JP2008055252A - Steam modifying catalyst, hydrogen manufacturing apparatus and fuel cell system - Google Patents

Steam modifying catalyst, hydrogen manufacturing apparatus and fuel cell system Download PDF

Info

Publication number
JP2008055252A
JP2008055252A JP2006231897A JP2006231897A JP2008055252A JP 2008055252 A JP2008055252 A JP 2008055252A JP 2006231897 A JP2006231897 A JP 2006231897A JP 2006231897 A JP2006231897 A JP 2006231897A JP 2008055252 A JP2008055252 A JP 2008055252A
Authority
JP
Japan
Prior art keywords
catalyst
steam reforming
ruthenium
steam
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006231897A
Other languages
Japanese (ja)
Other versions
JP4783240B2 (en
Inventor
Yasutsugu Hashimoto
康嗣 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP2006231897A priority Critical patent/JP4783240B2/en
Publication of JP2008055252A publication Critical patent/JP2008055252A/en
Application granted granted Critical
Publication of JP4783240B2 publication Critical patent/JP4783240B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a long life steam modifying catalyst constituted so as to reduce the flocculation of an active metal under a high temperature steam atmosphere. <P>SOLUTION: The steam modifying catalyst of hydrocarbon compounds is constituted by supporting ruthenium, iridium and/or rhodium, of which the content is 0.1-5 wt. times that of ruthenium, on a carrier based on alumina. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、水蒸気改質用触媒、該水蒸気改質用触媒を用いた水素製造装置および該水素製造装置を有する燃料電池システムに関する。   The present invention relates to a steam reforming catalyst, a hydrogen production apparatus using the steam reforming catalyst, and a fuel cell system having the hydrogen production apparatus.

水素製造プロセスにおいて最も重要な位置を占めているのが炭化水素化合物類と水蒸気を反応させ、水素、一酸化炭素、二酸化炭素、メタン等を得るいわゆる炭化水素化合物類の水蒸気改質技術である。水蒸気改質法が広く用いられているのは、部分酸化法等に比べ、設備が安価なためである。
従来の水蒸気改質用触媒はニッケル系が主である(特許文献1参照)。しかしながら、これらの触媒は炭素析出を起こしやすく、活性が短時間で低下するという欠点を有している。そのため比較的高圧(2MPa以上)および高スチーム/カーボン比(3.0以上)で運転されることが多いが、燃料電池システムの場合、装置の取り扱いの容易さから反応圧力は低いほど好ましく、発電効率の面からスチーム/カーボン比は低いほど好ましい。
また、燃料電池の原料炭化水素としてはエネルギー密度、経済性、取り扱いの容易さから灯油が好ましいが、前記ニッケル系触媒では炭素析出を起こしやすいため、原料炭化水素は天然ガスからナフサ程度に限られていた。
The most important position in the hydrogen production process is a so-called hydrocarbon reforming technique for hydrocarbon compounds in which hydrocarbon compounds are reacted with steam to obtain hydrogen, carbon monoxide, carbon dioxide, methane, and the like. The steam reforming method is widely used because the equipment is cheaper than the partial oxidation method.
Conventional steam reforming catalysts are mainly nickel-based (see Patent Document 1). However, these catalysts are liable to cause carbon deposition and have the disadvantage that the activity decreases in a short time. For this reason, it is often operated at a relatively high pressure (2 MPa or more) and a high steam / carbon ratio (3.0 or more). However, in the case of a fuel cell system, the lower the reaction pressure, the better the handling of the device is preferable. A lower steam / carbon ratio is preferable from the viewpoint of efficiency.
In addition, kerosene is preferred as a raw material hydrocarbon for fuel cells because of its energy density, economy, and ease of handling. However, since the nickel-based catalyst tends to cause carbon deposition, the raw material hydrocarbon is limited to about naphtha from natural gas. It was.

一方、ルテニウム系触媒は、炭素析出抑制効果を保有しているため、ニッケル系触媒より少ないスチーム/カーボン比条件で水蒸気改質反応を行うことができる点で注目されている。このようなルテニウム系触媒の例としては、アルミナ担体にルテニウムを担持させたもの(非特許文献1参照)、アルカリ金属酸化物またはアルカリ土類金属酸化物に酸化セリウムを担持した担体を用いたもの(特許文献2参照)、ジルコニア担体を使用したもの(特許文献3、特許文献4参照)等を挙げることができる。
しかし、ルテニウム系触媒は高温、水蒸気雰囲気下で容易に凝集を起こし、活性が大きく低下する。また、凝集を起こした触媒は表面金属数が少なくなるため硫黄被毒の影響が大きくなり触媒寿命が大きく低下し、実用上極めて問題となる。
特開平4−363140号公報 特開平4−265156号公報 特開平2−286787号公報 特開平2−302304号公報 笠岡ら,「燃料協会誌」,1980年,59巻、p.25
On the other hand, ruthenium-based catalysts have attracted attention because they can perform a steam reforming reaction under a steam / carbon ratio condition lower than that of nickel-based catalysts because they have a carbon deposition suppressing effect. Examples of such ruthenium-based catalysts include those in which ruthenium is supported on an alumina support (see Non-Patent Document 1), and those in which a support in which cerium oxide is supported on an alkali metal oxide or an alkaline earth metal oxide is used. (See Patent Document 2), and those using a zirconia carrier (see Patent Document 3 and Patent Document 4).
However, the ruthenium-based catalyst easily aggregates at a high temperature and in a steam atmosphere, and its activity is greatly reduced. In addition, the agglomerated catalyst has a small number of surface metals, so that the influence of sulfur poisoning is increased and the catalyst life is greatly reduced, which is extremely problematic in practice.
JP-A-4-363140 JP-A-4-265156 JP-A-2-286787 JP-A-2-302304 Kasaoka et al., “The Journal of Fuel Association”, 1980, Volume 59, p. 25

本発明は、高温、水蒸気雰囲気下で活性金属の凝集が小さい長寿命な水蒸気改質用触媒を提供するものであり、また該触媒を用いる水素製造装置および燃料電池システムをも提供するものである。   The present invention provides a long-life steam reforming catalyst in which active metal agglomeration is small under high temperature and steam atmosphere, and also provides a hydrogen production apparatus and a fuel cell system using the catalyst. .

本発明者らは、炭化水素の水蒸気改質反応において活性金属の凝集抑制ができる方法について鋭意研究した結果、特定の水蒸気改質用触媒を用いることにより達成出来ることを見出し、本発明を完成させたものである。   As a result of intensive studies on a method capable of suppressing the aggregation of active metals in the steam reforming reaction of hydrocarbons, the present inventors have found that this can be achieved by using a specific steam reforming catalyst, and completed the present invention. It is a thing.

すなわち本発明は、ルテニウムと、ルテニウムの含有量の0.1〜5重量倍であるイリジウムおよび/またはロジウムとを、アルミナを主成分とする担体に担持させてなる炭化水素化合物類の水蒸気改質用触媒に関する。
また本発明は、担体がアルミナと、希土類元素酸化物およびアルカリ土類元素酸化物から選ばれた少なくとも1種の無機酸化物とを含むことを特徴とする前記記載の水蒸気改質用触媒に関する。
また本発明は、該希土類元素酸化物が、スカンジウム、イットリウム、ランタンおよびセリウムから選択される1種または2種以上の希土類元素の酸化物であることを特徴とする前記記載の水蒸気改質用触媒に関する。
また本発明は、該アルカリ土類元素酸化物が、マグネシウム、カルシウムおよびバリウムから選択される1種または2種以上のアルカリ土類元素の酸化物であることを特徴とする前記記載の水蒸気改質用触媒に関する。
また本発明は、前記記載の水蒸気改質用触媒を用い、水蒸気改質反応により、炭化水素化合物類から水素を主成分として含む改質ガスを得ることを特徴とする水素製造装置に関する。
また本発明は、前記記載の水素製造装置を有することを特徴とする燃料電池システムに関する。
That is, the present invention relates to steam reforming of hydrocarbon compounds obtained by supporting ruthenium and iridium and / or rhodium having a content of 0.1 to 5 times by weight of ruthenium on a carrier mainly composed of alumina. Relates to a catalyst.
The present invention also relates to the steam reforming catalyst as described above, wherein the support contains alumina and at least one inorganic oxide selected from rare earth element oxides and alkaline earth element oxides.
Further, the present invention provides the steam reforming catalyst as described above, wherein the rare earth element oxide is an oxide of one or more rare earth elements selected from scandium, yttrium, lanthanum and cerium. About.
In the present invention, the alkaline earth element oxide is an oxide of one or more alkaline earth elements selected from magnesium, calcium and barium. Relates to a catalyst.
The present invention also relates to a hydrogen production apparatus characterized in that a reformed gas containing hydrogen as a main component is obtained from hydrocarbon compounds by a steam reforming reaction using the steam reforming catalyst described above.
The present invention also relates to a fuel cell system comprising the hydrogen production apparatus described above.

本発明の水蒸気改質用触媒を用いて水蒸気改質を行うことにより、活性金属の凝集抑制および触媒寿命向上を達成できる。これによって、水素及び一酸化炭素を含む混合ガスを長期間安定して製造することができ、燃料電池用燃料あるいはその原料として使用することができる。   By performing steam reforming using the steam reforming catalyst of the present invention, active metal aggregation can be suppressed and catalyst life can be improved. As a result, a mixed gas containing hydrogen and carbon monoxide can be stably produced for a long period of time, and can be used as a fuel for a fuel cell or a raw material thereof.

以下、本発明を詳細に説明する。
本発明の水蒸気改質用触媒は、ルテニウムと、ルテニウムの含有量の0.1〜5重量倍であるイリジウムおよび/またはロジウムとを、アルミナを主成分とする担体に担持させてなるものである。
Hereinafter, the present invention will be described in detail.
The steam reforming catalyst of the present invention is obtained by supporting ruthenium and iridium and / or rhodium having a content of 0.1 to 5 times the ruthenium content on a carrier mainly composed of alumina. .

本発明の触媒担体の主成分としては、アルミナが用いられ、とりわけ、耐熱性、機械的強度が大きいαアルミナが好ましく用いられる。
触媒担体中のアルミナの含有量は71〜98質量%が好ましく、より好ましくは75〜95質量%、最も好ましくは80〜91質量%である。
As the main component of the catalyst carrier of the present invention, alumina is used, and in particular, α-alumina having high heat resistance and mechanical strength is preferably used.
The content of alumina in the catalyst carrier is preferably 71 to 98% by mass, more preferably 75 to 95% by mass, and most preferably 80 to 91% by mass.

本発明の触媒担体には、希土類元素酸化物が含まれることが好ましい。
希土類元素としては、スカンジウム、イットリウム、ランタンおよびセリウムから選択される1種または2種以上の希土類元素を用いることが好ましく、ランタンおよびセリウムがより好ましい。
触媒担体中における希土類元素の含有量は、希土類元素酸化物として、アルミナに対して、外率(アルミナ重量基準)で、2〜25質量%であることが好ましく、より好ましくは5〜20質量%、さらに好ましくは10〜15質量%である。希土類元素酸化物の含有量が25質量%より多い場合、凝集が多くなり表面に出る活性金属の割合が極度に減少するため好ましくなく、一方、2質量%より少ない場合には希土類元素の炭素析出抑制効果が不十分であり好ましくない。
The catalyst support of the present invention preferably contains a rare earth element oxide.
As the rare earth element, one or more rare earth elements selected from scandium, yttrium, lanthanum and cerium are preferably used, and lanthanum and cerium are more preferable.
The rare earth element content in the catalyst carrier is preferably 2 to 25 mass%, more preferably 5 to 20 mass%, in terms of the external ratio (alumina weight basis) with respect to alumina as the rare earth element oxide. More preferably, it is 10 to 15% by mass. When the content of the rare earth element oxide is more than 25% by mass, it is not preferable because aggregation increases and the ratio of the active metal appearing on the surface is extremely reduced. On the other hand, when the content is less than 2% by mass, carbon precipitation of the rare earth element The suppression effect is insufficient and is not preferable.

本発明の触媒担体には、アルカリ土類元素酸化物が含まれることが好ましい。
アルカリ土類元素としては、マグネシウム、カルシウムおよびバリウムから選択される1種または2種以上のアルカリ土類元素を用いることが好ましく、マグネシウムおよびバリウムがより好ましい。
触媒担体中におけるアルカリ土類元素の含有量は、アルカリ土類元素酸化物として、アルミナに対して、外率(アルミナ重量基準)で、0.1〜15質量%であることが好ましく、より好ましくは0.5〜12質量%、さらに好ましくは1〜10質量%である。アルカリ土類元素酸化物の含有量が15質量%より多い場合、凝集が多くなり表面に出る活性金属の割合が極度に減少するため好ましくなく、一方、0.1質量%より少ない場合にはアルカリ土類元素の炭素析出抑制効果および活性向上効果が不十分となり好ましくない。
The catalyst support of the present invention preferably contains an alkaline earth element oxide.
As the alkaline earth element, one or more alkaline earth elements selected from magnesium, calcium and barium are preferably used, and magnesium and barium are more preferable.
The content of the alkaline earth element in the catalyst carrier is preferably 0.1 to 15% by mass, more preferably 0.1% by mass (based on the weight of alumina) as an alkaline earth element oxide with respect to alumina. Is 0.5 to 12% by mass, more preferably 1 to 10% by mass. When the content of the alkaline earth element oxide is more than 15% by mass, aggregation is increased and the ratio of the active metal appearing on the surface is extremely decreased. It is not preferable because the effect of suppressing the precipitation of carbon and the effect of improving the activity of earth elements are insufficient.

本発明にかかる触媒担体は、アルミナに希土類元素および/またはアルカリ土類元素を担持することにより得ることができる。
希土類元素およびアルカリ土類元素をアルミナ担体に担持する方法に関しては特に制限はなく、通常の含浸法、ポアフィル法など公知の方法を採用できる。通常、金属塩もしくは錯体として水、エタノール、もしくはアセトンなどの溶媒に溶解させ、アルミナ担体に含浸させる。担持させる金属塩もしくは金属錯体は、塩化物、硝酸塩、硫酸塩、酢酸塩、アセト酢酸塩などが好適に用いられる。
担持工程に関しても特に制限はなく、同時または逐次的に含浸することができる。
担持後、乾燥により水分をあらかた除去するが、この乾燥工程においても特に制限はなく、空気下、不活性ガス下で温度100〜150℃などが好適に用いられる。乾燥工程後、希土類元素および/またはアルカリ土類元素を担持した担体は350〜1000℃の温度で焼成することが好ましい。350℃より低い場合は担持元素の担体への固定化が不十分であり好ましくない。また、1000℃より高い場合は担持元素の凝集が生じるため好ましくない。焼成雰囲気は空気下が好ましく、ガス流量については特に制限はない。焼成時間は2時間以上が好ましい。2時間より短い場合は担持元素の担体への固定化が不十分であり好ましくない。かくして本発明にかかる触媒担体が得られる。
The catalyst carrier according to the present invention can be obtained by supporting rare earth elements and / or alkaline earth elements on alumina.
There is no particular limitation on the method for supporting the rare earth element and the alkaline earth element on the alumina support, and a known method such as a normal impregnation method or a pore fill method can be employed. Usually, it is dissolved in a solvent such as water, ethanol or acetone as a metal salt or complex and impregnated on an alumina carrier. As the metal salt or metal complex to be supported, chloride, nitrate, sulfate, acetate, acetoacetate and the like are preferably used.
There is no restriction | limiting in particular also about a carrying | support process, It can impregnate simultaneously or sequentially.
After the loading, water is removed by drying, but there is no particular limitation in this drying process, and a temperature of 100 to 150 ° C. under air or inert gas is preferably used. After the drying step, the carrier carrying the rare earth element and / or alkaline earth element is preferably fired at a temperature of 350 to 1000 ° C. When the temperature is lower than 350 ° C., immobilization of the supported element on the carrier is insufficient, which is not preferable. On the other hand, when the temperature is higher than 1000 ° C., the supported elements are aggregated, which is not preferable. The firing atmosphere is preferably in the air, and the gas flow rate is not particularly limited. The firing time is preferably 2 hours or more. When the time is shorter than 2 hours, immobilization of the supported element on the carrier is insufficient, which is not preferable. Thus, the catalyst carrier according to the present invention is obtained.

次に、得られた担体に、ルテニウムおよびイリジウムおよび/またはロジウムを担持する。
本発明の触媒中におけるルテニウムの含有量は、担体に対して、外率(担体重量基準)で、ルテニウム原子として、0.3〜5質量%であることが好ましく、さらに好ましくは1〜4質量%、より好ましくは2〜3質量%である。ルテニウムの含有量が5質量%より多い場合、活性金属の凝集が多くなり表面に出る金属の割合が極度に減少するため好ましくなく、一方、0.3質量%より少ない場合には十分な活性を示すことが出来ないため多量の担持触媒が必要となり、反応器を必要以上に大きくする必要が出るなどの問題が生じる。
Next, ruthenium and iridium and / or rhodium are supported on the obtained carrier.
The content of ruthenium in the catalyst of the present invention is preferably from 0.3 to 5 mass%, more preferably from 1 to 4 mass% as a ruthenium atom in terms of an external ratio (based on the weight of the carrier) with respect to the carrier. %, More preferably 2-3 mass%. When the content of ruthenium is more than 5% by mass, the active metal agglomerates and the ratio of the metal that appears on the surface is extremely reduced. Since it cannot be shown, a large amount of supported catalyst is required, and problems such as the need to enlarge the reactor more than necessary arise.

ルテニウム以外の活性金属として、イリジウムおよび/またはロジウム、好ましくはイリジウムを担持する。
本発明の触媒中におけるイリジウムおよび/またはロジウムの含有量は、ルテニウムの含有量の0.1〜5重量倍であることが必要であり、好ましくは0.3〜3重量倍、さらに好ましくは0.5〜2重量倍である。イリジウムおよび/またはロジウムの含有量がルテニウムの含有量の5重量倍より多い場合、表面に出るルテニウムの割合が極度に減少するため好ましくなく、一方、0.1重量倍より少ない場合にはイリジウムおよび/またはロジウムのルテニウム凝集抑制効果が不十分であり好ましくない。
As an active metal other than ruthenium, iridium and / or rhodium, preferably iridium is supported.
The iridium and / or rhodium content in the catalyst of the present invention needs to be 0.1 to 5 times by weight, preferably 0.3 to 3 times by weight, more preferably 0. .5 to 2 times by weight. When the content of iridium and / or rhodium is more than 5 times the content of ruthenium, the ratio of ruthenium that appears on the surface is extremely unfavorably reduced. On the other hand, when the content is less than 0.1 times by weight, iridium and In addition, the effect of rhodium on the ruthenium aggregation is insufficient, which is not preferable.

活性金属の担持方法に関しては特に制限はなく、通常の含浸法、ポアフィル法など公知の方法を採用できる。通常、活性金属の塩もしくは錯体として水、エタノール、もしくはアセトンなどの溶媒に溶解させ、担体に含浸させる。担持させる金属塩もしくは金属錯体は、塩化物、硝酸塩、硫酸塩、酢酸塩、アセト酢酸塩などが好適に用いられ、具体的には、塩化ルテニウム、ルテニウムアセチルアセトネート、塩化ロジウム、硝酸ロジウム、塩化イリジウムのような化合物を挙げることができるがこれらに限定されるものではない。   There are no particular limitations on the active metal loading method, and a known method such as a normal impregnation method or a pore fill method can be employed. Usually, it is dissolved in a solvent such as water, ethanol or acetone as an active metal salt or complex, and impregnated in a carrier. As the metal salt or metal complex to be supported, chloride, nitrate, sulfate, acetate, acetoacetate, etc. are preferably used. Specifically, ruthenium chloride, ruthenium acetylacetonate, rhodium chloride, rhodium nitrate, chloride Examples of the compound include iridium, but are not limited thereto.

担持工程に関しても特に制限はなく、同時または逐次的に含浸することができる。担持回数に関しても特に制限はなく一度または数度にわけて含浸することができる。
担持後、乾燥により水分をあらかた除去するが、この乾燥工程においても特に制限はなく、空気下、不活性ガス下で温度100〜150℃などが好適に用いられる。
こうして得られた担持触媒は、必要に応じて還元処理や金属固定化処理を行うことにより活性化される。処理方法は特に制限はなく、水素流通下での気相還元や液相還元が好適に用いられる。
There is no restriction | limiting in particular also about a carrying | support process, It can impregnate simultaneously or sequentially. The number of times of loading is not particularly limited, and the impregnation can be performed once or several times.
After the loading, water is removed by drying, but there is no particular limitation in this drying process, and a temperature of 100 to 150 ° C. under air or inert gas is preferably used.
The supported catalyst thus obtained is activated by performing reduction treatment or metal immobilization treatment as necessary. The treatment method is not particularly limited, and gas phase reduction or liquid phase reduction under a hydrogen flow is preferably used.

本発明の水蒸気改質用触媒の形態については特に制限はない。例えば、打錠成形し粉砕後適当な範囲に整粒した触媒、適当なバインダーを加え押し出し成形した触媒、粉末状触媒などを用いることができる。もしくは、打錠成形し粉砕後適当な範囲に整粒した担体、押し出し成形した担体、粉末あるいは球形、リング状、タブレット状、円筒状、フレーク状など適当な形に成形した担体などに金属を担持した触媒などを用いることができるが機械的強度の観点から球形触媒が好ましい。
また、触媒自体をモノリス状、ハニカム状などに成形した触媒、あるいは適当な素材を用いたモノリスやハニカムなどに触媒をコーティングしたものなどを用いることができる。
There is no restriction | limiting in particular about the form of the catalyst for steam reforming of this invention. For example, a catalyst formed by tableting and pulverized to an appropriate range, a catalyst formed by adding an appropriate binder and extrusion-molded, a powdered catalyst, and the like can be used. Alternatively, a metal is supported on a carrier formed by tableting and pulverized to an appropriate range, an extruded carrier, a powder or a carrier formed into an appropriate shape such as a sphere, ring, tablet, cylinder, or flake. A spherical catalyst is preferable from the viewpoint of mechanical strength.
Further, a catalyst in which the catalyst itself is formed into a monolith shape, a honeycomb shape, or the like, or a monolith using an appropriate material, a honeycomb coated with a catalyst, or the like can be used.

水蒸気改質反応に用いる反応器の形態としては、流通式固定床反応器が好ましく用いられる。反応器の形状については特に制限はなく、円筒状、平板状などそれぞれのプロセスの目的に応じた公知のいかなる形状をとることができる。なお、流動床反応器を用いることも可能である。   As a form of the reactor used for the steam reforming reaction, a flow type fixed bed reactor is preferably used. There is no restriction | limiting in particular about the shape of a reactor, It can take any well-known shape according to the objective of each process, such as cylindrical shape and flat plate shape. A fluidized bed reactor can also be used.

本発明における水蒸気改質反応とは、炭化水素化合物類を触媒の存在下にスチームと反応させて、一酸化炭素および水素を含むリフォーミングガスに変換する反応のことを言う。スチームと反応させるとき、酸素含有ガスを同伴する場合(オートサーマルリフォーミング反応)も含む。   The steam reforming reaction in the present invention refers to a reaction in which hydrocarbon compounds are reacted with steam in the presence of a catalyst to convert to a reforming gas containing carbon monoxide and hydrogen. When reacting with steam, it also includes the case of accompanying an oxygen-containing gas (autothermal reforming reaction).

原料となる炭化水素化合物類は、炭素数1〜40、好ましくは炭素数1〜30の有機化合物である。具体的には、飽和脂肪族炭化水素、不飽和脂肪族炭化水素、芳香族炭化水素などを挙げることができ、また飽和脂肪族炭化水素、不飽和脂肪族炭化水素については、鎖状、環状を問わず使用できる。芳香族炭化水素についても単環、多環を問わず使用できる。このような炭化水素化合物類は置換基を含むことができる。置換基としては、鎖状、環状のどちらをも使用でき、例として、アルキル基、シクロアルキル基、アリール基、アルキルアリール基およびアラルキル基等を挙げることができる。また、これらの炭化水素化合物類はヒドロキシ基、アルコキシ基、ヒドロキシカルボニル基、アルコキシカルボニル基、ホルミル基などのヘテロ原子を含有する置換基により置換されていても良い。   The hydrocarbon compounds used as a raw material are organic compounds having 1 to 40 carbon atoms, preferably 1 to 30 carbon atoms. Specific examples include saturated aliphatic hydrocarbons, unsaturated aliphatic hydrocarbons, aromatic hydrocarbons, etc. In addition, saturated aliphatic hydrocarbons and unsaturated aliphatic hydrocarbons are linear or cyclic. Can be used regardless. Aromatic hydrocarbons can be used regardless of whether they are monocyclic or polycyclic. Such hydrocarbon compounds can contain substituents. As the substituent, either a chain or a ring can be used, and examples thereof include an alkyl group, a cycloalkyl group, an aryl group, an alkylaryl group, and an aralkyl group. These hydrocarbon compounds may be substituted with a substituent containing a hetero atom such as a hydroxy group, an alkoxy group, a hydroxycarbonyl group, an alkoxycarbonyl group, or a formyl group.

本発明に使用できる炭化水素化合物類の具体例としてはメタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ドデカン、トリデカン、テトラデカン、ペンタデカン、ヘキサデカン、ヘプタデカン、オクタデカン、ノナデカン、エイコサンなどの飽和脂肪族炭化水素、エチレン、プロピレン、ブテン、ペンテン、ヘキセンなどの不飽和脂肪族炭化水素、シクロペンタン、シクロヘキサンなど環状炭化水素、ベンゼン、トルエン、キシレン、ナフタレンなどの芳香族炭化水素を挙げることができる。また、これらの混合物も好適に使用できる。例えば、天然ガス、LPG、ナフサ、ガソリン、灯油、軽油など工業的に安価に入手できる材料を挙げることができる。またヘテロ原子を含む置換基を有する炭化水素化合物類の具体例としては、メタノール、エタノール、プロパノール、ブタノール、ジメチルエーテル、フェノール、アニソール、アセトアルデヒド、酢酸などを挙げることができる。   Specific examples of hydrocarbon compounds that can be used in the present invention include methane, ethane, propane, butane, pentane, hexane, heptane, octane, nonane, decane, dodecane, tridecane, tetradecane, pentadecane, hexadecane, heptadecane, octadecane, nonadecane, Saturated aliphatic hydrocarbons such as eicosan, unsaturated aliphatic hydrocarbons such as ethylene, propylene, butene, pentene and hexene, cyclic hydrocarbons such as cyclopentane and cyclohexane, and aromatic hydrocarbons such as benzene, toluene, xylene and naphthalene. Can be mentioned. Moreover, these mixtures can also be used conveniently. Examples thereof include materials that can be obtained industrially at low cost, such as natural gas, LPG, naphtha, gasoline, kerosene, and light oil. Specific examples of the hydrocarbon compound having a substituent containing a hetero atom include methanol, ethanol, propanol, butanol, dimethyl ether, phenol, anisole, acetaldehyde, acetic acid and the like.

また、上記原料に水素、水、二酸化炭素、一酸化炭素などを含む原料も使用できる。例えば、原料の前処理として水素化脱硫を実施する場合、反応に用いた水素の残留分は特に分離することなくそのまま使用することが出来る。   Moreover, the raw material which contains hydrogen, water, a carbon dioxide, carbon monoxide etc. in the said raw material can also be used. For example, when hydrodesulfurization is carried out as a pretreatment of the raw material, the hydrogen residue used in the reaction can be used as it is without separation.

原料として使用する炭化水素化合物に含まれる硫黄濃度が高すぎる場合には、本発明の改質触媒が不活性化する場合があるため、その濃度は、硫黄原子の質量として、好ましくは50質量ppb以下、より好ましくは20質量ppb以下、さらに好ましくは10質量ppb以下である。このため、必要であれば前もって原料を脱硫することも好ましく行うことができる。   If the concentration of sulfur contained in the hydrocarbon compound used as a raw material is too high, the reforming catalyst of the present invention may be deactivated. Therefore, the concentration is preferably 50 mass ppb as the mass of sulfur atoms. Hereinafter, it is more preferably 20 mass ppb or less, and still more preferably 10 mass ppb or less. For this reason, it is also preferable to desulfurize the raw material in advance if necessary.

脱硫工程に供する原料中の硫黄濃度には特に制限はなく脱硫工程において上記硫黄濃度に転換できるものであれば使用することができる。
脱硫の方法にも特に制限はないが、適当な触媒と水素の存在下に水素化脱硫を行い、生成した硫化水素を酸化亜鉛などに吸収させる方法を一例として挙げることができる。この場合用いることができる触媒の例としては、ニッケル−モリブデン、コバルト−モリブデンなどを成分とする触媒を挙げることができる。一方、適当な収着剤の存在下、必要であれば水素の共存下に硫黄分を収着させる方法も採用できる。この場合用いることができる収着剤としては特許第2654515号公報、特許第2688749号公報などに示されたような銅−亜鉛を主成分とする収着剤あるいはニッケル−亜鉛を主成分とする収着剤などを例示することができる。
脱硫工程の実施方法にも特に制限はなく、水蒸気改質反応器の直前に設置した脱硫プロセスにより実施しても良いし、独立の脱硫プロセスにおいて処理を行った炭化水素を使用しても良い。
There is no restriction | limiting in particular in the sulfur concentration in the raw material used for a desulfurization process, If it can convert into the said sulfur concentration in a desulfurization process, it can be used.
Although there is no particular limitation on the desulfurization method, a method in which hydrodesulfurization is performed in the presence of an appropriate catalyst and hydrogen and the generated hydrogen sulfide is absorbed by zinc oxide or the like can be given as an example. Examples of the catalyst that can be used in this case include catalysts containing nickel-molybdenum, cobalt-molybdenum, and the like as components. On the other hand, a method of sorbing a sulfur component in the presence of an appropriate sorbent and, if necessary, coexisting with hydrogen can also be employed. Examples of sorbents that can be used in this case include sorbents mainly composed of copper-zinc as shown in Japanese Patent No. 2654515, Japanese Patent No. 2688749, and so on. Examples thereof include an adhesive.
There is no restriction | limiting in particular also in the implementation method of a desulfurization process, You may implement by the desulfurization process installed immediately before the steam reforming reactor, and you may use the hydrocarbon which processed in the independent desulfurization process.

本発明の触媒を用いる水蒸気改質反応において、反応系に導入するスチームの量は、原料炭化水素化合物類に含まれる炭素原子モル数に対する水分子モル数の比(スチーム/カーボン比)として定義される値が、好ましくは0.3〜10、より好ましくは0.5〜5、さらに好ましくは2〜3の範囲であることが望ましい。この値が0.3より小さい場合には触媒上にコークが析出しやすく、また水素分率を上げることが出来なくなり、一方、10より大きい場合には改質反応は進むがスチーム発生設備、スチーム回収設備の肥大化を招く恐れがある。添加の方法は特に制限はないが、反応帯域に原料炭化水素化合物類と同時に導入しても良いし、反応器帯域の別々の位置からあるいは何回かに分けるなどして一部ずつ導入しても良い。   In the steam reforming reaction using the catalyst of the present invention, the amount of steam introduced into the reaction system is defined as the ratio of the number of moles of water molecules to the number of moles of carbon atoms contained in the raw material hydrocarbon compounds (steam / carbon ratio). The value is preferably 0.3 to 10, more preferably 0.5 to 5, and still more preferably 2 to 3. If this value is less than 0.3, coke is likely to be deposited on the catalyst and the hydrogen fraction cannot be increased. On the other hand, if it is more than 10, the reforming reaction proceeds but the steam generating equipment, steam There is a risk of enlarging the recovery equipment. There are no particular restrictions on the method of addition, but it may be introduced into the reaction zone at the same time as the raw material hydrocarbon compounds, or it may be introduced in portions from separate positions or several times in the reactor zone. Also good.

本発明の触媒を用いる水蒸気改質反応において、反応器に導入される流通原料の空間速度は、GHSVが、好ましくは10〜10,000h−1、より好ましくは50〜5,000h−1、さらに好ましくは100〜3,000h−1の範囲である。LHSVは好ましくは0.05〜5.0h−1、より好ましくは0.1〜2.0h−1、さらに好ましくは0.2〜1.0h−1の範囲である。
反応温度は特に限定されるものではないが、好ましくは200〜1000℃、より好ましくは300〜900℃、さらに好ましくは400〜800℃の範囲である。
反応圧力についても特に限定されるものではなく、好ましくは大気圧〜20MPa、より好ましくは大気圧〜5MPa、さらに好ましくは大気圧〜1MPaの範囲で実施されるが、必要であれば大気圧以下で実施することも可能である。
In the steam reforming reaction using the catalyst of the present invention, the space velocity of the flow material introduced into the reactor, GHSV is preferably 10~10,000H -1, more preferably 50~5,000H -1, further Preferably it is the range of 100-3,000h- 1 . LHSV is preferably in the range of 0.05 to 5.0 h −1 , more preferably 0.1 to 2.0 h −1 , and still more preferably 0.2 to 1.0 h −1 .
Although reaction temperature is not specifically limited, Preferably it is 200-1000 degreeC, More preferably, it is 300-900 degreeC, More preferably, it is the range of 400-800 degreeC.
The reaction pressure is not particularly limited and is preferably carried out in the range of atmospheric pressure to 20 MPa, more preferably atmospheric pressure to 5 MPa, and further preferably atmospheric pressure to 1 MPa. It is also possible to implement.

本発明の触媒を用いる水蒸気改質反応で得られる一酸化炭素と水素を含む混合ガスは固体酸化物形燃料電池のような場合であればそのまま燃料電池用の燃料として用いることができる。また、リン酸形燃料電池や固体高分子形燃料電池のように一酸化炭素の除去が必要な場合には、一酸化炭素除去工程を併用することにより燃料電池用水素の原料として好適に用いることができる。   The mixed gas containing carbon monoxide and hydrogen obtained by the steam reforming reaction using the catalyst of the present invention can be used as it is as a fuel for a fuel cell in the case of a solid oxide fuel cell. In addition, when removal of carbon monoxide is required, such as phosphoric acid fuel cells and polymer electrolyte fuel cells, it should be used suitably as a raw material for fuel cell hydrogen by using a carbon monoxide removal step in combination. Can do.

また本発明は前記触媒を用いた水蒸気改質反応により、天然ガス、LPG、ナフサ、灯油等の炭化水素(燃料)から水素を主成分として含む改質ガスを得ることを特徴とする水素製造装置を提供する。さらに本発明は前記水素製造装置を有する燃料電池システムを提供する。   The present invention also provides a hydrogen production apparatus characterized in that a reformed gas containing hydrogen as a main component is obtained from a hydrocarbon (fuel) such as natural gas, LPG, naphtha, or kerosene by a steam reforming reaction using the catalyst. I will provide a. Furthermore, the present invention provides a fuel cell system having the hydrogen production apparatus.

以下、本発明の電池システムについて説明する。図1は本発明の燃料電池システムの一例を示す概略図である。
図1において、燃料タンク3内の燃料は燃料ポンプ4を経て脱硫器5に流入する。脱硫器内には例えば銅−亜鉛系あるいはニッケル−亜鉛系の収着剤などを充填することができる。この時、必要であれば一酸化炭素選択酸化反応器11からの水素含有ガスを添加できる。脱硫器5で脱硫された燃料は水タンク1から水ポンプ2を経た水と混合した後、気化器6に導入されて気化され、改質器7に送り込まれる。
Hereinafter, the battery system of the present invention will be described. FIG. 1 is a schematic view showing an example of a fuel cell system of the present invention.
In FIG. 1, the fuel in the fuel tank 3 flows into the desulfurizer 5 through the fuel pump 4. The desulfurizer can be filled with, for example, a copper-zinc-based or nickel-zinc-based sorbent. At this time, if necessary, the hydrogen-containing gas from the carbon monoxide selective oxidation reactor 11 can be added. The fuel desulfurized in the desulfurizer 5 is mixed with water from the water tank 1 through the water pump 2, introduced into the vaporizer 6, vaporized, and sent to the reformer 7.

改質器7の触媒として本発明の触媒を用い、改質器内に充填される。改質器反応管は燃料タンクからの燃料およびアノードオフガスを燃料とするバーナー18により加温され、好ましくは200〜1000℃、より好ましくは300〜900℃、さらに好ましくは400〜800℃の範囲に調節される。   The catalyst of the present invention is used as the catalyst of the reformer 7 and is filled in the reformer. The reformer reaction tube is heated by a burner 18 using fuel from the fuel tank and anode off-gas as fuel, and is preferably in the range of 200 to 1000 ° C., more preferably 300 to 900 ° C., and further preferably 400 to 800 ° C. Adjusted.

この様にして製造された水素と一酸化炭素を含有する改質ガスは高温シフト反応器9、低温シフト反応器10、一酸化炭素選択酸化反応器11を順次通過させることで一酸化炭素濃度は燃料電池の特性に影響を及ぼさない程度まで低減される。これらの反応器に用いる触媒の例としては、高温シフト反応器9には鉄−クロム系触媒、低温シフト反応器10には銅−亜鉛系触媒、一酸化炭素選択酸化反応器11にはルテニウム系触媒等を挙げることができる。   The reformed gas containing hydrogen and carbon monoxide produced in this way passes through the high temperature shift reactor 9, the low temperature shift reactor 10, and the carbon monoxide selective oxidation reactor 11 in sequence, so that the carbon monoxide concentration is reduced. It is reduced to the extent that it does not affect the characteristics of the fuel cell. Examples of catalysts used in these reactors include an iron-chromium-based catalyst for the high-temperature shift reactor 9, a copper-zinc-based catalyst for the low-temperature shift reactor 10, and a ruthenium-based catalyst for the carbon monoxide selective oxidation reactor 11. A catalyst etc. can be mentioned.

以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these Examples.

[実施例1]
(1)αアルミナ(BET表面積5m/g、細孔容積0.4ml/g)を触媒担体Aとする。
(2)硝酸セリウム(III)六水和物(和光純薬社製:純度98%以上)と硝酸マグネシウム六水和物(和光純薬社製:純度99%以上)を触媒担体Aに、担持酸化セリウム量が外率で13質量%、担持酸化マグネシウム量が外率で5質量%になる量を含浸担持し、150℃で8時間以上乾燥後、800℃で8時間空気焼成する。これを触媒担体Bとする。
(3)塩化ルテニウム(III)n水和物(和光純薬社製:純度99.9%以上)と塩化イリジウム(III)(和光純薬社製:純度97%以上)を上記触媒担体Bに、それぞれ外率で金属量3質量%となる量を同時含浸担持し、120℃で12時間以上乾燥後、500℃で1時間水素還元する。これを触媒Aとする。
[Example 1]
(1) α-alumina (BET surface area 5 m 2 / g, pore volume 0.4 ml / g) is used as catalyst carrier A.
(2) Supporting cerium (III) nitrate hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd .: purity 98% or more) and magnesium nitrate hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd .: purity 99% or more) on catalyst carrier A An impregnated amount of 13% by mass of cerium oxide and an amount of 5% by mass of supported magnesium oxide is impregnated and dried at 150 ° C. for 8 hours or more, and then air calcined at 800 ° C. for 8 hours. This is referred to as catalyst carrier B.
(3) Ruthenium (III) chloride n hydrate (Wako Pure Chemical Industries, Ltd .: purity 99.9% or higher) and iridium chloride (III) (Wako Pure Chemical Industries, Ltd .: purity 97% or higher) are added to the catalyst carrier B. , Each impregnated and supported at an external ratio of 3% by mass of metal, dried at 120 ° C. for 12 hours or more, and then hydrogen-reduced at 500 ° C. for 1 hour. This is referred to as catalyst A.

[実施例2]
実施例1で塩化イリジウム(III)を塩化ロジウム(III)三水和物(和光純薬社製:純度95%以上)としたものを触媒Bとする。
[実施例3]
実施例1で硝酸マグネシウム六水和物を硝酸バリウム(和光純薬社製:純度99%以上)にしたものを触媒Cとする。
[実施例4]
実施例1で硝酸セリウム(III)六水和物を硝酸ランタン六水和物(和光純薬社製:純度98%以上)にしたものを触媒Dとする。
[Example 2]
In Example 1, iridium (III) chloride was changed to rhodium (III) chloride trihydrate (manufactured by Wako Pure Chemical Industries, Ltd .: purity 95% or more) as catalyst B.
[Example 3]
In Example 1, the catalyst C was prepared by changing the magnesium nitrate hexahydrate to barium nitrate (manufactured by Wako Pure Chemical Industries, Ltd .: purity 99% or more).
[Example 4]
In Example 1, cerium (III) nitrate hexahydrate was converted to lanthanum nitrate hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd .: purity 98% or more) as catalyst D.

[比較例1]
実施例1で塩化イリジウム(III)を担持せず、実施例1と同方法で塩化ルテニウム(III)n水和物のみ担持したものを触媒Eとする。
[比較例2]
実施例1で塩化ルテニウム(III)n水和物を担持せず、実施例1と同方法で塩化イリジウム(III)のみ担持したものを触媒Fとする。
[比較例3]
実施例1でイリジウム量を0.05質量%としたものを触媒Gとする。
[Comparative Example 1]
In Example 1, the catalyst E was not supported with iridium (III) chloride, and only supported with ruthenium (III) chloride nhydrate in the same manner as in Example 1.
[Comparative Example 2]
In Example 1, the catalyst F was prepared by supporting only iridium (III) chloride in the same manner as in Example 1 without supporting ruthenium (III) chloride hydrate.
[Comparative Example 3]
The catalyst G having the iridium content of 0.05 mass% in Example 1 is designated as catalyst G.

<水蒸気改質反応>
上記触媒を水蒸気改質反応で評価した。反応は固定床のマイクロリアクターを用いた。触媒充填量は6cmである。炭化水素原料として脱硫灯油(密度0.793g/cm 、硫黄分0.05質量ppm)を用いた。反応条件は以下の通りである。反応温度550℃、反応圧力0.1MPa、スチーム/カーボン比3.0mol/mol、LHSV3.0h−1
また、活性金属の耐凝集性を評価するため上記触媒の高温水熱処理を実施した。条件は以下の通りである。反応温度800℃、反応時間4時間、反応圧力0.1MPa、水流量15cc/h。
反応ガスはガスクロマトグラフを用いて定量分析した。高温水熱処理(反応時間1時間)前後の生成ガスの組成より求めた原料の転化率を表1に示す。ここで表1の転化率は原料がCO、CH、COに転化した割合であり、炭素を基準に計算したものである。
<Steam reforming reaction>
The catalyst was evaluated by a steam reforming reaction. The reaction used a fixed bed microreactor. The catalyst loading is 6 cm 3 . Desulfurized kerosene (density 0.793 g / cm 3 , sulfur content 0.05 mass ppm) was used as a hydrocarbon raw material. The reaction conditions are as follows. Reaction temperature 550 ° C., reaction pressure 0.1 MPa, steam / carbon ratio 3.0 mol / mol, LHSV 3.0 h −1 .
In addition, the catalyst was subjected to high-temperature hydrothermal treatment in order to evaluate the aggregation resistance of the active metal. The conditions are as follows. Reaction temperature 800 ° C., reaction time 4 hours, reaction pressure 0.1 MPa, water flow rate 15 cc / h.
The reaction gas was quantitatively analyzed using a gas chromatograph. Table 1 shows the conversion rates of the raw materials obtained from the composition of the product gas before and after the high-temperature hydrothermal treatment (reaction time 1 hour). Here, the conversion rate in Table 1 is the ratio of the raw material converted to CO, CH 4 , CO 2 and is calculated based on carbon.

表1から明らかなように、高温水熱処理後は触媒A〜Dは触媒E〜Gに比べ高い灯油転化率を示している。また、触媒Aと触媒Bを比較すると、イリジウムの方がロジウムより添加効果がより高い。   As is apparent from Table 1, after the high-temperature hydrothermal treatment, the catalysts A to D show a higher kerosene conversion rate than the catalysts E to G. Further, when comparing catalyst A and catalyst B, iridium has a higher effect of addition than rhodium.

Figure 2008055252
Figure 2008055252

本発明の燃料電池システムの一例を示す概略図である。It is the schematic which shows an example of the fuel cell system of this invention.

符号の説明Explanation of symbols

1 水タンク
2 水ポンプ
3 燃料タンク
4 燃料ポンプ
5 脱硫器
6 気化器
7 改質器
8 空気ブロアー
9 高温シフト反応器
10 低温シフト反応器
11 一酸化炭素選択酸化反応器
12 アノード
13 カソード
14 固体高分子電解質
15 電気負荷
16 排気口
17 固体高分子形燃料電池
18 加温用バーナー
DESCRIPTION OF SYMBOLS 1 Water tank 2 Water pump 3 Fuel tank 4 Fuel pump 5 Desulfurizer 6 Vaporizer 7 Reformer 8 Air blower 9 High temperature shift reactor 10 Low temperature shift reactor 11 Carbon monoxide selective oxidation reactor 12 Anode 13 Cathode 14 Solid height Molecular electrolyte 15 Electric load 16 Exhaust port 17 Polymer electrolyte fuel cell 18 Heating burner

Claims (6)

ルテニウムと、ルテニウムの含有量の0.1〜5重量倍であるイリジウムおよび/またはロジウムとを、アルミナを主成分とする担体に担持させてなる炭化水素化合物類の水蒸気改質用触媒。   A catalyst for steam reforming of hydrocarbon compounds in which ruthenium and iridium and / or rhodium having a content of 0.1 to 5 times the ruthenium content are supported on a support mainly composed of alumina. 担体がアルミナと、希土類元素酸化物およびアルカリ土類元素酸化物から選ばれた少なくとも1種の無機酸化物とを含むことを特徴とする請求項1に記載の水蒸気改質用触媒。   The catalyst for steam reforming according to claim 1, wherein the support contains alumina and at least one inorganic oxide selected from rare earth element oxides and alkaline earth element oxides. 該希土類元素酸化物が、スカンジウム、イットリウム、ランタンおよびセリウムから選択される1種または2種以上の希土類元素の酸化物であることを特徴とする請求項2に記載の水蒸気改質用触媒。   3. The steam reforming catalyst according to claim 2, wherein the rare earth element oxide is an oxide of one or more rare earth elements selected from scandium, yttrium, lanthanum and cerium. 該アルカリ土類元素酸化物が、マグネシウム、カルシウムおよびバリウムから選択される1種または2種以上のアルカリ土類元素の酸化物であることを特徴とする請求項2に記載の水蒸気改質用触媒。   The steam reforming catalyst according to claim 2, wherein the alkaline earth element oxide is an oxide of one or more alkaline earth elements selected from magnesium, calcium and barium. . 請求項1〜4のいずれかに記載の水蒸気改質用触媒を用い、水蒸気改質反応により、炭化水素化合物類から水素を主成分として含む改質ガスを得ることを特徴とする水素製造装置。   A hydrogen production apparatus, wherein a reformed gas containing hydrogen as a main component is obtained from a hydrocarbon compound by a steam reforming reaction using the steam reforming catalyst according to any one of claims 1 to 4. 請求項5に記載の水素製造装置を有することを特徴とする燃料電池システム。   A fuel cell system comprising the hydrogen production apparatus according to claim 5.
JP2006231897A 2006-08-29 2006-08-29 Steam reforming catalyst, hydrogen production apparatus and fuel cell system Active JP4783240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006231897A JP4783240B2 (en) 2006-08-29 2006-08-29 Steam reforming catalyst, hydrogen production apparatus and fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006231897A JP4783240B2 (en) 2006-08-29 2006-08-29 Steam reforming catalyst, hydrogen production apparatus and fuel cell system

Publications (2)

Publication Number Publication Date
JP2008055252A true JP2008055252A (en) 2008-03-13
JP4783240B2 JP4783240B2 (en) 2011-09-28

Family

ID=39238638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006231897A Active JP4783240B2 (en) 2006-08-29 2006-08-29 Steam reforming catalyst, hydrogen production apparatus and fuel cell system

Country Status (1)

Country Link
JP (1) JP4783240B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008238043A (en) * 2007-03-27 2008-10-09 Nippon Oil Corp Regeneration method of reforming catalyst
JP2015074586A (en) * 2013-10-09 2015-04-20 大阪瓦斯株式会社 Operational method of steam reformer, steam reforming reactor, and fuel cell power generator
KR101768078B1 (en) 2014-09-15 2017-08-14 한국과학기술연구원 Catalyst wherein Ru is supported by LaAlO₃and method for preparing the same
WO2023026775A1 (en) 2021-08-24 2023-03-02 エヌ・イーケムキャット株式会社 Catalyst structure, fuel reforming method, and fuel reforming system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138535A (en) * 1984-12-10 1986-06-26 Mitsubishi Heavy Ind Ltd Catalyst for producing gas containing methane
JPH02286787A (en) * 1989-04-28 1990-11-26 Tonen Corp Steam reformer for hydrocarbon
JPH02302304A (en) * 1989-05-16 1990-12-14 Sekiyu Sangyo Katsuseika Center Improvement of hydrocarbon by water vapor
JPH04265156A (en) * 1991-02-19 1992-09-21 Nippon Oil Co Ltd Catalyst for steam reforming of hydrocarbon
JPH04363140A (en) * 1991-01-31 1992-12-16 Toyo Eng Corp Catalyst and its production
JP2004082033A (en) * 2002-08-28 2004-03-18 Nippon Oil Corp Steam reforming catalyst, steam reforming method and fuel battery system
JP2004284861A (en) * 2003-03-20 2004-10-14 Nippon Oil Corp Hydrogen production method and fuel cell system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138535A (en) * 1984-12-10 1986-06-26 Mitsubishi Heavy Ind Ltd Catalyst for producing gas containing methane
JPH02286787A (en) * 1989-04-28 1990-11-26 Tonen Corp Steam reformer for hydrocarbon
JPH02302304A (en) * 1989-05-16 1990-12-14 Sekiyu Sangyo Katsuseika Center Improvement of hydrocarbon by water vapor
JPH04363140A (en) * 1991-01-31 1992-12-16 Toyo Eng Corp Catalyst and its production
JPH04265156A (en) * 1991-02-19 1992-09-21 Nippon Oil Co Ltd Catalyst for steam reforming of hydrocarbon
JP2004082033A (en) * 2002-08-28 2004-03-18 Nippon Oil Corp Steam reforming catalyst, steam reforming method and fuel battery system
JP2004284861A (en) * 2003-03-20 2004-10-14 Nippon Oil Corp Hydrogen production method and fuel cell system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008238043A (en) * 2007-03-27 2008-10-09 Nippon Oil Corp Regeneration method of reforming catalyst
JP2015074586A (en) * 2013-10-09 2015-04-20 大阪瓦斯株式会社 Operational method of steam reformer, steam reforming reactor, and fuel cell power generator
KR101768078B1 (en) 2014-09-15 2017-08-14 한국과학기술연구원 Catalyst wherein Ru is supported by LaAlO₃and method for preparing the same
WO2023026775A1 (en) 2021-08-24 2023-03-02 エヌ・イーケムキャット株式会社 Catalyst structure, fuel reforming method, and fuel reforming system

Also Published As

Publication number Publication date
JP4783240B2 (en) 2011-09-28

Similar Documents

Publication Publication Date Title
JP5072841B2 (en) Steam reforming catalyst, hydrogen production apparatus and fuel cell system
JP5531615B2 (en) Catalyst for cracking hydrocarbons
KR100973876B1 (en) Adsorbent for removing sulfur compound, process for producing hydrogen and fuel cell system
JP5378148B2 (en) Reforming catalyst, reformer, and hydrogen production device
JP5593106B2 (en) Hydrogen production method, hydrogen production apparatus and fuel cell system
JP4783240B2 (en) Steam reforming catalyst, hydrogen production apparatus and fuel cell system
JP5788348B2 (en) Reforming catalyst for hydrogen production, hydrogen production apparatus and fuel cell system using the catalyst
Ding et al. Engineering a Nickel–Oxygen Vacancy Interface for Enhanced Dry Reforming of Methane: A Promoted Effect of CeO2 Introduction into Ni/MgO
JP4227779B2 (en) Steam reforming catalyst, steam reforming method and fuel cell system
JP5603120B2 (en) Steam reforming catalyst, hydrogen production apparatus and fuel cell system
JP4521172B2 (en) Desulfurization agent and desulfurization method using the same
JP2015150486A (en) Hydrogen production catalyst, production method thereof, and hydrogen production method
JP5462685B2 (en) Steam reforming catalyst, hydrogen production apparatus and fuel cell system
JP4860226B2 (en) Partial oxidation reforming catalyst and partial oxidation reforming method
JP5759922B2 (en) Method for producing hydrogen
JP4227780B2 (en) Steam reforming catalyst, steam reforming method and fuel cell system
KR101392996B1 (en) Mesoporous nickel-alumina-zirconia xerogel catalyst and production method of hydrogen by steam reforming of ethanol using said catalyst
JP5409484B2 (en) Steam reforming catalyst, hydrogen production apparatus and fuel cell system
JP5351089B2 (en) Steam reforming catalyst, hydrogen production apparatus and fuel cell system
JP5788352B2 (en) Reforming catalyst for hydrogen production, hydrogen production apparatus and fuel cell system using the catalyst
JP2010001480A (en) Desulfurizing agent and desulfurization method using the same
JP2011088778A (en) Hydrogen production apparatus and fuel cell system
JP2004284861A (en) Hydrogen production method and fuel cell system
JP2006117921A (en) Method for removing sulfur from liquid fuel and method for producing hydrogen and fuel battery system
KR101795477B1 (en) A mesoporous nickel-copper-alumina-zirconia xerogel catalyst prepared by a single-step sol-gel method, preparation method thereof and production method of hydrogen gas by steam reforming of ethanol using said catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4783240

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250