JP2008047452A - Paste type electrode plate and its manufacturing method - Google Patents

Paste type electrode plate and its manufacturing method Download PDF

Info

Publication number
JP2008047452A
JP2008047452A JP2006222856A JP2006222856A JP2008047452A JP 2008047452 A JP2008047452 A JP 2008047452A JP 2006222856 A JP2006222856 A JP 2006222856A JP 2006222856 A JP2006222856 A JP 2006222856A JP 2008047452 A JP2008047452 A JP 2008047452A
Authority
JP
Japan
Prior art keywords
electrode plate
paste
active material
type electrode
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006222856A
Other languages
Japanese (ja)
Inventor
Takeo Sakamoto
剛生 坂本
Satoshi Minoura
敏 箕浦
Nobukazu Tanaka
伸和 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2006222856A priority Critical patent/JP2008047452A/en
Publication of JP2008047452A publication Critical patent/JP2008047452A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a paste type electrode plate for lead acid storage battery superior in discharge characteristics at a large current, and its manufacturing method. <P>SOLUTION: After filling a paste-form active material in a current collector made of a lead alloy, a slurry containing active carbon, a conductive assistant, a lead compound, and a binder is coated, thereby, a paste type electrode plate formed with a surface layer 3 is manufactured. Then, a positive electrode plate 1 and a negative electrode plate 2 of paste type having the surface layer 3 formed are arranged so as to be opposed through a separator 4 to manufacture the lead acid storage battery. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

エンジン式の自動車、フォークリフトなどの電動車、及び、無停電電源装置には、主に鉛蓄電池が使用されている。本発明は、これらの用途に使用されている鉛蓄電池用のペースト式電極板及びその製造方法に関するものである。   Lead-acid batteries are mainly used in engine-type automobiles, electric vehicles such as forklifts, and uninterruptible power supplies. The present invention relates to a paste-type electrode plate for lead-acid batteries used for these applications and a method for producing the same.

鉛蓄電池は安価で信頼性の高い蓄電池として、自動車用バッテリ、フォークリフトなどの電動車、及び、無停電電源装置用電源など、さまざまな用途に用いられている。一般的には、これらの用途に用いられている鉛蓄電池用の電極板(正極板、負極板)としては、製造コストが安価であり、大量生産が可能であるペースト式電極板が使用されている。   Lead storage batteries are inexpensive and highly reliable storage batteries, and are used in various applications such as automobile batteries, electric vehicles such as forklifts, and power supplies for uninterruptible power supplies. In general, as the electrode plates (positive electrode plate, negative electrode plate) for lead storage batteries used in these applications, paste-type electrode plates that are inexpensive to manufacture and can be mass-produced are used. Yes.

最近、フォークリフトなどの電動車、及び、無停電電源装置用電源などの用途において、小型・軽量であって、大電流放電が可能な鉛蓄電池が強く要求されている。鉛蓄電池用のペースト式電極板は、一酸化鉛を主成分とする鉛粉に各種添加物を加え、希硫酸水溶液で混練して製造されるペースト状活物質を鉛合金製の集電体に充填し、熟成・乾燥をさせて製造されている。なお、大電流放電特性を向上させるには、電極板の集電性能を向上させて電気的な抵抗を減少させたり、電極板の活物質層を多孔性化して硫酸イオンの拡散性を向上させたりすることが有効であると知られている。   Recently, there has been a strong demand for lead-acid batteries that are small and lightweight and capable of discharging a large current in electric vehicles such as forklifts and power supplies for uninterruptible power supplies. Paste-type electrode plates for lead-acid batteries use a lead alloy current collector made by adding various additives to lead powder containing lead monoxide as the main component and kneading with dilute sulfuric acid aqueous solution. It is manufactured by filling, aging and drying. In order to improve the large current discharge characteristics, the current collecting performance of the electrode plate is improved to reduce electrical resistance, or the active material layer of the electrode plate is made porous to improve the diffusibility of sulfate ions. Is known to be effective.

ここで、集電性能を向上させて電気的な抵抗を減少させたり、硫酸イオンの拡散性を向上させる目的として、ペースト状活物質中に炭素粉末を添加したり、鉛蓄電池の電解液中に炭素粉末を加えたりする検討が多数されている。   Here, for the purpose of improving the current collecting performance to reduce electrical resistance, or improving the diffusibility of sulfate ions, carbon powder is added to the paste-like active material, or in the electrolyte of the lead acid battery. Many studies have been made to add carbon powder.

例えば、ペースト状活物質中に異方性の大なる黒鉛と、耐酸性の繊維を添加することによって、集電性能を向上させて電気的な抵抗を減少させたり、活物質層を多孔性化して硫酸イオンの拡散性を向上させる検討がされている(例えば、特許文献1参照。)。この手法を用いると、黒鉛添加による集電性能の向上に加えて、異方性の大なる黒鉛は鉛蓄電池として使用中に膨張し、膨張に伴って電極の活物質層内に空間ができ、活物質層は多孔性になる。したがって、電極の活物質層内に新たな空間ができ、多孔性化することによって、硫酸イオンの拡散性を向上させることができるために、大電流放電特性が向上することが知られている。   For example, by adding highly anisotropic graphite and acid-resistant fibers to the pasty active material, the current collection performance is improved to reduce electrical resistance, or the active material layer is made porous. Thus, studies have been made to improve the diffusibility of sulfate ions (see, for example, Patent Document 1). Using this technique, in addition to improving the current collection performance by adding graphite, the highly anisotropic graphite expands during use as a lead-acid battery, creating a space in the active material layer of the electrode with expansion, The active material layer becomes porous. Therefore, it is known that a new space is formed in the active material layer of the electrode, and by making it porous, the diffusibility of sulfate ions can be improved, so that the large current discharge characteristics are improved.

また、ペースト状活物質中にメジアン径が、500ナノメータ以下の微細な炭素粉末を加えて、電気的な抵抗を減少させる検討もされている(例えば、特許文献2、特許文献3参照。)。この手法を用いると、活物質粒子の表面を微細な炭素粉末で覆うことにより、活物質粒子間の電気抵抗を減少させることができる。その結果、充電がスムーズに行われるために、充電放電されにくい活物質、例えば、充電されにくい硫酸鉛などが減少し、その範囲においては、鉛蓄電池を長寿命化できることが知られている。   In addition, studies have been made to reduce the electrical resistance by adding fine carbon powder having a median diameter of 500 nanometers or less to the pasty active material (see, for example, Patent Document 2 and Patent Document 3). When this method is used, the electrical resistance between the active material particles can be reduced by covering the surfaces of the active material particles with fine carbon powder. As a result, since charging is performed smoothly, it is known that an active material that is difficult to charge and discharge, for example, lead sulfate that is difficult to be charged, decreases, and in that range, the life of the lead-acid battery can be extended.

特公昭63−57914号公報Japanese Examined Patent Publication No. 63-57914 特開平10−228922公報JP-A-10-228922 特開平10−241677号公報JP-A-10-241777

しかしながら、上述したような異方性の大なる黒鉛をペースト状活物質中に添加する手法を用いると、鉛蓄電池の使用中に異方性の黒鉛が膨張し、その際に活物質内部で機械的なストレスがかかることになる。その結果、鉛合金製の集電体から活物質層が脱落しやすくなり、鉛蓄電池の寿命が短くなるという問題点が認められている。   However, if the method of adding graphite having a large anisotropy as described above to the paste-like active material is used, the anisotropic graphite expands during use of the lead-acid battery, and the mechanical material is Stress. As a result, it has been recognized that the active material layer easily falls off from the lead alloy current collector, and the life of the lead storage battery is shortened.

一方、ペースト状活物質中にメジアン径が、500ナノメータ以下の微細な炭素粉末を加える手法を用いると、電気的な抵抗を減少させることはできるものの、活物質粒子間の空間が減少することになる。その結果、硫酸イオンの拡散性が悪くなり、大電流放電特性が低下するという問題点が認められている。加えて、炭素粉末として、微細な粉末を添加しているために、炭素粉末が活物質粒子の表面から脱落が起こりやすく、その結果、セパレータを通して短絡しやすくなり、鉛蓄電池が短寿命になるという問題点も認められている。   On the other hand, using a method of adding fine carbon powder having a median diameter of 500 nanometers or less in the pasty active material can reduce the electrical resistance, but reduces the space between the active material particles. Become. As a result, the problem that the diffusibility of sulfate ions deteriorates and the high-current discharge characteristics deteriorate is recognized. In addition, since a fine powder is added as the carbon powder, the carbon powder tends to fall off from the surface of the active material particles, and as a result, it is easy to short-circuit through the separator, resulting in a short life of the lead-acid battery. Problems are also recognized.

本発明の目的は、上記した課題を解決するものであり、鉛蓄電池の寿命性能に影響を与えることなく、大電流放電特性に優れたペースト式電極板の製造方法を提供することである。   An object of the present invention is to solve the above-described problems, and to provide a method for producing a paste-type electrode plate having excellent large current discharge characteristics without affecting the life performance of a lead storage battery.

上記した課題を解決するために、本発明では、ペースト式電極板の表面に、活性炭を主成分とする表面層を形成することを特徴としている。   In order to solve the above-described problems, the present invention is characterized in that a surface layer mainly composed of activated carbon is formed on the surface of a paste-type electrode plate.

すなわち、請求項1の発明は、鉛合金製の集電体に、ペースト状活物質を充填して製造するペースト式電極板において、前記ペースト式電極板の表面には、活性炭、導電助剤及び結着剤を含む表面層が塗着されていることを特徴とするものである。   That is, the invention of claim 1 is a paste-type electrode plate manufactured by filling a lead alloy current collector with a paste-like active material, and on the surface of the paste-type electrode plate, activated carbon, a conductive aid and A surface layer containing a binder is applied.

請求項2の発明は、鉛合金製の集電体に、ペースト状活物質を充填して製造するペースト式電極板において、前記ペースト式電極板の表面には、活性炭、導電助剤、鉛化合物及び結着剤を含む表面層が塗着されていることを特徴とするものである。   According to a second aspect of the present invention, there is provided a paste-type electrode plate manufactured by filling a lead alloy current collector with a paste-like active material, and activated carbon, a conductive additive, a lead compound on the surface of the paste-type electrode plate. And the surface layer containing a binder is applied.

請求項3の発明は、鉛合金製の集電体に、ペースト状活物質を充填して製造するペースト式電極板の製造方法において、前記ペースト式電極板は、前記集電体に前記ペースト状活物質を充填した後に、その表面に、活性炭、導電助剤及び結着剤を含むスラリを塗着した、表面層が形成されていることを特徴とするものである。   According to a third aspect of the present invention, there is provided a paste type electrode plate manufacturing method in which a lead alloy current collector is filled with a paste-like active material, wherein the paste type electrode plate is applied to the current collector in the paste form. After the active material is filled, a surface layer is formed on the surface of which a slurry containing activated carbon, a conductive additive and a binder is applied.

請求項4の発明は、鉛合金製の集電体に、ペースト状活物質を充填して製造するペースト式電極板の製造方法において、前記ペースト式電極板は、前記集電体に前記ペースト状活物質を充填した後に、その表面に、活性炭、導電助剤、鉛化合物及び結着剤を含むスラリを塗着した、表面層が形成されていることを特徴とするものである。   According to a fourth aspect of the present invention, there is provided a paste type electrode plate manufacturing method in which a lead alloy current collector is filled with a paste-like active material, wherein the paste type electrode plate is applied to the current collector in the paste form. After the active material is filled, a surface layer is formed on the surface of which a slurry containing activated carbon, a conductive additive, a lead compound and a binder is applied.

本発明を用いると、鉛蓄電池の寿命性能に影響を与えることなく、大電流での放電特性に優れたペースト式電極板及びその製造方法を提供することができる。   By using the present invention, it is possible to provide a paste-type electrode plate excellent in discharge characteristics at a large current and a method for manufacturing the same without affecting the life performance of the lead storage battery.

本発明に係わるペースト式電極板では、通常の手法でそれぞれ製造された電極板(正極板1、負極板2)の表面に、活性炭粉末を主成分とする約0.2mmの厚みを有する表面層3が形成されていることを特徴としている(図1)。なお、後述するように、表面層3には活性炭に加えて、導電助剤や、酸化鉛や金属鉛などの鉛化合物、及び、結着剤が含まれていることを特徴としている。また、本発明に係るペースト式電極板では、異方性の大なる黒鉛ではなく、通常市販されているカーボン粉末(例えば、黒鉛粉末)を用いており、導電助剤として用いている炭素粉末にしても特別な粉砕等を行わずに、そのままの状態で用いている。これらについて、以下において図1〜図4を用いて詳細な説明をする。   In the paste-type electrode plate according to the present invention, a surface layer having a thickness of about 0.2 mm containing activated carbon powder as a main component on the surface of each of the electrode plates (positive electrode plate 1 and negative electrode plate 2) manufactured by ordinary methods. 3 is formed (FIG. 1). As will be described later, the surface layer 3 is characterized in that, in addition to the activated carbon, a conductive additive, a lead compound such as lead oxide or metallic lead, and a binder are included. In the paste type electrode plate according to the present invention, carbon powder that is usually commercially available (for example, graphite powder) is used instead of graphite having large anisotropy, and the carbon powder used as a conductive additive is used. However, it is used as it is without any special grinding. These will be described in detail below with reference to FIGS.

1.表面層スラリの作製
表面層の主成分である活性炭として、市販の活性炭粉末(クラレコールRP15型、クラレケミカル社製)を用いた。本実施例では、活物質粒子間の導電性を向上させるための導電助剤として、石油製品等を燃焼させて得られる煤などの炭素粉末、例えば、デンカブラック(商品名、電気化学工業社製)を用いたが、市販されているアセチレンブラック等も同様に用いることができる。なお、石油製品等を燃焼させて得られる煤などの炭素粉末は、一般的に、いわゆるストラクチャ構造が四方八方に発達していて嵩高いものであるが、本実施例では、上述した特許文献2や特許文献3に示されているように、そのストラクチャ構造を壊さない程度の通常の混練条件でスラリを作製して使用している。したがって、メジアン径が、500ナノメータ以下の微細な炭素粉末を導電助剤として使用しているわけではない。
1. Production of Surface Layer Slurry Commercial activated carbon powder (Kuraray Coal RP15, manufactured by Kuraray Chemical Co., Ltd.) was used as the activated carbon that is the main component of the surface layer. In this example, carbon powder such as soot obtained by burning petroleum products, for example, Denka Black (trade name, manufactured by Denki Kagaku Kogyo Co., Ltd.) is used as a conductive aid for improving the conductivity between the active material particles. ), But commercially available acetylene black or the like can be used as well. Note that carbon powder such as soot obtained by burning petroleum products or the like is generally bulky with a so-called structure structure developed in all directions. As shown in Japanese Patent Application Laid-Open No. H11-133260, a slurry is produced and used under normal kneading conditions that do not break the structure structure. Therefore, a fine carbon powder having a median diameter of 500 nanometers or less is not used as a conductive additive.

表1に示す各種の鉛化合物として市販の試薬を用いた。結着剤溶液として、ポリビニルアルコール(以下、PVAと略す。)の6質量%溶液(205型、クラレケミカル社製)に、ラテックス(XR1046型、日本エイアンドエル社製)を加えて溶解させた混合水溶液を用いた。   Commercially available reagents were used as various lead compounds shown in Table 1. As a binder solution, a mixed aqueous solution in which latex (XR1046 type, manufactured by Nippon A & L Co.) is added to a 6% by mass solution (205 type, manufactured by Kuraray Chemical Co.) of polyvinyl alcohol (hereinafter abbreviated as PVA) and dissolved. Was used.

次に、正極板1や負極板2の表面に塗着する表面層スラリの作製工程を、図2を用いて詳細に説明する。すなわち、活性炭粉末と導電助剤、又は、活性炭粉末、導電助剤と鉛化合物(酸化鉛など)とを混合して混合物を作製する。作製した混合物に結着剤溶液を加えて再び混練して、表1に示される8種類の表面層スラリを作製した。なお、表面層スラリのうちで、各固形成分の質量%を表1に示した。表1より、各表面層スラリは、活性炭を主成分とし、それぞれ各成分の質量%、及び、鉛化合物の有無又は種類等が異なっている。   Next, the manufacturing process of the surface layer slurry applied to the surfaces of the positive electrode plate 1 and the negative electrode plate 2 will be described in detail with reference to FIG. That is, activated carbon powder and a conductive aid, or activated carbon powder, a conductive aid and a lead compound (such as lead oxide) are mixed to prepare a mixture. A binder solution was added to the prepared mixture and kneaded again to prepare eight types of surface layer slurries shown in Table 1. In addition, in the surface layer slurry, the mass% of each solid component is shown in Table 1. From Table 1, each surface layer slurry has activated carbon as a main component, and the mass% of each component, the presence or absence of a lead compound, or the like is different.

Figure 2008047452
Figure 2008047452

2.負極板の作成
負極用のペースト状活物質の作製工程を、図3を用いて詳細に説明する。なお、この作製工程は従来から使用されているものである。すなわち、一酸化鉛を主成分とする鉛粉の質量に対して、リグニンを0.2質量%、硫酸バリウムを0.1質量%、通常の市販されている黒鉛などのカーボン粉末を0.2質量%、ポリエステル繊維を0.1質量%加えて混合する。次に、水を12質量%加えて混練をした後、さらに希硫酸(比重1.26、20℃)を13質量%加えて再び混練をして負極用のペースト状活物質の作製する。次に、鋳造方式で製造した格子状をした集電体(高さが116mm、幅が100mm、厚みが1.4mm)に、作製した負極用のペースト状活物質を65g充填する。
2. Production of Negative Electrode Plate A production process of a paste active material for a negative electrode will be described in detail with reference to FIG. Note that this manufacturing process is conventionally used. That is, 0.2% by mass of lignin, 0.1% by mass of barium sulfate, and 0.2% of carbon powder such as ordinary commercially available graphite based on the mass of lead powder containing lead monoxide as a main component. Add 0.1% by mass of polyester fiber and 0.1% by mass and mix. Next, 12% by mass of water is added and kneaded, and further 13% by mass of dilute sulfuric acid (specific gravity 1.26, 20 ° C.) is added and kneaded again to prepare a paste-like active material for a negative electrode. Next, 65 g of the prepared paste-like active material for negative electrode is filled into a grid-shaped current collector (height is 116 mm, width is 100 mm, and thickness is 1.4 mm) manufactured by a casting method.

ペースト状活物質を充填した直後の未だ乾燥していない電極板の表面に、上述した表1に示されるスラリ1〜スラリ8を、1枚当たり1000mg塗着し、300℃で30秒間の一次乾燥をし、50℃で相対湿度が98%の雰囲気中で18時間保持して熟成し、110℃で2時間保持して、本発明に係る未化成のペースト式負極板を作製した。すなわち、本発明に係る負極板2の表面には、活性炭を主成分とする表面層3が形成されている。   Immediately after filling the paste-like active material, 1000 mg of the slurry 1 to slurry 8 shown in Table 1 is applied to the surface of the electrode plate that has not yet been dried, and is primarily dried at 300 ° C. for 30 seconds. Then, it was aged for 18 hours at 50 ° C. in an atmosphere with a relative humidity of 98%, and then kept at 110 ° C. for 2 hours to produce an unformed paste-type negative electrode plate according to the present invention. That is, a surface layer 3 mainly composed of activated carbon is formed on the surface of the negative electrode plate 2 according to the present invention.

一方、比較例として、その表面に表1で示されるスラリ1〜スラリ8を塗着しないものの、上記と同一の条件で熟成・乾燥等を行い、従来から使用されている未化成のペースト式負極板を作製した。   On the other hand, as a comparative example, the slurry 1 to slurry 8 shown in Table 1 is not applied to the surface, but aging, drying, etc. are performed under the same conditions as described above, and an unformed paste type negative electrode that has been conventionally used. A plate was made.

3.正極板の作成
正極用のペースト状活物質の作製方法を、図4を用いて詳細に説明する。なお、この作製工程は従来から使用されているものである。すなわち、一酸化鉛を主成分とする鉛粉の質量に対して、ポリエステル繊維を0.1質量%加えて混合する。次に、水を12質量%、希硫酸(比重1.26、20℃)を16質量%加えて再び混練をして正極用のペースト状活物質を作製する。次に、鋳造方式で製造した格子状をした集電体(高さが116mm、幅が100mm、厚みが1.7mm)に、作製した正極用のペースト状活物質を70g充填する。
3. Production of Positive Electrode Plate A method for producing a paste active material for a positive electrode will be described in detail with reference to FIG. Note that this manufacturing process is conventionally used. That is, 0.1% by mass of polyester fiber is added to and mixed with the mass of lead powder containing lead monoxide as a main component. Next, 12% by mass of water and 16% by mass of dilute sulfuric acid (specific gravity 1.26, 20 ° C.) are added and kneaded again to prepare a paste-like active material for the positive electrode. Next, a grid-shaped current collector (116 mm in height, 100 mm in width, and 1.7 mm in thickness) manufactured by a casting method is filled with 70 g of the prepared paste-form active material for the positive electrode.

ペースト状活物質を充填した直後の未だ乾燥していない電極板の表面に、上述した表1で示されるスラリ1〜スラリ8を、1枚当たり1000mg塗着し、300℃で30秒間の一次乾燥をし、50℃で相対湿度が98%の雰囲気中で18時間保持して熟成し、110℃で2時間保持して、本発明に係る未化成のペースト式正極板を作製した。すなわち、本発明に係る正極板1の表面には、活性炭を主成分とする表面層3が形成されている。   Immediately after filling the paste-like active material, 1000 mg of each of the slurry 1 to slurry 8 shown in Table 1 is applied to the surface of the electrode plate that has not yet been dried, and is primarily dried at 300 ° C. for 30 seconds. Then, it was aged by holding at 50 ° C. in an atmosphere having a relative humidity of 98% for 18 hours, and holding at 110 ° C. for 2 hours to produce an unformed paste type positive electrode plate according to the present invention. That is, a surface layer 3 mainly composed of activated carbon is formed on the surface of the positive electrode plate 1 according to the present invention.

一方、比較例として、その表面に表1で示されるスラリ1〜スラリ8を塗着しないものの、上記同一の条件で熟成・乾燥等を行い、従来から使用されている未化成のペースト式正極板を作製した。   On the other hand, as a comparative example, the slurry 1 to slurry 8 shown in Table 1 is not applied to the surface, but aging, drying, etc. are performed under the same conditions as described above, and an unformed paste type positive electrode plate that has been conventionally used. Was made.

4.単電池の作製・試験
上述したペースト式の正極板1及び負極板2を用いた単電池構造の概略図を図1に示す。本発明に係る正極板1と負極板2とは、セパレータ4を介して対向しており、それぞれ対向する面には表面層3が形成されているようにした。そして、図1において、表面層3は、活性炭又は導電助剤粒子6、鉛粉や酸化鉛等が活物質化した活物質粒子7及び図示されていない結着剤で構成されている。すなわち、正極板1と負極板2とは、セパレータ4を介して対向する側に活性炭又は導電助剤粒子6、及び活物質粒子7などで構成される表面層3が形成されている。なお、セパレータ4や電槽5などは、従来から使用されているものをそのまま使用している。
4). Production / Test of Single Cell FIG. 1 shows a schematic diagram of a single cell structure using the paste type positive electrode plate 1 and negative electrode plate 2 described above. The positive electrode plate 1 and the negative electrode plate 2 according to the present invention are opposed to each other with the separator 4 interposed therebetween, and the surface layer 3 is formed on the opposed surfaces. In FIG. 1, the surface layer 3 is composed of activated carbon or conductive additive particles 6, active material particles 7 obtained by converting lead powder, lead oxide, or the like into an active material, and a binder (not shown). That is, the positive electrode plate 1 and the negative electrode plate 2 are formed with a surface layer 3 composed of activated carbon or conductive auxiliary agent particles 6 and active material particles 7 on the side facing each other with the separator 4 therebetween. For the separator 4 and the battery case 5, those conventionally used are used as they are.

本発明に係る8種類のスラリ(スラリ1〜スラリ8)を塗着した表面層3を有する電極板を用いた単電池と、比較例として、従来から使用されている表面層3を有さない電極板を用いた単電池の計9種類の単電池を作製した(表2)。なお、本発明に係る正極板1及び負極板2を用いた単電池では、同じ組成のスラリを使用して表面層3を形成した電極板どうしを組み合わせて作製している。   A unit cell using an electrode plate having a surface layer 3 coated with eight types of slurry (slurry 1 to slurry 8) according to the present invention and, as a comparative example, does not have a surface layer 3 conventionally used. A total of nine types of single cells using electrode plates were produced (Table 2). Note that the unit cell using the positive electrode plate 1 and the negative electrode plate 2 according to the present invention is produced by combining electrode plates having the surface layer 3 formed using a slurry having the same composition.

これらの単電池に比重が1.225(20℃)の希硫酸電解液を注液した後、2.2Aの電流値で20時間充電をして化成をする。その後、比重が1.40(20℃)の希硫酸電解液を適量追加して、比重が1.28(20℃)となるように比重調整をした。これら9種類の単電池について、化成後に0.2CAで放電したところ、どの単電池も放電容量は約1.75Ahであり、放電電圧の平均値は約2.0Vであり、初期の放電特性に差は認められなかった。   After pouring a dilute sulfuric acid electrolyte solution having a specific gravity of 1.225 (20 ° C.) into these single cells, charging is performed at a current value of 2.2 A for 20 hours to form. Thereafter, an appropriate amount of dilute sulfuric acid electrolyte having a specific gravity of 1.40 (20 ° C.) was added, and the specific gravity was adjusted so that the specific gravity was 1.28 (20 ° C.). When these nine types of single cells were discharged at 0.2 CA after formation, the discharge capacity of all the single cells was about 1.75 Ah, the average value of the discharge voltage was about 2.0 V, and the initial discharge characteristics were improved. There was no difference.

次に、25℃、2.2Aの充電電流で、放電容量(約1.75Ah)の110%を充電した後、26.25A(15CA相当電流)の大電流で放電をし、放電終止電圧として1.0Vに達するまでの放電時間を測定した結果を表2に示す。本発明に係るスラリ1〜8を塗着して、表面層3を形成したペースト式電極板を用いると放電時間が長く、大電流での放電特性が優れていることが認められる。加えて、スラリ2〜スラリ8のように、スラリ中に酸化鉛などの鉛化合物を添加し、化成によって表面層3内に活物質粒子7を形成すると、大電流での放電特性がさらに向上することが認められた。なお、詳細な結果は省略するが、表2に示される計9種類の単電池の寿命特性には、ほとんど差異が認められなかった。   Next, after charging 110% of the discharge capacity (about 1.75 Ah) with a charging current of 25 ° C. and 2.2 A, the battery was discharged with a large current of 26.25 A (current equivalent to 15 CA) to obtain a discharge end voltage. Table 2 shows the results of measuring the discharge time until reaching 1.0V. It is recognized that when a paste type electrode plate coated with the slurries 1 to 8 according to the present invention and formed with the surface layer 3 is used, the discharge time is long and the discharge characteristics at a large current are excellent. In addition, when a lead compound such as lead oxide is added to the slurry as in slurry 2 to slurry 8 and active material particles 7 are formed in the surface layer 3 by chemical conversion, the discharge characteristics at a large current are further improved. It was recognized that Although detailed results were omitted, there was almost no difference in the life characteristics of the nine types of unit cells shown in Table 2.

これらの理由は明らかではないが、対向する電極板の表面に活性炭を主成分とする表面層3を形成することによって、電気的な導電性を向上できるとともに、電解液中の各種イオンの吸着・脱着反応が向上するために、硫酸イオンの拡散性も向上しているためと考えられる。   Although these reasons are not clear, by forming the surface layer 3 mainly composed of activated carbon on the surface of the opposing electrode plate, the electrical conductivity can be improved, and various ions in the electrolyte can be adsorbed / This is probably because the diffusibility of sulfate ions is improved because the desorption reaction is improved.

なお、上述した実施例では、単電池による試験であるために、対向する電極板の面にのみに表面層3を形成したが、多数枚の電極板を積層する場合には、対向する電極板は両面に表面層を形成させることが好ましい。また、上述した正極板及び負極板では、作り易さなどの点から、同じスラリを使用して表面層3を形成した電極板どうしを組み合わせて単電池を作製しているが、異なる種類のスラリを使用した正極板と負極板とを組み合わせた場合でも同様の良好な結果が得られた。   In the above-described embodiment, since the test is performed using a single cell, the surface layer 3 is formed only on the surface of the opposing electrode plate. However, when a large number of electrode plates are stacked, the opposing electrode plate It is preferable to form a surface layer on both sides. In addition, in the positive electrode plate and the negative electrode plate described above, a unit cell is manufactured by combining electrode plates formed with the surface layer 3 using the same slurry from the viewpoint of ease of production, but different types of slurry are used. The same good results were obtained even when a positive electrode plate and a negative electrode plate were used.

Figure 2008047452
Figure 2008047452

本発明は、自動車用バッテリ、フォークリフトなどの電動車、及び、無停電電源装置用電源などに使用されているペースト式電極板及びその製造方法に用いることができる。   INDUSTRIAL APPLICABILITY The present invention can be used for a paste-type electrode plate used for an automobile battery, an electric vehicle such as a forklift, an uninterruptible power supply, and a manufacturing method thereof.

単電池及びペースト式電極板の概略図である。It is the schematic of a cell and a paste-type electrode plate. 表面層スラリの作製工程の概略図である。It is the schematic of the production process of a surface layer slurry. 負極用ペースト状活物質の作製工程の概略図である。It is the schematic of the preparation process of the paste-form active material for negative electrodes. 正極用ペースト状活物質の作製工程の概略図である。It is the schematic of the preparation process of the paste-form active material for positive electrodes.

符号の説明Explanation of symbols

1:正極板、2:負極板、3:表面層、4:セパレータ、5:電槽、
6:活性炭又は導電助剤粒子、7:活物質粒子
1: positive electrode plate, 2: negative electrode plate, 3: surface layer, 4: separator, 5: battery case,
6: Activated carbon or conductive aid particles, 7: Active material particles

Claims (4)

鉛合金製の集電体に、ペースト状活物質を充填して製造するペースト式電極板において、
前記ペースト式電極板の表面には、活性炭、導電助剤及び結着剤を含む表面層が塗着されていることを特徴とするペースト式電極板。
In a paste type electrode plate manufactured by filling a lead alloy current collector with a paste-like active material,
A paste-type electrode plate, wherein a surface layer containing activated carbon, a conductive additive and a binder is applied to the surface of the paste-type electrode plate.
鉛合金製の集電体に、ペースト状活物質を充填して製造するペースト式電極板において、
前記ペースト式電極板の表面には、活性炭、導電助剤、鉛化合物及び結着剤を含む表面層が塗着されていることを特徴とするペースト式電極板。
In a paste type electrode plate manufactured by filling a lead alloy current collector with a paste-like active material,
A paste-type electrode plate, wherein a surface layer containing activated carbon, a conductive additive, a lead compound, and a binder is coated on the surface of the paste-type electrode plate.
鉛合金製の集電体に、ペースト状活物質を充填して製造するペースト式電極板の製造方法において、
前記ペースト式電極板は、前記集電体に前記ペースト状活物質を充填した後に、
その表面に、活性炭、導電助剤及び結着剤を含むスラリを塗着した、表面層が形成されていることを特徴とするペースト式電極板の製造方法。
In a method for manufacturing a paste-type electrode plate that is manufactured by filling a lead alloy current collector with a paste-like active material,
After the paste electrode plate is filled with the pasty active material in the current collector,
A method for producing a paste-type electrode plate, characterized in that a surface layer is formed on a surface of which a slurry containing activated carbon, a conductive additive and a binder is applied.
鉛合金製の集電体に、ペースト状活物質を充填して製造するペースト式電極板の製造方法において、
前記ペースト式電極板は、前記集電体に前記ペースト状活物質を充填した後に、
その表面に、活性炭、導電助剤、鉛化合物及び結着剤を含むスラリを塗着した、表面層が形成されていることを特徴とするペースト式電極板の製造方法。
In a method for manufacturing a paste-type electrode plate that is manufactured by filling a lead alloy current collector with a paste-like active material,
After the paste electrode plate is filled with the pasty active material in the current collector,
A method for producing a paste-type electrode plate, wherein a surface layer is formed on a surface of which a slurry containing activated carbon, a conductive additive, a lead compound and a binder is applied.
JP2006222856A 2006-08-18 2006-08-18 Paste type electrode plate and its manufacturing method Pending JP2008047452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006222856A JP2008047452A (en) 2006-08-18 2006-08-18 Paste type electrode plate and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006222856A JP2008047452A (en) 2006-08-18 2006-08-18 Paste type electrode plate and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008047452A true JP2008047452A (en) 2008-02-28

Family

ID=39180976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006222856A Pending JP2008047452A (en) 2006-08-18 2006-08-18 Paste type electrode plate and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008047452A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009259803A (en) * 2008-03-24 2009-11-05 Nippon Zeon Co Ltd Electrode for lead storage cell, and lead storage cell
WO2010032785A1 (en) * 2008-09-22 2010-03-25 日本ゼオン株式会社 Electrode for lead storage battery and lead storage battery
JP2010192417A (en) * 2009-01-26 2010-09-02 Nippon Zeon Co Ltd Capacitor electrode composition layer with support for lead-acid battery and method for manufacturing electrode for lead-acid battery
WO2010122873A1 (en) * 2009-04-23 2010-10-28 古河電池株式会社 Process for producing negative plate for lead storage battery, and lead storage battery
WO2010122874A1 (en) * 2009-04-23 2010-10-28 古河電池株式会社 Lead storage battery
EP2262042A1 (en) * 2008-03-24 2010-12-15 Zeon Corporation Electrode for lead acid storage battery and use thereof
WO2011025058A1 (en) * 2009-08-27 2011-03-03 古河電池株式会社 Lead-acid battery and method for manufacturing a composite negative capacitor plate for use in a lead-acid battery
CN103022427A (en) * 2012-11-28 2013-04-03 上海锦众信息科技有限公司 Method for preparing positive pole plate for lead-acid storage battery
US9203116B2 (en) 2006-12-12 2015-12-01 Commonwealth Scientific And Industrial Research Organisation Energy storage device
CN105355912A (en) * 2015-11-23 2016-02-24 江苏海德森能源有限公司 Surface mount lead carbon battery electrode
CN105355861A (en) * 2015-11-23 2016-02-24 江苏海德森能源有限公司 Preparation method of surface mount lead carbon battery electrode
CN105449211A (en) * 2015-12-03 2016-03-30 江苏欧力特能源科技有限公司 Storage battery electrode plate with carbon fiber membrane colloid laminated on surface layer and production and preparation method of storage battery electrode plate
CN105449176A (en) * 2015-11-23 2016-03-30 江苏海德森能源有限公司 Long-lifetime lead-carbon battery plate of modified activated carbon
US9401508B2 (en) 2009-08-27 2016-07-26 Commonwealth Scientific And Industrial Research Organisation Electrical storage device and electrode thereof
US9508493B2 (en) 2009-08-27 2016-11-29 The Furukawa Battery Co., Ltd. Hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9666860B2 (en) 2007-03-20 2017-05-30 Commonwealth Scientific And Industrial Research Organisation Optimised energy storage device having capacitor material on lead based negative electrode
US9812703B2 (en) 2010-12-21 2017-11-07 Commonwealth Scientific And Industrial Research Organisation Electrode and electrical storage device for lead-acid system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0443557A (en) * 1990-06-06 1992-02-13 Yuasa Corp Hybrid battery
JPH1021900A (en) * 1996-07-01 1998-01-23 Tokuyama Corp Positive electrode plate for sealed lead-acid battery
US6088217A (en) * 1998-05-31 2000-07-11 Motorola, Inc. Capacitor
US6222723B1 (en) * 1998-12-07 2001-04-24 Joint Stock Company “Elton” Asymmetric electrochemical capacitor and method of making
US6252762B1 (en) * 1999-04-21 2001-06-26 Telcordia Technologies, Inc. Rechargeable hybrid battery/supercapacitor system
WO2005027255A1 (en) * 2003-09-18 2005-03-24 Commonwealth Scientific And Industrial Research Organisation High performance energy storage devices

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0443557A (en) * 1990-06-06 1992-02-13 Yuasa Corp Hybrid battery
JPH1021900A (en) * 1996-07-01 1998-01-23 Tokuyama Corp Positive electrode plate for sealed lead-acid battery
US6088217A (en) * 1998-05-31 2000-07-11 Motorola, Inc. Capacitor
US6222723B1 (en) * 1998-12-07 2001-04-24 Joint Stock Company “Elton” Asymmetric electrochemical capacitor and method of making
US6252762B1 (en) * 1999-04-21 2001-06-26 Telcordia Technologies, Inc. Rechargeable hybrid battery/supercapacitor system
WO2005027255A1 (en) * 2003-09-18 2005-03-24 Commonwealth Scientific And Industrial Research Organisation High performance energy storage devices

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9203116B2 (en) 2006-12-12 2015-12-01 Commonwealth Scientific And Industrial Research Organisation Energy storage device
US9666860B2 (en) 2007-03-20 2017-05-30 Commonwealth Scientific And Industrial Research Organisation Optimised energy storage device having capacitor material on lead based negative electrode
EP2262042A4 (en) * 2008-03-24 2012-08-01 Zeon Corp Electrode for lead acid storage battery and use thereof
EP2262042A1 (en) * 2008-03-24 2010-12-15 Zeon Corporation Electrode for lead acid storage battery and use thereof
JP2009259803A (en) * 2008-03-24 2009-11-05 Nippon Zeon Co Ltd Electrode for lead storage cell, and lead storage cell
US8974965B2 (en) 2008-03-24 2015-03-10 Zeon Corporation Electrodes for a lead acid battery and the use thereof
WO2010032785A1 (en) * 2008-09-22 2010-03-25 日本ゼオン株式会社 Electrode for lead storage battery and lead storage battery
JP5494487B2 (en) * 2008-09-22 2014-05-14 日本ゼオン株式会社 Lead-acid battery electrode and lead-acid battery
US9166231B2 (en) 2008-09-22 2015-10-20 Zeon Corporation Lead acid battery electrode comprising a porous carbon material layer and a lead acid battery
JP2010192417A (en) * 2009-01-26 2010-09-02 Nippon Zeon Co Ltd Capacitor electrode composition layer with support for lead-acid battery and method for manufacturing electrode for lead-acid battery
WO2010122873A1 (en) * 2009-04-23 2010-10-28 古河電池株式会社 Process for producing negative plate for lead storage battery, and lead storage battery
WO2010122874A1 (en) * 2009-04-23 2010-10-28 古河電池株式会社 Lead storage battery
CN102484245A (en) * 2009-04-23 2012-05-30 古河电池株式会社 Method for producing negative plate for use in lead-acid battery and lead-acid battery
US9450232B2 (en) 2009-04-23 2016-09-20 Commonwealth Scientific And Industrial Research Organisation Process for producing negative plate for lead storage battery, and lead storage battery
JP5680528B2 (en) * 2009-04-23 2015-03-04 古河電池株式会社 Method for producing negative electrode plate for lead acid battery and lead acid battery
JP2011071110A (en) * 2009-08-27 2011-04-07 Furukawa Battery Co Ltd:The Method of manufacturing compound capacitor negative electrode plate for lead-acid battery, and the lead-acid battery
RU2533207C2 (en) * 2009-08-27 2014-11-20 Дзе Фурукава Бэттери Ко., Лтд. Method for manufacturing of hybrid negative plate for lead-acid battery and lead-acid battery
US9401508B2 (en) 2009-08-27 2016-07-26 Commonwealth Scientific And Industrial Research Organisation Electrical storage device and electrode thereof
US20120263977A1 (en) * 2009-08-27 2012-10-18 Jun Furukawa Method for producing hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9508493B2 (en) 2009-08-27 2016-11-29 The Furukawa Battery Co., Ltd. Hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9524831B2 (en) * 2009-08-27 2016-12-20 The Furukawa Battery Co., Ltd. Method for producing hybrid negative plate for lead-acid storage battery and lead-acid storage battery
WO2011025058A1 (en) * 2009-08-27 2011-03-03 古河電池株式会社 Lead-acid battery and method for manufacturing a composite negative capacitor plate for use in a lead-acid battery
US9812703B2 (en) 2010-12-21 2017-11-07 Commonwealth Scientific And Industrial Research Organisation Electrode and electrical storage device for lead-acid system
CN103022427A (en) * 2012-11-28 2013-04-03 上海锦众信息科技有限公司 Method for preparing positive pole plate for lead-acid storage battery
CN105355912A (en) * 2015-11-23 2016-02-24 江苏海德森能源有限公司 Surface mount lead carbon battery electrode
CN105355861A (en) * 2015-11-23 2016-02-24 江苏海德森能源有限公司 Preparation method of surface mount lead carbon battery electrode
CN105449176A (en) * 2015-11-23 2016-03-30 江苏海德森能源有限公司 Long-lifetime lead-carbon battery plate of modified activated carbon
CN105449211A (en) * 2015-12-03 2016-03-30 江苏欧力特能源科技有限公司 Storage battery electrode plate with carbon fiber membrane colloid laminated on surface layer and production and preparation method of storage battery electrode plate

Similar Documents

Publication Publication Date Title
JP2008047452A (en) Paste type electrode plate and its manufacturing method
JP5500315B2 (en) Lead acid battery
JP4983304B2 (en) Energy conversion device
JP4523580B2 (en) Negative electrode active material for secondary battery and intermediate kneaded material for producing them
JP5598532B2 (en) Lead acid battery
US11870096B2 (en) Absorbent glass mat battery
JP2007012596A (en) Electrode for lead-acid battery, lead-acid battery and manufacturing method of lead-acid battery
US20230352652A1 (en) Negative electrode for secondary battery
JP2009048800A (en) Manufacturing method for paste type positive electrode plate
JP2003123760A (en) Negative electrode for lead-acid battery
US11936032B2 (en) Absorbent glass mat battery
JP5396216B2 (en) Lead acid battery
US11495785B2 (en) Negative electrode for secondary battery and method for producing same
JP2007018834A (en) Electrochemical device
EP3844829A1 (en) Negative mass for lead-acid battery electrodes and lead-acid battery including same
JP2002100347A (en) Lead-acid battery
CN115403033B (en) Conductive agent for lithium ion battery, negative electrode and preparation method thereof, and lithium ion battery
KR101631231B1 (en) METHOD OF MANUFACTURING LTO/Graphens ANODE AND HYBRID CAPACITOR USING THE LTO/Graphens ANODE
JP2006202584A (en) Lead-acid battery and its manufacturing method
JP2002134104A (en) Control valve type stationary lead and battery and its producing method
JP2008258131A (en) Positive electrode composition for secondary battery and manufacturing method thereof
EP3937276A1 (en) Anode and lithium ion battery
JP2010020932A (en) Negative electrode composition for secondary battery
JP2007173112A (en) Anode active material for secondary battery, secondary battery and their manufacturing method
JP6070126B2 (en) Negative electrode for lead acid battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110329