JP2008050490A - Method for producing siloxane-based surface coating agent - Google Patents

Method for producing siloxane-based surface coating agent Download PDF

Info

Publication number
JP2008050490A
JP2008050490A JP2006229356A JP2006229356A JP2008050490A JP 2008050490 A JP2008050490 A JP 2008050490A JP 2006229356 A JP2006229356 A JP 2006229356A JP 2006229356 A JP2006229356 A JP 2006229356A JP 2008050490 A JP2008050490 A JP 2008050490A
Authority
JP
Japan
Prior art keywords
compound
mass
parts
reaction
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006229356A
Other languages
Japanese (ja)
Other versions
JP5006600B2 (en
Inventor
Hiroshi Matsuzaki
裕志 松崎
Midori Sakanishi
美都里 坂西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nard Institute Ltd
Original Assignee
Nard Institute Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nard Institute Ltd filed Critical Nard Institute Ltd
Priority to JP2006229356A priority Critical patent/JP5006600B2/en
Publication of JP2008050490A publication Critical patent/JP2008050490A/en
Application granted granted Critical
Publication of JP5006600B2 publication Critical patent/JP5006600B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Paints Or Removers (AREA)
  • Silicon Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a siloxane-based surface coating agent which does not cause coating cracks due to early-stage curing shrinkage at the time of forming a surface coating and demonstrates excellent capability in a long period of time as a surface protective coating. <P>SOLUTION: The method comprises using a trialkoxysilane compound in combination with a diphenyldialkoxysilane compound at a suitable ratio, heating them in the presence of a catalyst while adding water dropwise to subject these components to a partial hydrolytic condensation reaction, adding a catalyst and a suitable amount of one or more alkoxysilane compounds which are the same or different from the above-described alkoxysilane compound, and mixing all the components. The trialkoxysilane compound is represented by the general formula (I): R<SP>1</SP>Si(OR<SP>2</SP>)<SB>3</SB>, wherein R<SP>1</SP>and R<SP>2</SP>represent a 1-4C alkyl group which is the same or different with each other. The diphenyldialkoxysilane compound is represented by the general formula (II): R<SP>3</SP><SB>2</SB>Si(OR<SP>4</SP>)<SB>2</SB>, wherein R<SP>3</SP>represents a phenyl group which may have a substituent; and R<SP>4</SP>represents a 1-4C alkyl group which is the same or different with R<SP>1</SP>or R<SP>2</SP>. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はシロキサン系表面被覆剤の製法に関し、より詳細には、表面被覆形成時における初期の硬化収縮による被覆割れを起こすことがなく、表面保護被覆として長期的に優れた性能を発揮する表面被覆剤の新規な製法に関するものである。   The present invention relates to a method for producing a siloxane-based surface coating agent, and more specifically, a surface coating that exhibits excellent performance in the long term as a surface protective coating without causing coating cracking due to initial curing shrinkage during surface coating formation. The present invention relates to a novel method for producing an agent.

シロキサン樹脂系の被覆剤は、耐候性、耐熱性、耐汚染性、耐食性、耐傷付き性が良好であり、更には優れた封孔作用を有している等、多くの特徴を有していることから、例えば各種金属材;セラミック、ガラスなどの窯業系基材;プラスチック等を素材とする様々の用途、より具体的には、橋梁や建築物、家電製品、産業機器などの塗装材料などとして広く使用されている。   Siloxane resin-based coatings have many features such as good weather resistance, heat resistance, stain resistance, corrosion resistance, scratch resistance, and excellent sealing action. Therefore, for example, various metal materials; ceramic base materials such as ceramics and glass; various uses made of plastics, and more specifically, coating materials for bridges, buildings, home appliances, industrial equipment, etc. Widely used.

例えば特許文献1には、メチルトリメトキシシランなどを原料モノマーとする数平均重合度の特定されたオルガノポリシロキサンからなり、耐候性、耐薬品性、耐擦傷性、耐汚染性などに優れたコーティング用組成物が開示されている。また特許文献2には、メチルトリメトキシシランやジフェニルジメトキシシランなどのアルコキシシランを、金属化合物触媒と酸の存在下で反応させ、アルコキシ基含有液状シリコーン系樹脂を製造する方法が開示されており、得られるシリコーン系樹脂は、耐熱性塗料や耐候性塗料などとして用いられることが明らかにされている。更に特許文献3には、トリメトキシシランなどのアルコキシシラン化合物と硬化触媒を含み、適正粘度範囲に調整された一液硬化型の封孔剤が開示されており、これを亜鉛めっき鋼板などの表面被覆に用いることで耐食性が著しく高められることを明らかにしている。
特開2002−241693号公報 特開平7−278307号公報 特開2002−363539号公報
For example, Patent Document 1 includes a coating having excellent weather resistance, chemical resistance, scratch resistance, stain resistance, and the like, composed of an organopolysiloxane having a number average degree of polymerization using methyltrimethoxysilane or the like as a raw material monomer. A composition for use is disclosed. Patent Document 2 discloses a method for producing an alkoxy group-containing liquid silicone resin by reacting an alkoxysilane such as methyltrimethoxysilane or diphenyldimethoxysilane in the presence of an acid with a metal compound catalyst. It has been clarified that the obtained silicone-based resin is used as a heat-resistant paint or a weather-resistant paint. Further, Patent Document 3 discloses a one-part curable sealant containing an alkoxysilane compound such as trimethoxysilane and a curing catalyst, and adjusted to an appropriate viscosity range, which is applied to the surface of a galvanized steel sheet or the like. It has been clarified that the corrosion resistance is remarkably enhanced by using it for coating.
JP 2002-241893 A JP-A-7-278307 JP 2002-363539 A

上記の様にポリシロキサン系の樹脂は、優れた表面保護作用や封孔作用を有していることから、各種基材の表面被覆用として幅広く実用化されている。ところが、本発明者らがこれらポリシロキサン系樹脂の用途開発を期して研究を進めるうち、次の様な問題に遭遇した。その問題とは、該ポリシロキサン系樹脂を橋梁などの金属基材の表面保護に適用したときに、該樹脂塗料を塗布してから塗膜が硬化するまでの初期段階で塗膜にクラック(亀裂)が発生し、基材の表面保護効果が著しく損なわれることである。   As described above, polysiloxane-based resins have been put to practical use widely for surface coating of various substrates because they have excellent surface protection and sealing. However, the present inventors encountered the following problems while advancing research for developing applications of these polysiloxane resins. The problem is that when the polysiloxane resin is applied to the surface protection of a metal substrate such as a bridge, the coating film is cracked (cracked) at the initial stage from application of the resin coating to curing of the coating film. ) Occurs and the surface protection effect of the substrate is significantly impaired.

こうした現象が起こる原因は未だ完全に解明している訳ではないが、初期硬化時に生じる被覆素材の硬化収縮量が大きく且つその硬化が急速に進行するため、被覆の内部応力が増大すると共に、基材(金属基材など)との接触界面でも内部応力の増大と蓄積が起こり、被覆がそれらの応力に耐え切れなくなってクラックを起こし、或は外部から受ける衝撃などを契機としてクラックを誘発することが考えられる。そして、被覆にこうしたクラックが一旦発生すると、当該被覆自体の特性が如何に優れたものであっても、クラック部分で表面保護効果が完全に失われるので、防食、防汚などを始めとする表面保護の目的は達成できなくなる。   The cause of this phenomenon has not yet been fully clarified, but since the amount of cure shrinkage of the coating material that occurs during the initial curing is large and the curing proceeds rapidly, the internal stress of the coating increases and the basis is increased. Internal stress increases and accumulates even at contact interfaces with materials (metal substrates, etc.), and the coating cannot withstand those stresses, causing cracks, or triggering cracks triggered by external impacts, etc. Can be considered. And once such cracks occur in the coating, no matter how excellent the characteristics of the coating itself, the surface protection effect is completely lost at the crack part, so that the surface such as anticorrosion, antifouling, etc. The purpose of protection cannot be achieved.

本発明は上記の様な事情に着目してなされたものであって、その目的は、アルコキシシラン系の樹脂を金属基材や窯業基材、プラスチック基材などの表面保護に活用する際に、特に表面被覆形成の初期段階でしばしば経験されるクラックの発生を防止し、アルコキシシラン系被覆の有する卓越した表面保護効果をより確実に発揮し得る様な被覆剤の製法を提供することにある。   The present invention has been made paying attention to the above-mentioned circumstances, and its purpose is to use an alkoxysilane-based resin for surface protection of a metal substrate, a ceramic substrate, a plastic substrate, etc. In particular, an object of the present invention is to provide a method for producing a coating material which can prevent the occurrence of cracks often experienced in the initial stage of surface coating formation and more reliably exhibit the excellent surface protection effect of an alkoxysilane coating.

上記課題を解決することのできた本発明に係るシロキサン系表面被覆剤の製法とは、一般式(I)
Si(OR……(I)
(式中、R,Rは、同一もしくは異なる炭素数1〜4のアルキル基を表す)で示されるアルキルトリアルコキシシラン化合物と、
一般式(II)
Si(OR……(II)
(式中、Rは、置換基を有していてもよいフェニル基、Rは、前記R,Rと同一もしくは異なる炭素数1〜4のアルキル基を表す)で示されるジフェニルジアルコキシシラン化合物を、前者100質量部に対し後者1〜50質量部の比率で使用し、これらを触媒の存在下に水を滴下しつつ加熱して部分加水分解縮合反応させ、該反応の終了後、反応生成物100質量部に対し、前記トリアルコキシシラン化合物およびジフェニルジアルコキシシラン化合物と同種もしくは異種のアルコキシシラン化合物の1種もしくは2種以上を0.5〜10質量部と触媒を追加して混合するところに特徴を有している。
The process for producing a siloxane-based surface coating agent according to the present invention that has solved the above-mentioned problems is a general formula (I)
R 1 Si (OR 2 ) 3 (I)
(Wherein R 1 and R 2 represent the same or different alkyl groups having 1 to 4 carbon atoms),
Formula (II)
R 3 2 Si (OR 4 ) 2 (II)
(Wherein R 3 represents a phenyl group which may have a substituent, and R 4 represents the same or different alkyl group having 1 to 4 carbon atoms as R 1 and R 2 ). The alkoxysilane compound is used at a ratio of 1 to 50 parts by mass with respect to 100 parts by mass of the former, and these are heated while dropping water in the presence of a catalyst to cause partial hydrolysis condensation reaction, and after completion of the reaction , 100 to 10 parts by mass of the reaction product, 0.5 to 10 parts by mass of one or more alkoxysilane compounds of the same type or different from the trialkoxysilane compound and diphenyl dialkoxysilane compound and a catalyst are added. It is characterized by mixing.

上記部分加水分解縮合反応を行う際に、加水分解縮合反応の程度は滴下する水の量によって制御することができ、本発明では水の滴下量を、部分加水分解縮合反応の原料として用いる前記アルキルトリアルコキシシラン化合物とジフェニルジアルコキシシラン化合物の総和100質量部に対し1〜30質量部の範囲に調整するのがよい。   When performing the partial hydrolysis-condensation reaction, the degree of the hydrolysis-condensation reaction can be controlled by the amount of water dropped. In the present invention, the amount of water dropped is the alkyl used as a raw material for the partial hydrolysis-condensation reaction. It is good to adjust to the range of 1-30 mass parts with respect to 100 mass parts of sum total of a trialkoxysilane compound and a diphenyl dialkoxysilane compound.

また本発明で用いる触媒としては、有機錫化合物、有機チタン化合物、有機アルミニウム化合物の1種以上が好ましく使用される。そして該触媒の使用量は、全使用量を本発明で用いるアルコキシシラン化合物の全使用量100質量部に対し0.1〜10質量部とし、且つ、該触媒の全量を100質量部としたとき、その0.1〜0.5質量部、より好ましくは0.1〜0.3質量部を部分加水分解縮合反応に使用し、残部は該反応の終了後に追加するのがよい。   Moreover, as a catalyst used by this invention, 1 or more types of an organic tin compound, an organic titanium compound, and an organoaluminum compound are used preferably. And the usage-amount of this catalyst is 0.1-10 mass parts with respect to 100 mass parts of total usage-amounts of the alkoxysilane compound used by this invention, and when the total amount of this catalyst is 100 mass parts The 0.1 to 0.5 parts by mass, more preferably 0.1 to 0.3 parts by mass is used for the partial hydrolysis-condensation reaction, and the remainder is added after completion of the reaction.

なお上記部分加水分解縮合反応の終点は、該反応液を70〜90℃程度で加熱撹拌し、加水分解縮合反応によって生成するアルコールが留出しなくなる時をもって判断すればよい。   The end point of the partial hydrolysis-condensation reaction may be judged by the time when the reaction liquid is heated and stirred at about 70 to 90 ° C. and alcohol produced by the hydrolysis-condensation reaction does not distill.

本発明では、上記の様に部分加水分解縮合反応の終了後に、該反応に用いたアルコキシシラン化合物と同種もしくは異種のアルコキシシラン化合物を追加するところに最大の特徴を有しているが、該反応の終了後に追加するアルコキシシラン化合物として特に好ましいのは、最初に用いた前記トリアルコキシシラン化合物および/またはジフェニルジアルコキシシラン化合物である。   The present invention has the greatest feature in that an alkoxysilane compound of the same type or different from the alkoxysilane compound used in the reaction is added after completion of the partial hydrolysis-condensation reaction as described above. Particularly preferred as the alkoxysilane compound added after the completion of is the trialkoxysilane compound and / or diphenyl dialkoxysilane compound used first.

本発明によれば、出発物質として特定のトリアルコキシシランと特定のジフェニルジアルコキシシランを特定比率で併用し、水と触媒の存在下で部分加水分解縮合反応を進めた後、得られた反応生成物に対し、触媒と所定量のアルコキシシランを追加して混合することで、その後の硬化時における被覆の急激な収縮を抑えて内部応力の大幅な増大と蓄積を抑制することにより、硬化被覆にクラックが生じるのを抑制し、欠陥のない優れた表面保護作用を持った表面被覆を形成することができる。従ってこの被覆剤は、鉄骨橋梁用などを始めとする各種金属材料の防錆・防食・耐候性改善用保護被覆を形成するための素材などとして幅広く有効に活用できる。   According to the present invention, a specific trialkoxysilane and a specific diphenyl dialkoxysilane are used together in a specific ratio as a starting material, and a partial hydrolysis-condensation reaction proceeds in the presence of water and a catalyst. By adding a catalyst and a predetermined amount of alkoxysilane to the product, the rapid shrinkage of the coating during subsequent curing is suppressed, and a significant increase and accumulation of internal stress is suppressed. It is possible to suppress the generation of cracks and to form a surface coating having an excellent surface protection function without defects. Therefore, this coating agent can be effectively used widely as a material for forming a protective coating for rust prevention, corrosion prevention and weather resistance improvement of various metal materials including those for steel bridges.

本発明では、出発物質として前記一般式(I)で示されるアルキルトリアルコキシシラン化合物と、前記一般式(II)で示されるジフェニルジアルコキシシラン化合物を使用する。これら一般式(I)で示されるアルキルトリアルコキシシラン化合物において、R,Rで示される基は炭素数1〜4のアルキル基を表し、RとRは同一であっても、或は異なるアルキル基であっても構わない。 In the present invention, an alkyltrialkoxysilane compound represented by the general formula (I) and a diphenyl dialkoxysilane compound represented by the general formula (II) are used as starting materials. In alkyltrialkoxysilane compound represented by these general formula (I), the group represented by R 1, R 2 represents an alkyl group having 1 to 4 carbon atoms, also R 1 and R 2 are the same and some May be different alkyl groups.

これらの要件に合致するトリアルコキシシラン化合物の具体例としては、メチルトリメトキシシラン、エチルトリメトキシシラン、プロピルトリメトキシシラン、ブチルトリメトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリエトキシシラン、ブチルトリエトキシシラン、エチルトリプロポキシシラン、エチルトリブトキシシランなどが挙げられ、これらは単独で使用してもよく、或は2種以上を任意の組合せで併用してもよい。   Specific examples of trialkoxysilane compounds meeting these requirements include methyltrimethoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, butyltrimethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltriethoxysilane. , Butyltriethoxysilane, ethyltripropoxysilane, ethyltributoxysilane, and the like. These may be used alone or in combination of two or more.

これらのトリアルコキシシランは、被覆の硬化速度を高めると共に、3次元架橋によって被覆強度を高める作用を発揮する成分であり、それらの作用をより有効に発揮させる上で特に好ましいのは、メチルトリメトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシランなどである。   These trialkoxysilanes are components that increase the coating curing speed and increase the coating strength by three-dimensional crosslinking, and methyltrimethoxy is particularly preferable for effectively exhibiting these functions. Silane, ethyltrimethoxysilane, ethyltriethoxysilane and the like.

次に、前記一般式(II)で示されるジフェニルジアルコキシシラン化合物において、Rで示される基は、炭素数1〜4程度のアルキル基で水素の一部が置換されていてもよいフェニル基、Rで示される基は炭素数1〜4のアルキル基であり、前記RとRと同一であっても、或は異なるアルキル基であっても構わない。 Next, in the diphenyl dialkoxysilane compound represented by the general formula (II), the group represented by R 3 is a phenyl group in which a part of hydrogen may be substituted with an alkyl group having about 1 to 4 carbon atoms. , R 4 is an alkyl group having 1 to 4 carbon atoms and may be the same as or different from R 1 and R 2 .

これらの要件に合致するジフェニルジアルコキシシラン化合物の具体例としては、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、ジフェニルジプロポキシシラン、ジフェニルジブトキシシラン、ジトルイルジメトキシシラン、ジトルイルジエトキシシラン、ジトルイルジプロポキシシラン、ジトルイルジブトキシシランなどが挙げられ、これらは単独で使用してもよく、或は2種以上を任意の組合せで併用してもよい。   Specific examples of diphenyl dialkoxysilane compounds that meet these requirements include diphenyldimethoxysilane, diphenyldiethoxysilane, diphenyldipropoxysilane, diphenyldibutoxysilane, ditoluyldimethoxysilane, ditoluyldiethoxysilane, and ditoluyldisilane. Examples thereof include propoxysilane and ditoluyldibutoxysilane, and these may be used alone, or two or more kinds may be used in any combination.

これらのジフェニルジアルコキシシラン化合物は、被覆の3次元架橋反応を適度に制御して被覆の柔軟性を高める作用を発揮する成分であり、それらの作用をより有効に発揮させる上で特に好ましいのは、ジフェニルジメトキシシラン、ジフェニルジエトキシシランなどである。   These diphenyl dialkoxysilane compounds are components that exert an effect of increasing the flexibility of the coating by appropriately controlling the three-dimensional crosslinking reaction of the coating, and are particularly preferable for more effectively exhibiting these functions. Diphenyldimethoxysilane, diphenyldiethoxysilane, and the like.

これらトリアルコキシシラン化合物とジフェニルジアルコキシシラン化合物の上記作用を被覆剤として有効に発揮させるには、前者100質量部に対し後者1〜50質量部の比率で使用しなければならず、後者の使用比率が1質量部未満では、過度の架橋反応による被覆の収縮とそれに伴うクラック等の抑制作用が得られなくなり、逆に50質量部を超えて多くなり過ぎると、硬化速度が著しく低下して造膜性が悪くなり被覆強度も低下する。被覆の硬化速度や造膜性、被覆強度、適正被覆の形成性などを全て満足させる上でより好ましい両者の配合比率は、前者100質量部に対して後者5〜20質量部の範囲である。   In order to effectively exhibit the above-described effects of these trialkoxysilane compounds and diphenyl dialkoxysilane compounds as a coating agent, they must be used in a ratio of 1 to 50 parts by mass with respect to the former 100 parts by mass. If the ratio is less than 1 part by mass, it will not be possible to obtain coating shrinkage due to excessive crosslinking reaction and the effect of suppressing cracks and the like, and conversely if it exceeds 50 parts by mass, the curing rate will be remarkably reduced. The film properties deteriorate and the coating strength also decreases. The blending ratio of the two is more preferably in the range of 5 to 20 parts by mass with respect to 100 parts by mass of the former in order to satisfy all of the curing speed, film-forming property, coating strength, and formability of the appropriate coating.

本発明では、上記2種のアルコキシシラン化合物を反応容器に入れ、これらを必要に応じて適量の有機溶剤で希釈した後、これに有機金属触媒を加え、撹拌しつつ加水分解用の水を滴下して加水分解縮合反応を進める。この反応は発熱反応であり、温度が高くなり過ぎると縮合反応が進み過ぎてゲル状に硬化することがあるので、好ましくは水浴などで室温(25℃程度)以下に保ちながら水の滴下を行うのがよい。   In the present invention, the above two types of alkoxysilane compounds are put into a reaction vessel, and after diluting them with an appropriate amount of an organic solvent as necessary, an organometallic catalyst is added thereto, and water for hydrolysis is dropped while stirring. Then the hydrolysis condensation reaction proceeds. This reaction is an exothermic reaction, and if the temperature becomes too high, the condensation reaction proceeds too much and may harden in a gel state. Therefore, water is preferably dropped while keeping the temperature at room temperature (about 25 ° C.) or lower in a water bath or the like. It is good.

この際に滴下する水の量は、部分加水分解縮合反応の進行度合いを制御する上で極めて重要な要素であり、該滴下量を少なく抑えれば、加水分解縮合反応は早期に完了し、反応生成物は相対的に低分子量で粘性は低くなり、滴下量を多くして反応を進めるにつれて反応生成物の平均分子量は大きくなって増粘し、最終的には加水分解縮合反応が完結して硬化する。よって、表面被覆形成用の塗料として適度の粘性を確保するには、部分加水分解縮合反応物として適正な粘度が得られる様、水の滴下量によって反応の進行状態をコントロールすることが必要となる。こうした観点から本発明では、塗料として適正な粘度の反応生成物(未硬化物)を得るため、部分加水分解縮合反応時の水の滴下量を、原料モノマー(即ち、反応の初期に用いるアルキルトリアルコキシシラン化合物とジフェニルジアルコキシシラン化合物の総和100質量部に対して1〜30質量部、より好ましくは5〜15質量部、当量にすると、初期に用いる全アルコキシシラン化合物のアルコキシシラン量に対し0.5〜2.5当量、より好ましくは0.8〜1.2当量の範囲となる様に滴下量を調整するのがよい。   The amount of water dripped at this time is an extremely important factor in controlling the degree of progress of the partial hydrolysis condensation reaction. If the amount of dripping is kept small, the hydrolysis condensation reaction is completed at an early stage. The product has a relatively low molecular weight and a low viscosity. As the reaction proceeds by increasing the amount of dripping, the average molecular weight of the reaction product increases and thickens, and eventually the hydrolysis condensation reaction is completed. Harden. Therefore, in order to ensure an appropriate viscosity as a coating for forming a surface coating, it is necessary to control the progress of the reaction by the amount of water dropped so that an appropriate viscosity can be obtained as a partial hydrolysis-condensation reaction product. . From this point of view, in the present invention, in order to obtain a reaction product (uncured product) having an appropriate viscosity as a coating material, the amount of water dropped during the partial hydrolysis condensation reaction is changed to the raw material monomer (that is, the alkyltril used at the beginning of the reaction). 1 to 30 parts by mass, more preferably 5 to 15 parts by mass with respect to 100 parts by mass of the sum of the alkoxysilane compound and diphenyl dialkoxysilane compound, and 0 equivalent to the amount of alkoxysilane in the total alkoxysilane compound used initially. It is good to adjust dripping amount so that it may become the range of 0.5-2.5 equivalent, More preferably, 0.8-1.2 equivalent.

次に触媒としては、アルコキシシラン化合物の加水分解縮合反応に使用される公知の触媒であれば特に制限なく使用することができ、例えばテトラブチルチタネート、テトライソプロピルチタネート、あるいはそれらのオリゴマー等の有機チタン化合物;アルミニウムトリイソプロポキシド、アルミニウムトリ第2級ブトキシド等の有機アルミニウム化合物;ジブチル錫ジラウレート、ジブチル錫ジアセテート、ジブチル錫ジオクトエート等の有機錫化合物などが適宜選択して使用される。   Next, the catalyst can be used without particular limitation as long as it is a known catalyst used in the hydrolysis condensation reaction of alkoxysilane compounds. For example, organic titanium such as tetrabutyl titanate, tetraisopropyl titanate, or oligomers thereof. Compounds; Organoaluminum compounds such as aluminum triisopropoxide and aluminum tri-secondary butoxide; Organotin compounds such as dibutyltin dilaurate, dibutyltin diacetate and dibutyltin dioctoate are appropriately selected and used.

該加水分解縮合反応における上記触媒の使用量は、基材への塗装作業性を考慮し塗布液として適度の粘性の液状物が得られる様に、用いるアルコキシシラン化合物の種類や溶剤の使用量なども考慮して適宜に調整すべきであるが、標準的な使用量は、アルコキシシラン化合物の総和100質量部に対し触媒を0.1〜10質量部、より一般的には1〜5質量部の範囲から設定するのがよい。   The amount of the catalyst used in the hydrolysis-condensation reaction is determined based on the type of alkoxysilane compound used, the amount of solvent used, etc. so that an appropriate viscosity liquid can be obtained as a coating solution in consideration of the coating workability on the substrate. Should be adjusted as appropriate, but the standard amount used is 0.1 to 10 parts by mass, more generally 1 to 5 parts by mass of the catalyst with respect to 100 parts by mass of the total of the alkoxysilane compounds. It is better to set from the range.

この際、希釈溶剤としてメタノール、エタノール、プロパノールなどのアルコール類;ベンゼン、トルエンなどの芳香族系溶剤;メチルセロソルブ、エチルセロソルブなどのセロソルブ類を使用することも可能であるが、本発明では特にこれらの希釈溶剤を使用せずとも無溶剤でも加水分解縮合反応をスムーズに進めることができる。むしろこれらの溶剤を使用すると、溶剤の使用に伴うコストアップに加えて該溶剤を最終的に揮発除去するためのエネルギーも加重されるので、無溶剤反応で進める方が得策である。なお、希釈溶剤を使用すると、加水分解縮合反応時の急激な昇温が起こり難くなり、反応のコントロールは容易になる。しかし反面、反応の初期に相対的に多量の触媒を添加しなければ加水分解縮合反応が効率よく進み難くなる。そのため、相対的に多めの触媒を使用しなければならなくなり、加水分解縮合反応の末期に希釈溶剤を揮発除去した時点での触媒量が多くなり過ぎて反応の終点制御が却って困難になる恐れも生じてくるので、希釈溶剤を使用するにしても極力少なめに抑えるのがよい。   In this case, alcohols such as methanol, ethanol and propanol; aromatic solvents such as benzene and toluene; cellosolves such as methyl cellosolve and ethyl cellosolve can be used as the diluting solvent. Thus, the hydrolysis and condensation reaction can proceed smoothly even without using a dilution solvent. Rather, when these solvents are used, in addition to the cost increase associated with the use of the solvent, the energy for finally volatilizing and removing the solvent is also weighted. Therefore, it is better to proceed with a solvent-free reaction. When a diluting solvent is used, rapid temperature rise during the hydrolysis condensation reaction hardly occurs, and the control of the reaction becomes easy. However, if a relatively large amount of catalyst is not added at the beginning of the reaction, the hydrolysis condensation reaction will not proceed efficiently. For this reason, it is necessary to use a relatively large amount of catalyst, and the amount of catalyst at the end of the hydrolytic condensation reaction when the diluting solvent is removed by volatilization may increase, making it difficult to control the end point of the reaction. As a result, even if a diluting solvent is used, it is better to keep it as small as possible.

上記加水分解縮合反応は、適量の触媒が添加された原料混合液を撹拌しつつ加水分解用の水を所定量滴下した後、加熱、撹拌し、加水分解によって放出されるアルコールと溶剤を用いた場合は当該溶剤を留去し、それらの流出がなくなるまで加熱撹拌を続ける。原料として例えばメトキシシラン化合物を用いた場合は、水の滴下量に応じたメタノールが70〜85℃で留出してくるので、メタノールが留出しなくなるまで加熱、撹拌を続け、更に例えば約90℃まで昇温し同温度で30分〜1時間程度撹拌して部分加水分解縮合反応を完結させると、塗料として適正な粘度の透明な部分加水分解縮合反応液が得られる。この縮合反応液は、原料モノマーの種類や配合比率、滴下水量などにより、好ましくは常温で粘度が10〜100mPa・S程度となる様に調整するのがよい。   In the above hydrolysis condensation reaction, a predetermined amount of water for hydrolysis was dropped while stirring the raw material mixture to which an appropriate amount of catalyst was added, and then the mixture was heated and stirred, and an alcohol and a solvent released by hydrolysis were used. In such a case, the solvent is distilled off, and heating and stirring are continued until there is no outflow. For example, when a methoxysilane compound is used as a raw material, methanol corresponding to the amount of water dropped is distilled at 70 to 85 ° C., so heating and stirring are continued until the methanol stops distilling, and further, for example, up to about 90 ° C. When the temperature is raised and the mixture is stirred at the same temperature for about 30 minutes to 1 hour to complete the partial hydrolysis-condensation reaction, a transparent partial hydrolysis-condensation reaction solution having an appropriate viscosity as a coating is obtained. The condensation reaction liquid is preferably adjusted so that the viscosity is about 10 to 100 mPa · S at room temperature, depending on the type and blending ratio of the raw material monomers, the amount of dripping water, and the like.

ところで封孔材などとして使用する際は、得られる部分加水分解縮合反応液に前掲の硬化触媒を加えて均一に混合し、これを塗布液として基材表面に塗布し、あるいは含浸させるなど、任意の方法で付着させてから大気中に放置すると、大気中の水分を吸収して加水分解縮合反応が進行し、短時間のうちに硬質で透明な保護被覆が形成される。但しこの方法では、先の従来技術でも指摘した様に、硬化の初期段階で皮膜(被覆)にクラックが発生し、本発明で意図する様な欠陥のない保護被覆を得ることはできない。   By the way, when used as a sealing material, the above-mentioned partial hydrolysis condensation reaction liquid is added to the above-mentioned curing catalyst and mixed uniformly, and this is applied to the surface of the substrate as an application liquid or impregnated. When it is left in the atmosphere after being attached by this method, moisture in the atmosphere is absorbed and the hydrolysis condensation reaction proceeds, and a hard and transparent protective coating is formed in a short time. However, in this method, as pointed out in the prior art, cracks occur in the coating (coating) at the initial stage of curing, and a protective coating without defects as intended in the present invention cannot be obtained.

そこで本発明では、こうしたクラックの発生を防止するための手段として、上記硬化触媒の追加と同時もしくはその前後に、部分加水分解縮合反応液の100質量部に対し、前記トリアルコキシシラン化合物およびジフェニルジアルコキシシラン化合物と同種もしくは異種のアルコキシシラン化合物の1種もしくは2種以上を0.5〜10質量部追加して混合する。この手段を付加することで、硬化被覆に生じるクラックの発生が見事に阻止されるのである。   Therefore, in the present invention, as a means for preventing the occurrence of such cracks, the trialkoxysilane compound and diphenyldioxydioxide are added to 100 parts by mass of the partial hydrolysis-condensation reaction solution simultaneously with or before the addition of the curing catalyst. 0.5 to 10 parts by mass of one or more alkoxysilane compounds of the same type or different types from the alkoxysilane compound are mixed. By adding this means, the generation of cracks in the cured coating is brilliantly prevented.

ここで、追加するアルコキシシラン化合物の量を、部分加水分解縮合反応液の100質量部に対し0.5〜10質量部の範囲と定めたのは、0.5質量部未満ではクラック防止効果が有効に発揮されず、また10質量部を超えて過剰量追加すると、硬化速度の低下や硬化不足の問題が発生し、本発明の目的にそぐわなくなるからである。より好ましい追加量は、部分加水分解縮合反応液の100質量部に対し、1質量部以上、5質量部以下である。   Here, the amount of the alkoxysilane compound to be added is determined to be in the range of 0.5 to 10 parts by mass with respect to 100 parts by mass of the partial hydrolysis-condensation reaction solution. This is because when it is not effectively exhibited and an excessive amount exceeding 10 parts by mass is added, a problem of a decrease in curing speed or insufficient curing occurs, which is not suitable for the purpose of the present invention. A more preferable additional amount is 1 part by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the partial hydrolysis-condensation reaction solution.

この時に追加するアルコキシシラン化合物としては、上記の様に、初期反応の原料として用いた前記トリアルコキシシラン化合物およびジフェニルジアルコキシシラン化合物と同種もしくは異種のアルコキシシラン化合物を使用することができ、それらのうち1種もしくは2種以上を任意に選択して使用できるが、中でも特に好ましいのは、初期反応で用いた原料モノマーと同種のトリアルコキシシラン化合物および/またはジフェニルジアルコキシシラン化合物である。   As the alkoxysilane compound to be added at this time, as described above, the trialkoxysilane compound and diphenyl dialkoxysilane compound used as the raw materials for the initial reaction can be the same or different types of alkoxysilane compounds. Of these, one or two or more can be arbitrarily selected and used, but particularly preferred are trialkoxysilane compounds and / or diphenyl dialkoxysilane compounds of the same type as the raw material monomers used in the initial reaction.

なお触媒は、前述の如く部分加水分解縮合反応液を製造する際の触媒と、該反応液に追加して塗装後の硬化反応を進めるための触媒に分けて使用されるが、全体としての触媒使用量は、前記アルコキシシラン化合物の全使用量100質量部に対し0.1〜10質量部の範囲、より好ましくは1〜5質量部の範囲とするのがよく、そのうち最初の部分加水分解縮合反応時に用いる触媒の量は、全触媒使用量を100質量部としたとき0.1〜0.5質量部、より好ましくは0.1〜0.3質量部とし、残部を部分加水分解縮合反応後に追加するのがよい。その理由は、最初の部分加水分解縮合反応時に多量の触媒を添加すると、加水分解縮合反応が進み過ぎて反応液の粘性が上がり過ぎ、塗装が困難になったりゲル化したりする恐れがあるからである。   As described above, the catalyst is used separately for the catalyst for producing the partial hydrolysis-condensation reaction liquid and the catalyst for proceeding with the curing reaction after coating in addition to the reaction liquid. The amount used is preferably in the range of 0.1 to 10 parts by weight, more preferably in the range of 1 to 5 parts by weight, with respect to 100 parts by weight of the total amount of the alkoxysilane compound, of which the first partial hydrolysis condensation The amount of catalyst used during the reaction is 0.1 to 0.5 parts by mass, more preferably 0.1 to 0.3 parts by mass when the total catalyst usage is 100 parts by mass, and the remainder is a partial hydrolysis condensation reaction. It is better to add it later. The reason is that if a large amount of catalyst is added during the first partial hydrolysis condensation reaction, the hydrolysis condensation reaction proceeds too much, and the viscosity of the reaction solution increases too much, which may make coating difficult or gel. is there.

かくして、部分加水分解縮合反応液に所定量のアルコキシシラン化合物と触媒を追加し、均一に混合して得られるシロキサン系表面被覆剤は、上記の様に基材に塗布した後、雰囲気中の水分を吸収して加水分解縮合反応により硬化する際に、適量のモノマー成分が混入されていることで、従来材では硬化時に見られるクラックの発生が防止され、欠陥のない表面保護被覆を得ることが可能になる。   Thus, a siloxane-based surface coating agent obtained by adding a predetermined amount of an alkoxysilane compound and a catalyst to the partial hydrolysis-condensation reaction solution and mixing them uniformly is applied to the base material as described above, and then the moisture in the atmosphere. When curing by hydrolytic condensation reaction by absorbing water, the occurrence of cracks seen during curing can be prevented with conventional materials, and a surface protective coating without defects can be obtained. It becomes possible.

上記の様に、部分加水分解縮合反応後に適量のモノマー成分を追加することで硬化初期のクラックの発生が防止される理由は未だ十分に解明されていないが、次の様なことが考えられる。即ち従来材では、部分加水分解縮合反応を終えて全体の分子量が高まった状態で基材に塗布され、その直後から硬化反応が進行するため、硬化反応による分子量の増大が急激で内部応力が急増しクラックの発生を誘発し易いのに対し、部分加水分解縮合反応の後に適量のモノマー成分を追加混合しておくと、硬化反応時における分子量の急激な上昇が緩和され、それに伴って内部応力の急激な増大も抑えられ、ひいてはクラックの発生が抑制されるのではないかと考えている。   As described above, the reason for preventing the occurrence of cracks at the initial stage of curing by adding an appropriate amount of the monomer component after the partial hydrolysis-condensation reaction has not yet been fully elucidated, but the following may be considered. In other words, the conventional material is applied to the substrate after the partial hydrolysis-condensation reaction has been completed and the overall molecular weight has been increased, and the curing reaction proceeds immediately thereafter. However, if a suitable amount of monomer components are added after the partial hydrolysis condensation reaction, the rapid increase in molecular weight during the curing reaction is mitigated, and the internal stress is reduced accordingly. It is thought that rapid increase is also suppressed, and as a result, generation of cracks is suppressed.

いずれにしても、部分加水分解縮合反応液に適量の原料モノマー成分を追加混合してから基材に塗布することで、硬化初期に見られるクラックの発生が可及的に防止され、健全な保護被覆を得ることができる。   In any case, by adding an appropriate amount of raw material monomer components to the partial hydrolysis-condensation reaction solution and then applying it to the substrate, the occurrence of cracks seen at the early stage of curing is prevented as much as possible, and sound protection is achieved. A coating can be obtained.

従ってこうした本発明の特徴を活かせば、例えば橋梁用鉄骨材や建築用鉄骨材などの金属材の防錆・防食・防汚などを主目的とする耐食・耐候性塗料などとして有効に活用できるほか、シロキサン系樹脂被覆本来の優れた化学的特性(耐薬品性、耐候性、耐光性、防汚性など)や物理的特性(耐傷付き性、封孔性、耐摩耗性、断熱性など)、電気的特性(絶縁性など)、光学的特性(透明性など)を活かして、例えば有機LEDや液晶表示装置、各種タッチパネル、自動車のヘッドランプカバー等のシーリング材や表面保護被覆、封孔材、太陽電池や光学機器のシーリング材や表面被覆などの素材として幅広く有効に活用できる。   Therefore, if the features of the present invention are utilized, it can be effectively used as a corrosion- and weather-resistant coating mainly for rust prevention, corrosion prevention, antifouling, etc. of metal materials such as steel structures for bridges and steel structures for construction. , The original excellent chemical properties (chemical resistance, weather resistance, light resistance, antifouling properties, etc.) and physical properties (scratch resistance, sealing properties, abrasion resistance, heat insulation, etc.), Taking advantage of electrical properties (insulating properties, etc.) and optical properties (transparency, etc.), sealing materials such as organic LEDs, liquid crystal display devices, various touch panels, automotive headlamp covers, surface protective coatings, sealing materials, It can be used widely and effectively as a sealing material and surface coating for solar cells and optical equipment.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.

合成例1(部分加水分解縮合反応物の合成)
撹拌機、滴下ロート、温度計、コンデンサー、加熱・冷却ジャケットを備えた反応容器に、メチルトリメトキシシラン4528.9gとジフェニルジメトキシシラン244.8gを仕込み、これに触媒としてテトラ−n−ブトキシチタン5.81gを加えた後、撹拌しながら蒸留水599.4gを3時間かけてゆっくり滴下する。この滴下工程では、加水分解反応の若干の進行によって発熱するので、ジャケットに冷水を通すことにより内温を約20℃に維持した。
Synthesis Example 1 (Synthesis of partially hydrolyzed condensation reaction product)
Into a reaction vessel equipped with a stirrer, dropping funnel, thermometer, condenser, heating / cooling jacket, 4538.9 g of methyltrimethoxysilane and 244.8 g of diphenyldimethoxysilane were charged, and tetra-n-butoxytitanium 5 as a catalyst. After adding .81 g, 599.4 g of distilled water is slowly added dropwise over 3 hours while stirring. In this dropping step, heat is generated due to the slight progress of the hydrolysis reaction, so the internal temperature was maintained at about 20 ° C. by passing cold water through the jacket.

滴下終了後、ジャケットを加熱ジャケットに切り替えて80℃まで昇温すると、加水分解縮合反応が徐々に進行し、分解生成物としてメタノールが留出してくるので、同温度に保って撹拌を続けることにより、留出するメタノールを逐次反応系から抜き出す。80℃で5時間撹拌を続けると、メタノールの留出は殆ど見られなくなるので、その後、反応容器内の温度を90℃に高めてから更に1時間撹拌して部分加水分解縮合反応を完了させた後、室温まで放冷した。得られた反応液の収量は3154gであり、東京計器社製のB型粘度計によって測定した該反応液の粘度は20℃で35mPa・Sであった。この反応液を、部分加水分解縮合物Aとする。   When the jacket is switched to a heating jacket and the temperature is raised to 80 ° C. after the completion of the dropwise addition, the hydrolysis and condensation reaction proceeds gradually, and methanol is distilled off as a decomposition product. The methanol to be distilled off is withdrawn from the sequential reaction system. When stirring was continued at 80 ° C. for 5 hours, almost no distillation of methanol was observed. Thereafter, the temperature in the reaction vessel was raised to 90 ° C., and stirring was further continued for 1 hour to complete the partial hydrolysis condensation reaction. Then, it was left to cool to room temperature. The yield of the obtained reaction liquid was 3154 g, and the viscosity of the reaction liquid measured with a B-type viscometer manufactured by Tokyo Keiki Co., Ltd. was 35 mPa · S at 20 ° C. This reaction solution is referred to as a partially hydrolyzed condensate A.

合成例2(部分加水分解縮合反応物の合成)
撹拌機、滴下ロート、温度計、コンデンサー、加熱・冷却ジャケットを備えた反応容器に、メチルトリエトキシシラン178.3gとジフェニルジメトキシシラン7.4gを仕込み、これに触媒としてテトラ−n−ブトキシチタン0.18gを加えた後、撹拌しながら蒸留水18.0gを3時間かけてゆっくり滴下する。この滴下工程では、加水分解反応の若干の進行によって発熱するので、ジャケットに冷水を通すことにより内温を約20℃に維持する。
Synthesis Example 2 (Synthesis of partially hydrolyzed condensation reaction product)
Into a reaction vessel equipped with a stirrer, dropping funnel, thermometer, condenser, heating / cooling jacket, 178.3 g of methyltriethoxysilane and 7.4 g of diphenyldimethoxysilane were charged, and tetra-n-butoxytitanium 0 was used as a catalyst. After adding .18 g, 18.0 g of distilled water is slowly added dropwise over 3 hours while stirring. In this dropping step, heat is generated by the slight progress of the hydrolysis reaction, so the internal temperature is maintained at about 20 ° C. by passing cold water through the jacket.

滴下終了後、ジャケットを加熱ジャケットに切り替えて100℃まで昇温すると、加水分解縮合反応が徐々に進行し、分解生成物としてエタノールが留出してくるので、同温度に保って撹拌を続けることにより、留出するエタノールを逐次反応系から抜き出す。100℃で5時間撹拌を続けると、エタノールの留出は見られなくなるので、その後、反応容器内の温度を110℃に高めてから更に1時間撹拌して部分加水分解縮合反応を完了させた後、室温まで放冷する。得られた反応液の収量は131.9gであり、東京計器社製のB型粘度計によって測定した該反応液の粘度は20℃で20mPa・Sであった。この反応液を、部分加水分解縮合物Bとする。   When the jacket is switched to a heating jacket and the temperature is raised to 100 ° C. after the completion of the dropwise addition, the hydrolysis and condensation reaction proceeds gradually, and ethanol is distilled off as a decomposition product. The ethanol to be distilled off is sequentially extracted from the reaction system. If the stirring is continued at 100 ° C for 5 hours, no distillation of ethanol can be seen. After that, after raising the temperature in the reaction vessel to 110 ° C and further stirring for 1 hour, the partial hydrolysis-condensation reaction is completed. Allow to cool to room temperature. The yield of the obtained reaction liquid was 131.9 g, and the viscosity of the reaction liquid measured by a B-type viscometer manufactured by Tokyo Keiki Co., Ltd. was 20 mPa · S at 20 ° C. This reaction solution is referred to as a partially hydrolyzed condensate B.

実施例1
上記合成例1で得た部分加水分解縮合物Aの100gに対し、触媒としてテトラ−n−ブトキシチタン2gを追加し、更に表1に示すアルコキシシランを1〜5g追加して均一に混合することにより、シロキサン系表面被覆剤を製造した。
Example 1
To 100 g of the partially hydrolyzed condensate A obtained in Synthesis Example 1, 2 g of tetra-n-butoxytitanium is added as a catalyst, and 1 to 5 g of alkoxysilane shown in Table 1 is further added and mixed uniformly. Thus, a siloxane-based surface coating agent was produced.

得られた各表面被覆剤を、アルカリ脱脂(5%のNaOH水溶液を使用し、20℃で脱脂処理)した後、蒸留水で洗浄したブリキ板(JIS G3303規格板、50mm×50mm、厚さ0.3mm)の表面に、乾燥重量で約40g/mまたは約80g/mとなる様に塗布した後、室温(25℃)で12時間〜7日間放置して硬化させたときの、硬化被覆の割れと剥離の発生状況を目視観察した。評価は、被覆に亀裂や剥離が生じたものを「×」、生じなかったものを「○」とした。 Each surface coating obtained was degreased with alkali (5% NaOH aqueous solution, degreased at 20 ° C.) and then washed with distilled water (JIS G3303 standard plate, 50 mm × 50 mm, thickness 0) .3 mm) surface, when applied to a dry weight of about 40 g / m 2 or about 80 g / m 2, and then allowed to cure at room temperature (25 ° C.) for 12 hours to 7 days. The appearance of cracking and peeling of the coating was visually observed. In the evaluation, “X” indicates that the coating was cracked or peeled, and “◯” indicates that the coating did not occur.

結果は表1に一括して示す通りであり、追加するシラン化合物としてアルキルトリアルコキシシランまたはジアルキルジフェニルシランを適量追加したものは、塗布量を適正に調整することで、12時間後から7日後のいずれの場合も亀裂や剥離が見られず、優れた表面被覆効果を示すことが分かる。   The results are as shown in Table 1 collectively, and those obtained by adding an appropriate amount of alkyltrialkoxysilane or dialkyldiphenylsilane as the silane compound to be added can be obtained after 12 hours to 7 days by appropriately adjusting the coating amount. In any case, it is understood that no cracks or peeling is observed, and an excellent surface covering effect is exhibited.

これらに対し、シランなどを全く追加しないブランク材では、塗布量の多少にかかわらず塗布後12時間で亀裂または剥離が見られ、また本発明で推奨するアルコキシシラン以外のシラン化合物を追加した場合も、本発明の実施例に比べて特に多量塗布の場合の亀裂や剥離が何れも顕著で、本発明の目的を達成できない。   On the other hand, in the blank material to which no silane or the like is added, cracking or peeling is observed in 12 hours after coating regardless of the amount of coating, and when a silane compound other than alkoxysilane recommended in the present invention is added. As compared with the examples of the present invention, cracks and peeling particularly in the case of large amount application are remarkable, and the object of the present invention cannot be achieved.

Figure 2008050490
Figure 2008050490

実施例2
上記合成例2で得た部分加水分解縮合物Bの100gに対し、触媒としてジ−n−ブチル錫ジアセテート0.5gを追加し、更に表2に示すアルコキシシランを1〜5g追加して均一に混合することにより、シロキサン系表面被覆剤を製造した。
Example 2
To 100 g of the partially hydrolyzed condensate B obtained in Synthesis Example 2, 0.5 g of di-n-butyltin diacetate was added as a catalyst, and 1 to 5 g of alkoxysilane shown in Table 2 was further added uniformly. The siloxane-based surface coating agent was produced by mixing with the above.

得られた各表面被覆剤を、上記実施例1と同様の表面清浄化処理を施したブリキ板に適量塗布し、室温(25℃)で12時間〜7日間放置して硬化させたときの、硬化被覆の割れと剥離の発生状況を実施例1と同様にして目視観察した。   When each surface coating agent obtained was applied to a tin plate subjected to the same surface cleaning treatment as in Example 1 above, and allowed to cure at room temperature (25 ° C.) for 12 hours to 7 days, The occurrence of cracking and peeling of the cured coating was visually observed in the same manner as in Example 1.

結果は表2に一括して示す通りであり、追加するシラン化合物としてアルキルトリアルコキシシランまたはジアルコキシジフェニルシランを適量追加したものは、塗布量を適正に調整することで、12時間後から7日後のいずれの場合も亀裂や剥離が見られず、優れた表面被覆効果を示している。これらに対し、シラン化合物などを全く追加しないブランク材では、塗布量の多少にかかわらず塗布後12時間で亀裂または剥離が見られ、また本発明で推奨するアルコキシシラン以外のシラン化合物を追加した場合も、本発明の実施例に比べて塗膜の亀裂や剥離が何れも顕著で、本発明の目的を達成できない。   The results are as shown in Table 2 collectively, and when an appropriate amount of alkyltrialkoxysilane or dialkoxydiphenylsilane is added as the silane compound to be added, by adjusting the coating amount appropriately, after 12 hours to 7 days later In any of the cases, cracks and peeling were not observed, indicating an excellent surface covering effect. On the other hand, in the blank material to which no silane compound or the like is added, cracking or peeling is observed 12 hours after coating regardless of the amount of coating, and when a silane compound other than alkoxysilane recommended in the present invention is added However, compared with the examples of the present invention, both cracks and peeling of the coating film are remarkable, and the object of the present invention cannot be achieved.

Figure 2008050490
Figure 2008050490

Claims (7)

一般式(I)
Si(OR……(I)
(式中、R,Rは、同一もしくは異なる炭素数1〜4のアルキル基を表す)で示されるトリアルコキシシラン化合物と、
一般式(II)
Si(OR……(II)
(式中、Rは、置換基を有していてもよいフェニル基、Rは、前記R,Rと同一もしくは異なる炭素数1〜4のアルキル基を表す)で示されるジフェニルジアルコキシシラン化合物を、前者100質量部に対し後者1〜50質量部の比率で使用し、これらを触媒の存在下に水を滴下しながら加熱して部分加水分解縮合反応させ、該反応の終了後、反応生成物100質量部に対し、前記トリアルコキシシラン化合物およびジフェニルジアルコキシシラン化合物と同種もしくは異種のアルコキシシラン化合物の1種もしくは2種以上を0.5〜10質量部と触媒を追加して混合することを特徴とするシロキサン系表面被覆剤の製法。
Formula (I)
R 1 Si (OR 2 ) 3 (I)
(Wherein R 1 and R 2 represent the same or different alkyl groups having 1 to 4 carbon atoms),
Formula (II)
R 3 2 Si (OR 4 ) 2 (II)
(Wherein R 3 represents a phenyl group which may have a substituent, and R 4 represents the same or different alkyl group having 1 to 4 carbon atoms as R 1 and R 2 ). The alkoxysilane compound is used in a ratio of 1 to 50 parts by mass with respect to 100 parts by mass of the former, and these are heated while dropping water in the presence of a catalyst to cause partial hydrolysis condensation reaction, and after completion of the reaction , 100 to 10 parts by mass of the reaction product, 0.5 to 10 parts by mass of one or more alkoxysilane compounds of the same type or different from the trialkoxysilane compound and diphenyl dialkoxysilane compound and a catalyst are added. A method for producing a siloxane-based surface coating agent, which comprises mixing.
水の滴下量を、部分加水分解縮合反応に用いるトリアルコキシシラン化合物とジフェニルジアルコキシシラン化合物の総和100質量部に対し1〜30質量部とする請求項1に記載のシロキサン系表面被覆剤の製法。   The manufacturing method of the siloxane type surface coating agent of Claim 1 which makes the dripping amount of water 1-30 mass parts with respect to 100 mass parts of sum total of the trialkoxysilane compound and diphenyl dialkoxysilane compound used for partial hydrolysis-condensation reaction. . 前記触媒として、有機錫化合物、有機チタン化合物、有機アルミニウム化合物から選ばれる少なくとも1種を使用する請求項1または2に記載の製法。   The manufacturing method of Claim 1 or 2 which uses at least 1 sort (s) chosen from an organotin compound, an organotitanium compound, and an organoaluminum compound as said catalyst. 前記触媒の全使用量を、前記アルコキシシラン化合物の全使用量100質量部に対し0.1〜10質量部とする請求項1〜3のいずれかに記載の製法。   The manufacturing method in any one of Claims 1-3 which makes the total usage-amount of the said catalyst 0.1-10 mass parts with respect to 100 mass parts of the total usage-amount of the said alkoxysilane compound. 前記触媒は、全量を100質量部としたとき、その0.1〜0.5質量部を部分加水分解縮合反応に使用し、残部を該反応の終了後に追加する請求項1〜4のいずれかに記載の製法。   5. The catalyst according to claim 1, wherein when the total amount is 100 parts by mass, 0.1 to 0.5 parts by mass of the catalyst is used for a partial hydrolysis-condensation reaction, and the remainder is added after completion of the reaction. The production method described in 1. 前記部分加水分解縮合反応時の反応液を加熱撹拌し、アルコールが流出しなくなる時をもって該反応の終点とする請求項1〜5のいずれかに記載の製法。   The process according to any one of claims 1 to 5, wherein the reaction liquid at the time of the partial hydrolysis-condensation reaction is heated and stirred, and the reaction is terminated when the alcohol does not flow out. 反応の終了後に追加するアルコキシシラン化合物として、最初に用いた前記トリアルコキシシラン化合物および/またはジフェニルジアルコキシシラン化合物を使用する請求項1〜6のいずれかに記載の製法。   The process according to any one of claims 1 to 6, wherein the trialkoxysilane compound and / or diphenyl dialkoxysilane compound used first is used as the alkoxysilane compound to be added after completion of the reaction.
JP2006229356A 2006-08-25 2006-08-25 Production method of siloxane surface coating agent Active JP5006600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006229356A JP5006600B2 (en) 2006-08-25 2006-08-25 Production method of siloxane surface coating agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006229356A JP5006600B2 (en) 2006-08-25 2006-08-25 Production method of siloxane surface coating agent

Publications (2)

Publication Number Publication Date
JP2008050490A true JP2008050490A (en) 2008-03-06
JP5006600B2 JP5006600B2 (en) 2012-08-22

Family

ID=39234833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006229356A Active JP5006600B2 (en) 2006-08-25 2006-08-25 Production method of siloxane surface coating agent

Country Status (1)

Country Link
JP (1) JP5006600B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009127022A (en) * 2007-11-28 2009-06-11 Nitto Denko Corp Photosemiconductor element-sealing resin containing polyaluminosiloxane and photosemiconductor device obtained by using the same
JP2009298998A (en) * 2008-06-17 2009-12-24 Ishihara Chem Co Ltd Humidity curing-type coating material for floor
CN101857674A (en) * 2010-05-27 2010-10-13 大连交通大学 Method for synthesizing high-temperature resistant organic silicon resin
JP2012036279A (en) * 2010-08-05 2012-02-23 Higa Miyoko Rustproof coating material, article, nut, and connector
JP2012107094A (en) * 2010-11-16 2012-06-07 Jnc Corp New substance and thermosetting composition
KR101317776B1 (en) 2011-12-14 2013-10-11 한국과학기술연구원 Phenylpolysiloxane resin of core-shell structure
WO2016104621A1 (en) * 2014-12-25 2016-06-30 日本山村硝子株式会社 Phenyl-modified hybrid prepolymer, phenyl-modified polydimethylsiloxane-based hybrid prepolymer, and phenyl-modified polydimethylsiloxane-based hybrid polymer, and production processes therefor
JP7468399B2 (en) 2020-03-17 2024-04-16 信越化学工業株式会社 Silicone coating composition and article

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06298897A (en) * 1993-04-15 1994-10-25 Toray Dow Corning Silicone Co Ltd Curable resin composition
JPH07278497A (en) * 1994-04-08 1995-10-24 Daihachi Chem Ind Co Ltd Coating composition for covering
JPH07278307A (en) * 1994-04-08 1995-10-24 Daihachi Chem Ind Co Ltd Production of alkoxy group-containing silicone resin
JPH1060377A (en) * 1996-08-22 1998-03-03 Toshiba Silicone Co Ltd Coating agent composition
JPH111662A (en) * 1997-06-11 1999-01-06 Toshiba Silicone Co Ltd Coating material composition
JP2000044806A (en) * 1998-05-22 2000-02-15 Dainippon Ink & Chem Inc Production of aqueous resin dispersion, aqueous thermosetting resin composition, distemper, and coating process
JP2000265114A (en) * 1999-03-17 2000-09-26 Jsr Corp Composition for coating
JP2000273395A (en) * 1999-03-24 2000-10-03 Matsushita Electric Works Ltd Inorganic coating agent and coated article
JP2002146284A (en) * 2000-11-07 2002-05-22 Dainippon Toryo Co Ltd Solventless coating material composition
JP2002363539A (en) * 2001-06-07 2002-12-18 Chuo Rika Kogyo Corp Pore sealing agent
JP2005255847A (en) * 2004-03-11 2005-09-22 Chuo Rika Kogyo Corp Inorganic coating composition
JP2006104293A (en) * 2004-10-04 2006-04-20 Dow Corning Toray Co Ltd Polyorganosiloxane and curable silicone composition containing the same, and its use

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06298897A (en) * 1993-04-15 1994-10-25 Toray Dow Corning Silicone Co Ltd Curable resin composition
JPH07278497A (en) * 1994-04-08 1995-10-24 Daihachi Chem Ind Co Ltd Coating composition for covering
JPH07278307A (en) * 1994-04-08 1995-10-24 Daihachi Chem Ind Co Ltd Production of alkoxy group-containing silicone resin
JPH1060377A (en) * 1996-08-22 1998-03-03 Toshiba Silicone Co Ltd Coating agent composition
JPH111662A (en) * 1997-06-11 1999-01-06 Toshiba Silicone Co Ltd Coating material composition
JP2000044806A (en) * 1998-05-22 2000-02-15 Dainippon Ink & Chem Inc Production of aqueous resin dispersion, aqueous thermosetting resin composition, distemper, and coating process
JP2000265114A (en) * 1999-03-17 2000-09-26 Jsr Corp Composition for coating
JP2000273395A (en) * 1999-03-24 2000-10-03 Matsushita Electric Works Ltd Inorganic coating agent and coated article
JP2002146284A (en) * 2000-11-07 2002-05-22 Dainippon Toryo Co Ltd Solventless coating material composition
JP2002363539A (en) * 2001-06-07 2002-12-18 Chuo Rika Kogyo Corp Pore sealing agent
JP2005255847A (en) * 2004-03-11 2005-09-22 Chuo Rika Kogyo Corp Inorganic coating composition
JP2006104293A (en) * 2004-10-04 2006-04-20 Dow Corning Toray Co Ltd Polyorganosiloxane and curable silicone composition containing the same, and its use

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009127022A (en) * 2007-11-28 2009-06-11 Nitto Denko Corp Photosemiconductor element-sealing resin containing polyaluminosiloxane and photosemiconductor device obtained by using the same
JP2009298998A (en) * 2008-06-17 2009-12-24 Ishihara Chem Co Ltd Humidity curing-type coating material for floor
CN101857674A (en) * 2010-05-27 2010-10-13 大连交通大学 Method for synthesizing high-temperature resistant organic silicon resin
JP2012036279A (en) * 2010-08-05 2012-02-23 Higa Miyoko Rustproof coating material, article, nut, and connector
JP2012107094A (en) * 2010-11-16 2012-06-07 Jnc Corp New substance and thermosetting composition
KR101317776B1 (en) 2011-12-14 2013-10-11 한국과학기술연구원 Phenylpolysiloxane resin of core-shell structure
WO2016104621A1 (en) * 2014-12-25 2016-06-30 日本山村硝子株式会社 Phenyl-modified hybrid prepolymer, phenyl-modified polydimethylsiloxane-based hybrid prepolymer, and phenyl-modified polydimethylsiloxane-based hybrid polymer, and production processes therefor
US10227454B2 (en) 2014-12-25 2019-03-12 Nihon Yamamura Glass Co., Ltd. Phenyl-modified hybrid prepolymer, phenyl-modified polydimethylsiloxane-based hybrid prepolymer, and phenyl-modified polydimethylsiloxane-based hybrid polymer, and production processes therefor
JP7468399B2 (en) 2020-03-17 2024-04-16 信越化学工業株式会社 Silicone coating composition and article

Also Published As

Publication number Publication date
JP5006600B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
JP5006600B2 (en) Production method of siloxane surface coating agent
JP4110402B2 (en) Silicone coating composition
JP5492000B2 (en) Transparent siloxane resin composition for optics
CN108463508B (en) Condensation-reactive polysiloxane composition and cured product
JP2013151688A (en) Ambient temperature curing coating composition
JPH0812761A (en) Silicone resin composition
KR20160045593A (en) Active energy ray-curable silicone coating composition and coated article
JP4883269B2 (en) Method for producing curable polymethylsiloxane resin
KR101790493B1 (en) Method of forming a cured coating film of siloxane resin composition
KR20210046021A (en) Composition containing organopolysiloxane compound, method for producing same, coating agent and coated article
TWI646155B (en) LED sealant composition
TW201245355A (en) Composition for coating film formation purposes
JP2020147750A (en) Two component room temperature condensation curable organopolysiloxane composition
JP2012116969A (en) Coating composition
TWI389979B (en) Room temperature hardened organopolysiloxane composition
JP7468399B2 (en) Silicone coating composition and article
JP3162301B2 (en) Silicone resin composition and coating method for preventing dirt
JPH10245505A (en) Coating film resistant to rain flow mark, coating composition, method for forming coating film and coated article
JPH07173435A (en) Room-temperature-curing nonsolvent silicone coating composition for protecting mounted circuit board, protecting method for mounted circuit board, and mounted circuit board
JPS6221022B2 (en)
JP2021143220A (en) Organopolysiloxane, coating composition, and coated article
JP2901377B2 (en) Inorganic cured product, silicone hard coat agent for plastic, and silicone hard coated article
JP2016050276A (en) Surface treatment agent for coated steel panel
JPH0699668B2 (en) Coating composition for coating
JP5241613B2 (en) Adhesive for acrylic resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5006600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250