。こうして得られた熱処理試料は、まず0.01mol/Lの希塩酸を用いて洗浄した。続いて、80℃の約10wt%の塩酸を用いて洗浄した。これを温水により洗浄、分離した後、乾燥させることで活性炭として用いられる粉末状炭化物を得た。
(Example 1)
The tire pyrolysis residue and a commercially available vinyl chloride resin were mixed at a weight ratio of 1: 1. This mixture was heat-treated at 200 ° C. for 1 hour in a nitrogen gas stream. Subsequently, heat treatment was performed at 650 ° C. for 2 hours. The heat-treated sample thus obtained was first washed with 0.01 mol / L dilute hydrochloric acid. Subsequently, it was washed with about 10 wt% hydrochloric acid at 80 ° C. This was washed with hot water, separated, and dried to obtain powdered carbide used as activated carbon.

(実施例2)
タイヤ熱分解残渣と市販の塩ビ樹脂を重量比1:1で混合した。この混合物に塩化亜鉛水溶液を塩化亜鉛の重量比として1:2となるように添加し、乾燥させた。この混合物を窒素ガス気流中にて200℃、1時間熱処理した。続いて、650℃、2時間の熱処理を行った。これを用いて、実施例1と同様の処理を行うことにより炭化物を得た。
(Example 2)
The tire pyrolysis residue and a commercially available vinyl chloride resin were mixed at a weight ratio of 1: 1. An aqueous zinc chloride solution was added to the mixture so that the weight ratio of zinc chloride was 1: 2, and the mixture was dried. This mixture was heat-treated at 200 ° C. for 1 hour in a nitrogen gas stream. Subsequently, heat treatment was performed at 650 ° C. for 2 hours. By using this, the same treatment as in Example 1 was performed to obtain a carbide.

(実施例3)
タイヤ熱分解残渣と市販の塩ビ樹脂を重量比1:1で混合した。この混合物に塩化亜鉛水溶液を塩化亜鉛の重量比として1:2となるように添加し、乾燥させた。この混合物を窒素ガス気流中にて200℃、1時間熱処理した。続いて、650℃、0.5時間の熱処理を行った。その後は、実施例1と同様の処理を行うことにより炭化物を得た。
(Example 3)
The tire pyrolysis residue and a commercially available vinyl chloride resin were mixed at a weight ratio of 1: 1. An aqueous zinc chloride solution was added to the mixture so that the weight ratio of zinc chloride was 1: 2, and the mixture was dried. This mixture was heat-treated at 200 ° C. for 1 hour in a nitrogen gas stream. Subsequently, heat treatment was performed at 650 ° C. for 0.5 hour. Thereafter, the same treatment as in Example 1 was performed to obtain a carbide.

(比較例1)
タイヤ熱分解残渣のみを用い、実施例1と同様の処理を行うことにより炭化物を得た。
(Comparative Example 1)
Carbide was obtained by performing the same treatment as in Example 1 using only the tire pyrolysis residue.

(比較例2)
タイヤ熱分解残渣に塩化亜鉛水溶液を塩化亜鉛の重量比として1:2となるように添加し、乾燥させた。これを用いて、実施例1と同様の処理を行うことにより炭化物を得た。
(Comparative Example 2)
A zinc chloride aqueous solution was added to the tire pyrolysis residue so that the weight ratio of zinc chloride was 1: 2, and the tire was dried. By using this, the same treatment as in Example 1 was performed to obtain a carbide.

(比較例3)
塩ビ樹脂のみを用い、実施例1と同様の加熱処理を行うことにより炭化物を得た。
(Comparative Example 3)
Carbide was obtained by performing the same heat treatment as in Example 1 using only a vinyl chloride resin.

(比較例4)
塩ビ樹脂に塩化亜鉛水溶液を塩化亜鉛の重量比として1:2となるように添加し、乾燥させた。これを用いて、実施例1と同様の処理を行うことにより炭化物を得た。
(Comparative Example 4)
An aqueous zinc chloride solution was added to the vinyl chloride resin so that the weight ratio of zinc chloride was 1: 2, and the mixture was dried. By using this, the same treatment as in Example 1 was performed to obtain a carbide.

上記実施例および比較例の結果を図2にまとめて示す。 The results of the above examples and comparative examples are collectively shown in FIG.

この結果から本発明の特徴は明らかである。すなわち、混合熱処理した場合では、それぞれを別々に処理した場合と比較して、得られる炭化物の吸着性能が優れるということである。実施例1、比較例1および3からタイヤ熱分解残渣のみ、あるいは塩ビ樹脂のみといったような単独で熱処理した場合と比較して、混合物を熱処理した場合には得られる炭化物の吸着性能は著しく向上することがわかる。 From this result, the characteristics of the present invention are clear. That is, in the case of mixed heat treatment, the adsorption performance of the obtained carbide is superior as compared to the case where each is treated separately. Compared with the case where only the tire pyrolysis residue or only the vinyl chloride resin alone is heat-treated from Example 1 and Comparative Examples 1 and 3, the adsorption performance of the obtained carbide is remarkably improved when the mixture is heat-treated. I understand that.

また、実施例2および3の結果からは、原料の混合物に対して塩化亜鉛を添加することによって吸着性能をさらに向上することがわかる。この塩化亜鉛は混合物の熱処理過程で生成したものが利用できる。 Moreover, from the results of Examples 2 and 3, it is understood that the adsorption performance is further improved by adding zinc chloride to the mixture of raw materials. This zinc chloride can be produced by the heat treatment of the mixture.

また、比較例2および4に示したようにタイヤ熱分解残渣のみ、あるいは塩ビ樹脂のみに対して塩化亜鉛を添加して得られた炭化物の吸着性能と比較しても両者を混合熱処理した場合の方が優れている。 In addition, as shown in Comparative Examples 2 and 4, even when compared with the adsorption performance of carbide obtained by adding zinc chloride to only the tire pyrolysis residue or to the vinyl chloride resin, both were mixed and heat-treated. Is better.

さらに、既報の特許文献におけるタイヤ残渣からの活性炭製造プロセスと比較してより低温かつ短時間の処理で活性炭の製造が可能であるということ、タイヤ残渣に含まれている亜鉛化合物を塩ビ樹脂との混合熱処理により賦活薬剤として活用できる点は本発明におけるメリットである。 Furthermore, it is possible to produce activated carbon at a lower temperature and in a shorter time as compared with the activated carbon production process from tire residues in the published patent document, and the zinc compound contained in the tire residue is replaced with vinyl chloride resin. The advantage of the present invention is that it can be used as an activating agent by mixed heat treatment.

なお、言うまでもないが、必要に応じて、得られた炭化物に対してガス賦活処理を施すことにより、さらに吸着性能を向上させることが可能である。 Needless to say, the adsorption performance can be further improved by subjecting the obtained carbide to a gas activation treatment as necessary.

この発明は上記発明の実施の態様及び実施例の説明に何ら限定されるものではない。特許請求の範囲を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。   The present invention is not limited to the description of the embodiments and examples of the invention described above. Various modifications are also included in the present invention as long as those skilled in the art can easily conceive without departing from the scope of the claims.

本発明は、廃タイヤなど重金属を含有するゴム製品の熱分解残渣、ならびに廃プラスチックを原料とすることで、良質かつ安価な活性炭の製造方法であるのに加えて、これらの廃棄物の効率的な処理方法として利用可能である。   The present invention is not only a method for producing high-quality and inexpensive activated carbon by using pyrolysis residues of rubber products containing heavy metals such as waste tires and waste plastics as raw materials, but also efficiently treating these wastes. It can be used as a simple processing method.

本発明の実施例を示した図である。It is the figure which showed the Example of this invention. 本発明の実施例および比較例により得られた炭化物の吸着性能の結果を示した図である。It is the figure which showed the result of the adsorption | suction performance of the carbide | carbonized_material obtained by the Example and comparative example of this invention.

Claims (5)

ゴム製品の熱分解残渣と、ハロゲン含有プラスチックとを混合する混合工程と、混合工程で得られた混合物を略酸素のない条件下で加熱処理して加熱処理物を得る加熱工程と該加熱処理物に水又は希酸を加えて金属塩抽出液を回収する金属塩回収工程と、該金属塩回収工程において残った抽出残渣に含まれる残留金属成分を酸で溶出させる金属除去工程と、金属除去工程後に残った金属除去後残渣を水洗し、乾燥して活性炭を得る工程を備え、前記金属回収工程で回収した金属塩抽出液を前記混合工程において添加することを特徴とする活性炭の製造方法。   A mixing step of mixing a thermal decomposition residue of a rubber product and a halogen-containing plastic, a heating step of heating the mixture obtained in the mixing step under substantially oxygen-free conditions to obtain a heat-treated product, and the heat-treated product A metal salt recovery step of recovering a metal salt extract by adding water or dilute acid to the metal, a metal removal step of eluting residual metal components contained in the extraction residue remaining in the metal salt recovery step with an acid, and a metal removal step A method for producing activated carbon, comprising: a step of washing the residue after removal of the metal remaining after washing and drying to obtain activated carbon, wherein the metal salt extract recovered in the metal recovery step is added in the mixing step. 前記ゴム製品はタイヤ廃棄物であることを特徴とする請求項1記載の活性炭の製造方法。   2. The method for producing activated carbon according to claim 1, wherein the rubber product is tire waste. 前記ハロゲン含有プラスチックはポリ塩化ビニルであることを特徴とする請求項1又は2記載の活性炭の製造方法。   The method for producing activated carbon according to claim 1, wherein the halogen-containing plastic is polyvinyl chloride. 前記ゴム製品には亜鉛化合物が含まれていることを特徴とする請求項1乃至3のいずれか1項記載の活性炭の製造方法。   The method for producing activated carbon according to any one of claims 1 to 3, wherein the rubber product contains a zinc compound. 前記加熱工程における加熱温度は経時的に昇温させることを特徴とする請求項1乃至4のいずれか1項記載の活性炭の製造方法。

The method for producing activated carbon according to any one of claims 1 to 4, wherein the heating temperature in the heating step is increased over time.

JP2006233081A 2006-08-30 2006-08-30 Activated carbon production method Expired - Fee Related JP5150828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006233081A JP5150828B2 (en) 2006-08-30 2006-08-30 Activated carbon production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006233081A JP5150828B2 (en) 2006-08-30 2006-08-30 Activated carbon production method

Publications (2)

Publication Number Publication Date
JP2008056512A true JP2008056512A (en) 2008-03-13
JP5150828B2 JP5150828B2 (en) 2013-02-27

Family

ID=39239698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006233081A Expired - Fee Related JP5150828B2 (en) 2006-08-30 2006-08-30 Activated carbon production method

Country Status (1)

Country Link
JP (1) JP5150828B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106189241A (en) * 2016-08-09 2016-12-07 国网河南省电力公司电力科学研究院 The application in flame-proof composite material of the processing method of a kind of composite insulator silicon rubber and composite insulator silicon rubber
CN114272924A (en) * 2021-11-22 2022-04-05 泰兴市凌飞化学科技有限公司 Method for recycling waste resin
WO2024091001A1 (en) * 2022-10-26 2024-05-02 주식회사 엘지화학 Method for catalytic cracking of pvc waste

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50115283A (en) * 1974-02-26 1975-09-09
JPH0881210A (en) * 1994-09-13 1996-03-26 Mitsubishi Gas Chem Co Inc Carbon material having high specific surface area and its production
JP2000225320A (en) * 1998-12-01 2000-08-15 Mitsubishi Chemicals Corp Method for treating high temperature gas and active carbon
JP2005206423A (en) * 2004-01-22 2005-08-04 Kureha Kankyo Kk Manufacturing method of powdery and granular carbonized material
JP2007277479A (en) * 2006-04-11 2007-10-25 Nippon Steel Corp Method and apparatus for producing hydrogen gas and carbon monoxide gas from inflammable waste

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50115283A (en) * 1974-02-26 1975-09-09
JPH0881210A (en) * 1994-09-13 1996-03-26 Mitsubishi Gas Chem Co Inc Carbon material having high specific surface area and its production
JP2000225320A (en) * 1998-12-01 2000-08-15 Mitsubishi Chemicals Corp Method for treating high temperature gas and active carbon
JP2005206423A (en) * 2004-01-22 2005-08-04 Kureha Kankyo Kk Manufacturing method of powdery and granular carbonized material
JP2007277479A (en) * 2006-04-11 2007-10-25 Nippon Steel Corp Method and apparatus for producing hydrogen gas and carbon monoxide gas from inflammable waste

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106189241A (en) * 2016-08-09 2016-12-07 国网河南省电力公司电力科学研究院 The application in flame-proof composite material of the processing method of a kind of composite insulator silicon rubber and composite insulator silicon rubber
CN106189241B (en) * 2016-08-09 2019-02-15 国网河南省电力公司电力科学研究院 The application of a kind of processing method and composite insulator silicon rubber of composite insulator silicon rubber in flame retardant composite material
CN114272924A (en) * 2021-11-22 2022-04-05 泰兴市凌飞化学科技有限公司 Method for recycling waste resin
WO2024091001A1 (en) * 2022-10-26 2024-05-02 주식회사 엘지화학 Method for catalytic cracking of pvc waste

Also Published As

Publication number Publication date
JP5150828B2 (en) 2013-02-27

Similar Documents

Publication Publication Date Title
Ma et al. Insight into chlorine evolution during hydrothermal carbonization of medical waste model
CN103949461B (en) A kind of method that uses near-critical water to separate and reclaim the each component material of waste and old circuit board
JP2005126486A (en) Method for recycling waste plastic and method for molding
JP5150828B2 (en) Activated carbon production method
TWI808273B (en) Method for stripping coated wire
JP5134719B1 (en) Method for recovering metallic copper from copper wire coated with chlorine-containing synthetic resin
JP2000015635A (en) Method for dechlorination of waste and method and apparatus for producing dechlorinated fuel
CN110407207B (en) High-temperature co-carbonizing agent and application thereof in recarburization and impurity solidification in carbonization process of plastic wastes
Zhang et al. Formation and evolution of PVC waste-derived hydrochar
JP3218961B2 (en) Treatment of chlorine-containing plastic waste
CN103846268B (en) The method of Footwall drift copper from the copper cash being coated with chloride synthetic resin
JP3304734B2 (en) How to treat shredder dust
KR20220040108A (en) Method and System for Treating Wastes
CN115947977A (en) Method for degrading plastics
TWI784360B (en) SiC Synthesis
CN115228905B (en) Method for treating nonmetallic materials in waste circuit boards
JP6651900B2 (en) Treatment method for chlorine-containing incinerated ash
Xie et al. Methods review of recycling mercury from waste mercury chloride catalyst of PVC production
JP2003221203A (en) Method for manufacturing hydrogen using waste as raw material
CN106827302A (en) The recovery and treatment method of polyurethane waste material in a kind of waste refrigerators
JP2001270962A (en) Method for manufacturing dechlorinated resin and refining method
KR100868236B1 (en) Process method for adsorption agent from the pyrolysis residue of waste polystyrene
JP5085307B2 (en) Method for producing activated carbide and method for treating dioxins
JP3230440B2 (en) Treatment of chlorine-containing plastic waste
KR20240029238A (en) Catalysts to accelerate pyrolysis reaction that produces caprolactam from nylon waste and process for the recovery of caprolactam from waste using the catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121006

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5150828

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees