JP2008047552A - Solid electrolytic capacitor and manufacturing method thereof - Google Patents

Solid electrolytic capacitor and manufacturing method thereof Download PDF

Info

Publication number
JP2008047552A
JP2008047552A JP2005130108A JP2005130108A JP2008047552A JP 2008047552 A JP2008047552 A JP 2008047552A JP 2005130108 A JP2005130108 A JP 2005130108A JP 2005130108 A JP2005130108 A JP 2005130108A JP 2008047552 A JP2008047552 A JP 2008047552A
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
solid electrolytic
lead portion
cathode
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005130108A
Other languages
Japanese (ja)
Inventor
Hiroshi Konuma
博 小沼
Masahiro Kuroyanagi
政広 黒柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2005130108A priority Critical patent/JP2008047552A/en
Priority to PCT/JP2006/308765 priority patent/WO2006118156A1/en
Priority to US11/411,056 priority patent/US20060256506A1/en
Priority to TW095115070A priority patent/TW200710898A/en
Publication of JP2008047552A publication Critical patent/JP2008047552A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02T10/7022

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a low-profile solid electrolytic capacitor at a high manufacturing yield in which solid electrolytic capacitor elements are stacked. <P>SOLUTION: In the stacked type solid electrolytic capacitor having a stack of the solid electrolytic capacitor elements on a lead frame, a cathode lead portion and an anode lead portion of the lead frame are encapsulated with a resin while leaving at least a part of the lower surface of the cathode lead portion and/or the lower surface of the anode lead portion, and the lower surfaces of the exposed lead portions are used as a cathode terminal and an anode terminal. A manufacturing method thereof is also provided. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、固体電解コンデンサ及びその製造方法に関する。さらに詳しく言えば、本発明は、部品高さの低い積層型固体電解コンデンサ及びその製造方法に関する。   The present invention relates to a solid electrolytic capacitor and a method for manufacturing the same. More specifically, the present invention relates to a multilayer solid electrolytic capacitor having a low component height and a method for manufacturing the same.

最近、電子機器の小型化・高周波化が進み、これに使用されるコンデンサも高周波で低インピーダンスが実現できる導電性高分子を固体電解質として用いた固体電解コンデンサが商品化されている。固体電解コンデンサでは、高導電率の導電性高分子を固体電解質として用いているため、従来の電解液を用いた湿式電解コンデンサや二酸化マンガンを用いた固体電解コンデンサに比べて、等価直列抵抗成分が低く、大容量でかつ小形の固体電解コンデンサを実現できる。このため、特性等が改善されるにつれ、次第に市場にも受け入れられるようになってきた。固体電解質として使用される導電性高分子も種々のものが開発され、固体電解コンデンサへの適用が急速に進められている。   Recently, electronic devices have been made smaller and higher in frequency, and a solid electrolytic capacitor using a conductive polymer capable of realizing a low impedance at a high frequency as a solid electrolyte has been commercialized. Since solid electrolytic capacitors use high-conductivity conductive polymers as solid electrolytes, they have an equivalent series resistance component compared to conventional wet electrolytic capacitors using electrolytic solutions and solid electrolytic capacitors using manganese dioxide. A small, large-capacity and small-sized solid electrolytic capacitor can be realized. For this reason, as characteristics etc. are improved, it has gradually become accepted by the market. Various conductive polymers used as solid electrolytes have been developed, and their application to solid electrolytic capacitors is rapidly progressing.

これらの固体電解コンデンサには、平板状、巻回型等があるが、平板状のものに関しては、一般に、弁作用を有する平板状の金属からなる電極体の表面に陽極酸化皮膜を設け、この陽極酸化皮膜上に少なくとも導電性高分子を含む固体電解質層を設け、さらにこの固体電解質層上に陰極導電体層を設けたコンデンサ素子を積層して用いている。
すなわち、従来の固体電解コンデンサ10においては、図1に示すように複数のコンデンサ素子11a及び11b(ここでは、便宜上、2素子を示す。)をリードフレーム(陰極リード部21及び陽極リード部22)上に積層し(図1(a))、その端部を残してパッケージング樹脂12にて全体を被覆し(同図(b))、陰極リード部21を折り曲げて陰極端子とし、陽極リード部22を折り曲げて陽極端子とする構造を採用している(同図(c))。
These solid electrolytic capacitors include a flat plate type, a wound type, and the like. In general, an anodic oxide film is provided on the surface of an electrode body made of a flat plate metal having a valve action. A capacitor element in which a solid electrolyte layer containing at least a conductive polymer is provided on an anodized film and a cathode conductor layer is further provided on the solid electrolyte layer is used.
That is, in the conventional solid electrolytic capacitor 10, as shown in FIG. 1, a plurality of capacitor elements 11a and 11b (here, two elements are shown for convenience) are connected to a lead frame (cathode lead portion 21 and anode lead portion 22). Laminated on top (FIG. 1 (a)), the entire end is covered with packaging resin 12 (FIG. 1 (b)), the cathode lead portion 21 is bent to form a cathode terminal, and the anode lead portion A structure is adopted in which 22 is bent to form an anode terminal (FIG. 2C).

図1のように陰極リード部21と陽極リード部22をパッケージング樹脂12で上下から被覆する方法は、一般に電子部品のパッケージングで慣用されているが、固体電解コンデンサの下面に基板実装用の陰極及び陽極端子を形成するためには、各リード部21及び22を、パッケージング樹脂12を抱え込むようにして折り曲げる必要がある。リード部の折り曲げ加工時の負荷や加工精度を考慮すると、樹脂抱え込み部分にはある程度の厚み(t’)が必要である。
このように、従来の固体電解コンデンサではコンデンサの部品高さ(t+t’)を低減するのには限界がある。また、折り曲げたリード部21及び22と樹脂部分12との間には側面、下面ともにある程度の空隙sが存在するため、部品寸法、特に部品高さにバラツキが生じやすいという問題があった。
As shown in FIG. 1, the method of covering the cathode lead portion 21 and the anode lead portion 22 from above and below with the packaging resin 12 is generally used for packaging electronic components. In order to form the cathode and the anode terminal, it is necessary to bend the lead portions 21 and 22 so as to hold the packaging resin 12. Considering the load at the time of bending the lead portion and the processing accuracy, the resin holding portion needs a certain thickness (t ′).
Thus, the conventional solid electrolytic capacitor has a limit in reducing the component height (t + t ′) of the capacitor. In addition, since there is a certain gap s between the bent lead portions 21 and 22 and the resin portion 12 on both the side surface and the lower surface, there is a problem that the component dimensions, particularly the component height, tend to vary.

従って、本発明の課題は、上記の問題点を解決し、部品高さが低く(低背)そのバラツキが小さい積層型固体電解コンデンサ素子及びその製造方法を提供することにある。   Accordingly, an object of the present invention is to solve the above-described problems and provide a multilayer solid electrolytic capacitor element having a low component height (low profile) and a small variation and a manufacturing method thereof.

本発明は、コンデンサ素子積層体を有する固体電解コンデンサにおいて、リード部の屈曲を伴わない構造とすることで、低背な固定電解コンデンサを提供することに成功したものである。   The present invention succeeds in providing a low-profile fixed electrolytic capacitor in a solid electrolytic capacitor having a capacitor element laminate by adopting a structure without bending of a lead portion.

すなわち、本発明は以下に示す固体電解コンデンサ、その製造方法及び前記固体電解コンデンサを用いた電気機器に関する。
1.固体電解コンデンサ素子の積層体をリード部上に有する積層型固体電解コンデンサにおいて、陰極リード部の下面及び/または陽極リード部の下面のそれぞれ少なくとも一部を残して樹脂封止し、露出した各リード部の下面をそれぞれ陰極端子及び陽極端子としたことを特徴とする積層型固体電解コンデンサ。
2.電極リード部が概ね平板状である前記1に記載の積層型固体電解コンデンサ。
3.各コンデンサ素子の陰極部分が他のコンデンサ素子の陰極部分上に積層され、陽極部分が他のコンデンサ素子の陽極部分上に積層されている前記1または2に記載の積層型固体電解コンデンサ。
4.コンデンサ素子積層体の陰極積層部の最下面が、前記露出した陰極リード部の上面に固定されている前記1〜3のいずれかに記載の積層型固体電解コンデンサ。
5.コンデンサ素子積層体の陽極積層部の最下面が、前記露出した陽極リード部の上面に固定されている前記1〜4のいずれかに記載の積層型固体電解コンデンサ。
6.陰極リード部及び/または陽極リード部の下面が段差を有し、リード部の上面側及び前記段差面によって規定されるリード部の下面側の空間が樹脂封止される前記1〜5のいずれかに記載の積層型固体電解コンデンサ。
7.各リード部の露出部分の配置及び形状が、電解コンデンサを実装する基板上の各電極接触面の配置及び形状に従って設計される前記1〜6のいずれかに記載の積層型固体電解コンデンサ。
8.固体電解コンデンサ素子が、化成処理して得られた誘電体皮膜を有する弁作用金属基板上に固体電解質を有するコンデンサ素子である前記1〜7のいずれかに記載の積層型固体電解コンデンサ。
9.固体電解コンデンサ素子をリードフレーム上に積層するか、固体電解コンデンサ素子の積層体をリードフレーム上に固定した後、前記リードフレームの陰極リード部の下面及び陽極リード部の下面のそれぞれ少なくとも一部を露出させて樹脂封止し、各リード部をリードフレームから切断する工程を含む、前記各リード部の下面をそれぞれ陰極端子及び陽極端子とすることを特徴とする積層型固体電解コンデンサの製造方法。
10.前記1〜8のいずれかに記載の積層型固体電解コンデンサを備えた電気機器。
That is, the present invention relates to a solid electrolytic capacitor, a manufacturing method thereof, and an electric device using the solid electrolytic capacitor described below.
1. In a multilayer solid electrolytic capacitor having a laminate of solid electrolytic capacitor elements on a lead portion, each exposed lead is sealed with resin, leaving at least part of the lower surface of the cathode lead portion and / or the lower surface of the anode lead portion. A laminated solid electrolytic capacitor characterized in that the lower surface of each part is a cathode terminal and an anode terminal, respectively.
2. 2. The multilayer solid electrolytic capacitor as described in 1 above, wherein the electrode lead portion is substantially flat.
3. 3. The multilayer solid electrolytic capacitor as described in 1 or 2 above, wherein the cathode part of each capacitor element is laminated on the cathode part of another capacitor element and the anode part is laminated on the anode part of the other capacitor element.
4). 4. The multilayer solid electrolytic capacitor according to any one of 1 to 3, wherein a lowermost surface of a cathode laminate portion of the capacitor element laminate is fixed to an upper surface of the exposed cathode lead portion.
5. 5. The multilayer solid electrolytic capacitor according to any one of 1 to 4, wherein a lowermost surface of an anode laminate portion of the capacitor element laminate is fixed to an upper surface of the exposed anode lead portion.
6). Any one of 1 to 5 above, wherein a lower surface of the cathode lead part and / or the anode lead part has a step, and a space on the upper surface side of the lead part and the lower surface side of the lead part defined by the step surface is resin-sealed. 2. A multilayer solid electrolytic capacitor according to 1.
7). The multilayer solid electrolytic capacitor according to any one of 1 to 6, wherein the arrangement and shape of the exposed portion of each lead portion are designed according to the arrangement and shape of each electrode contact surface on the substrate on which the electrolytic capacitor is mounted.
8). The multilayer solid electrolytic capacitor according to any one of 1 to 7, wherein the solid electrolytic capacitor element is a capacitor element having a solid electrolyte on a valve metal substrate having a dielectric film obtained by chemical conversion treatment.
9. After laminating the solid electrolytic capacitor element on the lead frame or fixing the solid electrolytic capacitor element laminate on the lead frame, at least part of the lower surface of the cathode lead portion and the lower surface of the anode lead portion of the lead frame A method for producing a multilayer solid electrolytic capacitor, comprising: exposing and resin-sealing, and cutting each lead portion from a lead frame, wherein the lower surface of each lead portion is a cathode terminal and an anode terminal, respectively.
10. An electric device comprising the multilayer solid electrolytic capacitor according to any one of 1 to 8 above.

本発明の好ましい態様による固体電解コンデンサでは、電極リード部は製品コンデンサにおいて概ね平板状であり、従来の固体電解コンデンサ10におけるような樹脂を抱え込む屈曲部を有しない。この結果、図1のt’に相当する厚みが実質的に不要となるので低背な固定電解コンデンサが製造できる。   In the solid electrolytic capacitor according to a preferred embodiment of the present invention, the electrode lead portion is generally flat in the product capacitor, and does not have a bent portion for holding the resin as in the conventional solid electrolytic capacitor 10. As a result, a thickness corresponding to t 'in FIG. 1 is substantially unnecessary, and a low-profile fixed electrolytic capacitor can be manufactured.

以下、添付の図面を参照しつつ本発明を説明する。
(積層型固体電解コンデンサ)
図2〜4に例示するように、本発明による固体電解コンデンサ20は、固体電解コンデンサ素子の積層体(11a及び11b)をリード部上に有する積層型固体電解コンデンサにおいて、陰極リード部(23、25、27)の下面及び陽極リード部(24、26、28)の下面のそれぞれ少なくとも一部を残して樹脂封止し、露出した各リード部の下面をそれぞれ陰極端子及び陽極端子としたことを特徴とする積層型固体電解コンデンサである。なお、いずれか一方の端子を図示するように下面電極とし、他方は側面電極等としてもよい。
Hereinafter, the present invention will be described with reference to the accompanying drawings.
(Multilayer solid electrolytic capacitor)
As illustrated in FIGS. 2 to 4, a solid electrolytic capacitor 20 according to the present invention includes a cathode lead portion (23, 25, 27) and at least a part of the lower surface of the anode lead part (24, 26, 28), respectively, were sealed with resin, and the exposed lower surface of each lead part was used as a cathode terminal and an anode terminal, respectively. This is a feature of a laminated solid electrolytic capacitor. One of the terminals may be a bottom electrode as shown, and the other may be a side electrode or the like.

電極部分は、図4に示すように陰極リード部27の下面と陽極リード部28の下面を全て露出させ、陰極リード部27の下面を陰極端子とし、陽極リード部28の下面を陽極端子としてもよいが、好ましくは、露出は部分的なものとする。例えば、図2に示すように陰極リード部23と陽極リード部24のそれぞれ対向する内側の部分を薄くし、陰極リード部23と陽極リード部24の外側の部分を露出させて陰極リード部の露出した部分を陰極端子とし、陽極リード部の露出した部分を陽極端子としてもよいし、図3に示すように陰極リード部25と陽極リード部26のそれぞれ対向する内側の部分と対向していない外側の部分を薄くし、陰極リード部25と陽極リード部26のそれぞれの中央部近傍を露出させて陰極リード部の露出した部分を陰極端子とし、陽極リード部の露出した部分を陽極端子としてもよい。リードフレーム下面側の樹脂封止は、陰極リード部の段差面31と陽極リード部の段差面32によって規定される空間33について行なう。この場合、陰極端子または陽極端子と固体電解コンデンサの接触面積が図4の態様よりも大きくなるため、両者間の接触不良等の問題が生じない。   As shown in FIG. 4, the lower surface of the cathode lead portion 27 and the lower surface of the anode lead portion 28 are all exposed, and the lower surface of the cathode lead portion 27 serves as a cathode terminal, and the lower surface of the anode lead portion 28 serves as an anode terminal. Preferably, but preferably the exposure is partial. For example, as shown in FIG. 2, the inner portions of the cathode lead portion 23 and the anode lead portion 24 facing each other are thinned, and the outer portions of the cathode lead portion 23 and the anode lead portion 24 are exposed to expose the cathode lead portion. The exposed portion may be used as a cathode terminal, and the exposed portion of the anode lead portion may be used as an anode terminal. Alternatively, as shown in FIG. 3, the outer portions that do not face the inner portions of the cathode lead portion 25 and the anode lead portion 26 that face each other. The exposed portion of the cathode lead portion may be used as a cathode terminal, and the exposed portion of the anode lead portion may be used as an anode terminal. . Resin sealing on the lower surface side of the lead frame is performed in a space 33 defined by the step surface 31 of the cathode lead portion and the step surface 32 of the anode lead portion. In this case, since the contact area between the cathode terminal or the anode terminal and the solid electrolytic capacitor is larger than that in the embodiment of FIG. 4, problems such as contact failure between them do not occur.

なお、上に述べた各露出部分の位置及びその組み合わせは例示であって上記の態様に限らない。例えば、陰極リード部と陽極リード部の一方のみを全部露出にし、他方を一部露出にしてもよいし、陰極リード部と陽極リード部の一方のみを図2の態様の電極構造とし、他方を図3の態様の電極構造としてもよい。露出部分と封止部分の割合や具体的配置は、リード部の厚みや実装上必要とされる電極の平面配置仕様(例えば、基板上の端子間の距離や配置、大ささ、形状等)に応じて設計できる。図2または図3のように段差面を設ける場合、その厚さは使用する封止樹脂に含まれるシリカ等の固形物(充填材粒子)の大きさ(粒径)によって異なるが、固形物の大きさの2倍以上あることが好ましい。
固形物を含まない封止樹脂を用いる場合、封止樹脂がコンデンサ素子と外界を電気的、物理的に区分できる厚さがあればよい。
好ましくは、コンデンサ素子積層体の陰極積層部の最下面と接触する部分を含む領域の直下における陰極リード部の下面を露出させるか、コンデンサ素子積層体の陽極積層部の最下面と接触する部分を含む領域の直下における陽極リード部の下面を露出させるように設計する(図2、図3参照)。
The positions of the exposed portions and the combinations thereof described above are examples and are not limited to the above-described modes. For example, only one of the cathode lead portion and the anode lead portion may be exposed and the other may be partially exposed, or only one of the cathode lead portion and the anode lead portion may have the electrode structure shown in FIG. It is good also as an electrode structure of the aspect of FIG. The ratio between the exposed part and the sealed part and the specific arrangement depends on the thickness of the lead part and the planar arrangement specifications of the electrodes required for mounting (for example, the distance, arrangement, size, shape, etc. between terminals on the board). Can be designed accordingly. When the step surface is provided as shown in FIG. 2 or FIG. 3, the thickness varies depending on the size (particle size) of the solid material (filler particle) such as silica contained in the sealing resin to be used. It is preferable that the size is at least twice the size.
In the case of using a sealing resin that does not contain a solid material, it is sufficient that the sealing resin has a thickness that can electrically and physically separate the capacitor element and the outside world.
Preferably, the lower surface of the cathode lead portion immediately below the region including the portion that contacts the lowermost surface of the cathode laminated portion of the capacitor element laminate is exposed, or the portion that contacts the lowermost surface of the anode laminated portion of the capacitor element laminated body It is designed so as to expose the lower surface of the anode lead portion directly under the included region (see FIGS. 2 and 3).

固体電解コンデンサ素子11は、積層可能であれば特に限定されず、板状、棒状、線状、好ましくは概ね平板状の素子、例えば、箔ないし薄板等の素子である。典型的には、図6に示すように、金属基体13上に誘電体皮膜14を有し、さらにその上に固体電解質15を有するコンデンサ素子である。金属基体13は、一般的には弁作用を有する金属である。本発明に使用できる弁作用を有する金属は、アルミニウム、タンタル、ニオブ、チタン、ジルコニウム、マグネシウム、珪素などの金属単体、またはこれらの合金が挙げられる。これらは各金属の多孔体でもよい。多孔質の形態については、圧延箔のエッチング物、微粉焼結体など、多孔質成形体のいずれの形態でもよい。金属基体13の厚さは使用目的によって異なるが、例えば、約40〜300μmの範囲が使用される。薄型の固体電解コンデンサとするためには、金属(例えば、アルミニウム)箔では80〜250μmのものを使用することが好ましい。金属箔の大きさ及び形状も用途により異なるが、平板状素子単位として幅約1〜50mm、長さ約1〜50mmの矩形のものが好ましく、より好ましくは幅約2〜15mm、長さ約2〜25mmである。誘電体皮膜14は、上記金属基体を化成処理して得ることができる。   The solid electrolytic capacitor element 11 is not particularly limited as long as it can be laminated, and is a plate-like, rod-like, or linear, preferably substantially flat-like element, for example, an element such as a foil or a thin plate. Typically, as shown in FIG. 6, the capacitor element has a dielectric film 14 on a metal substrate 13 and further has a solid electrolyte 15 thereon. The metal substrate 13 is generally a metal having a valve action. Examples of the metal having a valve action that can be used in the present invention include simple metals such as aluminum, tantalum, niobium, titanium, zirconium, magnesium, and silicon, or alloys thereof. These may be porous bodies of each metal. About a porous form, any form of porous molded objects, such as an etching thing of a rolled foil, a fine powder sintered compact, may be sufficient. Although the thickness of the metal substrate 13 varies depending on the purpose of use, for example, a range of about 40 to 300 μm is used. In order to obtain a thin solid electrolytic capacitor, it is preferable to use a metal (for example, aluminum) foil having a thickness of 80 to 250 μm. Although the size and shape of the metal foil vary depending on the application, a rectangular element having a width of about 1 to 50 mm and a length of about 1 to 50 mm is preferable as a flat element unit, more preferably about 2 to 15 mm in width and about 2 in length ~ 25 mm. The dielectric film 14 can be obtained by chemical conversion of the metal substrate.

固体電解質は特に限定されないが、電解重合または酸化重合により製造される重合体が好ましい。
また、必要に応じて固体電解質15上に導電体層(図示していない。)を設けてもよい。導電体層は、例えば、導電ペースト、メッキや蒸着、導電樹脂フィルムの貼付等により形成される。陰極部分である固体電解質15と陽極部分である金属基体13との絶縁をより確実にするためにマスキング16を設けてもよい。
The solid electrolyte is not particularly limited, but a polymer produced by electrolytic polymerization or oxidative polymerization is preferable.
Moreover, you may provide a conductor layer (not shown) on the solid electrolyte 15 as needed. The conductor layer is formed by, for example, a conductive paste, plating, vapor deposition, or a conductive resin film. Masking 16 may be provided in order to more reliably insulate the solid electrolyte 15 serving as the cathode portion and the metal substrate 13 serving as the anode portion.

固体電解コンデンサ素子11は、通常は陰極部分が他のコンデンサ素子の陰極部分上に位置するように積層され、陽極部分が他のコンデンサ素子の陽極部分上に位置するように積層される。陰極部分を他のコンデンサ素子の陰極部分に積層するにはそれぞれを電気的に接続する任意の方法が用いられるが、例えば、導電性ペーストを用いた積層法が挙げられる。また、陰極部分を他のコンデンサ素子の陰極部分に積層するにはそれぞれを電気的に接続する任意の方法が用いられるが、例えば、導電性ペーストを用いた積層法、ハンダ付け、溶接等が挙げられる。積層する素子の数は、必要とされる容量や要求される部品高さ等によって決定され特に限定されないが、通常は1〜20枚、好ましくは2〜12枚の範囲である(但し、これらは例示であり、本発明はこれらの範囲に限定されない。)。
パッケージング樹脂は、当分野で慣用されている任意の樹脂を用いることができるが、好ましい例としては、エポキシ樹脂、フッ素樹脂、ケイ素樹脂、ウレタン樹脂等が挙げられる。
The solid electrolytic capacitor element 11 is usually laminated so that the cathode portion is located on the cathode portion of the other capacitor element, and the anode portion is laminated on the anode portion of the other capacitor element. In order to laminate the cathode portion on the cathode portion of another capacitor element, an arbitrary method of electrically connecting each of them is used. For example, a lamination method using a conductive paste is exemplified. Further, in order to laminate the cathode part on the cathode part of another capacitor element, an arbitrary method of electrically connecting each of them is used. For example, a laminating method using a conductive paste, soldering, welding and the like can be mentioned. It is done. The number of elements to be stacked is determined by the required capacity, the required component height, etc., and is not particularly limited, but is usually in the range of 1 to 20, preferably 2 to 12 (however, these are It is illustrative and the invention is not limited to these ranges).
As the packaging resin, any resin conventionally used in this field can be used, and preferred examples include epoxy resin, fluororesin, silicon resin, urethane resin and the like.

(積層型固体電解コンデンサの製造方法)
本発明の積層型固体電解コンデンサは、リードフレーム(陰極部及び陽極部下面に段差を設けてもよい)上に固体電解コンデンサ素子を積層するか、固体電解コンデンサ素子の積層体をリードフレーム上に固定した後、前記リードフレームの陰極リード部の下面及び陽極リード部の下面のそれぞれ少なくとも一部を露出させて樹脂封止する工程を含む方法によって製造できる。
(Manufacturing method of multilayer solid electrolytic capacitor)
In the multilayer solid electrolytic capacitor of the present invention, a solid electrolytic capacitor element is laminated on a lead frame (a step may be provided on the lower surface of the cathode part and the anode part), or a laminated body of solid electrolytic capacitor elements is placed on the lead frame. After fixing, it can be manufactured by a method including a step of exposing and encapsulating at least a part of the lower surface of the cathode lead portion and the lower surface of the anode lead portion of the lead frame.

通常は、図5に示すように、複数の陰極リード部23と複数の陽極リード部24が空隙を隔てて対向して設けられたリードフレーム上に、それぞれ陰極部分と陽極部分が位置するように固体電解コンデンサ素子を積層するか、予め形成した固体電解コンデンサ素子の積層体を固定する。固体電解コンデンサ素子の積層方法は上記の通りであり、固体電解コンデンサ素子積層体のリードフレームへの固定もこれに準じて行なうことができる。
次いで、コンデンサ素子積層構造体(コンデンサ素子積層体を有するリードフレーム)を、露出させるべき陰極リード部及び陽極リード部を残して樹脂封止し、樹脂の硬化後、形成されたコンデンサをその側端部でリードフレームから切り離す。樹脂封止は当分野で慣用されている任意の方法、例えば、注型成形、圧縮成形、射出成形などでよいが、注型成形の中でも複数のポットを用いるマルチプランジャーを有したトランスファー成形が好ましい。
Normally, as shown in FIG. 5, the cathode portion and the anode portion are positioned on a lead frame in which a plurality of cathode lead portions 23 and a plurality of anode lead portions 24 are provided facing each other with a gap therebetween. A solid electrolytic capacitor element is laminated, or a previously formed laminated body of solid electrolytic capacitor elements is fixed. The method for laminating the solid electrolytic capacitor element is as described above, and the solid electrolytic capacitor element laminated body can be fixed to the lead frame in accordance with this.
Next, the capacitor element laminate structure (lead frame having the capacitor element laminate) is resin-sealed leaving the cathode lead portion and the anode lead portion to be exposed, and after the resin is cured, the formed capacitor is connected to its side end. Disconnect from the lead frame at Resin sealing may be any method commonly used in the art, such as cast molding, compression molding, injection molding, etc., but transfer molding with multiple plungers using a plurality of pots is also used in cast molding. preferable.

11mm×3.3mmのアルミニウム化成箔(日本蓄電器工業株式会社製(箔種110LJB22B―4vf)以下、化成箔と称する。)を用意した。この化成箔の短辺から4mmの位置に、化成箔の両面および両端にマスキング材(耐熱性樹脂)による幅1mmのマスキングを周状に形成した。陰極部(横3.3mm×縦4mm)と陽極部(横3.3mm×縦6mm)に分け、電解液としてアジピン酸アンモニウム10質量%水溶液を使用し、温度55℃、電圧4V、電流密度5mA/cm2、通電時間10分の条件で陰極部を化成し水洗した。 An 11 mm × 3.3 mm aluminum chemical conversion foil (manufactured by Nippon Electric Storage Co., Ltd. (foil type 110LJB22B-4vf), hereinafter referred to as chemical conversion foil) was prepared. Masking with a width of 1 mm by a masking material (heat-resistant resin) was formed on both sides and both ends of the chemical conversion foil at a position 4 mm from the short side of the chemical conversion foil. Divided into a cathode part (width 3.3 mm x length 4 mm) and an anode part (width 3.3 mm x length 6 mm), an aqueous solution of ammonium adipate 10% by mass as the electrolyte, temperature 55 ° C, voltage 4V, current density 5mA The cathode part was formed and washed with water under the conditions of / cm 2 and energization time of 10 minutes.

次いで、陰極部を、3,4−エチレンジオキシチオフェンのイソプロピルアルコール溶液1mol/lに浸漬後、2分間放置し、次いで、酸化剤(過硫酸アンモニウム:1.5mol/l)とドーパント(ナフタレン−2−スルホン酸ナトリウム:0.15mol/l)の混合水溶液に浸漬し、45℃、5分間放置することにより酸化重合を行った。
この含浸工程及び重合工程を全体で12回繰り返し、ドーパントを含む固体電解質層を化成箔の微細孔内に形成した。このドーパントを含む固体電解質層を形成した化成箔を50℃温水中で水洗し固体電解質層を形成した。
Next, the cathode part was immersed in 1 mol / l of an isopropyl alcohol solution of 3,4-ethylenedioxythiophene and allowed to stand for 2 minutes, and then an oxidizing agent (ammonium persulfate: 1.5 mol / l) and a dopant (naphthalene-2 -Sodium sulfonate: 0.15 mol / l) was immersed in a mixed aqueous solution and left to stand at 45 ° C for 5 minutes for oxidative polymerization.
This impregnation step and the polymerization step were repeated 12 times in total to form a solid electrolyte layer containing a dopant in the micropores of the chemical conversion foil. The chemical conversion foil in which the solid electrolyte layer containing this dopant was formed was washed with 50 degreeC warm water, and the solid electrolyte layer was formed.

固体電解質層を形成させた後、電解液としてアジピン酸アンモニウム10質量%水溶液を使用し、温度55℃、電圧4V、電流密度5mA/cm2、通電時間10分の条件で再度化成し、水洗の後、100℃で30分乾燥を行った。
その上にカーボンペースト、銀ペーストを順次被覆させて陰極導電体層を形成した。
After the formation of the solid electrolyte layer, an aqueous solution of 10% by weight ammonium adipate is used as the electrolyte, and it is re-formed under conditions of a temperature of 55 ° C., a voltage of 4 V, a current density of 5 mA / cm 2 , and an energization time of 10 minutes. Thereafter, drying was performed at 100 ° C. for 30 minutes.
A cathode conductor layer was formed by sequentially coating a carbon paste and a silver paste thereon.

次いで、上記マスキング部からの上端から1mm迄の部分を残して化成箔の陽極部端を切断除去し、図6に示すコンデンサ素子とした。このコンデンサ素子を、図5に示したリードフレーム(材質:CDA19400(Cu−Fe−Zn−P系合金)、厚さ0.15mm)上に2枚ずつ導電性接着剤として銀ペーストを用いて積層し、陽極リード部とコンデンサ素子の陽極部を抵抗溶接にて接合した。なお、リードフレームの下面には図2または図3の段差(段差面の高さ:0.075mm)を設けた。   Next, the end of the anode portion of the chemical conversion foil was cut and removed, leaving a portion from the upper end to 1 mm from the masking portion, to obtain a capacitor element shown in FIG. Two layers of this capacitor element are laminated on the lead frame (material: CDA19400 (Cu—Fe—Zn—P alloy), thickness 0.15 mm) shown in FIG. 5 using silver paste as a conductive adhesive. The anode lead portion and the anode portion of the capacitor element were joined by resistance welding. Note that the step of FIG. 2 or 3 (the height of the step surface: 0.075 mm) was provided on the lower surface of the lead frame.

このコンデンサ素子の積層構造体をパッケージング樹脂(ディスクリート用エポキシ樹脂)にて高さが1mmとなるように封止し、さらに135℃、2.5V、45分間の条件でエージングし、陽極リード部及び陰極リード部を切断することによりリードフレームから切り離し、コンデンサ素子がリードフレームの上に2枚積層された構造を持つ定格容量100μF、定格電圧2Vの固体電解コンデンサを100個得た。
このようにして得られた固体電解コンデンサの高さの平均は0.97mmであり、従来法による同種の製品(平均的な高さ:1.9mm)に比較して50%程度の低背化が実現できた。また、製品高さの標準偏差は0.02mm程度であり、従来法による同種の製品に比較してばらつきの少ない高精度の製品が得られた。
The laminated structure of the capacitor element is sealed with packaging resin (epoxy resin for discrete) so that the height becomes 1 mm, and further aged at 135 ° C., 2.5 V, for 45 minutes, and the anode lead portion Then, the cathode lead part was cut off from the lead frame to obtain 100 solid electrolytic capacitors having a rated capacity of 100 μF and a rated voltage of 2 V having a structure in which two capacitor elements were laminated on the lead frame.
The average height of the solid electrolytic capacitors thus obtained is 0.97 mm, which is about 50% lower than the same type of product (average height: 1.9 mm) by the conventional method. Was realized. Further, the standard deviation of the product height is about 0.02 mm, and a highly accurate product with less variation is obtained compared to the same type of product by the conventional method.

本発明の積層型固体電解コンデンサは小型化及び低背化の要求を満たすことが可能であり、電極の配置や寸法等を任意に設計できるため、家庭電化製品、車載製品、産業用機械、携帯用機器等各種の電気機器に幅広く利用できる。また、本発明の積層型固体電解コンデンサは、従来法のようにリードフレームの折り曲げ加工工程を有さずリードフレームの切断のみを行なえばよいため、より容易に製造できる。   The multilayer solid electrolytic capacitor of the present invention can satisfy the demands for miniaturization and low profile, and can arbitrarily design the arrangement and dimensions of the electrodes, so that it can be used for home appliances, in-vehicle products, industrial machines, and mobile phones. It can be widely used for various electrical equipment such as industrial equipment. Further, the multilayer solid electrolytic capacitor of the present invention can be manufactured more easily because it does not have a lead frame bending process as in the conventional method, and only the lead frame is cut.

従来の固体電解コンデンサの製造プロセスの概略を示す模式図。The schematic diagram which shows the outline of the manufacturing process of the conventional solid electrolytic capacitor. 本発明の一例となる固体電解コンデンサの断面図。Sectional drawing of the solid electrolytic capacitor which becomes an example of this invention. 本発明の一例となる固体電解コンデンサの断面図。Sectional drawing of the solid electrolytic capacitor which becomes an example of this invention. 本発明の一例となる固体電解コンデンサの断面図。Sectional drawing of the solid electrolytic capacitor which becomes an example of this invention. 本発明の実施例に用いたリードフレームの上面図。The top view of the lead frame used for the Example of this invention. 本発明において用い得るコンデンサ素子の代表的な構造を示す断面図。Sectional drawing which shows the typical structure of the capacitor | condenser element which can be used in this invention.

符号の説明Explanation of symbols

10 固体電解コンデンサ
11 コンデンサ素子
12 パッケージング樹脂
13 金属基体
14 誘電体皮膜
15 固体電解質
16 マスキング
20 固体電解コンデンサ
21、23、25、27 陰極リード部
22、24、26、29 陽極リード部
31 陰極リード部段差面
32 陽極リード部段差面
33 空間
DESCRIPTION OF SYMBOLS 10 Solid electrolytic capacitor 11 Capacitor element 12 Packaging resin 13 Metal substrate 14 Dielectric film 15 Solid electrolyte 16 Masking 20 Solid electrolytic capacitor 21, 23, 25, 27 Cathode lead part 22, 24, 26, 29 Anode lead part 31 Cathode lead Step surface 32 Anode lead step surface 33 Space

Claims (10)

固体電解コンデンサ素子の積層体をリード部上に有する積層型固体電解コンデンサにおいて、陰極リード部の下面及び/または陽極リード部の下面のそれぞれ少なくとも一部を残して樹脂封止し、露出した各リード部の下面をそれぞれ陰極端子及び陽極端子としたことを特徴とする積層型固体電解コンデンサ。   In a multilayer solid electrolytic capacitor having a laminate of solid electrolytic capacitor elements on a lead portion, each exposed lead is sealed with resin, leaving at least part of the lower surface of the cathode lead portion and / or the lower surface of the anode lead portion. A laminated solid electrolytic capacitor characterized in that the lower surface of each part is a cathode terminal and an anode terminal, respectively. 電極リード部が概ね平板状である請求項1に記載の積層型固体電解コンデンサ。   The multilayer solid electrolytic capacitor according to claim 1, wherein the electrode lead portion is substantially flat. 各コンデンサ素子の陰極部分が他のコンデンサ素子の陰極部分上に積層され、陽極部分が他のコンデンサ素子の陽極部分上に積層されている請求項1または2に記載の積層型固体電解コンデンサ。   3. The multilayer solid electrolytic capacitor according to claim 1, wherein a cathode portion of each capacitor element is laminated on a cathode portion of another capacitor element, and an anode portion is laminated on the anode portion of another capacitor element. コンデンサ素子積層体の陰極積層部の最下面が、前記露出した陰極リード部の上面に固定されている請求項1〜3のいずれかに記載の積層型固体電解コンデンサ。   The multilayer solid electrolytic capacitor according to any one of claims 1 to 3, wherein a lowermost surface of the cathode laminate portion of the capacitor element laminate is fixed to an upper surface of the exposed cathode lead portion. コンデンサ素子積層体の陽極積層部の最下面が、前記露出した陽極リード部の上面に固定されている請求項1〜4のいずれかに記載の積層型固体電解コンデンサ。   The multilayer solid electrolytic capacitor according to any one of claims 1 to 4, wherein a lowermost surface of the anode laminate portion of the capacitor element laminate is fixed to an upper surface of the exposed anode lead portion. 陰極リード部及び/または陽極リード部の下面が段差を有し、リード部の上面側及び前記段差面によって規定されるリード部の下面側の空間が樹脂封止される請求項1〜5のいずれかに記載の積層型固体電解コンデンサ。   The lower surface of the cathode lead portion and / or the anode lead portion has a step, and the space on the upper surface side of the lead portion and the lower surface side of the lead portion defined by the step surface is resin-sealed. A multilayer solid electrolytic capacitor according to claim 1. 各リード部の露出部分の配置及び形状が、電解コンデンサを実装する基板上の各電極接触面の配置及び形状に従って設計される請求項1〜6のいずれかに記載の積層型固体電解コンデンサ。   The multilayer solid electrolytic capacitor according to any one of claims 1 to 6, wherein the arrangement and shape of the exposed portion of each lead portion are designed according to the arrangement and shape of each electrode contact surface on the substrate on which the electrolytic capacitor is mounted. 固体電解コンデンサ素子が、化成処理して得られた誘電体皮膜を有する弁作用金属基板上に固体電解質を有するコンデンサ素子である請求項1〜7のいずれかに記載の積層型固体電解コンデンサ。   The multilayer solid electrolytic capacitor according to any one of claims 1 to 7, wherein the solid electrolytic capacitor element is a capacitor element having a solid electrolyte on a valve metal substrate having a dielectric film obtained by chemical conversion treatment. 固体電解コンデンサ素子をリードフレーム上に積層するか、固体電解コンデンサ素子の積層体をリードフレーム上に固定した後、前記リードフレームの陰極リード部の下面及び陽極リード部の下面のそれぞれ少なくとも一部を露出させて樹脂封止し、各リード部をリードフレームから切断する工程を含む、前記各リード部の下面をそれぞれ陰極端子及び陽極端子とすることを特徴とする積層型固体電解コンデンサの製造方法。   After laminating the solid electrolytic capacitor element on the lead frame or fixing the solid electrolytic capacitor element laminate on the lead frame, at least part of the lower surface of the cathode lead portion and the lower surface of the anode lead portion of the lead frame A method for producing a multilayer solid electrolytic capacitor, comprising: exposing and resin-sealing, and cutting each lead portion from a lead frame, wherein the lower surface of each lead portion is a cathode terminal and an anode terminal, respectively. 請求項1〜8のいずれかに記載の積層型固体電解コンデンサを備えた電気機器。
An electrical apparatus comprising the multilayer solid electrolytic capacitor according to claim 1.
JP2005130108A 2005-04-27 2005-04-27 Solid electrolytic capacitor and manufacturing method thereof Pending JP2008047552A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005130108A JP2008047552A (en) 2005-04-27 2005-04-27 Solid electrolytic capacitor and manufacturing method thereof
PCT/JP2006/308765 WO2006118156A1 (en) 2005-04-27 2006-04-26 Solid electrolytic capacitor and its
US11/411,056 US20060256506A1 (en) 2005-04-27 2006-04-26 Solid electrolyte capacitor and process for producing same
TW095115070A TW200710898A (en) 2005-04-27 2006-04-27 Solid electrolytic capacitor and process for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005130108A JP2008047552A (en) 2005-04-27 2005-04-27 Solid electrolytic capacitor and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2008047552A true JP2008047552A (en) 2008-02-28

Family

ID=39181039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005130108A Pending JP2008047552A (en) 2005-04-27 2005-04-27 Solid electrolytic capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2008047552A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005101496A (en) * 2003-09-05 2005-04-14 Sanyo Electric Co Ltd Solid electrolytic capacitor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005101496A (en) * 2003-09-05 2005-04-14 Sanyo Electric Co Ltd Solid electrolytic capacitor

Similar Documents

Publication Publication Date Title
US20060256506A1 (en) Solid electrolyte capacitor and process for producing same
EP1439556A1 (en) Solid-state electrolytic capacitor and its manufacturing method
JP3920670B2 (en) Solid electrolytic capacitor
JP6710085B2 (en) Solid electrolytic capacitor
JP2008098394A (en) Solid-state electrolytic capacitor
JPH04123416A (en) Chip-type solid electrolytic capacitor
US6791822B2 (en) Solid electrolytic capacitor
JP5072857B2 (en) Electrolytic capacitor manufacturing method
US8014127B2 (en) Solid electrolytic capacitor
KR20110027631A (en) Electrolytic capacitor assembly and method with recessed leadframe channel
JP4953091B2 (en) Capacitor chip and manufacturing method thereof
TW200306594A (en) Solid electrolytic capacitor and manufacturing method therefor
JP2003045753A (en) Laminated solid electrolytic capacitor
JP4899759B2 (en) Lead frame member for solid electrolytic capacitors
KR101404532B1 (en) Solid electrolytic capacitor
JP2002237431A (en) Solid-state electrolytic capacitor and method of manufacturing the same
JP2004088073A (en) Solid electrolytic capacitor
JP4735251B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2004087713A (en) Aluminum solid electrolytic capacitor
JP4624017B2 (en) Manufacturing method of solid electrolytic capacitor
JP2008047552A (en) Solid electrolytic capacitor and manufacturing method thereof
JP2867514B2 (en) Chip type solid electrolytic capacitor
WO2006118156A1 (en) Solid electrolytic capacitor and its
WO2019058535A1 (en) Solid electrolytic capacitor and method for manufacturing same
JP5898927B2 (en) Chip type solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100917

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110204