JP2008043869A - Flame spray device for forming supercooled liquid phase metal film - Google Patents

Flame spray device for forming supercooled liquid phase metal film Download PDF

Info

Publication number
JP2008043869A
JP2008043869A JP2006221112A JP2006221112A JP2008043869A JP 2008043869 A JP2008043869 A JP 2008043869A JP 2006221112 A JP2006221112 A JP 2006221112A JP 2006221112 A JP2006221112 A JP 2006221112A JP 2008043869 A JP2008043869 A JP 2008043869A
Authority
JP
Japan
Prior art keywords
flame
liquid phase
metal film
supercooled liquid
thermal spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006221112A
Other languages
Japanese (ja)
Other versions
JP5260847B2 (en
Inventor
Takao Kurahashi
隆郎 倉橋
Masahiro Komaki
正博 小牧
Shuichi Seino
修一 情野
Naoko Nagao
直子 長尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakayama Steel Works Ltd
Original Assignee
Nakayama Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2006221112A priority Critical patent/JP5260847B2/en
Application filed by Nakayama Steel Works Ltd filed Critical Nakayama Steel Works Ltd
Priority to EP07792474.4A priority patent/EP2060652B1/en
Priority to ES07792474.4T priority patent/ES2441596T3/en
Priority to KR1020097004554A priority patent/KR101365310B1/en
Priority to US12/310,139 priority patent/US20090246398A1/en
Priority to RU2009109207/02A priority patent/RU2435870C2/en
Priority to PCT/JP2007/065831 priority patent/WO2008020585A1/en
Priority to CN2007800302601A priority patent/CN101501236B/en
Publication of JP2008043869A publication Critical patent/JP2008043869A/en
Application granted granted Critical
Publication of JP5260847B2 publication Critical patent/JP5260847B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)
  • Nozzles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flame spray device for forming a supercooled liquid phase metal film (which contains an amorphous metal film) by quenching a flame spray material. <P>SOLUTION: A flame F containing the flame spray material is jetted to the surface of a matrix M in order to form the supercooled liquid phase metal film on the surface of the matrix M and the jetted flame F is cooled before it reaches the matrix M. In order to cool the flame F, for example, water mist H is blown in the flame F from outside at a plurality of places in the length direction of the flame F. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

請求項に係る発明は、金属等の母材の表面に、過冷却液相金属(過冷却液相を経由した金属。アモルファス金属を含む)の皮膜を形成するための溶射装置に関するものである。   The invention according to the present invention relates to a thermal spraying apparatus for forming a film of supercooled liquid phase metal (metal via a supercooled liquid phase, including amorphous metal) on the surface of a base material such as metal.

アモルファス(非晶質)金属は、結晶状態と相違する不規則な原子配列をもつ金属であり、機械的強度や耐食性が高く磁気的特性にもすぐれるため、その製造方法や用途について種々の研究・開発がなされている。物体の表面に溶射によってアモルファス皮膜を形成する技術に関してもさまざまな提案がなされている。アモルファス皮膜が溶射にて形成できるなら、大気中で簡単に作業が行えて、広い面積部分に対しても容易に施工できるというメリットがあるからである。なお、完全なアモルファス金属でなく一部がアモルファス化した過冷却液相金属であっても、一般に機械的強度や耐食性、磁気的特性等に関してすぐれた性質を発揮する。   Amorphous (amorphous) metal is a metal with an irregular atomic arrangement that is different from the crystalline state, and has high mechanical strength, corrosion resistance, and excellent magnetic properties.・ Development has been made. Various proposals have also been made regarding techniques for forming an amorphous coating on the surface of an object by thermal spraying. This is because if the amorphous coating can be formed by thermal spraying, the work can be easily performed in the atmosphere, and it can be easily applied to a large area. Even if it is a supercooled liquid phase metal that is not completely amorphous but partially amorphous, it generally exhibits excellent properties with respect to mechanical strength, corrosion resistance, magnetic properties, and the like.

下記の特許文献1では、プラズマ溶射等によって溶解した合金原料を火炎とともに吹き飛ばし、高速回転する基体(母材)に吹き付けて冷却することによりアモルファス合金を得る、という金属皮膜の形成方法が記載されている。使用する装置は図11に示すとおりであり、ノズル5から噴射する火炎F中に金属粉体を供給し溶融させて基体Mに吹き付け、急冷して基体M上にアモルファス皮膜を作る。図中の符号9は冷却ガスを吹き付ける冷却ノズルである。図のように基体Mとして丸棒状のものを使用すれば、その表面にシームレスパイプ状のアモルファス合金が得られるとされている。
特開昭55−88927号公報
The following Patent Document 1 describes a method for forming a metal film in which an alloy material melted by plasma spraying or the like is blown off together with a flame, and is cooled by spraying on a base (base material) that rotates at high speed. Yes. The apparatus to be used is as shown in FIG. 11, in which a metal powder is supplied into the flame F sprayed from the nozzle 5, melted, sprayed onto the base M, and rapidly cooled to form an amorphous film on the base M. Reference numeral 9 in the figure denotes a cooling nozzle that blows cooling gas. As shown in the figure, when a round bar-like substrate is used as the substrate M, a seamless pipe-like amorphous alloy is obtained on the surface.
JP 55-88927 A

母材に対し火炎とともに溶射材料を吹き付けてアモルファス金属や過冷却液相金属を得るためには、火炎によって一旦溶融させた溶射材料をきわめて急速に(つまり材料が過冷却状態になるくらい短時間に温度降下するように)冷却する必要がある。上記の特許文献1にも、102〜104℃/secの速さで合金を急冷する旨が記載されている。 In order to spray a thermal spray material together with a flame onto a base material to obtain an amorphous metal or a supercooled liquid phase metal, the thermal spray material once melted by the flame is extremely rapidly (that is, in a short time so that the material becomes supercooled). It needs to be cooled (so that the temperature drops). Patent Document 1 also describes that the alloy is rapidly cooled at a speed of 10 2 to 10 4 ° C / sec.

しかし実際には、アモルファスまたは過冷却液相が形成される程度に溶射材料を急冷することは容易ではない。火炎とともに噴射された直後など、2000℃を超える高温状態にある材料なら104℃/sec程度かそれ以上の速さで急冷することができても、それが数百℃程度にまで温度降下したのちは、周囲との温度差が小さくなる等の理由により、同様の冷却速度を実現することも最低到達温度を十分に下げることも困難なのである。そのような事情により、材料(とくに融点が500℃以下の低融点金属)をアモルファス化することは難しく、過冷却液相にすることもできにくい。 In practice, however, it is not easy to quench the sprayed material to the extent that an amorphous or supercooled liquid phase is formed. Even if the material is in a high temperature state exceeding 2000 ° C., such as immediately after being injected with a flame, it can be rapidly cooled at a speed of about 10 4 ° C./sec or more, but it has dropped to a few hundred degrees C. After that, it is difficult to achieve the same cooling rate and sufficiently lower the minimum temperature because the temperature difference from the surroundings becomes small. Under such circumstances, it is difficult to make the material (particularly a low melting point metal having a melting point of 500 ° C. or less) amorphous, and it is difficult to make it into a supercooled liquid phase.

請求項に係る発明は、溶射材料を十分な速度で低温度まで急冷することができ、もって過冷却液相金属皮膜(アモルファス金属皮膜を含む)を形成することが可能な溶射装置を提供しようとするものである。   The invention according to the claims is to provide a thermal spraying apparatus capable of rapidly cooling a thermal spray material to a low temperature at a sufficient speed, and thereby forming a supercooled liquid phase metal film (including an amorphous metal film). To do.

請求項に係る発明の溶射装置は、母材表面に過冷却液相金属の皮膜を形成する溶射装置であって、溶射材料を含む火炎(「火炎」にはアークまたはプラズマジェットを含む。以下も同様)を噴射するとともに、噴射された火炎を、それが母材に至る前より冷却することを特徴とするものである。
この溶射装置によれば、噴射口を出た火炎が冷却され、母材に達する前に相当に温度降下させられる。そしてそれにともない、火炎により一旦溶融させられた溶射材料が火炎の下流側部分等において強く冷却される。したがって、上述のように通常なら十分な冷却速度・最低到達温度を実現しがたい後半部分(比較的低い温度域)においても溶射材料を十分に強く冷却することができ、当該材料を過冷却液相金属皮膜として母材表面に形成することが可能になる。
A thermal spraying apparatus according to the present invention is a thermal spraying apparatus that forms a coating of a supercooled liquid phase metal on a surface of a base material, and a flame containing a thermal spray material (“flame” includes an arc or a plasma jet. And the like, and the injected flame is cooled before it reaches the base material.
According to this thermal spraying apparatus, the flame that has exited the injection port is cooled, and the temperature is lowered considerably before reaching the base material. Along with this, the sprayed material once melted by the flame is strongly cooled at the downstream portion of the flame. Therefore, as described above, the sprayed material can be cooled sufficiently strongly even in the latter half portion (relatively low temperature range) where it is difficult to achieve a sufficient cooling rate and minimum temperature as usual. It can be formed on the surface of the base material as a phase metal film.

火炎を冷却するためには、上記火炎の噴射口の周囲から、火炎に接する外周部分を流れて次第に火炎の中心線に近づくよう、火炎の中心線に対して9〜12°(好ましくは10°)の角度で冷却ガスを吹き出すようにすると好ましい。
このように冷却ガスを吹き出すなら、当該ガスで火炎の温度を下げるとともに、火炎の広がりを抑えてその長さを短くでき、したがって噴射口から遠くない位置で火炎の温度を低くすることが可能になる。噴射口に近い位置で火炎の温度を下げられるということは、火炎中で一旦溶融した材料を急冷できることにほかならない。噴射口の周囲から冷却ガスを吹き出すと、高温域において火炎を冷却する効果も得られるので、溶射材料を急冷して過冷却液相金属皮膜を形成するうえで有利である。なお、火炎の中心線に対して冷却ガスを7°以下または中心線から遠ざかる向きに吹き出す場合と比べると、上記のとおり中心線に近づく9〜12°の角度で吹き出す場合には、火炎の温度を下げるとともに火炎の広がりを抑えてその長さを短く作用が顕著である(図7〜図9を参照)。
In order to cool the flame, it is 9 to 12 ° (preferably 10 °) with respect to the flame center line so as to flow from the periphery of the flame injection port to the flame center line through the outer peripheral portion in contact with the flame. It is preferable to blow out the cooling gas at an angle of
If the cooling gas is blown out in this way, the temperature of the flame can be lowered with the gas, and the length of the flame can be shortened by suppressing the spread of the flame, so that the flame temperature can be lowered at a position not far from the injection port. Become. The fact that the temperature of the flame can be lowered at a position close to the injection port is nothing other than that the material once melted in the flame can be rapidly cooled. When the cooling gas is blown out from the periphery of the injection port, an effect of cooling the flame in a high temperature region can be obtained, which is advantageous in rapidly cooling the sprayed material to form a supercooled liquid phase metal film. In addition, compared with the case where the cooling gas is blown out at a temperature of 7 ° or less or away from the center line with respect to the flame center line, the flame temperature is increased when the gas is blown at an angle of 9 to 12 ° approaching the center line as described above. This reduces the length of the flame and suppresses the spread of the flame, shortens its length, and the effect is remarkable (see FIGS. 7 to 9).

さらに、溶射材料の噴出口を火炎の噴射口にて囲まれた位置に設け、その口径を4〜6mm(好ましくは5mm)とするのが好ましい。
溶射材料の噴出口の口径を4〜6mmと大きくすることにより溶射材料が高温度で多量に噴出されるようなり、また、前記のとおり噴射角度9〜12°で吹き出す冷却ガスの作用により、噴射口に近い上流側部分で火炎が冷却されるとともにその広がりが抑えられて火炎長さが短くなる。そうすると、火炎とともに溶射材料を急速に強く冷却できることになる。
Furthermore, it is preferable that the spraying material spray port is provided at a position surrounded by the flame spray port, and the diameter is 4 to 6 mm (preferably 5 mm).
By increasing the diameter of the spraying material spray outlet to 4 to 6 mm, a large amount of the spraying material is ejected at a high temperature, and as described above, the cooling gas is ejected at the spraying angle of 9 to 12 °. The flame is cooled at the upstream side near the mouth and the spread is suppressed, and the flame length is shortened. Then, the thermal spray material can be rapidly and strongly cooled together with the flame.

火炎の下流側部分を冷却するために、火炎の長さ方向における複数箇所で、火炎と離れた外側から火炎の内部に向けてガスまたはミストを含むガスを吹き込むのが好ましい。
ガスまたはミストを含むガスをこのようにして火炎の長さ方向における複数箇所で火炎の内部に吹き込むと、火炎の下流側部分を効果的に冷却することができるため、過冷却液相金属皮膜の形成上有利である。火炎の噴射口の周囲から冷却ガスを吹き出すこととしても、噴射口の周囲にはガスの吹き出し部を設けるスペースが広くは存在しないので、必ずしも十分な量のガスを吹き出して十分な冷却を実現できるとは限らない。その点、火炎と離れた外側からガス等を吹き込むこととすれば、多量の吹き込みが可能となって一層効果的に火炎の冷却が行えるのである。なお、ガスまたはミストを含むガスは、長さ方向だけでなく火炎の周方向における複数箇所から吹き込むようにするとよい。
ガスまたはミストを含むガスとしては、たとえば、ミスト化した水を空気中に混入させたもの(水ミスト)を使用すると、微細な(100μ程度の)水粒子が有する気化熱のために高い冷却能力が発揮される。また水ミストは、火炎と接しても燃焼しないなど、不利な化学反応を引き起こすことがない点でも有利である。
In order to cool the downstream portion of the flame, it is preferable to blow a gas or a gas containing mist from the outside away from the flame toward the inside of the flame at a plurality of locations in the flame length direction.
When the gas or gas containing mist is blown into the flame at multiple locations in the length direction of the flame in this way, the downstream portion of the flame can be effectively cooled. It is advantageous in formation. Even when the cooling gas is blown out from the periphery of the flame injection port, there is not a large space for providing a gas blowing portion around the injection port, so that sufficient cooling can be realized by blowing out a sufficient amount of gas. Not necessarily. In that respect, if gas or the like is blown from the outside away from the flame, a large amount of blow is possible, and the flame can be cooled more effectively. The gas or gas containing mist may be blown from a plurality of locations in the circumferential direction of the flame as well as in the length direction.
As a gas or a gas containing mist, for example, when a water in which mist is mixed (water mist) is used, a high cooling capacity is obtained due to the heat of vaporization of fine (about 100 μm) water particles. Is demonstrated. Water mist is also advantageous in that it does not cause adverse chemical reactions, such as not burning even when in contact with a flame.

ミストを含む上記のガスとして、水ミストを含む空気を、母材(被溶射材)の表面に達するように吹き込むのが有利である。水ミストが、ミストの状態で、つまり全量が気化してしまうまでに母材に届くようにすれば、母材の表面で水ミストが気化して母材を冷却する結果、母材がたとえば80℃程度以下に冷却され、溶射材料による過冷却液相金属皮膜が形成されやすくなる。   As the gas containing mist, it is advantageous to blow air containing water mist so as to reach the surface of the base material (material to be sprayed). If the water mist reaches the base material in the mist state, that is, before the entire amount is vaporized, the water mist evaporates on the surface of the base material and cools the base material. It is cooled to about 0 ° C. or less, and a supercooled liquid phase metal film is easily formed by the thermal spray material.

上記の装置ではとくに、噴射口の出口での火炎の温度を1000〜2600℃とし、上記のとおり冷却することにより、噴射口から300mm以内(好ましくは200mm以内)の箇所で当該火炎の温度を80℃以下にするのがよい。
そのようにすれば、噴出口を出た溶射材料をきわめて急速に冷却することになる。噴出口からの溶射材料の噴出速度を、溶射ガンとして一般的な30m/sec程度とすると、溶射材料の80℃までの平均冷却速度は約20万℃/秒以上となり、過冷却液相金属皮膜の形成に適した冷却速度となる。つまり、火炎温度がこのように80℃以下の温度となる箇所に母材を置けば、溶射材料は過冷却の液相状態で母材上に付着し、過冷却液相金属皮膜(またはアモルファス皮膜)となる。
Particularly in the above apparatus, the temperature of the flame at the outlet of the injection port is set to 1000 to 2600 ° C., and the temperature of the flame is set to 80 within 300 mm (preferably within 200 mm) from the injection port by cooling as described above. It is good to make it below ℃.
By doing so, the sprayed material exiting the jet outlet is cooled very rapidly. When the spraying speed of the sprayed material from the spray port is about 30 m / sec, which is a typical spray gun, the average cooling rate of the sprayed material to 80 ° C is about 200,000 ° C / second or more, and the supercooled liquid phase metal film The cooling rate is suitable for forming the film. In other words, if the base material is placed at a location where the flame temperature is 80 ° C. or lower in this way, the sprayed material adheres to the base material in the supercooled liquid phase state, and the supercooled liquid phase metal film (or amorphous film) )

あるいは、上記の装置において、噴出口の出口近くでの火炎の温度を1000〜2600℃とし、上記のとおり冷却することにより、噴出口を出たのち1/100秒以内に当該火炎を80℃以下にするのもよい。
そうする場合にも、噴出口を出た溶射材料を80℃以下の温度にまで平均20万℃/秒以上という高速度で冷却することとなり、過冷却液相金属皮膜の形成に適している。上記と同様、火炎温度が80℃以下の温度となる箇所に母材を置けば、溶射材料は過冷却の液相状態で母材上に付着して過冷却液相金属皮膜となる。
Alternatively, in the above apparatus, the flame temperature near the outlet of the jet outlet is set to 1000 to 2600 ° C., and cooling as described above allows the flame to be 80 ° C. or less within 1/100 second after exiting the jet outlet. It is good to make it.
Even in such a case, the sprayed material exiting the jet outlet is cooled to a temperature of 80 ° C. or lower at an average speed of 200,000 ° C./second or more, which is suitable for forming a supercooled liquid phase metal film. Similarly to the above, if the base material is placed at a location where the flame temperature is 80 ° C. or less, the thermal spray material adheres onto the base material in a supercooled liquid phase state to form a supercooled liquid phase metal film.

上記発明の溶射装置は、噴射口を出た当初の火炎を80万〜140万℃/秒の速度で170℃まで冷却するとともに、80℃に達する時点の火炎を4万〜20万℃/秒の速度で冷却するものとするのがとくに好ましい。
前記したとおり、火炎が高温度である前半の冷却とは違って、火炎が数百℃程度以下になる後半の冷却を高速かつ十分には行いがたく、そのために溶射材料を過冷却液相にもアモルファスにもできないことが一般的には多い。しかし、上記のように火炎の下流側部分を冷却してこのように後半の冷却を強くすれば、過冷却液相金属皮膜等の形成を円滑に行うことが可能になる。
The thermal spraying apparatus of the above invention cools the initial flame exiting the injection port to 170 ° C. at a rate of 800,000 to 1.4 million ° C./second, and the flame when reaching 80 ° C. to 40,000 to 200,000 ° C./second. It is particularly preferable to cool at a rate of
As described above, unlike the first half cooling where the flame is at a high temperature, the second half cooling where the flame is about several hundred degrees Celsius or less is difficult to perform at high speed and sufficiently. In general, there are many things that cannot be made amorphous. However, if the downstream portion of the flame is cooled as described above and the latter half of the cooling is strengthened in this way, it becomes possible to smoothly form a supercooled liquid phase metal film or the like.

請求項に係る溶射装置は、火炎を冷却することにより、十分な冷却速度と最低到達温度とを実現することができ、もって当該材料を過冷却液相金属皮膜(またはアモルファス金属皮膜)として母材表面に形成することを可能にする。   The thermal spraying apparatus according to the claims can achieve a sufficient cooling rate and a minimum temperature by cooling the flame, and thus the base material as a supercooled liquid phase metal film (or amorphous metal film). Allows to form on the surface.

発明の実施に関する形態を図1〜図9に紹介する。図1は実験で使用した溶射装置1を示す図であって、図1(a)は溶射装置1の全体構成図、同(b)はその溶射装置1における火炎温度の分布を示す図である。図2は溶射ガン2の構造を示す図で、図2(a)は全体図、同(b)は同(a)におけるb部(先端部)の詳細図である。図3は、Zn(95%)−Mg(5%)合金の冷却曲線に溶射装置1および他の溶射装置による冷却経過を書き込んだ線図である。図4(a)・(b)・(c)は、溶射装置1に関し溶射中の火炎の状態を示す図であって、同(a)・(b)は火炎の中心線に沿ってその温度の変化を示す線図(同(a)は高温部、同(b)は低温部である)、同(c)はサーマルビジョンで撮影した火炎の温度分布である。図5は、母材Mに貼り付けた熱電対による溶射中の温度測定結果であり、図6は溶射後の母材Mの表面写真である。図7の(a)・(b)は、他の一般的な溶射装置に関して溶射中の火炎の状態を示す、それぞれ図4(a)・(c)と同様の図である。図8(a)・(b)および図9(a)・(b)は、噴射筒6からのエアGの影響を示すための図であって、火炎中心の温度分布(各図(a))とサーマルビジョンによる撮影画像(各図(b))とを表すものである。また図10は、図3のものとは別の合金で形成した溶射皮膜についてX線回折測定結果を示す線図である。   Embodiments relating to the embodiment of the invention are introduced in FIGS. FIG. 1 is a diagram showing a thermal spraying apparatus 1 used in the experiment, in which FIG. 1A is an overall configuration diagram of the thermal spraying apparatus 1 and FIG. 1B is a diagram showing a flame temperature distribution in the thermal spraying apparatus 1. . 2A and 2B are diagrams showing the structure of the thermal spray gun 2. FIG. 2A is an overall view, and FIG. 2B is a detailed view of a portion b (tip portion) in FIG. FIG. 3 is a diagram in which the cooling process by the thermal spraying device 1 and other thermal spraying devices is written on the cooling curve of the Zn (95%)-Mg (5%) alloy. 4 (a), 4 (b), and 4 (c) are diagrams showing the state of the flame being sprayed with respect to the thermal spraying apparatus 1, and FIGS. 4 (a) and 4 (b) show the temperature along the center line of the flame. (A) is a high-temperature part, (b) is a low-temperature part), and (c) is a flame temperature distribution photographed by thermal vision. FIG. 5 is a temperature measurement result during thermal spraying using a thermocouple attached to the base material M, and FIG. 6 is a surface photograph of the base material M after thermal spraying. FIGS. 7A and 7B are views similar to FIGS. 4A and 4C, respectively, showing the state of flame during thermal spraying for other general thermal spraying apparatuses. FIGS. 8A and 8B and FIGS. 9A and 9B are diagrams for illustrating the influence of the air G from the injection cylinder 6, and the temperature distribution at the center of the flame (each figure (a)). ) And a captured image by thermal vision (each figure (b)). FIG. 10 is a diagram showing X-ray diffraction measurement results for a sprayed coating formed of an alloy different from that of FIG.

まず、図1・図2に基づいて溶射装置1の構成を説明する。溶射装置1は市販の溶射ガン2をベースにしたもので、ガス供給管3等より燃料(アセチレンおよび酸素のそれぞれ)を供給するとともに粉末供給管4より金属粉末およびキャリアガスを供給し、溶射材料(供給された金属粉末が溶融したもの)を含む火炎Fを、溶射ガン2の主ノズル(火口)5から図示右方へ噴射することができる。主ノズル5のうち、図2(b)に示す中央部の噴出口5aより溶射材料が噴出し、その周囲にある複数の噴射口5bより、アセチレンと酸素との混合ガスが燃焼してなる火炎Fが噴射される。   First, the structure of the thermal spraying apparatus 1 is demonstrated based on FIG. 1 and FIG. The thermal spraying device 1 is based on a commercially available spraying gun 2 and supplies fuel (acetylene and oxygen) from a gas supply pipe 3 and the like, and also supplies a metal powder and a carrier gas from a powder supply pipe 4 to form a thermal spray material. A flame F containing (melted supplied metal powder) can be sprayed from the main nozzle (crater) 5 of the spray gun 2 to the right in the figure. A flame formed by spraying a thermal spray material from the central nozzle 5a of the main nozzle 5 shown in FIG. 2 (b) and burning a mixed gas of acetylene and oxygen from the plurality of nozzles 5b around the nozzle 5a. F is injected.

実験で使用した溶射装置1は、上記した市販の溶射ガン2に下記a)〜c)のような改変を施している。すなわち、
a) 溶射ガン2の先端付近に支持枠7を設け、図1(a)のようにその支持枠7に複数本のミスト噴射ノズル10(11・12・13・14)を取り付けた。ノズル10のそれぞれは内径が5〜10mm程度の金属管であり、いずれも、支持枠7上に取り付けた基部から溶射ガン2の主ノズル5の外側を火炎Fの噴射方向とほぼ並行に延び、先端部を図のように火炎Fの中心線寄りに傾斜させている。先端部の位置によって、1次ノズル11、2次ノズル12、3次ノズル13、4次ノズル14と名付けている。1次ノズル11は主ノズル5から60mm程度下流側の位置に先端(開口)を設けて噴射先をさらに20〜30mmだけ下流側の火炎中心に向け、他のノズル12・13・14は、この順に主ノズル5から離れた位置に先端を設けて同様に噴射先をそれぞれやや下流側の火炎中心に向けている。これらにより、火炎Fの下流側部分(主ノズル5から母材Mまでのうち後半の約2分の1の範囲)に外側から、冷却用のたとえば水ミストHを吹き付けるのである。ノズル10としては、上記のように1〜4次の各ノズル11〜14を火炎Fの長さ方向に分けて配置したほか、火炎Fの周囲にも、45°〜72°の間隔をおいて各ノズル11〜14を複数本ずつ設けている。また支持枠7に取り付けた各ノズル10の基部は、支持枠7の背部(火炎Fの噴射向きと逆の側)に設けた継手16aに通じていて、その継手16aによりフレキシブルホース16と接続している。なお、支持枠7は実験用のものであり、それを使用せずにミスト噴射ノズル10を配置することも可能である。また、ノズル10(11・12・13・14)の長さや先端の位置、角度、ミスト噴射量等は、冷却条件等に応じて適宜に変更することが可能である。後述するように、ミストを含ませないでエア(または他の気体)のみを噴射することもできる。
The thermal spraying apparatus 1 used in the experiment is modified as shown in the following a) to c) on the above-described commercially available thermal spraying gun 2. That is,
a) A support frame 7 was provided near the tip of the thermal spray gun 2, and a plurality of mist injection nozzles 10 (11, 12, 13, 14) were attached to the support frame 7 as shown in FIG. Each of the nozzles 10 is a metal tube having an inner diameter of about 5 to 10 mm, and both extend from the base attached on the support frame 7 to the outside of the main nozzle 5 of the spray gun 2 almost in parallel with the injection direction of the flame F. The tip is inclined toward the center line of the flame F as shown. The primary nozzle 11, the secondary nozzle 12, the tertiary nozzle 13, and the fourth nozzle 14 are named according to the position of the tip. The primary nozzle 11 is provided with a tip (opening) at a position about 60 mm downstream from the main nozzle 5 and the injection destination is further directed to the flame center by 20 to 30 mm, and the other nozzles 12, 13, 14 are A tip is provided at a position away from the main nozzle 5 in order, and the injection destination is directed toward the flame center on the slightly downstream side. As a result, for example, water mist H for cooling is sprayed from the outside to the downstream side portion of the flame F (a range of about a half of the latter half of the main nozzle 5 to the base material M). As the nozzle 10, the first to fourth order nozzles 11 to 14 are arranged separately in the length direction of the flame F as described above, and there is an interval of 45 ° to 72 ° around the flame F. A plurality of nozzles 11 to 14 are provided. The base of each nozzle 10 attached to the support frame 7 leads to a joint 16a provided on the back of the support frame 7 (the side opposite to the direction in which the flame F is sprayed), and is connected to the flexible hose 16 by the joint 16a. ing. Note that the support frame 7 is for experimentation, and the mist injection nozzle 10 can be arranged without using it. Moreover, the length of the nozzle 10 (11, 12, 13, 14), the position of the tip, the angle, the mist injection amount, and the like can be appropriately changed according to the cooling conditions and the like. As will be described later, it is also possible to inject only air (or other gas) without including mist.

b) ミスト噴射ノズル10(11〜14)のそれぞれの管の上流側には、上記のフレキシブルホース16を介してミスト発生器15を接続している。ミスト発生器15としては、潤滑油供給に使用する市販のオイルミスト発生器(ルブリケーター)を流用しており、潤滑油に代えて水をその給液部に入れておくことにより、水を霧状(水ミスト)にして空気とともに各ノズル10内に送り込む。溶射装置1は、こうして水ミストHを、上記したノズル10の先端から火炎Fに向けて噴射するのである。ミスト発生器15に何の液体も入れないこととすれば、ミストを含まないエア(または他の気体)をノズル10の先から噴射することができる。
なお、水ミストHを噴射するための手段は上記に限るものではない。むしろ、水とエアとの各配管の先に専用ノズル(二流体ノズル)を取り付けて、そこでミストを発生させるのが一般的である。しかし現在のところそのような専用ノズルは、大きさの点で、溶射ガン2の主ノズル5の先を囲むように複数配置することが難しいため、実験では上記のようにオイルミスト発生器を流用した。潤滑油に代えて水を同発生器に入れることにより水ミストHが発生することは、事前にテストを行って確認した。二流体型の上記した専用ノズルなども、大きさに関する課題が解決されれば溶射装置1において適切に使用できる。
b) A mist generator 15 is connected to the upstream side of each pipe of the mist injection nozzle 10 (11 to 14) via the flexible hose 16 described above. As the mist generator 15, a commercially available oil mist generator (lubricator) used for lubricating oil supply is diverted. It is made into a state (water mist) and sent into each nozzle 10 together with air. Thus, the thermal spraying apparatus 1 injects the water mist H from the tip of the nozzle 10 toward the flame F. If no liquid is put into the mist generator 15, air (or other gas) that does not contain mist can be ejected from the tip of the nozzle 10.
Note that the means for injecting the water mist H is not limited to the above. Rather, it is common to install a dedicated nozzle (two-fluid nozzle) at the end of each pipe of water and air and generate mist there. However, at present, it is difficult to arrange a plurality of such dedicated nozzles so as to surround the tip of the main nozzle 5 of the spray gun 2 in terms of size, and therefore, in the experiment, the oil mist generator is used as described above. did. A test was conducted in advance to confirm that water mist H was generated by putting water in the generator instead of the lubricating oil. The two-fluid type dedicated nozzle described above can also be appropriately used in the thermal spraying apparatus 1 if the problem relating to size is solved.

c) 溶射ガン2としては、図2(a)・(b)のように、火炎Fを吹き出す主ノズル5の周囲にガス噴射筒(エアキャップ)6を有し、溶射ガン2の本体の冷却および火炎Fの温度コントロール等の目的でそれより冷却ガス(たとえば常温エアG)を吹き出せる型式を採用している。この溶射装置1では、そうした噴射筒6の吹出し孔6aを改造して当該ガスの噴射向きに特有の角度をもたせるとともに、主ノズル5における溶射材料の噴出口5aの口径を大きめに設定し直している。すなわち、冷却ガスの噴射角度としては、外周から次第に火炎Fの中心線に近づくように図示のとおり火炎Fの中心線方向と10°(または9〜12°)の角度をもたせ、主ノズル5の噴出口5aの口径(直径)は5.0mm(または4〜6mm)と市販品(口径は3.0mm)より6割程度大きくした。噴出口5aの口径を大きくしたのは、溶射材料が高温度で多量に噴出され得るようにしたもので、また、冷却ガスの噴射角度として中心線寄りへの10°を設定したのは、噴射筒6からのエアGにより火炎Fを上流側部分(主ノズル5に近い位置)で冷却するとともにその広がりを抑えて火炎長さを短くするためである。なお、ミスト噴射ノズル10による火炎Fの冷却(ミストを噴射しない場合を含む)を「外部冷却」と呼び、ガス噴射筒6からのガスによる冷却を「内部冷却」と呼んで両者を区別することができる。   c) As shown in FIGS. 2A and 2B, the spray gun 2 has a gas injection cylinder (air cap) 6 around the main nozzle 5 that blows out the flame F, and cools the main body of the spray gun 2 For the purpose of controlling the temperature of the flame F and the like, a type from which a cooling gas (for example, room temperature air G) can be blown out is adopted. In this thermal spraying apparatus 1, the blowout hole 6 a of the injection cylinder 6 is modified to give a specific angle to the gas injection direction, and the diameter of the spraying material outlet 5 a of the main nozzle 5 is set to be larger. Yes. That is, as the injection angle of the cooling gas, an angle of 10 ° (or 9 to 12 °) with the direction of the center line of the flame F as shown in the drawing so as to gradually approach the center line of the flame F from the outer periphery, The diameter (diameter) of the jet nozzle 5a was 5.0 mm (or 4 to 6 mm), which was about 60% larger than a commercially available product (the diameter was 3.0 mm). The reason why the diameter of the jet outlet 5a is increased is that the sprayed material can be ejected in large quantities at a high temperature, and the injection angle of the cooling gas is set to 10 ° closer to the center line. This is because the air F from the cylinder 6 cools the flame F at the upstream portion (position close to the main nozzle 5) and suppresses its spread to shorten the flame length. The cooling of the flame F by the mist injection nozzle 10 (including the case where the mist is not injected) is called “external cooling”, and the cooling by the gas from the gas injection cylinder 6 is called “internal cooling” to distinguish between the two. Can do.

このように改変を加えた図1・図2の溶射装置1を使用すると、主ノズル5から噴射された火炎F(溶射材料を含む)は、溶射距離とともに図1(b)のように温度降下する。すなわち、主ノズル5を出た直後には、その口径が大きく設定されていること等により火炎Fは1000〜2600℃の高温度である(溶射材料の成分等によって異なる)が、前半(母材Mまでの距離の約2分の1まで)のうちに170℃程度に下がり、その後は、やや冷却速度を落としながら母材Mの直前で最下点温度として80℃以下にまで下がる。前半の温度降下は、噴射筒6からのエアGによる冷却と、ミスト噴射ノズル10のうち1次ノズル11等による冷却の効果であると考えられ、また後半の温度降下は、それ以降のミスト噴射ノズル10による冷却が効いていると考えられる。後半において冷却速度が遅くなるのは、火炎Fの温度低下にともなって周囲温度との差が小さくなるためで、ノズル10からのミスト噴射を行わないとしたら後半の冷却速度の低下はさらに著しい。   When the thermal spraying apparatus 1 of FIGS. 1 and 2 with such modifications is used, the flame F (including the thermal spray material) injected from the main nozzle 5 is subjected to a temperature drop as shown in FIG. To do. That is, immediately after leaving the main nozzle 5, the flame F is at a high temperature of 1000 to 2600 ° C. (depending on the components of the thermal spray material, etc.) due to its large diameter, etc. Within about one-half of the distance to M), and then decreases to about 80 ° C. or less as the lowest point temperature immediately before the base material M while slightly reducing the cooling rate. The temperature drop in the first half is considered to be the effect of cooling by the air G from the injection cylinder 6 and the cooling by the primary nozzle 11 among the mist injection nozzles 10, and the temperature drop in the second half is the subsequent mist injection. It is considered that cooling by the nozzle 10 is effective. The reason why the cooling rate becomes slower in the second half is that the difference from the ambient temperature becomes smaller as the temperature of the flame F decreases, and if the mist injection from the nozzle 10 is not performed, the lowering of the cooling rate in the second half is even more remarkable.

以上のような特徴をもつ溶射装置1を用いた試験により、鉄板の表面上に、溶射によって過冷却液相金属皮膜を形成することができた。試験では、図1(a)のように、主ノズル5の先端開口から約150mmの距離に鉄板製の母材Mを置き、溶射材料としてたとえばMg(マグネシウム)およびZn(亜鉛)を含む金属粉末(Zn(95%)、Mg(5%))を供給して溶射を行った。以下に、発明者らが行った試験の結果等を紹介する。   As a result of the test using the thermal spraying apparatus 1 having the above characteristics, a supercooled liquid phase metal film could be formed on the surface of the iron plate by thermal spraying. In the test, as shown in FIG. 1 (a), an iron plate base material M is placed at a distance of about 150 mm from the tip opening of the main nozzle 5, and a metal powder containing, for example, Mg (magnesium) and Zn (zinc) as a thermal spray material. Thermal spraying was performed by supplying (Zn (95%), Mg (5%)). The results of tests conducted by the inventors will be introduced below.

試験中の火炎Fの温度分布を測定すると図4(a)〜(c)のとおりであった。図4(a)・(b)は火炎Fの中心線に沿ってその温度の変化を示す線図(各縦軸は温度指標、横軸は左方の主ノズル5からの相対位置を示す)である。図4(a)は高温域の測定結果であり、同(b)は低温域の測定結果である(測定レンジと測定器の表示機能との関係で図4(a)のうち低温域(200℃以下の部分)にはエラーが表れている)。火炎Fの温度が、当初の高温域(1000〜1500℃)から顕著に降下し、母材Mに近い後半部分においては80℃以下にまで温度降下している。80℃以下という温度はMgZnの合金の融点をはるかに下回るが、溶射材料はこの温度においても過冷却の溶融状態にあり、母材Mの表面上に付着して固体となる。
また、図4(c)はサーマルビジョンによる火炎Fの撮影画像であり、左方に主ノズル5があり右方に母材Mがある。画像では、左右に延びたミスト噴射ノズル10によって火炎Fの一部が遮られているが、火炎Fにおける高温度の範囲がかなり短いことが観察される。
なおサーマルビジョンとは、日本アビオニクス株式会社製の赤外線カメラ(商品名「コンパクトサーモ」。「サーモ」とも呼ぶ)をさす。サーマルビジョンによる測定はε(放射率)0.10で行っている。
When the temperature distribution of the flame F during the test was measured, it was as shown in FIGS. 4A and 4B are diagrams showing changes in temperature along the center line of the flame F (each vertical axis indicates a temperature index, and the horizontal axis indicates a relative position from the left main nozzle 5). It is. 4A shows the measurement result in the high temperature region, and FIG. 4B shows the measurement result in the low temperature region (the low temperature region (200 in FIG. 4A is related to the measurement range and the display function of the measuring instrument). An error appears in the part below ℃)). The temperature of the flame F drops remarkably from the initial high temperature range (1000 to 1500 ° C.), and in the latter half portion close to the base material M, the temperature drops to 80 ° C. or less. Although the temperature of 80 ° C. or lower is much lower than the melting point of the MgZn alloy, the sprayed material is in a supercooled molten state even at this temperature and adheres to the surface of the base material M to become a solid.
FIG. 4C is a captured image of the flame F by thermal vision. The main nozzle 5 is on the left and the base material M is on the right. In the image, a part of the flame F is blocked by the mist injection nozzle 10 extending to the left and right, but it is observed that the high temperature range in the flame F is considerably short.
Thermal vision refers to an infrared camera manufactured by Nippon Avionics Co., Ltd. (trade name “Compact Thermo”. Also called “Thermo”). Measurement by thermal vision is performed at ε (emissivity) of 0.10.

実験では、母材Mとした薄い鉄板の裏面に熱電対を貼り付けて、溶射中の母材Mの温度変化を測定した。図5はその温度測定結果であり、母材Mの温度は70℃以上には上昇していないことが分かる。火炎Fが水ミストH等で十分に冷却されること、また、一部の水ミストHが気化していない状態で母材Mに当たってその表面を冷却することが、母材Mの温度上昇が抑制される理由であると考えられる。   In the experiment, a thermocouple was attached to the back surface of a thin iron plate used as the base material M, and the temperature change of the base material M during spraying was measured. FIG. 5 shows the temperature measurement result, and it can be seen that the temperature of the base material M does not rise above 70 ° C. The temperature rise of the base material M is suppressed by the fact that the flame F is sufficiently cooled by the water mist H or the like, and the surface of the base material M is cooled when the water F is not vaporized. It is thought that is the reason.

図7(a)・(b)には、比較例として、他の溶射装置を使用する場合の火炎Fの状態を示している。すなわち、ミスト噴射ノズル10を備えず、噴射筒6からの冷却ガスを火炎Fの中心線から離れる向き(発散向き)に吹き出す一般の溶射ガンによって図1(a)と同様に母材Mに向け火炎F(溶射材料を含む)を噴射する場合の、火炎Fの中心線に沿った温度変化(図7(a))と、サーマルビジョンによる火炎Fの画像(図7(b))とを示している。図(b)のように火炎Fは長く、母材Mに当たって戻る部分があること等の影響で火炎Fの温度は後半になってもほとんど下がらない。図示の例は極端な一例であり、ミスト噴射をしないとき母材Mに近いほど火炎Fの温度がつねに高くなるわけではないが、後半における火炎Fの温度降下は、図4の場合に比べて顕著に鈍くなる。   FIGS. 7A and 7B show the state of the flame F when another thermal spraying apparatus is used as a comparative example. That is, the mist injection nozzle 10 is not provided, and the general spray gun that blows the cooling gas from the injection cylinder 6 away from the center line of the flame F (divergence direction) is directed toward the base material M as in FIG. A temperature change along the center line of the flame F (FIG. 7 (a)) and an image of the flame F by thermal vision (FIG. 7 (b)) in the case of injecting the flame F (including the thermal spray material) are shown. ing. As shown in FIG. 2B, the flame F is long, and the temperature of the flame F hardly decreases even in the latter half due to the fact that there is a part that hits the base material M and returns. The illustrated example is an extreme example. When the mist is not injected, the temperature of the flame F does not always increase as it is closer to the base material M, but the temperature drop of the flame F in the latter half is higher than that in the case of FIG. Remarkably dull.

図4・図7のようにして測定した火炎Fの温度変化を、低融点(融点475℃)であるZn−Mg合金の冷却曲線(縦軸は温度、横軸は冷却時間)の図中に示すと図3のようになる。図3は、重量比でZn(95%)、Mg(5%)の混合粉末での実績を示している。図1の溶射装置1を使用し、ミスト噴射ノズル10から十分な量の水ミストHを噴射するとともに噴射筒6からエアGを噴射しながら溶射を行う場合には、折れ線ABC(接近した3本をさす)にしたがって火炎Fの温度を下げることができた。線分ABの間では、主ノズル5を出た当初の 1000〜1500℃の火炎Fを、概ね80万℃/秒の速度で170℃前後まで冷却し、それにつづく線分BCの間、すなわち80℃に達する前後の火炎Fを約10万℃/秒の速度で冷却していることになる。そして全体としては、主ノズル5を出たのち1/1000〜2/1000秒後に当該火炎Fの温度を80℃以下にまで下げている。   The temperature change of the flame F measured as shown in FIGS. 4 and 7 is shown in the graph of the cooling curve of the Zn—Mg alloy having a low melting point (melting point 475 ° C.) (the vertical axis is the temperature and the horizontal axis is the cooling time). As shown in FIG. FIG. 3 shows the results with a mixed powder of Zn (95%) and Mg (5%) by weight. When spraying a sufficient amount of water mist H from the mist injection nozzle 10 and spraying air G from the injection cylinder 6 using the thermal spraying apparatus 1 of FIG. The temperature of the flame F was able to be lowered. Between the line segments AB, the initial flame F of 1000 to 1500 ° C. exiting the main nozzle 5 is cooled to around 170 ° C. at a rate of approximately 800,000 ° C./second, and during the subsequent line segment BC, ie 80 The flame F before and after reaching C. is cooled at a rate of about 100,000 C / sec. As a whole, the temperature of the flame F is lowered to 80 ° C. or less after 1/1000 to 2/1000 seconds after exiting the main nozzle 5.

図3に示す折れ線ABCにしたがって火炎Fの温度を下げた場合には、アモルファス金属またはそれに近い過冷却液相金属の皮膜が母材Mの表面上に形成されている。実際、母材M上の金属皮膜についての金属反射度(X線回折分析でのX線強度値であり、低いほどアモルファス化が高い)は、最小のもので8000cpsと低かった。このような金属皮膜には、機械的強度や耐食性等に関してすぐれた性質が備わっている。図3から分かるように、最低温度が下がるにつれて、また冷却速度が上がるにつれて、金属反射度が下がっている。
母材Mの表面に形成された過冷却液相金属皮膜の外観写真(ほぼ原寸大)を、図6に示す。また、使用したX線回折分析(XRD法)の測定器と測定条件については以下のとおりである。
分析装置 : RINT2000(RIGAKU製)
分析条件
管球 : Cu
電圧 : 40kV
電流 : 200mA
測定角度(2θ): 5〜120°
ステップ : 0.02°
スキャンスピード: 4°/min
When the temperature of the flame F is lowered according to the polygonal line ABC shown in FIG. 3, a film of amorphous metal or a supercooled liquid phase metal close thereto is formed on the surface of the base material M. Actually, the metal reflectivity (the X-ray intensity value in the X-ray diffraction analysis, the higher the amorphization becomes, the lower the value) of the metal film on the base material M was as low as 8000 cps. Such a metal film has excellent properties with respect to mechanical strength and corrosion resistance. As can be seen from FIG. 3, the metal reflectivity decreases as the minimum temperature decreases and as the cooling rate increases.
An appearance photograph (substantially full size) of the supercooled liquid phase metal film formed on the surface of the base material M is shown in FIG. Moreover, the measuring instrument and measurement conditions of the used X-ray diffraction analysis (XRD method) are as follows.
Analyzer: RINT2000 (manufactured by RIGAKU)
Analysis conditions Tube: Cu
Voltage: 40kV
Current: 200mA
Measurement angle (2θ): 5 to 120 °
Step: 0.02 °
Scanning speed: 4 ° / min

一方、水ミストHの噴射ノズル10の本数を半分に減らした場合には、火炎Fの温度変化は図3中の折れ線ADEまたはAFGに沿うこととなった。これらは、各冷却曲線では最終温度の到達温度も高く、金属反射率はそれぞれ20000cps以上となった。   On the other hand, when the number of the water mist H injection nozzles 10 is reduced to half, the temperature change of the flame F follows the polygonal line ADE or AFG in FIG. In each cooling curve, the final temperature reached was high, and the metal reflectivity was 20000 cps or more.

図3の折れ線ABCにしたがって火炎Fを温度降下させたときの溶射等の条件はつぎのとおりである。
供給した燃料ガスの種類および量 : 酸素2.1 m3/h、アセチレン1.8 m3/h
供給した金属粉末の種類と使用量 : ZnMg粉末(重量比でZn95%、Mg5%)
使用量 3〜10 g/min
火炎Fの噴射速度 : 30〜40 m/sec
火炎Fの最高温度 : 800〜1000℃(サーモの測定値による)
火炎Fの最下点温度 : 90〜100℃(サーモの測定値による)
エアの噴射量 : 1段階毎1〜2 m3/min
水ミストHの噴射量 : 1段階毎0.75〜1.25 ml/s
(「1段階」とは、先端部位置のほぼ等しい噴射ノズル11〜14の各群をさす)
Conditions for thermal spraying and the like when the temperature of the flame F is lowered according to the polygonal line ABC in FIG. 3 are as follows.
Type and amount of fuel gas supplied: Oxygen 2.1 m 3 / h, Acetylene 1.8 m 3 / h
Type and amount of metal powder supplied: ZnMg powder (95% Zn by weight, 5% Mg)
Usage 3 ~ 10 g / min
Flame F injection speed: 30-40 m / sec
Maximum temperature of flame F: 800-1000 ° C (depending on thermo measurement)
The lowest point temperature of flame F: 90 ~ 100 ℃ (according to the measured value of thermo)
Air injection rate: 1-2 m 3 / min per stage
Water mist H injection rate: 0.75 to 1.25 ml / s per stage
("One stage" refers to each group of injection nozzles 11-14 having substantially the same tip position)

実験では、噴射筒6からのエアGの影響についても調査した。すなわち、主ノズル5の口径を5.0mmとし、水ミストHは噴射しないこととして、溶射の際、上記したとおり噴射角度(火炎Fの中心線方向との角度)が10°の噴射筒6を使用してエアGを噴射する場合と、噴射角度が中心線寄りに7°のものを使用した場合とについて、火炎の状態を観察した。エアGの圧力はともに0.5MPaとしている。前者の場合の火炎Fの温度変化とサーマルビジョンによる温度分布とを図8(a)・(b)に示し、後者の場合の同様の結果を図9(a)・(b)に示した。
図8(噴射角度が10°の場合)では火炎Fが短く(約150mm)、火炎Fの先の方でその温度が下がっていることが観察される。一方、図9(噴射角度が7°の場合)では火炎Fが長く(約250mm)、先端付近の温度も下がりにくいことが分かる。
In the experiment, the influence of the air G from the injection cylinder 6 was also investigated. That is, the diameter of the main nozzle 5 is set to 5.0 mm, and the water mist H is not jetted. As described above, the jet cylinder 6 having an jet angle (angle with respect to the center line direction of the flame F) of 10 ° is used. The state of the flame was observed for the case where the air G was used and the case where the injection angle was 7 ° closer to the center line. The pressure of the air G is both 0.5 MPa. The temperature change of the flame F and the temperature distribution by thermal vision in the former case are shown in FIGS. 8A and 8B, and similar results in the latter case are shown in FIGS. 9A and 9B.
In FIG. 8 (when the injection angle is 10 °), it is observed that the flame F is short (about 150 mm), and the temperature is lowered at the tip of the flame F. On the other hand, in FIG. 9 (when the injection angle is 7 °), it can be seen that the flame F is long (about 250 mm) and the temperature near the tip is difficult to decrease.

なお、上記ではMgZn合金の溶射について示したが、溶射装置1で他の材料を溶射する場合にも、母材上に過冷却液相金属またはアモルファス金属の皮膜を形成することが可能である。その一例として、高融点(融点1500℃以上)の高耐食性材料であるFe70Cr10137につき、粉末材料をもとに上述の溶射装置1によって母材M上に溶射したところ、アモルファス皮膜の形成に成功した。その皮膜についてのX線回折測定結果を図10に示す。非晶質であることを示す明瞭なハローピークが確認できる。結晶化度を測定したところ約20%(80%が非晶質)であった。なお、この合金の溶射の際は、外部冷却(図1のミスト噴射ノズル10による冷却)のために、ミストを含まないエアを噴射した。内部冷却のみを行って外部冷却を全く行わない場合にも、結晶化度44%(56%が非晶質)を実現できた。この合金の溶射においては、その他の点でも、前記したMgZn合金の場合とは溶射条件の一部(主ノズルから母材までの距離が200mmである等)が多少相違する。 In addition, although the thermal spraying of the MgZn alloy has been described above, it is possible to form a supercooled liquid phase metal film or an amorphous metal film on the base material even when the thermal spraying apparatus 1 sprays other materials. As an example, when Fe 70 Cr 10 P 13 C 7 , which is a high corrosion resistance material having a high melting point (melting point 1500 ° C. or higher), is sprayed onto the base material M by the above-described spraying device 1 based on a powder material, amorphous The film was successfully formed. The X-ray diffraction measurement result for the film is shown in FIG. A clear halo peak indicating the amorphous state can be confirmed. When the degree of crystallinity was measured, it was about 20% (80% was amorphous). In the thermal spraying of this alloy, air containing no mist was sprayed for external cooling (cooling by the mist spray nozzle 10 in FIG. 1). Even when only internal cooling was performed and no external cooling was performed, a crystallinity of 44% (56% was amorphous) could be realized. In other points, the thermal spraying of this alloy is slightly different from the above-described MgZn alloy in part of the thermal spraying conditions (such as the distance from the main nozzle to the base material being 200 mm).

過冷却液相金属皮膜(ないしアモルファス金属皮膜)を形成するための手段は、上記で使用した溶射装置1に限るものではない。たとえば、外部冷却のためのミスト噴射ノズル10(図1参照)は、各ノズルの位置や向きを図示以外の設定にすることができ、主ノズル5を囲む特定の円上の箇所から、多少の広がり角をもって放射状に水ミスト等を噴射するようにすることも可能である。また、上記の溶射装置1はいわゆるフレーム式の溶射機をもとに構成したが、アーク式溶射機またはプラズマ式溶射機によって溶射装置1を構成することも可能である。アーク式溶射機の場合にはアークの一部を冷却し、プラズマ式溶射機の場合にはプラズマジェットの一部を冷却するとよい。溶射材料として、粉末材料に代えて線材等を使用することも可能である。   The means for forming the supercooled liquid phase metal film (or amorphous metal film) is not limited to the thermal spraying apparatus 1 used above. For example, in the mist injection nozzle 10 (see FIG. 1) for external cooling, the position and orientation of each nozzle can be set to a setting other than that shown in the figure. It is also possible to spray water mist or the like radially with a spread angle. Moreover, although the said thermal spraying apparatus 1 was comprised based on what is called a flame type spraying machine, it is also possible to comprise the thermal spraying apparatus 1 with an arc type spraying machine or a plasma type spraying machine. In the case of an arc sprayer, a part of the arc may be cooled, and in the case of a plasma sprayer, a part of the plasma jet may be cooled. It is also possible to use a wire rod or the like as the thermal spray material instead of the powder material.

母材上に形成される過冷却液相金属皮膜(ないしアモルファス金属皮膜)の表面粗度については、溶射材料とする粉末の粒度、外部冷却のためのガスの噴射圧力・噴射量、主ノズルと母材との間の距離などによって調整することができる。   Regarding the surface roughness of the supercooled liquid phase metal film (or amorphous metal film) formed on the base metal, the particle size of the powder used as the thermal spray material, the injection pressure / injection amount of the gas for external cooling, the main nozzle and It can be adjusted according to the distance between the base material and the like.

発明の溶射装置1を示す図であって、図1(a)は溶射装置1の全体構成図、同(b)はその溶射装置1における火炎温度の分布を示す図である。It is a figure which shows the thermal spraying apparatus 1 of invention, Comprising: Fig.1 (a) is a whole block diagram of the thermal spraying apparatus 1, The same (b) is a figure which shows distribution of the flame temperature in the thermal spraying apparatus 1. FIG. 溶射ガン2の構造を示す図で、図2(a)は全体図、同(b)は同(a)におけるb部詳細図である。It is a figure which shows the structure of the thermal spray gun 2, FIG. 2 (a) is a general view, The same (b) is the b section detailed drawing in the same (a). Zn−Mg合金の冷却曲線に発明の溶射装置および他の溶射装置による火炎の冷却経過を書き込んだ線図である。It is the diagram which wrote the cooling course of the flame by the thermal spraying apparatus of this invention, and another thermal spraying apparatus on the cooling curve of the Zn-Mg alloy. 発明の溶射装置1に関し溶射中の火炎の状態を示す図であって、図4(a)・(b)は火炎の中心線に沿ってその温度の変化を示す線図、同(c)はサーマルビジョンで撮影した火炎の温度分布である。FIGS. 4A and 4B are diagrams showing a state of a flame during thermal spraying with respect to the thermal spraying apparatus 1 of the invention, and FIGS. 4A and 4B are diagrams showing the temperature change along the center line of the flame, and FIG. This is the temperature distribution of the flame taken with thermal vision. 母材Mの表面に貼り付けた熱電対による母材Mの温度測定結果である。It is the temperature measurement result of the base material M by the thermocouple affixed on the surface of the base material M. 溶射後の母材Mの表面を示す写真である。It is a photograph which shows the surface of the base material M after thermal spraying. 他の一般的な溶射装置に関して溶射中の火炎の状態を示す図であって、図7(a)は火炎の中心線に沿ってその温度の変化を示す線図、同(b)はサーマルビジョンで撮影した火炎の温度分布である。FIGS. 7A and 7B are diagrams showing a state of a flame during thermal spraying with respect to another general thermal spraying apparatus, in which FIG. 7A is a diagram showing a change in temperature along the center line of the flame, and FIG. 7B is a thermal vision. It is the temperature distribution of the flame photographed in. エアGを吹き出す噴射筒6として、噴射角度が10°のものを使用した場合の火炎の状態を示す図であって、図8(a)は火炎の中心線に沿ってその温度の変化を示す線図、同(b))はサーマルビジョンで撮影した火炎の温度分布である。FIG. 8A is a view showing a flame state when an injection cylinder having an injection angle of 10 ° is used as the injection cylinder 6 that blows out the air G, and FIG. 8A shows a change in temperature along the center line of the flame. (B)) is a flame temperature distribution photographed by thermal vision. 比較例として、エアGを吹き出す噴射筒6として噴射角度が7°のものを使用した場合の火炎の状態を示す図であって、図8(a)・(b)と同様にして得た図を図9(a)・(b)に示している。As a comparative example, it is a figure which shows the state of a flame at the time of using the thing whose injection angle is 7 degrees as the injection cylinder 6 which blows off the air G, Comprising: The figure obtained similarly to Fig.8 (a) * (b) Are shown in FIGS. 9A and 9B. 図3のものとは別の合金で形成した溶射皮膜についてX線回折測定結果を示す線図である。It is a diagram which shows a X-ray-diffraction measurement result about the sprayed coating formed with the alloy different from the thing of FIG. 従来の溶射装置を示す概念図である。It is a conceptual diagram which shows the conventional thermal spraying apparatus.

符号の説明Explanation of symbols

1 溶射装置
5 主ノズル
6 ガス噴射筒
10(11・12・13・14) ミスト噴射ノズル
F 火炎
G エア(冷却ガス)
H 水ミスト
M 母材
DESCRIPTION OF SYMBOLS 1 Thermal spray apparatus 5 Main nozzle 6 Gas injection cylinder 10 (11/12/13/14) Mist injection nozzle F Flame G Air (cooling gas)
H Water mist M Base material

Claims (8)

母材表面に過冷却液相金属の皮膜を形成する溶射装置であって、
溶射材料を含む火炎を噴射するとともに、噴射された火炎を、それが母材に至る前より冷却することを特徴とする過冷却液相金属皮膜の形成用溶射装置。
A thermal spraying device for forming a supercooled liquid phase metal film on the surface of a base material,
A spraying apparatus for forming a supercooled liquid phase metal film, wherein a flame containing a sprayed material is sprayed, and the sprayed flame is cooled before it reaches a base material.
上記火炎の噴射口の周囲から、火炎に接する外周部分を流れて次第に火炎の中心線に近づくよう、火炎の中心線に対して9〜12°の角度で冷却ガスを吹き出すことを特徴とする請求項1に記載した過冷却液相金属皮膜の形成用溶射装置。   The cooling gas is blown out at an angle of 9 to 12 degrees with respect to the flame center line so as to flow from the periphery of the flame injection port to an outer peripheral portion in contact with the flame and gradually approach the flame center line. Item 2. A thermal spraying apparatus for forming a supercooled liquid phase metal film according to Item 1. 溶射材料の噴出口が火炎の噴射口にて囲まれた位置にあり、その口径が4〜6mmであることを特徴とする請求項2に記載した過冷却液相金属皮膜の形成用溶射装置。   The thermal spraying apparatus for forming a supercooled liquid phase metal film according to claim 2, wherein the spraying material spray port is located at a position surrounded by a flame spray port and the diameter is 4 to 6 mm. 火炎の下流側部分を冷却するために、火炎の長さ方向における複数箇所で、火炎と離れた外側から火炎の内部に向けてガスまたはミストを含むガスを吹き込むことを特徴とする請求項1〜3のいずれかに記載した過冷却液相金属皮膜の形成用溶射装置。   A gas containing gas or mist is blown from the outside away from the flame toward the inside of the flame at a plurality of locations in the flame length direction in order to cool the downstream portion of the flame. 4. The thermal spraying apparatus for forming a supercooled liquid phase metal film according to any one of 3 above. ミストを含むガスとして、水ミストを含む空気を、母材表面に達するように吹き込むことを特徴とする請求項4に記載した過冷却液相金属皮膜の形成用溶射装置。   The thermal spraying apparatus for forming a supercooled liquid phase metal film according to claim 4, wherein air containing water mist is blown as the gas containing mist so as to reach the surface of the base material. 噴射口の出口での火炎の温度を1000〜2600℃とし、上記のとおり冷却することにより噴射口から300mm以内の箇所で当該火炎の温度を80℃以下にすることを特徴とする請求項1〜5のいずれかに記載した過冷却液相金属皮膜の形成用溶射装置。   The temperature of the flame at the outlet of the injection port is set to 1000 to 2600 ° C, and the temperature of the flame is set to 80 ° C or less at a location within 300 mm from the injection port by cooling as described above. 5. The thermal spraying apparatus for forming a supercooled liquid phase metal film according to any one of 5 above. 噴射口の出口での火炎の温度を1000〜2600℃とし、上記のとおり冷却することにより、噴射口を出たのち1/100秒以内に当該火炎を80℃以下にすることを特徴とする請求項1〜6のいずれかに記載した過冷却液相金属皮膜の形成用溶射装置。   The temperature of the flame at the outlet of the injection port is set to 1000 to 2600 ° C., and cooling as described above makes the flame within 80 ° C. within 1/100 second after leaving the injection port. Item 7. A thermal spraying apparatus for forming a supercooled liquid phase metal film according to any one of Items 1 to 6. 噴射口を出た当初の火炎を80万〜140万℃/秒の速度で170℃まで冷却するとともに、80℃に達する時点の火炎を4万〜20万℃/秒の速度で冷却することを特徴とする請求項1〜7のいずれかに記載した過冷却液相金属皮膜の形成用溶射装置。
The initial flame exiting the injection port is cooled to 170 ° C at a rate of 800,000 to 1,400,000 ° C / second, and the flame when reaching 80 ° C is cooled at a rate of 40,000 to 200,000 ° C / second. The thermal spraying apparatus for forming a supercooled liquid phase metal film according to any one of claims 1 to 7.
JP2006221112A 2006-08-14 2006-08-14 Thermal spraying apparatus for forming supercooled liquid phase metal film and method for producing supercooled liquid phase metal film Active JP5260847B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2006221112A JP5260847B2 (en) 2006-08-14 2006-08-14 Thermal spraying apparatus for forming supercooled liquid phase metal film and method for producing supercooled liquid phase metal film
ES07792474.4T ES2441596T3 (en) 2006-08-14 2007-08-13 Procedure and apparatus for forming an amorphous coating film
KR1020097004554A KR101365310B1 (en) 2006-08-14 2007-08-13 Method and apparatus for forming amorphous coating film
US12/310,139 US20090246398A1 (en) 2006-08-14 2007-08-13 Method and apparatus for forming amorphous coating film
EP07792474.4A EP2060652B1 (en) 2006-08-14 2007-08-13 Method and apparatus for forming amorphous coating film
RU2009109207/02A RU2435870C2 (en) 2006-08-14 2007-08-13 Procedure and device for manufacture of amorphous film coating
PCT/JP2007/065831 WO2008020585A1 (en) 2006-08-14 2007-08-13 Method and apparatus for forming amorphous coating film
CN2007800302601A CN101501236B (en) 2006-08-14 2007-08-13 Method and apparatus for forming amorphous coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006221112A JP5260847B2 (en) 2006-08-14 2006-08-14 Thermal spraying apparatus for forming supercooled liquid phase metal film and method for producing supercooled liquid phase metal film

Publications (2)

Publication Number Publication Date
JP2008043869A true JP2008043869A (en) 2008-02-28
JP5260847B2 JP5260847B2 (en) 2013-08-14

Family

ID=39178116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006221112A Active JP5260847B2 (en) 2006-08-14 2006-08-14 Thermal spraying apparatus for forming supercooled liquid phase metal film and method for producing supercooled liquid phase metal film

Country Status (2)

Country Link
JP (1) JP5260847B2 (en)
CN (1) CN101501236B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010022895A (en) * 2008-07-15 2010-02-04 Nakayama Steel Works Ltd Apparatus and method for formation of amorphous film
WO2011086669A1 (en) 2010-01-13 2011-07-21 株式会社中山製鋼所 Device and method for forming amorphous coating film
WO2013027450A1 (en) * 2011-08-25 2013-02-28 黒崎播磨株式会社 Thermal-spraying device, thermal-spraying method, and thermal-spraying material
WO2013105304A1 (en) * 2012-01-13 2013-07-18 株式会社中山製鋼所 Method and facility for producing amorphous sheet with high production efficiency
WO2015115394A1 (en) * 2014-01-31 2015-08-06 株式会社中山アモルファス Corrosion-resistant sprayed coating, method for forming same and thermal spraying apparatus for forming same
EP2803752A4 (en) * 2012-01-13 2016-04-20 Nakayama Amorphous Co Ltd Device for forming amorphous film and method for forming same
JP2016160525A (en) * 2015-03-05 2016-09-05 大陽日酸株式会社 Fine particle production method, and fine particle production apparatus
KR102207933B1 (en) * 2019-07-17 2021-01-26 주식회사 그린리소스 Suspension plasma spray device and method for controlling the same
JP2021042406A (en) * 2019-09-06 2021-03-18 株式会社デンソー Plasma spraying device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101851733A (en) * 2010-04-19 2010-10-06 项大秋 Molten spray coating method and excavating tooth
CN102758175A (en) * 2011-04-27 2012-10-31 鸿富锦精密工业(深圳)有限公司 Film-coating piece and preparation method thereof
CN104148101B (en) * 2013-05-13 2016-12-28 中国科学院大连化学物理研究所 The method of a kind of methane anaerobic alkene the most processed and catalyst thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5588927A (en) * 1978-12-27 1980-07-05 Matsushita Electric Ind Co Ltd Pipe and its manufacture
JPS58126971A (en) * 1981-12-21 1983-07-28 Niigata Eng Co Ltd Iron-nickel composite covering method
US4606977A (en) * 1983-02-07 1986-08-19 Allied Corporation Amorphous metal hardfacing coatings
JPH06128715A (en) * 1992-08-26 1994-05-10 Mitsubishi Heavy Ind Ltd Thermal spraying device for inner surface of tube
EP0546359B1 (en) * 1991-12-12 1995-06-21 Linde Aktiengesellschaft Thermal spray coating process with cooling
JPH11264062A (en) * 1998-03-16 1999-09-28 Pentel Kk Metallic nitride, thermal-sprayed coating thereof and production of member for electrochemical biological control or contamination prevention
JP2005126795A (en) * 2003-10-27 2005-05-19 Takao Kurahashi Method for forming amorphous film
US20060165898A1 (en) * 2005-01-21 2006-07-27 Cabot Corporation Controlling flame temperature in a flame spray reaction process

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5588927A (en) * 1978-12-27 1980-07-05 Matsushita Electric Ind Co Ltd Pipe and its manufacture
JPS58126971A (en) * 1981-12-21 1983-07-28 Niigata Eng Co Ltd Iron-nickel composite covering method
US4606977A (en) * 1983-02-07 1986-08-19 Allied Corporation Amorphous metal hardfacing coatings
EP0546359B1 (en) * 1991-12-12 1995-06-21 Linde Aktiengesellschaft Thermal spray coating process with cooling
JPH06128715A (en) * 1992-08-26 1994-05-10 Mitsubishi Heavy Ind Ltd Thermal spraying device for inner surface of tube
JPH11264062A (en) * 1998-03-16 1999-09-28 Pentel Kk Metallic nitride, thermal-sprayed coating thereof and production of member for electrochemical biological control or contamination prevention
JP2005126795A (en) * 2003-10-27 2005-05-19 Takao Kurahashi Method for forming amorphous film
US20060165898A1 (en) * 2005-01-21 2006-07-27 Cabot Corporation Controlling flame temperature in a flame spray reaction process

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4579317B2 (en) * 2008-07-15 2010-11-10 株式会社中山製鋼所 Amorphous film forming apparatus and method
JP2010022895A (en) * 2008-07-15 2010-02-04 Nakayama Steel Works Ltd Apparatus and method for formation of amorphous film
US9382604B2 (en) 2010-01-13 2016-07-05 Nakayama Amorphous Co., Ltd. Apparatus and method for forming amorphous coating film
WO2011086669A1 (en) 2010-01-13 2011-07-21 株式会社中山製鋼所 Device and method for forming amorphous coating film
CN102791384A (en) * 2010-01-13 2012-11-21 株式会社中山制钢所 Device and method for forming amorphous coating film
WO2013027450A1 (en) * 2011-08-25 2013-02-28 黒崎播磨株式会社 Thermal-spraying device, thermal-spraying method, and thermal-spraying material
JP2013043141A (en) * 2011-08-25 2013-03-04 Kurosaki Harima Corp Thermal spraying apparatus, thermal spraying method and thermal spraying material
WO2013105304A1 (en) * 2012-01-13 2013-07-18 株式会社中山製鋼所 Method and facility for producing amorphous sheet with high production efficiency
JP2013144831A (en) * 2012-01-13 2013-07-25 Nakayama Steel Works Ltd Method and facility for producing amorphous sheet with high production efficiency
US10773267B2 (en) 2012-01-13 2020-09-15 Usui Co., Ltd. Device for forming amorphous film and method for forming same
EP2803752A4 (en) * 2012-01-13 2016-04-20 Nakayama Amorphous Co Ltd Device for forming amorphous film and method for forming same
WO2015115394A1 (en) * 2014-01-31 2015-08-06 株式会社中山アモルファス Corrosion-resistant sprayed coating, method for forming same and thermal spraying apparatus for forming same
US10323153B2 (en) 2014-01-31 2019-06-18 Yoshikawa Kogyo Co., Ltd. Corrosion-resistant sprayed coating, method for forming same and spraying device for forming same
JP2015145516A (en) * 2014-01-31 2015-08-13 株式会社中山アモルファス Anticorrosive spray coating, method for forming the same, and spray device for forming the same
JP2016160525A (en) * 2015-03-05 2016-09-05 大陽日酸株式会社 Fine particle production method, and fine particle production apparatus
KR102207933B1 (en) * 2019-07-17 2021-01-26 주식회사 그린리소스 Suspension plasma spray device and method for controlling the same
JP2021042406A (en) * 2019-09-06 2021-03-18 株式会社デンソー Plasma spraying device
JP7298403B2 (en) 2019-09-06 2023-06-27 株式会社デンソー Plasma spray equipment

Also Published As

Publication number Publication date
JP5260847B2 (en) 2013-08-14
CN101501236B (en) 2012-08-01
CN101501236A (en) 2009-08-05

Similar Documents

Publication Publication Date Title
JP5260847B2 (en) Thermal spraying apparatus for forming supercooled liquid phase metal film and method for producing supercooled liquid phase metal film
KR101365310B1 (en) Method and apparatus for forming amorphous coating film
Amin et al. A review on thermal spray coating processes
US5858470A (en) Small particle plasma spray apparatus, method and coated article
US5744777A (en) Small particle plasma spray apparatus, method and coated article
JP5260878B2 (en) Method for forming amorphous film by thermal spraying
Matthews Shrouded plasma spray of Ni–20Cr coatings utilizing internal shroud film cooling
JP4579317B2 (en) Amorphous film forming apparatus and method
Blazdell et al. Plasma spraying of submicron ceramic suspensions using a continuous ink jet printer
US20030152699A1 (en) Manufacturing method of product having sprayed coating film
JP2015145516A5 (en)
JP2014136807A (en) Apparatus and method for producing metal powder
JP2005126795A (en) Method for forming amorphous film
RU2525948C2 (en) Device and method of production of amorphous cover film
JP6014606B2 (en) Amorphous film forming apparatus and method
JP2009120913A (en) Film forming nozzle, film forming method and film forming member
JP6715694B2 (en) Plasma spraying equipment
JPWO2016181939A1 (en) High speed flame spraying equipment
KR101007675B1 (en) Plasma spray gun with auxiliary cap and plasma spray system using the same
Azarmi et al. Development of Suspension-Based Plasma and HVOF Spray TiO2 Coatings
KR101953608B1 (en) A plasma spraying coating apparatus comprising a plurality of nozzles
Fauchais et al. Sprays used for thermal barrier coatings
JP2017226915A (en) Sprayed coating and sprayed coating member
JP2017155341A (en) Metal powder production device and method for producing metal powder
Boulos et al. Wire-Arc Spray Torches

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5260847

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250