JP2008051009A - Exhaust emission control device - Google Patents

Exhaust emission control device Download PDF

Info

Publication number
JP2008051009A
JP2008051009A JP2006228300A JP2006228300A JP2008051009A JP 2008051009 A JP2008051009 A JP 2008051009A JP 2006228300 A JP2006228300 A JP 2006228300A JP 2006228300 A JP2006228300 A JP 2006228300A JP 2008051009 A JP2008051009 A JP 2008051009A
Authority
JP
Japan
Prior art keywords
reduction catalyst
oxygen
exhaust
nox occlusion
occlusion reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006228300A
Other languages
Japanese (ja)
Inventor
Shin Ishii
森 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2006228300A priority Critical patent/JP2008051009A/en
Publication of JP2008051009A publication Critical patent/JP2008051009A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device preventing increase in amount of carbon monoxide and leakage of reducing agent, when a NOx occlusion reduction catalyst is recovered from a state poisoned with sulfur. <P>SOLUTION: The exhaust emission control device has the NOx occlusion reduction catalyst 13 provided halfway in an exhaust pipe 11 in which exhaust gas 9 flows from an engine 1, and a fuel adding means 15 disposed upstream of the NOx occlusion reduction catalyst 13 so as to add fuel in the exhaust gas 9. The exhaust emission control device recovers the NOx occlusion reduction catalyst 13 by adding the reducing agent when the NOx occlusion reduction catalyst 13 is poisoned with sulfur, and has an oxygen supply means supplying oxygen to the downstream of the NOx occlusion reduction catalyst 13. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、排気浄化装置に関するものである。   The present invention relates to an exhaust emission control device.

従来より、排気管の途中に装備した排気浄化用触媒により排気浄化を図ることが行われており、この種の排気浄化用触媒としては、排気空燃比がリーンの時に排気ガス中のNOxを酸化して硝酸塩の状態で一時的に吸蔵し、排気ガス中の酸素濃度が低下した時に未燃HCやCO等の介在によりNOxを分解放出して還元浄化する性質を備えたNOx吸蔵還元触媒が知られている。   Conventionally, exhaust purification is carried out with an exhaust purification catalyst installed in the middle of the exhaust pipe. As this type of exhaust purification catalyst, NOx in exhaust gas is oxidized when the exhaust air-fuel ratio is lean. NOx occlusion reduction catalyst has the property of temporarily storing it in the form of nitrate and decomposing and releasing NOx through the intervention of unburned HC and CO when the oxygen concentration in the exhaust gas decreases. It has been.

そして、NOx吸蔵還元触媒においては、NOxの吸蔵量が増大して飽和量に達してしまうと、それ以上のNOxを吸蔵できなくなるため、定期的にNOx吸蔵還元触媒に流入する排気ガスの酸素濃度を低下させてNOxを分解放出させる必要がある。   In the NOx occlusion reduction catalyst, if the occlusion amount of NOx increases and reaches the saturation amount, no more NOx can be occluded. Therefore, the oxygen concentration of the exhaust gas periodically flowing into the NOx occlusion reduction catalyst Needs to be reduced to decompose and release NOx.

例えば、ガソリン機関に使用した場合であれば、機関の運転空燃比を低下(機関をリッチ空燃比で運転)することにより、排気ガス中の酸素濃度を低下し且つ排気ガス中の未燃HCやCO等の還元成分を増加してNOxの分解放出を促すことができるが、NOx吸蔵還元触媒をディーゼル機関の排気浄化装置として使用した場合には機関をリッチ空燃比で運転することが困難である。   For example, when used in a gasoline engine, the operating air-fuel ratio of the engine is reduced (the engine is operated at a rich air-fuel ratio), thereby reducing the oxygen concentration in the exhaust gas and unburned HC in the exhaust gas. Although it is possible to promote the decomposition and release of NOx by increasing the reducing components such as CO, it is difficult to operate the engine at a rich air-fuel ratio when the NOx occlusion reduction catalyst is used as an exhaust purification device of a diesel engine. .

このため、NOx吸蔵還元触媒の上流側で排気ガス中に燃料(HC)を添加することにより、この添加燃料を還元剤としてNOx吸蔵還元触媒上で酸素と反応させることで排気ガス中の酸素濃度を低下するようにしている。   For this reason, by adding fuel (HC) to the exhaust gas upstream of the NOx storage reduction catalyst, the added fuel is used as a reducing agent to react with oxygen on the NOx storage reduction catalyst, thereby increasing the oxygen concentration in the exhaust gas. To be reduced.

一方で、ディーゼルエンジンの排気ガス中には、燃料中の硫黄分に由来するSO2が存在し、このSO2はNOx吸蔵還元触媒上で酸化して硫黄塩になるため、NOx吸蔵還元触媒は硫黄被毒を受けて還元浄化能力が低下する問題があった。 On the other hand, in the exhaust gas of the diesel engine, SO 2 derived from the sulfur content in the fuel exists, and this SO 2 is oxidized on the NOx storage reduction catalyst to become a sulfur salt. Therefore, the NOx storage reduction catalyst is There was a problem in that the reduction and purification ability decreased due to sulfur poisoning.

このため、硫黄被毒を受けた状態からNOx吸蔵還元触媒を回復させるためには、燃料(HC)等の大量の還元剤を添加して理論空燃比以下のリッチ雰囲気にし、NOx吸蔵還元触媒を回復させるようにしている。   For this reason, in order to recover the NOx occlusion reduction catalyst from the state that has been subjected to sulfur poisoning, a large amount of reducing agent such as fuel (HC) is added to create a rich atmosphere below the stoichiometric air-fuel ratio. It tries to recover.

なお、排気浄化装置を示す先行技術文献情報としては下記の特許文献1がある。
特開2005−36770号公報
In addition, there exists the following patent document 1 as prior art document information which shows an exhaust gas purification apparatus.
JP 2005-36770 A

しかしながら、硫黄被毒を受けた状態からNOx吸蔵還元触媒を回復させる際には、理論空燃比以下の状態で酸素不足の雰囲気になるため、還元剤の燃焼が不完全となり、一酸化炭素の増加や還元剤のリークを生じるという問題があった。   However, when recovering the NOx occlusion reduction catalyst from a state that has been subjected to sulfur poisoning, the atmosphere becomes deficient in oxygen at a state below the stoichiometric air-fuel ratio, so the combustion of the reducing agent becomes incomplete and carbon monoxide increases. In addition, there is a problem that leakage of the reducing agent occurs.

本発明は上述の実情に鑑みてなしたもので、硫黄被毒を受けた状態からNOx吸蔵還元触媒を回復させる際に一酸化炭素の増加や還元剤のリークを防止する排気浄化装置を提供することを目的としている。   The present invention has been made in view of the above circumstances, and provides an exhaust purification device that prevents an increase in carbon monoxide and a leakage of a reducing agent when a NOx occlusion reduction catalyst is recovered from a state that has been subjected to sulfur poisoning. The purpose is that.

本発明は、エンジンからの排気ガスが流通する排気管の途中に装備されたNOx吸蔵還元触媒と、該NOx吸蔵還元触媒より上流側で排気ガス中に燃料を添加する燃料添加手段とを備え、前記NOx吸蔵還元触媒が硫黄による被毒を受けた際には還元剤を添加してNOx吸蔵還元触媒を回復させる排気浄化装置であって、前記NOx吸蔵還元触媒の下流側に酸素を供給する酸素供給手段を備えたことを特徴とするものである。   The present invention comprises a NOx occlusion reduction catalyst equipped in the middle of an exhaust pipe through which exhaust gas from the engine circulates, and a fuel addition means for adding fuel to the exhaust gas upstream from the NOx occlusion reduction catalyst, When the NOx storage reduction catalyst is poisoned by sulfur, the exhaust purification device adds a reducing agent to recover the NOx storage reduction catalyst, and supplies oxygen to the downstream side of the NOx storage reduction catalyst A supply means is provided.

而して、硫黄被毒を受けたNOx吸蔵還元触媒を回復させる際に、大量の還元剤の添加により一酸化炭素の増加や還元剤のリークを生じる場合であっても、酸素供給手段によりNOx吸蔵還元触媒の下流側に酸素を供給するので、一酸化炭素を酸化させると共に還元剤を燃焼させ、一酸化炭素の増加や還元剤のリークを防止することができる。   Thus, when recovering the NOx occlusion reduction catalyst that has received sulfur poisoning, even if a large amount of reducing agent is added to cause an increase in carbon monoxide or leakage of the reducing agent, the NOx is supplied by the oxygen supply means. Since oxygen is supplied to the downstream side of the storage reduction catalyst, it is possible to oxidize carbon monoxide and burn the reducing agent, thereby preventing an increase in carbon monoxide and a leakage of the reducing agent.

又、本発明において、酸素供給手段は、酸素供給元からNOx吸蔵還元触媒の下流側まで延在する供給流路と、酸素の供給量を制御する開閉弁とを備えることが好ましく、この構成によれば、NOx吸蔵還元触媒の硫黄被毒の状況に応じて酸素を供給するので、一酸化炭素の酸化や還元剤の燃焼を適切に行い、一酸化炭素の増加や還元剤のリークを好適に防止することができる。   In the present invention, the oxygen supply means preferably includes a supply channel extending from the oxygen supply source to the downstream side of the NOx storage reduction catalyst, and an on-off valve for controlling the oxygen supply amount. According to the above, oxygen is supplied according to the sulfur poisoning situation of the NOx storage reduction catalyst, so that the oxidation of carbon monoxide and the combustion of the reducing agent are appropriately performed, and the increase of carbon monoxide and the leakage of the reducing agent are suitably performed. Can be prevented.

本発明において、酸素供給手段は、エアタンクからNOx吸蔵還元触媒の下流側に空気を供給し、空気中の酸素を利用するように構成することが好ましく、この構成によれば、既存のエアタンクを用いて酸素を供給するので、新たな酸素供給元を設ける必要がなく、製造コストの増加を防止することができる。   In the present invention, the oxygen supply means is preferably configured to supply air from the air tank to the downstream side of the NOx storage reduction catalyst and utilize oxygen in the air. According to this configuration, the existing air tank is used. Therefore, it is not necessary to provide a new oxygen supply source, and an increase in manufacturing cost can be prevented.

本発明において、酸素供給手段は、ターボチャージャのタービンと燃料添加手段の間の排気流路からNOx吸蔵還元触媒の下流側に排気ガスを供給し、排気ガス中の酸素を利用するように構成することが好ましく、この構成によれば、既存の排気流路を用いて酸素を供給するので、新たな酸素供給元を設ける必要がなく、製造コストの増加を防止することができる。   In the present invention, the oxygen supply means is configured to supply exhaust gas from the exhaust passage between the turbine of the turbocharger and the fuel addition means to the downstream side of the NOx occlusion reduction catalyst and to use oxygen in the exhaust gas. Preferably, according to this configuration, since oxygen is supplied using the existing exhaust passage, it is not necessary to provide a new oxygen supply source, and an increase in manufacturing cost can be prevented.

本発明において、酸素供給手段は、排気マニホールドとターボチャージャのタービンの間の排気流路からNOx吸蔵還元触媒の下流側に排気ガスを供給し、排気ガス中の酸素を利用するように構成することが好ましく、この構成によれば、既存の排気流路を用いて酸素を供給するので、新たな酸素供給元を設ける必要がなく、製造コストの増加を防止することができる。   In the present invention, the oxygen supply means is configured to supply exhaust gas from the exhaust passage between the exhaust manifold and the turbine of the turbocharger to the downstream side of the NOx storage reduction catalyst and to use oxygen in the exhaust gas. Preferably, according to this configuration, since oxygen is supplied using the existing exhaust passage, it is not necessary to provide a new oxygen supply source, and an increase in manufacturing cost can be prevented.

本発明において、酸素供給手段は、ターボチャージャのコンプレッサと吸気マニホールドの間の吸気流路からNOx吸蔵還元触媒の下流側に空気を供給し、空気中の酸素を利用するように構成することが好ましく、この構成によれば、既存の吸気流路を用いて酸素を供給するので、新たな酸素供給元を設ける必要がなく、製造コストの増加を防止することができる。   In the present invention, it is preferable that the oxygen supply means is configured to supply air from the intake passage between the compressor of the turbocharger and the intake manifold to the downstream side of the NOx storage reduction catalyst, and to use oxygen in the air. According to this configuration, since oxygen is supplied using the existing intake passage, it is not necessary to provide a new oxygen supply source, and an increase in manufacturing cost can be prevented.

本発明においては、酸素の供給位置より下流側に酸化触媒を装備することが好ましく、この構成によれば、一酸化炭素の酸化や還元剤の燃焼を確実に行い、一酸化炭素の増加や還元剤のリークを一層好適に防止することができる。   In the present invention, it is preferable to equip the downstream side of the oxygen supply position with an oxidation catalyst. According to this configuration, the oxidation of carbon monoxide and the combustion of the reducing agent are ensured, and the increase or reduction of carbon monoxide. The leakage of the agent can be more suitably prevented.

上記した本発明の排気浄化装置によれば、一酸化炭素の増加や還元剤のリークを生じる場合であっても、酸素供給手段によりNOx吸蔵還元触媒の下流側に酸素を供給するので、一酸化炭素を酸化させると共に、還元剤を燃焼させ、一酸化炭素の増加や還元剤のリークを防止することができるという種々の優れた効果を奏し得る。   According to the above-described exhaust purification apparatus of the present invention, even when carbon monoxide increases or a reducing agent leaks, oxygen is supplied to the downstream side of the NOx storage reduction catalyst by the oxygen supply means. Various excellent effects of being able to oxidize carbon and burn the reducing agent to prevent an increase in carbon monoxide and leakage of the reducing agent can be obtained.

以下本発明の実施の形態を図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明を実施する形態の第一例を示すもので、図1中における1はターボチャージャ2を装備したディーゼルエンジンを示しており、エアクリーナ3から導かれた吸気4が吸気管5を通し前記ターボチャージャ2のコンプレッサ2aへと送られ、該コンプレッサ2aで加圧された吸気4がインタークーラ6へと送られて冷却され、該インタークーラ6から更に吸気マニホールド7へと吸気4が導かれてディーゼルエンジン1の各気筒8に分配されるようになっている。   FIG. 1 shows a first example of an embodiment of the present invention. In FIG. 1, 1 indicates a diesel engine equipped with a turbocharger 2, and intake air 4 led from an air cleaner 3 is connected to an intake pipe 5. Through, the intake air 4 sent to the compressor 2 a of the turbocharger 2 and pressurized by the compressor 2 a is sent to the intercooler 6 to be cooled, and the intake air 4 is further guided from the intercooler 6 to the intake manifold 7. Accordingly, it is distributed to each cylinder 8 of the diesel engine 1.

更に、このディーゼルエンジン1の各気筒8から排出された排気ガス9は、排気マニホールド10を介しターボチャージャ2のタービン2bへと送られ、該タービン2bを駆動した排気ガス9が排気管11を介し車外へ排出されるようにしてある。   Further, the exhaust gas 9 discharged from each cylinder 8 of the diesel engine 1 is sent to the turbine 2b of the turbocharger 2 through the exhaust manifold 10, and the exhaust gas 9 that has driven the turbine 2b passes through the exhaust pipe 11. It is designed to be discharged outside the vehicle.

又、この排気管11の途中に装備された触媒ケース12内には、排気空燃比がリーンの時に排気ガス9中のNOxを酸化して硝酸塩の状態で一時的に吸蔵し且つ排気ガス9中の酸素濃度が低下した時に還元剤の介在によりNOxを分解放出して還元浄化するNOx吸蔵還元触媒13が収容されると共に、NOx吸蔵還元触媒13の下流側に、捕集済みパティキュレートの酸化反応を助勢する機能を高めた酸化触媒を一体的に担持して成る触媒再生型のパティキュレートフィルタ14が収容されている。   Further, in the catalyst case 12 provided in the middle of the exhaust pipe 11, when the exhaust air-fuel ratio is lean, NOx in the exhaust gas 9 is oxidized and temporarily stored in the form of nitrate, and in the exhaust gas 9. The NOx occlusion reduction catalyst 13 for reducing and purifying NOx by decomposing and releasing by intervening a reducing agent when the oxygen concentration of the NOx decreases is housed, and the oxidation reaction of the collected particulates downstream of the NOx occlusion reduction catalyst 13 A catalyst regeneration type particulate filter 14 that integrally supports an oxidation catalyst having an enhanced function to assist the above is accommodated.

ここで、NOx吸蔵還元触媒13は、フロースルー型のハニカム構造を成している。又、酸化触媒のパティキュレートフィルタ14は、セラミックから成る多孔質のハニカム構造となっており、格子状に区画された各流路の入口が栓体により交互に目封じされ、入口が目封じされていない流路については、その出口が栓体により目封じされるようになっていて、各流路を区画する多孔質薄壁を透過してパティキュレートを捕集された排気ガス9のみが下流側へ排出されるようになっている。   Here, the NOx storage reduction catalyst 13 has a flow-through honeycomb structure. Further, the particulate filter 14 of the oxidation catalyst has a porous honeycomb structure made of ceramic, and the inlets of the respective flow paths partitioned in a lattice shape are alternately sealed by plugs, and the inlets are sealed. For the non-flow channel, the outlet is sealed with a plug, and only the exhaust gas 9 that has collected particulates through the porous thin wall partitioning each flow channel is downstream. It is designed to be discharged to the side.

更に、触媒ケース12の上流の排気管11には、NOx吸蔵還元触媒13の上流側で排気ガス9中に燃料を添加し得るよう、燃料添加手段の燃料添加弁15が装備されており、この燃料添加弁15は燃料供給元(図示せず)から燃料が添加されるようになっている。   Further, the exhaust pipe 11 upstream of the catalyst case 12 is equipped with a fuel addition valve 15 as a fuel addition means so that fuel can be added into the exhaust gas 9 on the upstream side of the NOx storage reduction catalyst 13. The fuel addition valve 15 is adapted to add fuel from a fuel supply source (not shown).

又、エンジン制御コンピュータ(ECU:Electronic Control Unit)を成す制御装置16には、アクセル開度をディーゼルエンジン1の負荷として検出するアクセルセンサ(負荷センサ)17からのアクセル開度信号17aと、ディーゼルエンジン1の機関回転数を検出する回転センサ18からの回転数信号18aとが入力されるようになっており、この制御装置16からは、開弁指令信号15aにより燃料添加手段の燃料添加弁15が適宜に開弁制御されると共に、ディーゼルエンジン1の各気筒8に燃料を噴射する燃料噴射装置19に向け燃料噴射信号19aが出力されるようになっている。   A control device 16 constituting an engine control computer (ECU) includes an accelerator opening signal 17a from an accelerator sensor (load sensor) 17 for detecting the accelerator opening as a load of the diesel engine 1, and a diesel engine. A rotation speed signal 18a from a rotation sensor 18 for detecting the engine rotation speed of 1 is input. From the control device 16, the fuel addition valve 15 of the fuel addition means is turned on by a valve opening command signal 15a. The valve opening is appropriately controlled, and a fuel injection signal 19a is output to a fuel injection device 19 that injects fuel into each cylinder 8 of the diesel engine 1.

前記燃料噴射装置19は、各気筒8毎に装備される複数のインジェクタ20により構成されており、これら各インジェクタ20の電磁弁が前記燃料噴射信号19aにより適宜に開弁制御されて燃料の噴射タイミング(開弁時期)及び噴射量(開弁時間)が適切に制御されるようになっている。そして、前記制御装置16では、アクセル開度信号17a及び回転数信号18aに基づき通常モードの燃料噴射信号19aが決定されるようになっている。   The fuel injection device 19 is composed of a plurality of injectors 20 provided for each cylinder 8, and the solenoid valves of these injectors 20 are appropriately controlled to open by the fuel injection signal 19a, and the fuel injection timing. (Valve opening timing) and injection amount (valve opening time) are appropriately controlled. In the control device 16, the fuel injection signal 19a in the normal mode is determined based on the accelerator opening signal 17a and the rotation speed signal 18a.

ここで、NOx吸蔵還元触媒13の上流側で排気ガス9中に燃料を添加する際には、燃料添加弁15の代わりに、燃料噴射装置19で、圧縮上死点(クランク角0゜)付近で行われる燃料のメイン噴射に続いて圧縮上死点より遅い非着火のタイミングでポスト噴射を行い、このポスト噴射の制御を燃料添加手段としても良い。   Here, when adding fuel into the exhaust gas 9 on the upstream side of the NOx occlusion reduction catalyst 13, instead of the fuel addition valve 15, the fuel injection device 19 is used in the vicinity of the compression top dead center (crank angle 0 °). After the main injection of the fuel performed in step 1, post-injection is performed at a non-ignition timing later than the compression top dead center, and the control of the post-injection may be used as the fuel addition means.

なお、図1中における21は排気マニホールド10から排気ガス9の一部を抜き出して吸気マニホールド7の入口部に再循環するEGRパイプ、22は該EGRパイプ21の途中に装備されて排気ガス9を水冷するEGRクーラ、23はEGRパイプ21の再循環量を制御するEGRバルブを示す。   1, reference numeral 21 denotes an EGR pipe that extracts a part of the exhaust gas 9 from the exhaust manifold 10 and recirculates it to the inlet portion of the intake manifold 7, and 22 is installed in the middle of the EGR pipe 21 to remove the exhaust gas 9. A water-cooled EGR cooler 23 is an EGR valve that controls the recirculation amount of the EGR pipe 21.

一方、触媒ケース12には、NOx吸蔵還元触媒13と、酸化触媒のパティキュレートフィルタ14との間に位置するように酸素供給手段の酸素供給部24が設けられており、酸素供給部24には、トラックやバス等の大型の車両に備えられたエアタンク(酸素供給元)25から延在する供給配管(供給流路)26が接続され、供給配管26又は酸素供給部24には、酸素の供給量を制御する開閉弁27を配置している(図1では供給配管26に配置している)。   On the other hand, the catalyst case 12 is provided with an oxygen supply unit 24 of an oxygen supply means so as to be positioned between the NOx storage reduction catalyst 13 and the particulate filter 14 of the oxidation catalyst. A supply pipe (supply flow path) 26 extending from an air tank (oxygen supply source) 25 provided in a large vehicle such as a truck or a bus is connected, and the supply pipe 26 or the oxygen supply unit 24 is supplied with oxygen. An on-off valve 27 for controlling the amount is disposed (in FIG. 1, disposed on the supply pipe 26).

ここで、開閉弁27は、制御装置16からの開閉信号27aにより開閉制御されるようになっており、制御装置16は、回転センサ18からのディーゼルエンジン1の回転数、アクセルセンサ17からのディーゼルエンジン1の負荷、燃料噴射量等により、NOx吸蔵還元触媒13の受けた硫黄被毒の状態を判定し、供給すべき空気量を推定するようになっている。なお、エアタンク25は、特に限定されるものでないが、ブレーキやエアサスペンション等のためにエアを供給するものが好ましい。   Here, the opening / closing valve 27 is controlled to be opened / closed by an opening / closing signal 27 a from the control device 16, and the control device 16 rotates the diesel engine 1 from the rotation sensor 18 and diesel from the accelerator sensor 17. The state of sulfur poisoning received by the NOx storage reduction catalyst 13 is determined based on the load of the engine 1, the fuel injection amount, etc., and the amount of air to be supplied is estimated. The air tank 25 is not particularly limited, but is preferably one that supplies air for a brake, an air suspension or the like.

以下、本発明を実施する形態の第一例の作用を説明する。   Hereinafter, the operation of the first example of the embodiment of the present invention will be described.

NOx吸蔵還元触媒13が硫黄被毒を受けて還元浄化する能力が低下した際には、燃料添加弁15による燃料噴射や、燃料噴射装置19によるポスト噴射等の燃料添加手段により、燃料(HC)等の大量の還元剤を添加して理論空燃比以下のリッチ雰囲気にし、NOx吸蔵還元触媒13を回復させる。   When the ability of the NOx occlusion reduction catalyst 13 to reduce and purify due to sulfur poisoning decreases, fuel (HC) is produced by fuel addition means such as fuel injection by the fuel addition valve 15 or post injection by the fuel injection device 19. A large amount of a reducing agent such as the above is added to make a rich atmosphere below the stoichiometric air-fuel ratio, and the NOx occlusion reduction catalyst 13 is recovered.

同時に、酸素供給手段は、エアタンク25から酸素供給部24を介しNOx吸蔵還元触媒13の下流側に空気を供給して空燃比(A/F)14.5以上のリーン雰囲気にし、且つ硫黄被毒からのNOx吸蔵還元触媒13の回復により生じる高温下で、一酸化炭素を酸化させると共に、未燃の還元剤を燃焼させる。   At the same time, the oxygen supply means supplies air from the air tank 25 to the downstream side of the NOx occlusion reduction catalyst 13 through the oxygen supply unit 24 to obtain a lean atmosphere with an air-fuel ratio (A / F) of 14.5 or more and sulfur poisoning. The carbon monoxide is oxidized and the unburned reducing agent is burned at a high temperature generated by the recovery of the NOx occlusion reduction catalyst 13 from the catalyst.

又、酸化触媒のパティキュレートフィルタ14により残りの一酸化炭素を十分に酸化させると共に、未燃の還元剤を確実に燃焼させ、その後、外部へ放出する。   Further, the remaining carbon monoxide is sufficiently oxidized by the particulate filter 14 of the oxidation catalyst, and the unburned reducing agent is surely burned, and then released to the outside.

このように、実施の形態の第一例によれば、硫黄被毒を受けたNOx吸蔵還元触媒13を回復させる際に、大量の燃料(還元剤)の添加により一酸化炭素の増加や還元剤のリークを生じても、酸素供給手段によりNOx吸蔵還元触媒13の下流側に酸素を供給するので、一酸化炭素を酸化させると共に、還元剤を燃焼させ、一酸化炭素の増加や還元剤のリークを防止することができる。   Thus, according to the first example of the embodiment, when the NOx occlusion reduction catalyst 13 that has been subjected to sulfur poisoning is recovered, an increase in carbon monoxide or a reducing agent is achieved by adding a large amount of fuel (reducing agent). Even if a leak occurs, oxygen is supplied to the downstream side of the NOx storage reduction catalyst 13 by the oxygen supply means, so that the carbon monoxide is oxidized and the reducing agent is burned to increase the carbon monoxide and the reducing agent leaks. Can be prevented.

又、第一例において、酸素供給手段は、エアタンク(酸素供給元)25からNOx吸蔵還元触媒13の下流側まで延在する供給配管(供給流路)26と、酸素の供給量を制御する開閉弁27とを備えると、NOx吸蔵還元触媒13の硫黄被毒の状況に応じて酸素を供給するので、一酸化炭素の酸化や還元剤の燃焼を適切に行い、一酸化炭素の増加や還元剤のリークを好適に防止することができる。   In the first example, the oxygen supply means includes a supply pipe (supply channel) 26 extending from the air tank (oxygen supply source) 25 to the downstream side of the NOx storage reduction catalyst 13, and an open / close that controls the supply amount of oxygen. When the valve 27 is provided, oxygen is supplied according to the state of sulfur poisoning of the NOx occlusion reduction catalyst 13, so that the oxidation of carbon monoxide and the combustion of the reducing agent are appropriately performed to increase the carbon monoxide and reduce the reducing agent. This can be suitably prevented.

第一例において、酸素供給手段は、エアタンク25からNOx吸蔵還元触媒13の下流側に空気を供給し、空気中の酸素を利用するように構成すると、既存のエアタンク25を用いて酸素を供給するので、新たな酸素供給元を設ける必要がなく、製造コストの増加を防止することができる。   In the first example, when the oxygen supply means supplies air from the air tank 25 to the downstream side of the NOx storage reduction catalyst 13 and uses oxygen in the air, oxygen is supplied using the existing air tank 25. Therefore, it is not necessary to provide a new oxygen supply source, and an increase in manufacturing cost can be prevented.

第一例において、酸素の供給位置より下流側に酸化触媒のパティキュレートフィルタ14を装備すると、一酸化炭素の酸化や還元剤の燃焼を確実に行い、一酸化炭素の増加や還元剤のリークを一層好適に防止することができる。   In the first example, when the particulate filter 14 of the oxidation catalyst is provided downstream from the oxygen supply position, the carbon monoxide is oxidized and the reducing agent is burned, and the increase in carbon monoxide and the leakage of the reducing agent are prevented. It can prevent more suitably.

図2は本発明を実施する形態の第二例を示すものであって、図中、図1と同一の符号を付した部分は同一物を表わしている。   FIG. 2 shows a second example of an embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 1 denote the same parts.

第二例の排気浄化装置は第一例の酸素供給手段の構成を変形したものであり、酸素供給手段は、触媒ケース12に、NOx吸蔵還元触媒13と、酸化触媒のパティキュレートフィルタ14との間に位置するように酸素供給部28が設けられており、酸素供給部28には、ターボチャージャ2のタービン2bと燃料添加弁(燃料添加手段)15の間の排気管(排気流路)11から分岐して延在する供給配管(供給流路)29が接続され、供給配管29又は酸素供給部28には、酸素の供給量を制御する開閉弁30を配置している(図2では供給配管29に配置している)。   The exhaust purification apparatus of the second example is a modification of the configuration of the oxygen supply means of the first example. The oxygen supply means includes a catalyst case 12, an NOx storage reduction catalyst 13, and an oxidation catalyst particulate filter 14. An oxygen supply unit 28 is provided so as to be located between the exhaust pipe (exhaust flow path) 11 between the turbine 2 b of the turbocharger 2 and the fuel addition valve (fuel addition means) 15. A supply pipe (supply flow path) 29 that branches and extends from the pipe is connected, and an on-off valve 30 that controls the supply amount of oxygen is arranged in the supply pipe 29 or the oxygen supply unit 28 (in FIG. 2, supply). Arranged in the pipe 29).

ここで、ターボチャージャ2のタービン2bと燃料添加手段の間の排気管11は、排気ガス9の空気過剰率λが1以上であり、供給用の圧力がNOx吸蔵還元触媒13の下流側の排圧よりも高く、排ガスが適切に流れるようになっている。又、開閉弁30は、制御装置16からの開閉信号30aにより開閉制御されるようになっており、制御装置16は、回転センサ18からのディーゼルエンジン1の回転数、アクセルセンサ17からのディーゼルエンジン1の負荷、燃料噴射量等により、NOx吸蔵還元触媒13の受けた硫黄被毒の状態を判定し、供給すべき空気量を推定するようになっている。   Here, in the exhaust pipe 11 between the turbine 2 b of the turbocharger 2 and the fuel addition means, the excess air ratio λ of the exhaust gas 9 is 1 or more, and the supply pressure is the exhaust gas downstream of the NOx storage reduction catalyst 13. It is higher than the pressure so that the exhaust gas flows properly. The opening / closing valve 30 is controlled to open / close by an opening / closing signal 30 a from the control device 16, and the control device 16 rotates the diesel engine 1 from the rotation sensor 18 and the diesel engine from the accelerator sensor 17. The state of sulfur poisoning received by the NOx occlusion reduction catalyst 13 is determined based on the load of 1, the fuel injection amount, etc., and the amount of air to be supplied is estimated.

以下、本発明を実施する形態の第二例の作用を説明する。   Hereinafter, the operation of the second example of the embodiment of the present invention will be described.

NOx吸蔵還元触媒13が硫黄被毒を受けて還元浄化する能力が低下した際には、第一例と略同様に、燃料添加弁15による燃料噴射や、燃料噴射装置19によるポスト噴射等の燃料添加手段により、燃料(HC)等の大量の還元剤を添加して理論空燃比以下のリッチ雰囲気にし、NOx吸蔵還元触媒13を回復させる。   When the ability of the NOx occlusion reduction catalyst 13 to reduce and purify due to sulfur poisoning decreases, fuel such as fuel injection by the fuel addition valve 15 or post injection by the fuel injection device 19 is substantially the same as in the first example. By the adding means, a large amount of reducing agent such as fuel (HC) is added to make a rich atmosphere below the stoichiometric air-fuel ratio, and the NOx storage reduction catalyst 13 is recovered.

同時に、酸素供給手段は、排気管11から酸素供給部28を介しNOx吸蔵還元触媒13の下流側に排気ガス9を供給して空燃比(A/F)14.5以上のリーン雰囲気にし、且つ硫黄被毒からのNOx吸蔵還元触媒13の回復により生じる高温下で、一酸化炭素を酸化させると共に、未燃の還元剤を燃焼させる。   At the same time, the oxygen supply means supplies the exhaust gas 9 from the exhaust pipe 11 to the downstream side of the NOx occlusion reduction catalyst 13 through the oxygen supply unit 28 to obtain a lean atmosphere with an air-fuel ratio (A / F) of 14.5 or more, and At a high temperature generated by the recovery of the NOx occlusion reduction catalyst 13 from sulfur poisoning, the carbon monoxide is oxidized and the unburned reducing agent is burned.

又、酸化触媒のパティキュレートフィルタ14により残りの一酸化炭素を十分に酸化させると共に、未燃の還元剤を確実に燃焼させ、その後、外部へ放出する。   Further, the remaining carbon monoxide is sufficiently oxidized by the particulate filter 14 of the oxidation catalyst, and the unburned reducing agent is reliably burned, and then released to the outside.

このように、実施の形態の第二例によれば、第一例と略同様に、硫黄被毒を受けたNOx吸蔵還元触媒13を回復させる際に、大量の燃料(還元剤)の添加により一酸化炭素の増加や還元剤のリークを生じても、酸素供給手段によりNOx吸蔵還元触媒13の下流側に酸素を供給するので、一酸化炭素を酸化させると共に、還元剤を燃焼させ、一酸化炭素の増加や還元剤のリークを防止することができる。   Thus, according to the second example of the embodiment, substantially in the same manner as in the first example, when recovering the NOx occlusion reduction catalyst 13 that has received sulfur poisoning, a large amount of fuel (reducing agent) is added. Even if an increase in carbon monoxide or a leakage of the reducing agent occurs, oxygen is supplied to the downstream side of the NOx occlusion reduction catalyst 13 by the oxygen supply means, so that the carbon monoxide is oxidized and the reducing agent is burned to produce the monoxide. Carbon increase and reducing agent leakage can be prevented.

又、第二例において、酸素供給手段は、酸素供給元の排気管(排気流路)11から分岐してNOx吸蔵還元触媒13の下流側まで延在する供給配管(供給流路)29と、酸素の供給量を制御する開閉弁30とを備えると、NOx吸蔵還元触媒13の硫黄被毒の状況に応じて酸素を供給するので、一酸化炭素の酸化や還元剤の燃焼を適切に行い、一酸化炭素の増加や還元剤のリークを好適に防止することができる。   In the second example, the oxygen supply means includes a supply pipe (supply flow path) 29 branched from the oxygen supply source exhaust pipe (exhaust flow path) 11 and extending to the downstream side of the NOx storage reduction catalyst 13; When the on-off valve 30 for controlling the supply amount of oxygen is provided, oxygen is supplied according to the situation of sulfur poisoning of the NOx storage reduction catalyst 13, so that the oxidation of carbon monoxide and the combustion of the reducing agent are appropriately performed, An increase in carbon monoxide and leakage of the reducing agent can be suitably prevented.

第二例において、酸素供給手段は、ターボチャージャ2のタービン2bと燃料添加手段の間の排気管(排気流路)11からNOx吸蔵還元触媒13の下流側に排気ガス9を供給し、排気ガス9中の酸素を利用するように構成すると、既存の排気管(排気流路)11を用いて排気ガス9より酸素を供給するので、新たな酸素供給元を設ける必要がなく、製造コストの増加を防止することができる。   In the second example, the oxygen supply means supplies exhaust gas 9 from the exhaust pipe (exhaust flow path) 11 between the turbine 2b of the turbocharger 2 and the fuel addition means to the downstream side of the NOx occlusion reduction catalyst 13, and the exhaust gas If oxygen is used in the gas generator 9, oxygen is supplied from the exhaust gas 9 using the existing exhaust pipe (exhaust flow path) 11, so that it is not necessary to provide a new oxygen supply source, and the manufacturing cost increases. Can be prevented.

又、第二例は、第一例と同様な作用効果を得ることができる。   Further, the second example can obtain the same effects as the first example.

図3は本発明を実施する形態の第三例を示すものであって、図中、図1と同一の符号を付した部分は同一物を表わしている。   FIG. 3 shows a third example of the embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 1 denote the same parts.

第三例の排気浄化装置は第一例の酸素供給手段の構成を変形したものであり、酸素供給手段は、触媒ケース12に、NOx吸蔵還元触媒13と、酸化触媒のパティキュレートフィルタ14との間に位置するように酸素供給部31が設けられており、酸素供給部31には、排気マニホールド10とターボチャージャ2のタービン2bの間の排気流路10aから分岐して延在する供給配管(供給流路)32が接続され、供給配管32又は酸素供給部31には、酸素の供給量を制御する開閉弁33を配置している(図3では供給配管32に配置している)。   The exhaust purification apparatus of the third example is a modification of the configuration of the oxygen supply means of the first example. The oxygen supply means includes a catalyst case 12, an NOx storage reduction catalyst 13, and an oxidation catalyst particulate filter 14. An oxygen supply unit 31 is provided so as to be located between the supply pipe 31 and the supply pipe extending from the exhaust passage 10 a between the exhaust manifold 10 and the turbine 2 b of the turbocharger 2. (Supply channel) 32 is connected, and an on-off valve 33 for controlling the supply amount of oxygen is arranged in the supply pipe 32 or the oxygen supply part 31 (in FIG. 3, it is arranged in the supply pipe 32).

ここで、排気マニホールド10とターボチャージャ2のタービン2bの間の排気流路10aは、排気ガス9の空気過剰率λが1以上であり、供給用の圧力がNOx吸蔵還元触媒13の下流側の排圧よりも高く、排ガスが適切に流れるようになっている。又、開閉弁33は、制御装置16からの開閉信号33aにより開閉制御されるようになっており、制御装置16は、回転センサ18からのディーゼルエンジン1の回転数、アクセルセンサ17からのディーゼルエンジン1の負荷、燃料噴射量等により、NOx吸蔵還元触媒13の受けた硫黄被毒の状態を判定し、供給すべき空気量を推定するようになっている。   Here, in the exhaust passage 10 a between the exhaust manifold 10 and the turbine 2 b of the turbocharger 2, the excess air ratio λ of the exhaust gas 9 is 1 or more, and the supply pressure is on the downstream side of the NOx storage reduction catalyst 13. It is higher than the exhaust pressure so that the exhaust gas flows properly. The opening / closing valve 33 is controlled to open / close by an opening / closing signal 33 a from the control device 16, and the control device 16 rotates the diesel engine 1 from the rotation sensor 18 and the diesel engine from the accelerator sensor 17. The state of sulfur poisoning received by the NOx occlusion reduction catalyst 13 is determined based on the load of 1, the fuel injection amount, etc., and the amount of air to be supplied is estimated.

以下、本発明を実施する形態の第三例の作用を説明する。   Hereinafter, the operation of the third example of the embodiment of the present invention will be described.

NOx吸蔵還元触媒13が硫黄被毒を受けて還元浄化する能力が低下した際には、第一例と略同様に、燃料添加弁15による燃料噴射や、燃料噴射装置19によるポスト噴射等の燃料添加手段により、燃料(HC)等の大量の還元剤を添加して理論空燃比以下のリッチ雰囲気にし、NOx吸蔵還元触媒13を回復させる。   When the ability of the NOx occlusion reduction catalyst 13 to reduce and purify due to sulfur poisoning decreases, fuel such as fuel injection by the fuel addition valve 15 or post injection by the fuel injection device 19 is substantially the same as in the first example. By the adding means, a large amount of reducing agent such as fuel (HC) is added to make a rich atmosphere below the stoichiometric air-fuel ratio, and the NOx storage reduction catalyst 13 is recovered.

同時に、酸素供給手段は、排気流路10aから酸素供給部31を介しNOx吸蔵還元触媒13の下流側に排気ガス9を供給して空燃比(A/F)14.5以上のリーン雰囲気にし、且つ硫黄被毒からのNOx吸蔵還元触媒13の回復により生じる高温下で、一酸化炭素を酸化させると共に、未燃の還元剤を燃焼させる。   At the same time, the oxygen supply means supplies the exhaust gas 9 from the exhaust passage 10a to the downstream side of the NOx occlusion reduction catalyst 13 through the oxygen supply unit 31 to obtain a lean atmosphere having an air-fuel ratio (A / F) of 14.5 or more. In addition, the carbon monoxide is oxidized and the unburned reducing agent is burned at a high temperature generated by the recovery of the NOx occlusion reduction catalyst 13 from sulfur poisoning.

又、酸化触媒のパティキュレートフィルタ14により残りの一酸化炭素を十分に酸化させると共に、未燃の還元剤を確実に燃焼させ、その後、外部へ放出する。   Further, the remaining carbon monoxide is sufficiently oxidized by the particulate filter 14 of the oxidation catalyst, and the unburned reducing agent is reliably burned, and then released to the outside.

このように、実施の形態の第三例によれば、第一例と略同様に、硫黄被毒を受けたNOx吸蔵還元触媒13を回復させる際に、大量の燃料(還元剤)の添加により一酸化炭素の増加や還元剤のリークを生じても、酸素供給手段によりNOx吸蔵還元触媒13の下流側に酸素を供給するので、一酸化炭素を酸化させると共に、還元剤を燃焼させ、一酸化炭素の増加や還元剤のリークを防止することができる。   Thus, according to the third example of the embodiment, substantially the same as in the first example, when recovering the NOx occlusion reduction catalyst 13 that has received sulfur poisoning, a large amount of fuel (reducing agent) is added. Even if an increase in carbon monoxide or a leakage of the reducing agent occurs, oxygen is supplied to the downstream side of the NOx occlusion reduction catalyst 13 by the oxygen supply means, so that the carbon monoxide is oxidized and the reducing agent is burned to produce the monoxide. Carbon increase and reducing agent leakage can be prevented.

又、第三例において、酸素供給手段は、酸素供給元の排気流路10aから分岐してNOx吸蔵還元触媒13の下流側まで延在する供給配管(供給流路)32と、酸素の供給量を制御する開閉弁33とを備えると、NOx吸蔵還元触媒13の硫黄被毒の状況に応じて酸素を供給するので、一酸化炭素の酸化や還元剤の燃焼を適切に行い、一酸化炭素の増加や還元剤のリークを好適に防止することができる。   In the third example, the oxygen supply means includes a supply pipe (supply flow path) 32 that branches from the exhaust flow path 10a of the oxygen supply source and extends to the downstream side of the NOx storage reduction catalyst 13, and an oxygen supply amount. If the on-off valve 33 for controlling the NOx is supplied, oxygen is supplied according to the sulfur poisoning status of the NOx storage reduction catalyst 13, so that the oxidation of carbon monoxide and the combustion of the reducing agent are performed appropriately, Increase and leakage of the reducing agent can be suitably prevented.

第三例において、酸素供給手段は、排気マニホールド10とターボチャージャ2のタービン2bの間の排気流路10aからNOx吸蔵還元触媒13の下流側に排気ガス9を供給し、排気ガス9中の酸素を利用するように構成すると、既存の排気流路10aを用いて排気ガス9より酸素を供給するので、新たな酸素供給元を設ける必要がなく、製造コストの増加を防止することができる。   In the third example, the oxygen supply means supplies the exhaust gas 9 from the exhaust passage 10 a between the exhaust manifold 10 and the turbine 2 b of the turbocharger 2 to the downstream side of the NOx storage reduction catalyst 13, and oxygen in the exhaust gas 9 If oxygen is used, oxygen is supplied from the exhaust gas 9 using the existing exhaust passage 10a. Therefore, it is not necessary to provide a new oxygen supply source, and an increase in manufacturing cost can be prevented.

又、第三例は、第一例と同様な作用効果を得ることができる。   Further, the third example can obtain the same effects as the first example.

図4は本発明を実施する形態の第四例を示すものであって、図中、図1と同一の符号を付した部分は同一物を表わしている。   FIG. 4 shows a fourth example of the embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 1 denote the same components.

第四例の排気浄化装置は第一例の酸素供給手段の構成を変形したものであり、酸素供給手段は、触媒ケース12に、NOx吸蔵還元触媒13と、酸化触媒のパティキュレートフィルタ14との間に位置するように酸素供給部34が設けられており、酸素供給部34には、ターボチャージャ2のコンプレッサ2aと吸気マニホールド7の間の吸気流路7aから分岐して延在する供給配管(供給流路)35が接続され、供給配管35又は酸素供給部34には、酸素の供給量を制御する開閉弁36を配置している(図4では供給配管35に配置している)。   The exhaust purification apparatus of the fourth example is a modification of the configuration of the oxygen supply means of the first example. The oxygen supply means includes a catalyst case 12, an NOx storage reduction catalyst 13, and an oxidation catalyst particulate filter 14. An oxygen supply unit 34 is provided so as to be located between the supply pipe 34 and a supply pipe (branching and extending from the intake passage 7a between the compressor 2a of the turbocharger 2 and the intake manifold 7). (Supply channel) 35 is connected, and an on-off valve 36 for controlling the supply amount of oxygen is arranged in the supply pipe 35 or the oxygen supply part 34 (in FIG. 4, it is arranged in the supply pipe 35).

ここで、ターボチャージャ2のコンプレッサ2aと吸気マニホールド7の間の吸気流路7aは、コンプレッサ2aにより吸気4の圧力がNOx吸蔵還元触媒13の下流側の排圧よりも高く、吸気4の空気が適切に流れるようになっている。又、開閉弁36は、制御装置16からの開閉信号36aにより開閉制御されるようになっており、制御装置16は、回転センサ18からのディーゼルエンジン1の回転数、アクセルセンサ17からのディーゼルエンジン1の負荷、燃料噴射量等により、NOx吸蔵還元触媒13の受けた硫黄被毒の状態を判定し、供給すべき空気量を推定するようになっている。   Here, in the intake passage 7a between the compressor 2a of the turbocharger 2 and the intake manifold 7, the pressure of the intake air 4 is higher than the exhaust pressure downstream of the NOx storage reduction catalyst 13 by the compressor 2a, and the air in the intake air 4 It is designed to flow properly. The opening / closing valve 36 is controlled to open / close by an opening / closing signal 36 a from the control device 16, and the control device 16 rotates the diesel engine 1 from the rotation sensor 18 and the diesel engine from the accelerator sensor 17. The state of sulfur poisoning received by the NOx occlusion reduction catalyst 13 is determined based on the load of 1, the fuel injection amount, etc., and the amount of air to be supplied is estimated.

以下、本発明を実施する形態の第四例の作用を説明する。   The operation of the fourth example of the embodiment for carrying out the present invention will be described below.

NOx吸蔵還元触媒13が硫黄被毒を受けて還元浄化する能力が低下した際には、第一例と略同様に、燃料添加弁15による燃料噴射や、燃料噴射装置19によるポスト噴射等の燃料添加手段により、燃料(HC)等の大量の還元剤を添加して理論空燃比以下のリッチ雰囲気にし、NOx吸蔵還元触媒13を回復させる。   When the ability of the NOx occlusion reduction catalyst 13 to reduce and purify due to sulfur poisoning decreases, fuel such as fuel injection by the fuel addition valve 15 or post injection by the fuel injection device 19 is substantially the same as in the first example. By the adding means, a large amount of reducing agent such as fuel (HC) is added to make a rich atmosphere below the stoichiometric air-fuel ratio, and the NOx storage reduction catalyst 13 is recovered.

同時に、酸素供給手段は、吸気流路7aから酸素供給部34を介しNOx吸蔵還元触媒13の下流側に吸気4の空気を供給して空燃比(A/F)14.5以上のリーン雰囲気にし、且つ硫黄被毒からのNOx吸蔵還元触媒13の回復により生じる高温下で、一酸化炭素を酸化させると共に、未燃の還元剤を燃焼させる。   At the same time, the oxygen supply means supplies the air of the intake air 4 to the downstream side of the NOx occlusion reduction catalyst 13 from the intake flow path 7a through the oxygen supply unit 34 to make a lean atmosphere having an air-fuel ratio (A / F) of 14.5 or more. In addition, the carbon monoxide is oxidized and the unburned reducing agent is burned at a high temperature generated by the recovery of the NOx occlusion reduction catalyst 13 from sulfur poisoning.

又、酸化触媒のパティキュレートフィルタ14により残りの一酸化炭素を十分に酸化させると共に、未燃の還元剤を確実に燃焼させ、その後、外部へ放出する。   Further, the remaining carbon monoxide is sufficiently oxidized by the particulate filter 14 of the oxidation catalyst, and the unburned reducing agent is surely burned, and then released to the outside.

このように、実施の形態の第四例によれば、第一例と略同様に、硫黄被毒を受けたNOx吸蔵還元触媒13を回復させる際に、大量の燃料(還元剤)の添加により一酸化炭素の増加や還元剤のリークを生じても、酸素供給手段によりNOx吸蔵還元触媒13の下流側に酸素を供給するので、一酸化炭素を酸化させると共に、還元剤を燃焼させ、一酸化炭素の増加や還元剤のリークを防止することができる。   As described above, according to the fourth example of the embodiment, almost the same as in the first example, when the NOx occlusion reduction catalyst 13 that has received sulfur poisoning is recovered, a large amount of fuel (reducing agent) is added. Even if an increase in carbon monoxide or a leakage of the reducing agent occurs, oxygen is supplied to the downstream side of the NOx occlusion reduction catalyst 13 by the oxygen supply means, so that the carbon monoxide is oxidized and the reducing agent is burned to produce the monoxide. Carbon increase and reducing agent leakage can be prevented.

又、第四例において、酸素供給手段は、酸素供給元の給気流路7aから分岐してNOx吸蔵還元触媒13の下流側まで延在する供給配管(供給流路)35と、酸素の供給量を制御する開閉弁36とを備えると、NOx吸蔵還元触媒13の硫黄被毒の状況に応じて酸素を供給するので、一酸化炭素の酸化や還元剤の燃焼を適切に行い、一酸化炭素の増加や還元剤のリークを好適に防止することができる。   In the fourth example, the oxygen supply means includes a supply pipe (supply channel) 35 that branches from the supply channel 7a of the oxygen supply source and extends to the downstream side of the NOx storage reduction catalyst 13, and an oxygen supply amount. If the on-off valve 36 for controlling the NOx is supplied, oxygen is supplied in accordance with the sulfur poisoning status of the NOx occlusion reduction catalyst 13, so that the oxidation of carbon monoxide and the combustion of the reducing agent are performed appropriately, Increase and leakage of the reducing agent can be suitably prevented.

第四例において、酸素供給手段は、ターボチャージャ2のコンプレッサ2aと吸気マニホールド7の間の吸気流路7aからNOx吸蔵還元触媒13の下流側に吸気4の空気を供給し、空気中の酸素を利用するように構成すると、既存の吸気流路7aを用いて排気ガス9より酸素を供給するので、新たな酸素供給元を設ける必要がなく、製造コストの増加を防止することができる。   In the fourth example, the oxygen supply means supplies the air in the intake air 4 to the downstream side of the NOx storage reduction catalyst 13 from the intake flow path 7a between the compressor 2a of the turbocharger 2 and the intake manifold 7, and oxygen in the air is supplied. When configured to be used, oxygen is supplied from the exhaust gas 9 using the existing intake flow path 7a. Therefore, it is not necessary to provide a new oxygen supply source, and an increase in manufacturing cost can be prevented.

又、第四例は、第一例と同様な作用効果を得ることができる。   Further, the fourth example can obtain the same effects as the first example.

尚、本発明の排気浄化装置は、上述の形態例にのみ限定されるものではなく、酸素をNOx吸蔵還元触媒の下流に供給し得るならば、純粋な酸素や他のガスを供給しても良いこと、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   Note that the exhaust purification apparatus of the present invention is not limited to the above-described embodiment. If oxygen can be supplied downstream of the NOx storage reduction catalyst, pure oxygen or other gas may be supplied. Of course, various modifications can be made without departing from the scope of the present invention.

本発明を実施する形態の第一例を示す概略図である。It is the schematic which shows the 1st example of the form which implements this invention. 本発明を実施する形態の第二例を示す概略図である。It is the schematic which shows the 2nd example of the form which implements this invention. 本発明を実施する形態の第三例を示す概略図である。It is the schematic which shows the 3rd example of the embodiment which implements this invention. 本発明を実施する形態の第四例を示す概略図である。It is the schematic which shows the 4th example of embodiment which implements this invention.

符号の説明Explanation of symbols

1 ディーゼルエンジン(エンジン)
2 ターボチャージャ
2a コンプレッサ
2b タービン
4 吸気
7 吸気マニホールド
7a 吸気流路
9 排気ガス
10 排気マニホールド
10a 排気流路
11 排気管(排気流路)
13 NOx吸蔵還元触媒
15 燃料添加弁(燃料添加手段)
25 エアタンク
26 供給配管(供給流路)
27 開閉弁
29 供給配管(供給流路)
30 開閉弁
32 供給配管(供給流路)
33 開閉弁
35 供給配管(供給流路)
36 開閉弁
1 Diesel engine (engine)
2 Turbocharger 2a Compressor 2b Turbine 4 Intake 7 Intake manifold 7a Intake passage 9 Exhaust gas 10 Exhaust manifold 10a Exhaust passage 11 Exhaust pipe (exhaust passage)
13 NOx storage reduction catalyst 15 Fuel addition valve (fuel addition means)
25 Air tank 26 Supply piping (Supply flow path)
27 On-off valve 29 Supply piping (supply channel)
30 On-off valve 32 Supply piping (supply flow path)
33 On-off valve 35 Supply piping (supply channel)
36 On-off valve

Claims (7)

エンジンからの排気ガスが流通する排気管の途中に装備されたNOx吸蔵還元触媒と、該NOx吸蔵還元触媒より上流側で排気ガス中に燃料を添加する燃料添加手段とを備え、前記NOx吸蔵還元触媒が硫黄による被毒を受けた際には還元剤を添加してNOx吸蔵還元触媒を回復させる排気浄化装置であって、前記NOx吸蔵還元触媒の下流側に酸素を供給する酸素供給手段を備えたことを特徴とする排気浄化装置。   A NOx occlusion reduction catalyst installed in the middle of an exhaust pipe through which exhaust gas from the engine circulates, and a fuel addition means for adding fuel to the exhaust gas upstream of the NOx occlusion reduction catalyst, the NOx occlusion reduction An exhaust purification device for recovering a NOx occlusion reduction catalyst by adding a reducing agent when the catalyst is poisoned by sulfur, comprising oxygen supply means for supplying oxygen downstream of the NOx occlusion reduction catalyst An exhaust purification device characterized by that. 前記酸素供給手段は、酸素供給元からNOx吸蔵還元触媒の下流側まで延在する供給流路と、酸素の供給量を制御する開閉弁とを備えたことを特徴とする請求項1に記載の排気浄化装置。   The said oxygen supply means is provided with the supply flow path extended from the oxygen supply source to the downstream of a NOx storage reduction catalyst, and the on-off valve which controls the supply_amount | feed_rate of oxygen. Exhaust purification device. 前記酸素供給手段は、エアタンクからNOx吸蔵還元触媒の下流側に空気を供給し、空気中の酸素を利用するように構成したことを特徴とする請求項1又は2に記載の排気浄化装置。   The exhaust gas purification apparatus according to claim 1 or 2, wherein the oxygen supply means is configured to supply air from an air tank to a downstream side of the NOx occlusion reduction catalyst and to use oxygen in the air. 前記酸素供給手段は、ターボチャージャのタービンと燃料添加手段の間の排気流路からNOx吸蔵還元触媒の下流側に排気ガスを供給し、排気ガス中の酸素を利用するように構成したことを特徴とする請求項1又は2に記載の排気浄化装置。   The oxygen supply means is configured to supply exhaust gas to the downstream side of the NOx occlusion reduction catalyst from an exhaust passage between the turbine of the turbocharger and the fuel addition means, and to use oxygen in the exhaust gas. The exhaust emission control device according to claim 1 or 2. 前記酸素供給手段は、排気マニホールドとターボチャージャのタービンの間の排気流路からNOx吸蔵還元触媒の下流側に排気ガスを供給し、排気ガス中の酸素を利用するように構成したことを特徴とする請求項1又は2に記載の排気浄化装置。   The oxygen supply means is configured to supply exhaust gas from an exhaust passage between an exhaust manifold and a turbine of a turbocharger to the downstream side of the NOx storage reduction catalyst, and to use oxygen in the exhaust gas. The exhaust emission control device according to claim 1 or 2. 前記酸素供給手段は、ターボチャージャのコンプレッサと吸気マニホールドの間の吸気流路からNOx吸蔵還元触媒の下流側に空気を供給し、空気中の酸素を利用するように構成したことを特徴とする請求項1又は2に記載の排気浄化装置。   The oxygen supply means is configured to supply air from an intake passage between a compressor of a turbocharger and an intake manifold to the downstream side of the NOx storage reduction catalyst, and to use oxygen in the air. Item 3. The exhaust emission control device according to Item 1 or 2. 酸素の供給位置より下流側に酸化触媒を装備したことを特徴とする請求項1〜6のいずれかに記載の排気浄化装置。   The exhaust emission control device according to any one of claims 1 to 6, wherein an oxidation catalyst is provided downstream of the oxygen supply position.
JP2006228300A 2006-08-24 2006-08-24 Exhaust emission control device Withdrawn JP2008051009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006228300A JP2008051009A (en) 2006-08-24 2006-08-24 Exhaust emission control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006228300A JP2008051009A (en) 2006-08-24 2006-08-24 Exhaust emission control device

Publications (1)

Publication Number Publication Date
JP2008051009A true JP2008051009A (en) 2008-03-06

Family

ID=39235309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006228300A Withdrawn JP2008051009A (en) 2006-08-24 2006-08-24 Exhaust emission control device

Country Status (1)

Country Link
JP (1) JP2008051009A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010017036A1 (en) 2009-05-21 2010-12-16 Denso Corporation, Kariya-City System for starter control for starting internal combustion engines
CN106762270A (en) * 2016-12-27 2017-05-31 南京航空航天大学 A kind of air separates inerting automotive oil tank device and its method of work

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010017036A1 (en) 2009-05-21 2010-12-16 Denso Corporation, Kariya-City System for starter control for starting internal combustion engines
DE102010017036A9 (en) 2009-05-21 2011-04-07 Denso Corporation, Kariya-City System for starter control for starting internal combustion engines
CN106762270A (en) * 2016-12-27 2017-05-31 南京航空航天大学 A kind of air separates inerting automotive oil tank device and its method of work

Similar Documents

Publication Publication Date Title
US7784276B2 (en) Exhaust gas purifier and method of control therefor
JP4337809B2 (en) Exhaust gas purification system for internal combustion engine
JP4608347B2 (en) Exhaust gas purification device
JP4618265B2 (en) Control device for internal combustion engine
JP2006242020A (en) Exhaust emission control device
US20080190099A1 (en) System and method for inhibiting uncontrolled regeneration of a particulate filter for an internal combustion engine
JP2004060596A (en) Exhaust emission control device of internal combustion engine
US9212585B2 (en) Exhaust gas purifying apparatus for internal combustion engine
US20050193724A1 (en) Oxygen-enriched feedgas for reformer in emissions control system
JP6696325B2 (en) Vehicle exhaust purification device
JP2008184925A (en) Egr system of internal combustion engine
JP2010196551A (en) Exhaust emission control device of internal combustion engine
JP2008051009A (en) Exhaust emission control device
JP5620715B2 (en) Exhaust purification device
JP2009013865A (en) Exhaust emission control device of internal combustion engine
JP2007192153A (en) Egr device
JP2006037768A (en) Exhaust emission control device
JP2002081311A (en) Exhaust emission control device for internal combustion engine
JP2008069663A (en) Exhaust emission control device of internal combustion engine
JP2009019515A (en) Nox purification system and control method thereof
JP2008184916A (en) Exhaust emission control system for internal combustion engine
JP2008232055A (en) Exhaust emission control system for internal combustion engine
JP4631680B2 (en) Exhaust gas purification device for internal combustion engine
JP5774300B2 (en) Exhaust purification equipment
JP2008202409A (en) Exhaust emission control device of internal combustion engine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091110