JP2008028297A - Electrostatic chuck - Google Patents

Electrostatic chuck Download PDF

Info

Publication number
JP2008028297A
JP2008028297A JP2006201748A JP2006201748A JP2008028297A JP 2008028297 A JP2008028297 A JP 2008028297A JP 2006201748 A JP2006201748 A JP 2006201748A JP 2006201748 A JP2006201748 A JP 2006201748A JP 2008028297 A JP2008028297 A JP 2008028297A
Authority
JP
Japan
Prior art keywords
internal electrode
groove
bonding material
electrostatic chuck
rib
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006201748A
Other languages
Japanese (ja)
Inventor
Seiichiro Miyata
征一郎 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZAIKEN KK
Original Assignee
ZAIKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZAIKEN KK filed Critical ZAIKEN KK
Priority to JP2006201748A priority Critical patent/JP2008028297A/en
Publication of JP2008028297A publication Critical patent/JP2008028297A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem of easily generating electric discharge between electrodes at the time of applying high voltage under reduced pressure due to a gap between the electrodes in the case of bipolar electrodes in post fire type electrostatic chuck, and the problem of exposure of the electrode film side surface to the external atmosphere due to generation of a gap corresponding to the electrode film thickness on the side surface of two ceramic plates sandwiching the electrodes. <P>SOLUTION: An electrostatic chuck has a bipolar internal electrode film disposed between two ceramic insulating layers with the two insulating layers bonded by the internal electrode film. The internal electrode film is embedded in an electrode groove formed in either one of the surfaces bonded to the two insulating layers of the internal electrode film. The end face of a rib formed between the electrode grooves is bonded by forming a rib groove on the side facing the rib, and inserting to the electric insulating bonding material filling the rib groove. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、静電チャックの構造に係り、更に詳しくは、吸着面でムラのない均一な吸着力が得られる静電チャックの構造に係わるものである。   The present invention relates to a structure of an electrostatic chuck, and more particularly to a structure of an electrostatic chuck that can obtain a uniform suction force without unevenness on a suction surface.

Siウエハー等の吸着、固定に使用する静電チャックには、同時焼結型(コファイヤー型)の静電チャックが多く使用されている。
同時焼結型の静電チャックは、電圧を印加する電極が誘電体セラミックスの中に包み込まれて外部雰囲気からシールされた構造からなり、誘電体セラミックスを焼成するときに電極も同時に一体焼成されるものである。電極が外部雰囲気から完全にシールできる点できわめて優れた構造であるが、難点は、同時焼成時、セラミックスが変形(反り)するために、中央部と中心部で、表面から電極までの距離に違いが発生する。表面から電極までの距離に違いが発生すると、吸着力にバラツキが発生し、吸着、保持して処理する製品の品質に問題が起こる。
変形(反り)は大径になるほど大きくなるので、大径の同時焼結型静電チャックでは、吸着力のバラツキがより大きくなり、処理する製品品質に重大な影響が現れる。
A co-sintered (cofire) type electrostatic chuck is often used as an electrostatic chuck used for adsorbing and fixing a Si wafer or the like.
A co-sintered electrostatic chuck has a structure in which an electrode to which a voltage is applied is encased in a dielectric ceramic and sealed from the outside atmosphere, and the electrode is also integrally fired simultaneously when firing the dielectric ceramic Is. The structure is extremely excellent in that the electrode can be completely sealed from the external atmosphere, but the difficulty is that the ceramics deform (warp) during simultaneous firing, so the distance from the surface to the electrode in the center and the center. Differences occur. When a difference occurs in the distance from the surface to the electrode, the adsorptive power varies, causing a problem in the quality of the product to be adsorbed, held and processed.
Since the deformation (warpage) becomes larger as the diameter becomes larger, the large-diameter co-sintered electrostatic chuck has a larger variation in the attractive force, which has a serious effect on the quality of the processed product.

このような同時焼成型の欠点を改良すべく、予め焼成された二枚のセラミックス(誘電体)の間に電極膜を挟んだ構造の静電チャックが試みられている。これは後焼結型(ポストファイヤー型)と呼ばれる構造で、例えば特許文献1に記載された構造である。
ポストファイヤー型では、吸着面から電極までの距離が一定になり、全面均一な吸着力が得られる反面、新たに二つの問題が発生する。
一つは、電極が双極の場合、電極間が空隙になるために、減圧下、高電圧を印加すると、電極間で放電がおこり易くなる問題である。
二つ目は、電極を挟んだ二枚のセラミックス板の側面に、電極膜厚に相当する隙間が発生して電極膜側面が外の雰囲気に露出することである。電極の露出は電極材料のチャンバーバー内雰囲気汚染、あるいはプラズマの回り込み等の問題を起こす。
以上二つの問題を如何に解決するかが、後焼結型(ポストファイヤー型)静電チャックの課題である。
In order to improve the drawbacks of the co-firing type, an electrostatic chuck having an electrode film sandwiched between two previously fired ceramics (dielectrics) has been attempted. This is a structure called a post-sintering type (post-fire type), for example, the structure described in Patent Document 1.
In the post-fire type, the distance from the suction surface to the electrode is constant, and a uniform suction force can be obtained on the entire surface, but two new problems arise.
One problem is that when the electrodes are bipolar, there is a gap between the electrodes, and therefore, when a high voltage is applied under reduced pressure, discharge tends to occur between the electrodes.
The second is that a gap corresponding to the electrode film thickness is generated on the side surfaces of the two ceramic plates sandwiching the electrodes, and the side surfaces of the electrode film are exposed to the outside atmosphere. The exposure of the electrode causes problems such as contamination of the atmosphere in the chamber bar of the electrode material or plasma wraparound.
How to solve the above two problems is a problem of the post-sintering type (post-fire type) electrostatic chuck.

特開平8−279550JP-A-8-279550

本発明はかかる問題に鑑みてなされたものであり、その第一の目的は、ポストファイヤー、双極構造で、減圧下、高電圧を印加しても放電防止に著効のある新規な構造の静電チャックを提供することである。第二の目的は、ポストファイヤー、双極、単極いずれの構造でも、電極を挟んだ側面に発生する電極膜厚に相当する隙間を封止出来る新規な構造を提供することである。   The present invention has been made in view of such problems, and a first object thereof is a post-fire, bipolar structure, and a static structure of a novel structure that is effective in preventing discharge even when a high voltage is applied under reduced pressure. It is to provide an electric chuck. The second object is to provide a novel structure capable of sealing the gap corresponding to the electrode film thickness generated on the side surface sandwiching the electrodes, regardless of whether the structure is post-fire, bipolar or monopolar.

上記課題は下記の構造の静電チャックで解決することが出来る。
すなわち
セラミックスからなる二枚の絶縁層の間に双極からなる内部電極膜を挟み、該内部電極膜で該二枚の絶縁層を接合した構造の静電チャックにおいて、該内部電極双極間の隙間に、電気絶縁性接合材が充填され、該接合材が、該二枚の絶縁層の各々に接合されてなることを特徴とする静電チャック。
上記電気絶縁性接合材が、上記二枚の絶縁層の少なくとも一方に形成された溝の中に充填されて、該絶縁層に接合されてなることを特徴とする上記1記載の静電チャック。
上記電気絶縁性接合材が樹脂単独、あるいは(無機接着剤、ガラス)の中のいずれかと樹脂を積層したものであって、かつ上記内部電極が低融点軟質金属からなることを特徴とする上記1〜2のいずれか1項に記載の静電チャック。
上記電気絶縁性接合材が、ガラス単独、あるいは無機接着剤とガラスを積層させたものであって、かつ上記内部電極がSi基合金からなることを特徴とする上記1〜2のいずれか1項に記載の静電チャック。
上記樹脂が、熱硬化性樹脂あるいは熱融着性樹脂のいずれかであることを特徴とする上記3に記載の静電チャック。
セラミックスからなる二枚の絶縁層の間に双極からなる内部電極膜を挟み、該内部電極膜で該二枚の絶縁層を接合した構造の静電チャックにおいて、該内部電極膜の該二枚の絶縁層との接合面の、いずれか一方の接合面に形成された電極溝に該内部電極膜が埋め込まれてなる共に、該電極溝と電極溝の間に形成されたリブの端面が、該電極溝を形成した絶縁層のもう一方の絶縁層に電気絶縁性接合材で接合されてなることを特徴とする静電チャック。
上記リブの端面が上記電気絶縁性接合材で接合されたもう一方の絶縁層の、該リブに対向する面にリブ溝が形成され、該リブ溝に充填した上記電気絶縁性接合材に該リブ端面が差し込まれて、該リブ端面の位置が、該溝の形成された絶縁層の平坦面よりも深い位置に差し込まれて、該電気絶縁性接合材で接合されてなることを特徴とする上記6に記載の静電チャック。
セラミックスからなる二枚の絶縁層の間に単極からなる内部電極膜を挟み、該内部電極膜で該二枚の絶縁層を接合した構造の静電チャックにおいて、該内部電極膜の該二枚の絶縁層との接合面の、いずれか一方の接合面に電極溝が形成されて、該電極溝に該内部電極膜が埋め込まれてなる共に、該電極溝と該絶縁層の外周部および該溝と該絶縁層の孔部内面の間に形成されたリブの端面が、該電極溝を形成した絶縁層のもう一方の絶縁層の、該リブに対向する面に形成したリブ溝に充填した電気絶縁性接合材の中に差し込まれ、該リブ端面が、該リブ溝の形成された絶縁層の平坦面よりも深い位置に差し込まれて、該電気絶縁性接合材で接合されてなることを特徴とする静電チャック。
上記電気絶縁性接合材が、ガラス、樹脂、無機接着剤のいずれかである上記8に記載の静電チャック。
上記電気絶縁性接合材が、樹脂であって、かつ上記内部電極膜が低融点軟質金属からなることを特徴とする上記6〜8のいずれか1項に記載の静電チャック。
上記電気絶縁性接合材が、ガラスであって、かつ上記内部電極膜がSi基合金からなることを特徴とする上記6〜8のいずれか1項に記載の静電チャック。
上記樹脂が、熱硬化性樹脂あるいは熱融着性樹脂のいずれかであることを特徴とする上記9〜10のいずれか1項に記載の静電チャック。
The above problem can be solved by an electrostatic chuck having the following structure.
That is, in an electrostatic chuck having a structure in which a bipolar internal electrode film is sandwiched between two insulating layers made of ceramics and the two insulating layers are joined by the internal electrode film, a gap between the internal electrode bipolar electrodes is formed. An electrostatic chuck comprising: an electrically insulating bonding material, and the bonding material bonded to each of the two insulating layers.
2. The electrostatic chuck according to claim 1, wherein the electrically insulating bonding material is filled in a groove formed in at least one of the two insulating layers and bonded to the insulating layer.
The above-mentioned 1 characterized in that the electrically insulating bonding material is a resin alone or a laminate of a resin and (inorganic adhesive, glass) and the internal electrode is made of a low melting point soft metal. The electrostatic chuck according to claim 1.
Any one of the above 1-2, wherein the electrically insulating bonding material is a single glass or a laminate of an inorganic adhesive and glass, and the internal electrode is made of a Si-based alloy. The electrostatic chuck described in 1.
4. The electrostatic chuck according to 3 above, wherein the resin is either a thermosetting resin or a heat-fusible resin.
In an electrostatic chuck having a structure in which a bipolar internal electrode film is sandwiched between two insulating layers made of ceramics and the two insulating layers are joined by the internal electrode film, the two electrodes of the internal electrode film are The internal electrode film is embedded in the electrode groove formed on one of the bonding surfaces with the insulating layer, and the end surface of the rib formed between the electrode groove and the electrode groove is An electrostatic chuck characterized in that it is bonded to the other insulating layer of the insulating layer in which the electrode groove is formed by an electrically insulating bonding material.
A rib groove is formed on a surface of the other insulating layer in which the end surface of the rib is bonded with the electric insulating bonding material so as to face the rib, and the rib is formed on the electric insulating bonding material filled in the rib groove. The end face is inserted, and the position of the rib end face is inserted at a position deeper than the flat surface of the insulating layer in which the groove is formed, and is joined by the electrically insulating joining material. 6. The electrostatic chuck according to 6.
In an electrostatic chuck having a structure in which a single electrode is sandwiched between two insulating layers made of ceramics and the two insulating layers are joined by the internal electrode film, the two sheets of the internal electrode film An electrode groove is formed on one of the bonding surfaces with the insulating layer, and the internal electrode film is embedded in the electrode groove, and the electrode groove, the outer peripheral portion of the insulating layer, and the The end face of the rib formed between the groove and the inner surface of the hole portion of the insulating layer filled the rib groove formed on the surface of the other insulating layer of the insulating layer forming the electrode groove facing the rib. It is inserted into an electrically insulating bonding material, and the rib end surface is inserted deeper than the flat surface of the insulating layer in which the rib groove is formed, and is joined by the electrically insulating bonding material. Features an electrostatic chuck.
9. The electrostatic chuck according to 8, wherein the electrically insulating bonding material is one of glass, resin, and inorganic adhesive.
9. The electrostatic chuck according to any one of 6 to 8, wherein the electrically insulating bonding material is a resin, and the internal electrode film is made of a low melting point soft metal.
9. The electrostatic chuck according to any one of 6 to 8, wherein the electrically insulating bonding material is glass, and the internal electrode film is made of a Si-based alloy.
The electrostatic chuck according to any one of 9 to 10, wherein the resin is either a thermosetting resin or a heat-fusible resin.

吸着力が全面均一である。
電極間狭幅、高電圧印加双極静電チャックの放電防止に著効がある。
電極を挟んだ静電チャック側面、孔部内周に発生する電極膜厚に相当する隙間を封止できる。
The adsorption power is uniform over the entire surface.
Narrow width between electrodes, high voltage applied bipolar electrostatic chuck.
A gap corresponding to the electrode film thickness generated on the side surface of the electrostatic chuck and the inner periphery of the hole can be sealed.

図面によって本発明を説明する。
本願発明のセラミックスからなる絶縁層は、概ね10Ωcm以上の体積固有抵抗値を持つ酸化物セラミックス、窒化物セラミックス、炭化物セラミックス、あるいはこれらの複合セラミックス、あるいはその他のセラミックスからなる絶縁体セラミックスを意味する。
10Ωcm未満では、リーク電流による被処理物の絶縁破壊防止の観点から静電チャックとしては利用されない。
本願静電チャックは、概ね10Ωcm以上の体積固有抵抗値を持つ絶縁体セラミックスからなる二枚の絶縁層の間に内部電極膜を挟み、この内部電極膜で二枚の絶縁層を接合した構造からなる。
請求項1〜7までの発明は、内部電極が双極の場合の、双極間の放電防止と併せて、電極を挟んだ静電チャック外周部側面と孔部内周部に発生する電極膜厚に相当する隙間も封止出来る構造の発明である。請求項8は、内部電極が単極の場合の、電極を挟んだ側面と孔部内周部に発生する電極膜厚に相当する隙間を封止する構造の発明である。
The present invention will be described with reference to the drawings.
The insulating layer made of ceramics of the present invention means oxide ceramics, nitride ceramics, carbide ceramics, composite ceramics of these, or other ceramics having a volume resistivity of approximately 10 8 Ωcm or more. To do.
If it is less than 10 8 Ωcm, it is not used as an electrostatic chuck from the viewpoint of preventing dielectric breakdown of the workpiece due to leakage current.
The electrostatic chuck of the present application has an internal electrode film sandwiched between two insulating layers made of an insulating ceramic having a volume resistivity of approximately 10 8 Ωcm or more, and the two insulating layers are joined by the internal electrode film. Consists of structure.
The inventions of claims 1 to 7 correspond to the electrode film thickness generated on the outer peripheral side surface of the electrostatic chuck and the inner peripheral portion of the hole portion in addition to the prevention of discharge between the bipolar electrodes when the internal electrode is bipolar. It is an invention of a structure that can also seal the gap. An eighth aspect of the present invention is an invention having a structure in which a gap corresponding to the electrode film thickness generated on the side surface sandwiching the electrode and the inner peripheral portion of the hole is sealed when the internal electrode is a single electrode.

図面によって本発明を説明する。
図1〜10は、双極間の放電を防止する構造の説明図であり、図1〜6は、請求項1〜5の発明の説明図、図7は、請求項6の発明の説明図、図8〜10は、請求項7の発明の説明図である。
図11は、単極電極を挟んだ側面に発生する電極膜厚に相当する隙間を封止する構造の説明図であり、請求項8の発明を説明する図である。
図12は、実施例の説明図である。
The present invention will be described with reference to the drawings.
FIGS. 1-10 is explanatory drawing of the structure which prevents the discharge between bipolar electrodes, FIGS. 1-6 is explanatory drawing of invention of Claims 1-5, FIG. 7 is explanatory drawing of invention of Claim 6, 8 to 10 are explanatory views of the seventh aspect of the present invention.
FIG. 11 is an explanatory view of a structure for sealing a gap corresponding to the electrode film thickness generated on the side surface sandwiching the monopolar electrode, and is a view for explaining the invention of claim 8.
FIG. 12 is an explanatory diagram of the embodiment.

図1、図2で、絶縁層1、2は共に10Ωcm以上の体積固有抵抗値を持つセラミックスからなる。
内部電極は双極である。図中、双極に電圧を印加する電極端子は省略している。
図中、説明を判り易くするために電極膜は厚く表示しているが、実際の膜厚は数十μm〜数mmの厚さである。
隣り合う電極膜は、交互に+極、−極の関係にあり、数百ボルト〜数千ボルトの高電圧が印加される。
二枚の絶縁層1、2は内部電極を接合材として接合されている。つまり内部電極は二枚の絶縁層1、2を接合するロー付け層でもある。
1 and 2, the insulating layers 1 and 2 are both made of ceramics having a volume resistivity of 10 8 Ωcm or more.
The internal electrode is bipolar. In the figure, electrode terminals for applying a voltage to the bipolar are omitted.
In the figure, the electrode film is shown thick for easy understanding, but the actual film thickness is several tens of μm to several mm.
Adjacent electrode films alternately have a + pole and −pole relationship, and a high voltage of several hundred volts to several thousand volts is applied.
The two insulating layers 1 and 2 are bonded using the internal electrode as a bonding material. That is, the internal electrode is also a brazing layer that joins the two insulating layers 1 and 2 together.

内部電極の材料は、低融点軟質金属、高融点ロー材あるいはその他のロー付金属等からなる。
高融点ロー材としては、チタンロー等の活性金属を含む高融点金属ロー材やSi基合金等のロー材が好適に使用できるが、とりわけSi基合金は、接合するセラミックスの線膨張係数に応じてその線膨張係数を任意に調整でき、なおかつセラミックスに対する接着力に優れ、溶融ガラスに対して侵されにくい性質があるので、電気絶縁性接合剤としてガラスを使用して、ガラスと同時に溶融する際には、最も好ましいロー材である。
Si基合金とは、Siを主成分とし、(Fe,Ni,Co,Cr,Mo,W,Mn,Cu,Al,Ag,Au,Mg,Ca,Ge,Ti,Zr,Hf,V,Nb,Ta)の中から選択された一種あるいは二種以上の元素を含む合金である。
Si基合金は本来セラミックスに融着する性質があるので、セラミックスに予めメタライズの必要は無く、直接ロー付けすることができる。
低融点軟質金属とは、In、Sn、Pb、Zn、Cdおよびこれらを主成分とする合金等である。
二枚の絶縁層1、2との接合に際して、これら軟質金属、合金単独、あるいはこれらの軟質金属、合金に活性金属を数%添加して直接ロー付けしても良いし、あるいは絶縁層1、2のセラミックスの接合面に予めスパツタリング、無電解メッキ等で金属膜を被覆しておき、この被膜を介して接合しても良い。本発明の「二枚の絶縁層の間に双極からなる内部電極膜を挟み、該内部電極膜で該二枚の絶縁層を接合」とは、
内部電極膜をロー材として直接接合する場合、および予めセラミックス接合面をメタライズして、このメタライズ膜を介して接合する場合、いずれの場合も包含するものである。
The material of the internal electrode is made of a low melting point soft metal, a high melting point brazing material, or other brazing metal.
As the high melting point brazing material, a high melting point metal brazing material containing an active metal such as titanium brazing or a brazing material such as an Si based alloy can be suitably used. Its linear expansion coefficient can be adjusted arbitrarily, and it has excellent adhesion to ceramics and has the property of not being easily attacked by molten glass, so when using glass as an electrical insulating bonding agent, Is the most preferred brazing material.
Si-based alloys are mainly composed of Si (Fe, Ni, Co, Cr, Mo, W, Mn, Cu, Al, Ag, Au, Mg, Ca, Ge, Ti, Zr, Hf, V, Nb , Ta) is an alloy containing one or more elements selected from the group consisting of Ta).
Since the Si-based alloy originally has the property of being fused to ceramics, it is not necessary to metallize the ceramics in advance and can be directly brazed.
The low melting point soft metal is In, Sn, Pb, Zn, Cd, an alloy containing these as a main component, or the like.
When joining the two insulating layers 1 and 2, these soft metals, alloys alone, or active metals may be added to these soft metals and alloys and brazed directly, or the insulating layers 1, 2 A metal film may be coated on the bonding surface of the ceramics 2 in advance by sputtering, electroless plating, or the like, and the bonding may be performed via this film. In the present invention, “a sandwiched internal electrode film between two insulating layers and bonding the two insulating layers with the internal electrode film”
In both cases, the internal electrode film is directly bonded as a brazing material, and the ceramic bonding surface is previously metallized and bonded via the metallized film.

二枚の絶縁層1、2を、内部電極をロー材として接合した時、隣の電極との間には空隙が発生する。減圧下で高電圧を印加した時、空隙面に放電が発生する。
本発明は、電極間の空隙部分に電気絶縁性接合材を充填して放電の発生を防止する。
電気絶縁性接合材は、樹脂、無機接着剤、ガラスからなり、少なくとも二枚の絶縁層1、2に接着しており、内部電極の側面に接着しても良い。
図2は、絶縁層2に溝を形成して、電気絶縁性接合材を溝の中にも充填したものである。
When the two insulating layers 1 and 2 are joined using the internal electrode as a brazing material, a gap is generated between the adjacent electrodes. When a high voltage is applied under reduced pressure, discharge occurs on the gap surface.
The present invention prevents the occurrence of discharge by filling the gap between the electrodes with an electrically insulating bonding material.
The electrically insulating bonding material is made of resin, inorganic adhesive, and glass, and is bonded to at least two insulating layers 1 and 2 and may be bonded to the side surface of the internal electrode.
In FIG. 2, a groove is formed in the insulating layer 2, and the groove is filled with an electrically insulating bonding material.

内部電極材をロー材として、二枚の絶縁層1、2を接合した時、内部電極間の隙間は周囲を閉じられた空間となるので、接合後、電気絶縁性接合材を外から充填することは不可能である。
閉空間に電気絶縁性接合材を充填する方法は、二枚の絶縁層1、2を、内部電極をロー材として接合する時に、電気絶縁性接合材も同時に充填しなければならない。すなわち、電気絶縁性接合材も一種のロー付け材料と考えて、内部電極と同時接合する時に図1、図2の構造が得られる。
When the two insulating layers 1 and 2 are joined using the internal electrode material as a brazing material, the gap between the internal electrodes becomes a closed space, so that after joining, an electrically insulating joining material is filled from the outside. It is impossible.
In the method of filling the closed space with the electrically insulating bonding material, the two insulating layers 1 and 2 must be simultaneously filled with the electrically insulating bonding material when the internal electrodes are bonded using the brazing material. That is, the electrically insulating bonding material is also considered as a kind of brazing material, and the structures shown in FIGS. 1 and 2 can be obtained when simultaneously bonding to the internal electrodes.

図1の構造を得る代表的な方法として、例えば、図3に示した方法がある。
すなわち、図3の方法は下記の通りである。
先ず絶縁層2に内部電極材(例えばSi基合金)の粉末ペーストを印刷、加熱、溶融して接合しておく。絶縁層1に電気絶縁性接合材(例えばガラス粉末)を印刷、加熱、溶融して接合しておく。しかる後に、絶縁層1、絶縁層2を位置あわせして重ね合わせて、再び加熱して、内部電極材と電気絶縁性接合材を同時に溶融して、相手側のセラミックスに融着させることによって、図1の構造が得られる。
As a typical method for obtaining the structure of FIG. 1, for example, there is a method shown in FIG.
That is, the method of FIG. 3 is as follows.
First, a powder paste of an internal electrode material (for example, Si-based alloy) is printed, heated and melted on the insulating layer 2 and bonded. An electrically insulating bonding material (for example, glass powder) is printed, heated and melted on the insulating layer 1 and bonded. After that, the insulating layer 1 and the insulating layer 2 are aligned and overlapped, heated again, and the internal electrode material and the electrically insulating bonding material are simultaneously melted and fused to the counterpart ceramic, The structure of FIG. 1 is obtained.

図1の構造を得る代表的な方法として例えば図4に示した方法もある。
先ず絶縁層2の電気絶縁性接合材を接合する面に、無機接着剤を印刷、乾燥、加熱、硬化させて無機接着剤の硬化層からなる電気絶縁性接合材の層を形成しておく。
次に隣り合う無機接着剤硬化層の間の隙間に内部電極材(例えばIn)の粉末ペーストを印刷、加熱、溶融して接合する。
絶縁層1の内部電極の接合面に、内部電極材(例えばIn)の粉末ペーストを印刷、加熱、溶融して接合する。
In電極層の隙間に電気絶縁性接合材(例えばシリコーン)を印刷しておく。しかる後に、絶縁層1、絶縁層2を位置あわせして重ね合わせて、絶縁層1、2のIn同士を重ね合わせる。絶縁層2の無機接着剤の硬化層に絶縁層1のシリコーンの未硬化層を粘着させる。
シリコーンの硬化温度以上で、Inの溶融温度に加熱して、絶縁層1、2のIn同士と、未硬化シリコーンを硬化させる。
図4に示した接合後の構造が得られる。
As a typical method for obtaining the structure of FIG. 1, for example, there is a method shown in FIG.
First, the surface of the insulating layer 2 to which the electrically insulating bonding material is bonded is printed, dried, heated, and cured to form an electrically insulating bonding material layer composed of a cured layer of the inorganic adhesive.
Next, a powder paste of an internal electrode material (for example, In) is printed, heated and melted in the gap between adjacent inorganic adhesive cured layers, and bonded.
A powder paste of internal electrode material (for example, In) is printed, heated and melted on the bonding surface of the internal electrode of the insulating layer 1 for bonding.
An electrically insulating bonding material (for example, silicone) is printed in the gap between the In electrode layers. After that, the insulating layers 1 and 2 are aligned and overlapped, and the Ins of the insulating layers 1 and 2 are overlapped. The silicone uncured layer of the insulating layer 1 is adhered to the cured layer of the inorganic adhesive of the insulating layer 2.
Heating to the melting temperature of In at a temperature equal to or higher than the curing temperature of silicone cures In of insulating layers 1 and 2 and uncured silicone.
The structure after joining shown in FIG. 4 is obtained.

接合後、電気絶縁性接合材は、無機接着剤の硬化層(絶縁層2側)と、シリコーンの層(絶縁層1側)の積層構造になる。
なお電気絶縁性接合材は上記した二例のみに限定されるものではない。例えば内部電極がSi基合金等の高融点金属単独の場合、電気絶縁性接合材は、ガラス層単独、あるいはガラス層と無機接着剤の積層構造が選択できる。
内部電極が低融点軟質金属単独の場合、電気絶縁性接合材は、上記樹脂一層、樹脂と無機接着剤の二層のほか、樹脂とガラスの二層、樹脂、ガラス、無機接着剤の三層構造を選択できる
内部電極が高融点金属と低融点軟質金属の積層構造の場合、電気絶縁性接合材は、樹脂一層、樹脂と無機接着剤の二層、あるいは樹脂とガラスの二層、樹脂、ガラス、無機接着剤の三層構造を選択できるが、いずれの場合にせよ、内部電極層に低融点軟質金属層が存在する場合、電気絶縁性接合材には、樹脂層が存在することが必須条件となる。
After bonding, the electrically insulating bonding material has a laminated structure of a cured layer of inorganic adhesive (insulating layer 2 side) and a silicone layer (insulating layer 1 side).
The electrically insulating bonding material is not limited to the above two examples. For example, when the internal electrode is a refractory metal alone such as a Si-based alloy, a glass layer alone or a laminated structure of a glass layer and an inorganic adhesive can be selected as the electrically insulating bonding material.
When the internal electrode is a low-melting-point soft metal alone, the electrical insulating bonding material is not only the above-mentioned resin layer, two layers of resin and inorganic adhesive, but also three layers of resin and glass, resin, glass, and inorganic adhesive When the internal electrode whose structure can be selected is a laminated structure of a high melting point metal and a low melting point soft metal, the electrically insulating bonding material is composed of a resin layer, a resin and an inorganic adhesive layer, or a resin and glass layer, a resin, A three-layer structure of glass or inorganic adhesive can be selected, but in any case, when a low melting point soft metal layer is present in the internal electrode layer, it is essential that a resin layer be present in the electrically insulating bonding material It becomes a condition.

図5は電気絶縁性接合材の積層構造を説明した図である。
電気絶縁性接合材1は絶縁層1に接合される側、電気絶縁性接合材2は絶縁層2に接合される側である。本図では二層であるが、これが単相あるいは三層構造にもなる。
FIG. 5 is a diagram illustrating a laminated structure of electrically insulating bonding materials.
The electrically insulating bonding material 1 is the side bonded to the insulating layer 1, and the electrically insulating bonding material 2 is the side bonded to the insulating layer 2. In this figure, there are two layers, but this also has a single-phase or three-layer structure.

前記図4の構造の場合、電気絶縁性接合材1と電気絶縁性接合材2を重ねた時、未硬化の余った樹脂が横にはみ出して内部電極層に浸入して電極面積の縮減、あるいは電極が切れてしまうこともある。
未硬化の樹脂が横に広がるのを防ぐためには、図6に示した構造にすると良い。
すなわち図6は絶縁層2側に、予め電気絶縁性接合材の逃げ代になる空間(溝)を形成しておいて、余った電気絶縁性接合材が溝の中に吸収されるようにすると良い。
図6の方法は下記の通りである。
すなわち、先ず絶縁層1に内部電極材(例えば半田等の低融点軟質金属)の粉末ペーストを印刷、加熱、溶融して接合しておく。
絶縁層1の低融点軟質金属(内部電極間)の隙間に、未硬化の熱硬化性樹脂ペースト(電気絶縁性接合材1)を印刷して予め加熱硬化させておく。
予め加熱硬化させた樹脂層は、図で示したように、低融点軟質金属層(内部電極間)よりも厚く(高く)しておく。
絶縁層2に内部電極材(例えば半田等の低融点軟質金属)の粉末ペーストを印刷、加熱、溶融して接合しておく。
隣り合う低融点軟質金属(内部電極間)層の間に形成した溝に、未硬化の熱硬化性樹脂ペースト(電気絶縁性接合材2)を充填する。この時、溝は樹脂ペーストで一杯に満たさず、余分の空間を残しておく。
しかる後に、絶縁層1、絶縁層2を位置あわせして重ね合わせて、絶縁層1、絶縁層2の低融点軟質金属(内部電極)同士および電気絶縁性接合材1の硬化した熱硬化性樹脂層と2の未硬化の熱硬化性樹脂層を重ね合わせる。未硬化の熱硬化性樹脂ペーストは硬化した熱硬化性樹脂の層に粘着する。
重ねた時、余った未硬化樹脂は、横に広がることなく、溝の中の余った空間に侵入して空間を満たす。
しかる後に、未硬化熱硬化性樹脂ペーストの硬化温度以上の温度で、かつ内部電極材
の溶融温度に加熱して、加圧して、絶縁層1、絶縁層2に形成した内部電極同士を再溶融して、融合一体化させる。同時に未硬化樹脂も熱硬化させる。
In the case of the structure shown in FIG. 4, when the electrically insulating bonding material 1 and the electrically insulating bonding material 2 are overlapped, the uncured surplus resin protrudes laterally and enters the internal electrode layer to reduce the electrode area, or The electrode may break.
In order to prevent the uncured resin from spreading sideways, the structure shown in FIG. 6 is preferable.
That is, in FIG. 6, a space (groove) is formed in advance on the insulating layer 2 side as a clearance for the electrically insulating bonding material so that the remaining electrically insulating bonding material is absorbed into the groove. good.
The method of FIG. 6 is as follows.
That is, first, a powder paste of an internal electrode material (for example, a low melting point soft metal such as solder) is printed, heated and melted on the insulating layer 1 and bonded.
In the gap between the low melting point soft metals (between internal electrodes) of the insulating layer 1, an uncured thermosetting resin paste (electrical insulating bonding material 1) is printed and cured in advance.
The resin layer that has been heat-cured in advance is thicker (higher) than the low-melting-point soft metal layer (between internal electrodes), as shown in the figure.
A powder paste of an internal electrode material (for example, a low melting point soft metal such as solder) is printed, heated and melted on the insulating layer 2 and bonded.
A groove formed between adjacent low-melting-point soft metal (between internal electrodes) layers is filled with an uncured thermosetting resin paste (electrically insulating bonding material 2). At this time, the groove is not fully filled with the resin paste, leaving an extra space.
Thereafter, the insulating layer 1 and the insulating layer 2 are aligned and overlapped, and the low melting point soft metals (internal electrodes) of the insulating layer 1 and the insulating layer 2 and the thermosetting resin cured of the electrically insulating bonding material 1 are cured. The layer and two uncured thermosetting resin layers are superimposed. The uncured thermosetting resin paste adheres to the cured thermosetting resin layer.
When stacked, the remaining uncured resin penetrates into the remaining space in the groove without spreading laterally and fills the space.
After that, the internal electrodes formed in the insulating layer 1 and the insulating layer 2 are remelted by heating and pressing at a temperature higher than the curing temperature of the uncured thermosetting resin paste and the melting temperature of the internal electrode material. And unite them. At the same time, the uncured resin is also thermally cured.

図1〜6では、電気絶縁性接合材料の層は、いずれも内部電極材の隙間に粉末ペーストを印刷等の方法で充填させるが、ペーストの種類、粘度によっては、印刷時に内部電極材の層に流れてしまうこともある。
電気絶縁性接合材料、内部電極材の種類が変わっても、またペースト粘度が変わっても、全ての場合に、一定の形状のものを精度良く充填するのは難しい。また電気絶縁性接合材がガラスで内部電極層が高融点金属の場合、同時に溶融して接合した時、隣り合う電気絶縁性接合材の層と内部電極層の境界が混ざり合うこともある。
In FIGS. 1 to 6, all of the layers of the electrically insulating bonding material are filled with a powder paste in the gap between the internal electrode materials by a method such as printing. However, depending on the type and viscosity of the paste, It may flow into.
Regardless of the type of the electrically insulating bonding material and internal electrode material, and even when the paste viscosity changes, it is difficult to accurately fill a fixed shape in all cases. When the electrically insulating bonding material is glass and the internal electrode layer is a refractory metal, the boundary between the adjacent electrically insulating bonding material layer and the internal electrode layer may be mixed when melted and bonded simultaneously.

かかる問題に対しては、下記の構造が良い。
すなわち、絶縁層1、2の一方に、内部電極の面積に相当する広さで、内部電極膜厚さに相当する深さの溝(電極溝)を形成して、溝の中に内部電極層を埋め込んだ時、溝と溝の間には絶縁層1、2の材料からなるセラミックス焼結体のリブが形成されることになる。
このリブは、図1〜6の電気絶縁性接合材料の層が絶縁層1、2の材料と同じセラミックスからなる場合に相当する。
この構造では、隣り合う電気絶縁性接合材の層(セラミックスのリブ)と内部電極層の境界が混ざり合うこともなく、完全に分離され、一定形状の電気絶縁性接合材料の層が全ての場合で、精度良く形成できる。この構造では、リブの端面をもう一方の絶縁層に電気絶縁性接合材で接合するだけでよい。
The following structure is good for such a problem.
That is, a groove (electrode groove) having a width corresponding to the area of the internal electrode and a depth corresponding to the film thickness of the internal electrode is formed in one of the insulating layers 1 and 2, and the internal electrode layer is formed in the groove. When embedded, a rib of a ceramic sintered body made of the material of the insulating layers 1 and 2 is formed between the grooves.
This rib corresponds to the case where the layer of the electrically insulating bonding material in FIGS. 1 to 6 is made of the same ceramic as the material of the insulating layers 1 and 2.
In this structure, the boundary between the adjacent electrically insulating bonding material layers (ceramic ribs) and the internal electrode layer is not mixed and completely separated, and the layer of the electrically insulating bonding material with a fixed shape is used in all cases. Thus, it can be formed with high accuracy. In this structure, it is only necessary to bond the end face of the rib to the other insulating layer with an electrically insulating bonding material.

図7は内部電極層を電極溝に埋め込んでリブを形成した時の説明図である。
先ず絶縁層1の内部電極接合面に、内部電極膜の厚さに相当する程度の深さの電極溝を形成して、この溝の中に内部電極材料(たとえば半田等の低融点軟質金属)の粉末ペーストを充填して、加熱、溶融して接合しておく。
絶縁層2の内部電極接合面に内部電極材料(たとえば半田等の低融点軟質金属)の粉末ペーストを薄く印刷して、加熱、溶融して接合しておく。
絶縁層2の内部電極間の隙間に未硬化の熱硬化性樹脂ペースト(電気絶縁性接合材)を充填する。
しかる後に、絶縁層1、絶縁層2を位置あわせして重ね合わせて、絶縁層1、絶縁層2に形成した内部電極同士および絶縁層1のリブ端面と、絶縁層2に印刷した未硬化の熱硬化性樹脂ペースト層(電気絶縁性接合材)を重ね合わせて、未硬化の熱硬化性樹脂ペーストをリブ端面に粘着させる。
しかる後に、未硬化熱硬化性樹脂ペーストの硬化温度以上の温度で、かつ内部電極材
の溶融温度に加熱、押圧して、絶縁層1、絶縁層2に形成した内部電極同士を再溶融、融合一体化させる。同時に樹脂も硬化させる。
以上の方法で、図7の接合後の構造が得られる。
なお本構造の場合も、前記したように、内部電極材は低融点軟質金属に限定されるものではなく、高融点金属でも良い。また電気絶縁性接合材も樹脂(熱硬化性樹脂等)に限定されるものではなく、無機接着剤、ガラスでも良い。
絶縁層1と絶縁層2は、内部電極膜で接合されているので、内部電極膜の厚さは、当然電極溝の深さに相当する程度の厚さになる。
電気絶縁性接合材の接合層の厚さには、特別な制約はない。数十μmから数百μm程度まで適宜選択しても良い。
FIG. 7 is an explanatory view when the internal electrode layer is embedded in the electrode groove to form a rib.
First, an electrode groove having a depth corresponding to the thickness of the internal electrode film is formed on the internal electrode bonding surface of the insulating layer 1, and an internal electrode material (low melting point soft metal such as solder) is formed in the groove. The powder paste is filled, heated and melted to be joined.
A thin powder paste of an internal electrode material (for example, a low melting point soft metal such as solder) is printed on the internal electrode bonding surface of the insulating layer 2 and heated and melted for bonding.
An uncured thermosetting resin paste (electrically insulating bonding material) is filled in the gaps between the internal electrodes of the insulating layer 2.
Thereafter, the insulating layers 1 and 2 are aligned and overlapped, and the internal electrodes formed on the insulating layers 1 and 2 and the rib end surfaces of the insulating layer 1 and the uncured printed on the insulating layer 2 The thermosetting resin paste layer (electrically insulating bonding material) is superposed and the uncured thermosetting resin paste is adhered to the rib end face.
Thereafter, the internal electrodes formed on the insulating layer 1 and the insulating layer 2 are remelted and fused by heating and pressing at a temperature equal to or higher than the curing temperature of the uncured thermosetting resin paste and the melting temperature of the internal electrode material. Integrate. At the same time, the resin is cured.
With the above method, the structure after bonding shown in FIG. 7 is obtained.
Also in the case of this structure, as described above, the internal electrode material is not limited to the low melting point soft metal, but may be a high melting point metal. Further, the electrically insulating bonding material is not limited to resin (thermosetting resin or the like), and may be an inorganic adhesive or glass.
Since the insulating layer 1 and the insulating layer 2 are joined by the internal electrode film, the thickness of the internal electrode film naturally becomes a thickness corresponding to the depth of the electrode groove.
There is no particular restriction on the thickness of the bonding layer of the electrically insulating bonding material. You may select from several dozen micrometer to several hundred micrometer suitably.

図7の構造では、前記した図4の場合と同じく、電気絶縁性接合材1、2を重ねた時、未硬化の樹脂が横に広がって内部電極層に浸入して電極面積の縮減、あるいは切れてしまうこともある。このような場合、図6と同じ思想の構造にすると良い。
すなわち絶縁層2側に、予め電気絶縁性接合材の逃げ代になる空間(溝)を形成しておいて、余った内部電極層が溝の中に吸収されるようにすると良い。
In the structure of FIG. 7, as in the case of FIG. 4 described above, when the electrically insulating bonding materials 1 and 2 are stacked, uncured resin spreads laterally and penetrates into the internal electrode layer, or the electrode area is reduced, or It may be cut. In such a case, the structure of the same idea as FIG. 6 is preferable.
That is, it is preferable to form a space (groove) on the insulating layer 2 side in advance so as to allow the electric insulating bonding material to escape, so that the remaining internal electrode layer is absorbed into the groove.

逃げ代になる空間(溝)を形成する構造の説明
絶縁層1、2の一方に、内部電極の面積に相当する広さで、内部電極膜の厚さを越える深さの溝(電極溝)を形成して、溝の中に内部電極層を埋め込む。この時、溝と溝の間には絶縁層1、2の材料からなるセラミックス焼結体のリブが形成され、かつ電極溝は内部電極の材料で満たされることは無く、余分の空間が存在する。
もう一方の絶縁層の面に溝(リブ溝)を形成して、この溝に電気絶縁性接合材を充填する。この時、電気絶縁性接合材は溝一杯に満たさず、余分の空間を残しておく。
電極溝は内部電極の材料で満たされて無く、余った空間が存在するので、絶縁層1、絶縁層2を位置あわせして重ね合わせて、内部電極接合部に空間がなくなるまで絶縁層1、2を近づけて、絶縁層1、絶縁層2の内部電極接合面を密着させて接合する時、リブは、リブ溝が形成された相手方の絶縁層の平坦面よりもより深い位置に差し込まれることになる。リブは、この状態でリブ溝の中の電気絶縁性接合材で接合されることとなる。
余った電気絶縁性接合材は、横に広がることなく、リブ溝の中の余った空間に侵入して空間を満たして溝の中で固まる。
Explanation of the structure for forming a clearance (groove) that allows clearance: A groove (electrode groove) having a width corresponding to the area of the internal electrode and a depth exceeding the thickness of the internal electrode film on one of the insulating layers 1 and 2 And an internal electrode layer is embedded in the groove. At this time, a rib of a ceramic sintered body made of the material of the insulating layers 1 and 2 is formed between the grooves, and the electrode groove is not filled with the material of the internal electrode, and there is an extra space. .
A groove (rib groove) is formed on the surface of the other insulating layer, and this groove is filled with an electrically insulating bonding material. At this time, the electrically insulating bonding material does not fill the groove, leaving an extra space.
Since the electrode groove is not filled with the material of the internal electrode and there is a surplus space, the insulating layer 1 and the insulating layer 2 are aligned and overlapped, and the insulating layer 1 until the internal electrode joint has no space, When the two are brought close to each other and the internal electrode bonding surfaces of the insulating layer 1 and the insulating layer 2 are bonded together, the rib is inserted deeper than the flat surface of the other insulating layer in which the rib groove is formed. become. In this state, the rib is bonded with the electrically insulating bonding material in the rib groove.
The surplus electrical insulating bonding material does not spread laterally but penetrates into the surplus space in the rib groove to fill the space and harden in the groove.

溝(リブ溝)の中にリブを差し込んで、リブ端面が、リブ溝が形成された相手方の絶縁層の平坦面よりもより深い位置に差し込んで、電気絶縁性接合材で接合することにより、電気絶縁性接合材の接合層部分の絶縁距離をより長くして、隣り合う内部電極間の耐電圧特性をより高くすることができる。
例えば電極間距離の半分に相当する深さに差し込むことで、絶縁距離は2倍になる。2倍の耐電圧が得られることになる。又外周部最外層のリブ、およびリフトピン孔やHeガス孔等の孔部内面に形成されたリブは、チャンバー内の雰囲気と電極を隔離する極めて有効な防波堤となる。
By inserting the rib into the groove (rib groove), the rib end surface is inserted at a deeper position than the flat surface of the other insulating layer on which the rib groove is formed, and joined by an electrically insulating bonding material, By increasing the insulation distance of the bonding layer portion of the electrically insulating bonding material, it is possible to further increase the withstand voltage characteristics between the adjacent internal electrodes.
For example, by inserting into a depth corresponding to half of the distance between electrodes, the insulation distance is doubled. A double withstand voltage is obtained. Further, the outermost outermost layer ribs and the ribs formed on the inner surfaces of the lift pin holes, He gas holes, and the like serve as extremely effective breakwaters that isolate the atmosphere in the chamber from the electrodes.

図8(請求項7の発明)はリブ端面が溝に差し込まれて、相手方の絶縁層の平坦面よりもより深い位置に差し込まれた状態を説明する図である。
図9〜10は、リブを溝に差し込んで接合する時の、代表的な接合例の説明図である。
FIG. 8 (Invention of Claim 7) is a diagram for explaining a state in which the rib end surface is inserted into the groove and is inserted at a deeper position than the flat surface of the mating insulating layer.
9-10 is explanatory drawing of the typical joining example when inserting a rib in a groove | channel and joining.

図9の例は、先ず絶縁層2に内部電極材(例えばSi基合金)の粉末ペーストを印刷、加熱、溶融して内部電極層を絶縁層2に接合しておく。
接合後、絶縁層2のリブ溝に電気絶縁性接合材の粉末(例えばガラス粉末)を埋め込む。電気絶縁性接合材(例えばガラス粉末)は、溝一杯に満たさず、余分の空間を残しておく。
しかる後に、絶縁層1と絶縁層2の位置を合わせて重ね、絶縁層1の溝の中に、絶縁層2の内部電極層を差し込む。
絶縁層1のリブの先端を、絶縁層2のリブ溝の中に充填した電気絶縁性接合材の粉末(例えばガラス粉末)の中に差し込み、加熱して、内部電極材と電気絶縁性接合材を同時に溶融、加圧して、内部電極材は絶縁層1に、電気絶縁性接合材はリブに融着させる。
余った電気絶縁性接合材は、横に広がることなく、溝の中の余った空間に侵入して空間を満たし、溝の中で固まる。
以上の方法で、図9の接合後の構造が得られる。
In the example of FIG. 9, first, a powder paste of an internal electrode material (for example, Si-based alloy) is printed on the insulating layer 2, heated, and melted to bond the internal electrode layer to the insulating layer 2.
After bonding, an electrically insulating bonding material powder (for example, glass powder) is embedded in the rib groove of the insulating layer 2. The electrically insulating bonding material (for example, glass powder) does not fill the groove and leaves an extra space.
Thereafter, the insulating layer 1 and the insulating layer 2 are aligned and overlapped, and the internal electrode layer of the insulating layer 2 is inserted into the groove of the insulating layer 1.
The tip of the rib of the insulating layer 1 is inserted into an electrically insulating bonding material powder (for example, glass powder) filled in the rib groove of the insulating layer 2 and heated to heat the internal electrode material and the electrically insulating bonding material. Are simultaneously melted and pressed to fuse the internal electrode material to the insulating layer 1 and the electrically insulating bonding material to the rib.
The surplus electrical insulating bonding material does not spread laterally, but penetrates into the surplus space in the groove, fills the space, and hardens in the groove.
With the above method, the structure after bonding shown in FIG. 9 is obtained.

図10の方法は、下記の通りである。
先ず絶縁層1の電極溝の中に内部電極材(例えば半田等の低融点軟質金属)の粉末ペーストを充填、加熱、溶融して接合しておく。内部電極材は電極溝一杯に満たさず、余分の空間を残しておく。
絶縁層2の内部電極層接合部に内部電極材(例えば半田等の低融点軟質金属)の粉末ペーストを印刷、加熱、溶融して内部電極層の薄い被膜を接合しておく。
絶縁層2のリブ溝に電気絶縁性接合材(例えば未硬化の熱硬化性樹脂ペースト)を埋め込む。電気絶縁性接合材は、溝一杯に満たさず、余分の空間を残しておく。
しかる後に、絶縁層1、絶縁層2を位置あわせして重ね合わせて、絶縁層1、絶縁層2に形成した内部電極同士をかさねあわせ、絶縁層1のリブを未硬化の熱硬化性樹脂ペースト(電気絶縁性接合材)の中に差し込んで、リブに樹脂ペーストを粘着させる。
しかる後に、未硬化熱硬化性樹脂ペーストの硬化温度以上の温度で、かつ内部電極材
の溶融温度に加熱、加圧して、絶縁層1、絶縁層2に形成した内部電極同士を密着させて再溶融、融合一体化させ、同時に樹脂も硬化させる。この時余った電気絶縁性接合材は、横に広がることなく、リブ溝の中の余った空間に侵入して空間を満たし、溝の中で硬化する。
以上の方法で、図10の接合後の構造が得られる。
The method of FIG. 10 is as follows.
First, an electrode groove of the insulating layer 1 is filled with a powder paste of an internal electrode material (for example, a low melting point soft metal such as solder), heated and melted and bonded. The internal electrode material does not fill the electrode groove, leaving an extra space.
A powder paste of an internal electrode material (for example, a low-melting-point soft metal such as solder) is printed, heated and melted at the internal electrode layer bonding portion of the insulating layer 2 to bond a thin film of the internal electrode layer.
An electrically insulating bonding material (for example, an uncured thermosetting resin paste) is embedded in the rib groove of the insulating layer 2. The electrically insulating bonding material does not fill the groove, leaving an extra space.
Thereafter, the insulating layers 1 and 2 are aligned and overlapped, the internal electrodes formed on the insulating layers 1 and 2 are held together, and the ribs of the insulating layer 1 are uncured thermosetting resin paste. It is inserted into (electrically insulating bonding material), and the resin paste is adhered to the ribs.
Thereafter, the internal electrodes formed on the insulating layer 1 and the insulating layer 2 are brought into close contact with each other by heating and pressurizing at a temperature equal to or higher than the curing temperature of the uncured thermosetting resin paste and the melting temperature of the internal electrode material. Melt and fuse together, and simultaneously cure the resin. At this time, the surplus electrical insulating bonding material does not spread laterally but penetrates into the surplus space in the rib groove, fills the space, and hardens in the groove.
With the above method, the structure after bonding shown in FIG. 10 is obtained.

図8〜10の構造(請求項7の発明)では、電極膜を埋め込む電極溝の深さは、当然上記電極膜の厚さを越える深さとなる。つまり電極膜の厚さと電極溝の深さの差に相当する深さまで、リブがリブ溝に差し込まれることになり、そのためには当然、電極膜を埋め込む電極溝の深さは、上記電極膜の厚さを越える深さ必要となる。
リブは概ね0.1〜1mmの深さ、リブ溝に差し込む方が良い。そのためには電気絶縁性接合材を埋め込むリブ溝の深さは、少なくとも内部電極膜厚+0.1〜1mm必要である。電極膜厚は、前記したように数十μm〜数mmの厚さ範囲で適宜選択すればよい。
In the structure shown in FIGS. 8 to 10 (invention 7), the depth of the electrode groove for embedding the electrode film naturally exceeds the thickness of the electrode film. In other words, the rib is inserted into the rib groove to a depth corresponding to the difference between the thickness of the electrode film and the depth of the electrode groove. Naturally, for this purpose, the depth of the electrode groove in which the electrode film is embedded is A depth exceeding the thickness is required.
It is better to insert the rib into a rib groove having a depth of approximately 0.1 to 1 mm. For this purpose, the depth of the rib groove for embedding the electrically insulating bonding material needs to be at least the internal electrode film thickness +0.1 to 1 mm. As described above, the electrode film thickness may be appropriately selected within the thickness range of several tens of μm to several mm.

以上図1〜図10の構造で、静電チャックの吸着面は絶縁層1側あるいは絶縁層2側、いずれの側でも良い。印加電圧に応じて、吸着側に選択した方の吸着面厚さを適宜加減することにより吸着力を調整できる。   As described above, in the structure of FIGS. 1 to 10, the chucking surface of the electrostatic chuck may be on either the insulating layer 1 side or the insulating layer 2 side. Depending on the applied voltage, the suction force can be adjusted by appropriately adjusting the thickness of the suction surface selected on the suction side.

図11は、電極が単極の場合、電極から外部に連通する隙間を封止する構造の説明図(模式図)である。
絶縁層1、2の一方に、内部電極の面積に相当する広さで、内部電極膜厚さを越える深さの溝(電極溝)を形成して、絶縁層1の外周部と孔内周部にリブを形成する。
溝の中に内部電極層を埋め込んだ時、絶縁層1の外周部と孔内周部に形成されたリブ
は内部電極膜と同等のレベルではなく、リブが上に突き出ることになる。
もう一方の絶縁層外周部と孔内周部に溝(リブ溝)を形成して、溝(リブ溝)の中に電気絶縁性接合材を埋め込み、電気絶縁性接合材にリブを差し込んで、リブ端面が、リブ溝が形成された相手方の絶縁層の平坦面よりもより深い位置に差し込み、かつ内部電極を相手側の絶縁層の接合表面に接触させて、加熱、加圧して、内部電極層を接合、電気絶縁性接合材でリブを接合することにより、図11の構造が得られる。
外周部およびリフトピン孔やHeガス孔等の孔部内面に存在する電極厚さに相当する隙間はリブで完全に塞がれ、しかもリブ端面は絶縁層2の平坦面よりも下位にあるので、外の雰囲気から電極に至る距離はリブの厚さ以上の距離になり、信頼性の高い封止が達成できる。
FIG. 11 is an explanatory diagram (schematic diagram) of a structure for sealing a gap communicating from the electrode to the outside when the electrode is a single electrode.
A groove (electrode groove) having a width corresponding to the area of the internal electrode and a depth exceeding the thickness of the internal electrode is formed in one of the insulating layers 1 and 2, and the outer periphery of the insulating layer 1 and the inner periphery of the hole are formed. A rib is formed on the part.
When the internal electrode layer is embedded in the groove, the ribs formed on the outer peripheral portion of the insulating layer 1 and the inner peripheral portion of the hole are not at the same level as the internal electrode film, and the rib protrudes upward.
Grooves (rib grooves) are formed in the outer peripheral portion of the other insulating layer and the inner peripheral portion of the hole, an electrically insulating bonding material is embedded in the groove (rib groove), and ribs are inserted into the electrically insulating bonding material, The rib end surface is inserted deeper than the flat surface of the mating insulating layer on which the rib groove is formed, and the internal electrode is brought into contact with the bonding surface of the mating insulating layer, heated and pressurized, and the internal electrode The structure of FIG. 11 is obtained by bonding the layers and bonding the ribs with an electrically insulating bonding material.
The gap corresponding to the electrode thickness existing on the inner surface of the outer peripheral part and the hole part such as the lift pin hole and the He gas hole is completely blocked by the rib, and the rib end face is lower than the flat surface of the insulating layer 2, The distance from the outside atmosphere to the electrode is equal to or greater than the thickness of the rib, and highly reliable sealing can be achieved.

電気絶縁性接合材として耐プラズマ性の材料を選択することにより、あるいは電気絶縁性接合材の接合部の露出面に更に耐プラズマ性セラミックスの被膜を被覆することにより、耐プラズマ性も付与できる。
なお図11の構造の場合、溝の深さ、電極膜厚、電気絶縁性接合材、内部電極材等は、全て、前記した図1〜図10の場合と全く同じ条件が適用できることは言うまでも無いことである。
Plasma resistance can also be imparted by selecting a plasma-resistant material as the electrically insulating bonding material, or by further coating the exposed surface of the bonded portion of the electrically insulating bonding material with a plasma-resistant ceramic coating.
In the case of the structure of FIG. 11, it goes without saying that the groove depth, electrode film thickness, electrically insulating bonding material, internal electrode material, etc. can all be applied under the same conditions as those in FIGS. There is also no.

本発明の電気絶縁性接合材にはガラス、樹脂、無機接着剤が好ましい。
ガラスは、溶融、融着させる温度が、内部電極金属の融点と概ね同等程度あるいはそれ以下のもので有れば、その組成に特別な制約はない。
無機接着剤は、バインダーに珪酸アルカリ、燐酸塩、乳酸塩、各種ゾル類を使用する通常使用されている全ての接着剤を適宜使用できる。
樹脂は、加熱硬化、あるいは加熱して溶融、融着させるので、加熱硬化型で、加熱硬化の途中で揮発成分を放出しない種類、あるいは熱融着型(ホットメルト型)で、熱融着過程で揮発成分を放出しない種類で、かつ加熱硬化温度、加熱融着温度が、In、各種半田等の低融点軟質金属(内部電極金属)の溶融温度と同等のものであれば、いかなる種類でも使用できる。例えばシリコーン接着剤、エポキシ接着剤、樹脂のホットメルト接着剤等が好適に使用できる。
Glass, resin, and inorganic adhesive are preferable for the electrically insulating bonding material of the present invention.
There is no particular restriction on the composition of the glass as long as the melting and fusing temperature is about the same or lower than the melting point of the internal electrode metal.
As the inorganic adhesive, any commonly used adhesive using alkali silicate, phosphate, lactate, and various sols as a binder can be appropriately used.
The resin is heat-cured or melted and fused by heating, so it is a heat-curing type, a type that does not release volatile components during heat-curing, or a heat-fusion type (hot-melt type), and a heat-fusion process Any type of material that does not release volatile components and has a heat curing temperature and heat fusion temperature equivalent to the melting temperature of low melting point soft metals (internal electrode metals) such as In and various solders. it can. For example, a silicone adhesive, an epoxy adhesive, a resin hot melt adhesive, or the like can be suitably used.

実施例に因って本発明を説明する。
実施例1
図12は実施例の説明図である。
(1)〜(4)は、図12の4種類の構造のA−A断面図である。
図12の(1)〜(4)に示した構造の静電チャックを試作して、10−3Paの真空中での直流10KVを印加した時の耐電圧性と静電吸着性をテストした。
静電吸着性は静電チャックの吸着面にSiウエハーを載せて吸着性の良否を判定した。
絶縁層1,2のセラミックスには純度99.5%の焼結アルミナ板を使用した。
(1)は請求項1の発明の実施例である。
(2)は請求項2の発明の実施例である。
(3)は請求項6の発明の実施例である。
(4)は請求項7の発明の実施例である。
(5)は比較例(電極間が空隙の場合)である。
The invention is illustrated by means of examples.
Example 1
FIG. 12 is an explanatory diagram of the embodiment.
(1)-(4) is AA sectional drawing of four types of structures of FIG.
An electrostatic chuck having the structure shown in FIGS. 12 (1) to (4) was prototyped and tested for withstand voltage and electrostatic attraction when a direct current of 10 KV was applied in a vacuum of 10 −3 Pa. .
The electrostatic adsorbability was determined by placing a Si wafer on the adsorption surface of the electrostatic chuck.
A sintered alumina plate having a purity of 99.5% was used for the ceramics of the insulating layers 1 and 2.
(1) is an embodiment of the invention of claim 1.
(2) is an embodiment of the invention of claim 2.
(3) is an embodiment of the invention of claim 6.
(4) is an embodiment of the invention of claim 7.
(5) is a comparative example (when the gap is between the electrodes).

静電チャック電極は、(1)〜(5)共に、5×48mm×厚さ0.5mm。
絶縁層2は、(1)〜(5)共に50×13×厚さ2mm。
絶縁層1は、(1)〜(5)共に50×13、厚さは(1)、(2)、(5)が0.5mm、(3)が1mm、(4)が2mm。
絶縁層1が吸着面、吸着面の厚さは(1)〜(5)共、0.5mm
絶縁層2に電極端子を通す穴をあけて、φ2×20mmのMo電極端子を通し、電極被膜にロー付けした。
(1)の構造の説明
内部電極の材料はIn、電気絶縁性接合材は、一液性加熱硬化型シリコーン接着剤を使用。硬化温度は180℃。
(2)の構造の説明
絶縁層2に形成した溝の深さ:0.5mm
内部電極の材料はIn、電気絶縁性接合材は一液性加熱硬化型シリコーン接着剤を使用。硬化温度は180℃。
(3)の構造の説明
絶縁層1に形成した電極溝の深さ:0.5mm
絶縁層1に形成したリブの深さ :0.5mm
内部電極の材料はSi基合金(Si−35%Ti合金)、電気絶縁性接合材は1250℃で融着するガラスを使用。
Si基合金とガラスは1250℃で絶縁層1、2のセラミックスに接合した。
(4)の構造の説明
絶縁層1に形成した電極溝の深さ:1.5mm
電極膜の厚さ :0.5mm
絶縁層1に形成したリブの深さ :1.5mm
絶縁層2に形成したリブ溝の深さ:1.0mm
内部電極の材料はSn半田使用。内部電極面に予めNiメッキした後、半田付けで被膜形成。電気絶縁性接合材は、一液性加熱硬化型シリコーン接着剤を使用。
硬化温度は180℃。
(5)の構造の説明
内部電極の材料はIn使用。電極間は空隙。
テスト結果を表1に示す。
Electrostatic chuck electrodes (1) to (5) are 5 × 48 mm × thickness 0.5 mm.
The insulating layer 2 is 50 × 13 × 2 mm thick in (1) to (5).
The insulating layer 1 is 50 × 13 for both (1) to (5), the thickness is 0.5 mm for (1), (2), and (5), 1 mm for (3), and 2 mm for (4).
The insulating layer 1 has an adsorption surface, and the thickness of the adsorption surface is 0.5 mm for both (1) to (5).
A hole through which the electrode terminal was passed was formed in the insulating layer 2, and a φ2 × 20 mm Mo electrode terminal was passed through and brazed to the electrode film.
Explanation of the structure of (1) The material of the internal electrode is In, and the electrical insulating bonding material is a one-component heat-curable silicone adhesive. The curing temperature is 180 ° C.
Explanation of structure (2) Depth of groove formed in insulating layer 2: 0.5 mm
The internal electrode material is In, and the one-component heat-curable silicone adhesive is used for the electrical insulating bonding material. The curing temperature is 180 ° C.
(3) Description of structure Depth of electrode groove formed in insulating layer 1: 0.5 mm
The depth of the rib formed on the insulating layer 1: 0.5 mm
The material of the internal electrode is Si-based alloy (Si-35% Ti alloy), and the electrically insulating bonding material is glass fused at 1250 ° C.
The Si-based alloy and glass were bonded to the ceramics of the insulating layers 1 and 2 at 1250 ° C.
(4) Description of structure Depth of electrode groove formed in insulating layer 1: 1.5 mm
Electrode film thickness: 0.5 mm
The depth of the rib formed on the insulating layer 1: 1.5 mm
Rib groove depth formed in the insulating layer 2: 1.0 mm
The internal electrode material is Sn solder. After the internal electrode surface is plated with Ni in advance, a film is formed by soldering. The electrical insulating bonding material uses a one-component heat-curable silicone adhesive.
The curing temperature is 180 ° C.
Explanation of the structure of (5) The internal electrode material is In. There is a gap between the electrodes.
The test results are shown in Table 1.

Figure 2008028297
Figure 2008028297

Siウエハーでは概ね1.5KV、液晶ガラス基板等では、電極間距離を狭くして5〜10KVの電圧が、高真空条件下で印加されて使用されており、これらの用途に対しては少なくとも10KVの耐電圧性が要求されるが、電極間が空隙になった(5)の構造(比較例)では、10KVの印加で放電発生し、電極間狭幅、高電圧印加静電チャックとしては使用しがたい構造であるが、電極間に絶縁物(シリコーン接着剤、アルミナセラミックス)が挿入されると電極間狭幅、高電圧印加でも絶縁破壊がなく、放電発生が無いことが判明した。そして良好な静電チャック吸着特性が得られることが判明した。
本願発明は、電極間狭幅、高電圧印加静電チャックとして好適に使用できることが確認できた。
For Si wafers, a voltage of about 1.5 KV is used, and for liquid crystal glass substrates, etc., a voltage of 5 to 10 KV is applied under a high vacuum condition with the distance between the electrodes narrowed. For these applications, at least 10 KV is used. In the structure (5) in which the gap between the electrodes is required (Comparative Example), discharge is generated when 10 KV is applied, and it is used as a high-voltage application electrostatic chuck with a narrow width between the electrodes. Although it has a difficult structure, it has been found that when an insulator (silicone adhesive, alumina ceramics) is inserted between the electrodes, there is no dielectric breakdown even when a high voltage is applied between the electrodes, and no discharge occurs. It has been found that good electrostatic chuck adsorption characteristics can be obtained.
It has been confirmed that the present invention can be suitably used as an electrostatic chuck having a narrow inter-electrode width and a high voltage application.

1.Siウエハー、液晶ガラス基板等の静電チャックとして利用できる。 1. It can be used as an electrostatic chuck for Si wafers and liquid crystal glass substrates.

図1は双極間の放電を防止する構造の説明図である。FIG. 1 is an explanatory diagram of a structure for preventing discharge between bipolar electrodes. 図2は双極間の放電を防止する構造の別の説明図である。FIG. 2 is another explanatory diagram of a structure for preventing discharge between bipolar electrodes. 図3は双極間の放電を防止する構造の別の説明図である。FIG. 3 is another explanatory diagram of a structure for preventing discharge between bipolar electrodes. 図4は双極間の放電を防止する構造の別の説明図である。FIG. 4 is another explanatory diagram of a structure for preventing discharge between bipolar electrodes. 図5は双極間の放電を防止する構造の別の説明図である。FIG. 5 is another explanatory diagram of a structure for preventing discharge between the bipolar electrodes. 図6は双極間の放電を防止する構造の別の説明図である。FIG. 6 is another explanatory diagram of a structure for preventing discharge between the bipolar electrodes. 図7は双極間の放電を防止する構造の別の説明図である。FIG. 7 is another explanatory diagram of a structure for preventing discharge between the bipolar electrodes. 図8は双極間の放電を防止する構造の別の説明図である。FIG. 8 is another explanatory diagram of a structure for preventing discharge between the bipolar electrodes. 図9は双極間の放電を防止する構造の別の説明図である。FIG. 9 is another explanatory diagram of a structure for preventing discharge between the bipolar electrodes. 図10は双極間の放電を防止する構造の別の説明図である。FIG. 10 is another explanatory diagram of a structure for preventing discharge between the bipolar electrodes. 図11は単極電極を挟んだ側面に発生する電極膜厚に相当する隙間を封止する構造の説明図である。FIG. 11 is an explanatory diagram of a structure for sealing a gap corresponding to the electrode film thickness generated on the side surface sandwiching the monopolar electrode. 図12は実施例の説明図である。FIG. 12 is an explanatory diagram of the embodiment.

Claims (12)

セラミックスからなる二枚の絶縁層の間に双極からなる内部電極膜を挟み、該内部電極膜で該二枚の絶縁層を接合した構造の静電チャックにおいて、該内部電極双極間の隙間に、電気絶縁性接合材が充填され、該接合材が、該二枚の絶縁層の各々に接合されてなることを特徴とする静電チャック。 In an electrostatic chuck having a structure in which an internal electrode film made of a bipolar electrode is sandwiched between two insulating layers made of ceramics, and the two insulating layers are joined by the internal electrode film, in the gap between the internal electrode bipolar electrodes, An electrostatic chuck comprising: an electrically insulating bonding material, and the bonding material bonded to each of the two insulating layers. 上記電気絶縁性接合材が、上記二枚の絶縁層の少なくとも一方に形成された溝の中に充填されて、該絶縁層に接合されてなることを特徴とする請求項1記載の静電チャック。 2. The electrostatic chuck according to claim 1, wherein the electrically insulating bonding material is filled in a groove formed in at least one of the two insulating layers and bonded to the insulating layer. . 上記電気絶縁性接合材が樹脂単独、あるいは(無機接着剤、ガラス)の中のいずれかと樹脂を積層したものであって、かつ上記内部電極が低融点軟質金属からなることを特徴とする請求項1〜2のいずれか1項に記載の静電チャック。 2. The electrical insulating bonding material according to claim 1, wherein either the resin alone or (inorganic adhesive, glass) is laminated with the resin, and the internal electrode is made of a low melting point soft metal. The electrostatic chuck of any one of 1-2. 上記電気絶縁性接合材が、ガラス単独、あるいは無機接着剤とガラスを積層させたものであって、かつ上記内部電極がSi基合金からなることを特徴とする請求項1〜2のいずれか1項に記載の静電チャック。   3. The electric insulating bonding material according to claim 1, wherein the electrically insulating bonding material is made of glass alone or an inorganic adhesive and glass are laminated, and the internal electrode is made of a Si-based alloy. The electrostatic chuck according to item. 上記樹脂が、熱硬化性樹脂あるいは熱融着性樹脂のいずれかであることを特徴とする請求項3に記載の静電チャック。   The electrostatic chuck according to claim 3, wherein the resin is either a thermosetting resin or a heat-fusible resin. セラミックスからなる二枚の絶縁層の間に双極からなる内部電極膜を挟み、該内部電極膜で該二枚の絶縁層を接合した構造の静電チャックにおいて、該内部電極膜の該二枚の絶縁層との接合面の、いずれか一方の接合面に形成された電極溝に該内部電極膜が埋め込まれてなる共に、該電極溝と電極溝の間に形成されたリブの端面が、該電極溝を形成した絶縁層のもう一方の絶縁層に電気絶縁性接合材で接合されてなることを特徴とする静電チャック。 In an electrostatic chuck having a structure in which a bipolar internal electrode film is sandwiched between two insulating layers made of ceramics and the two insulating layers are joined by the internal electrode film, the two electrodes of the internal electrode film are The internal electrode film is embedded in the electrode groove formed on one of the bonding surfaces with the insulating layer, and the end surface of the rib formed between the electrode groove and the electrode groove is An electrostatic chuck characterized in that it is bonded to the other insulating layer of the insulating layer in which the electrode groove is formed by an electrically insulating bonding material. 上記リブの端面が上記電気絶縁性接合材で接合されたもう一方の絶縁層の、該リブに対向する面にリブ溝が形成され、該リブ溝に充填した上記電気絶縁性接合材に該リブ端面が差し込まれて、該リブ端面の位置が、該溝の形成された絶縁層の平坦面よりも深い位置に差し込まれて、該電気絶縁性接合材で接合されてなることを特徴とする請求項6に記載の静電チャック。 A rib groove is formed on a surface of the other insulating layer in which the end surface of the rib is bonded with the electric insulating bonding material so as to face the rib, and the rib is formed on the electric insulating bonding material filled in the rib groove. The end face is inserted, and the position of the rib end face is inserted deeper than the flat surface of the insulating layer in which the groove is formed, and is joined by the electrically insulating joining material. Item 7. The electrostatic chuck according to Item 6. セラミックスからなる二枚の絶縁層の間に単極からなる内部電極膜を挟み、該内部電極膜で該二枚の絶縁層を接合した構造の静電チャックにおいて、該内部電極膜の該二枚の絶縁層との接合面の、いずれか一方の接合面に電極溝が形成されて、該電極溝に該内部電極膜が埋め込まれてなる共に、該電極溝と該絶縁層の外周部および該溝と該絶縁層の孔部内面の間に形成されたリブの端面が、該電極溝を形成した絶縁層のもう一方の絶縁層の、該リブに対向する面に形成したリブ溝に充填した電気絶縁性接合材の中に差し込まれ、該リブ端面が、該リブ溝の形成された絶縁層の平坦面よりも深い位置に差し込まれて、該電気絶縁性接合材で接合されてなることを特徴とする静電チャック。 In an electrostatic chuck having a structure in which a single electrode is sandwiched between two insulating layers made of ceramics and the two insulating layers are joined by the internal electrode film, the two sheets of the internal electrode film An electrode groove is formed on one of the bonding surfaces with the insulating layer, and the internal electrode film is embedded in the electrode groove, and the electrode groove, the outer peripheral portion of the insulating layer, and the The end face of the rib formed between the groove and the inner surface of the hole portion of the insulating layer filled the rib groove formed on the surface of the other insulating layer of the insulating layer forming the electrode groove facing the rib. It is inserted into an electrically insulating bonding material, and the rib end surface is inserted deeper than the flat surface of the insulating layer in which the rib groove is formed, and is joined by the electrically insulating bonding material. Features an electrostatic chuck. 上記電気絶縁性接合材が、ガラス、樹脂、無機接着剤のいずれかである請求項8に記載の静電チャック。   The electrostatic chuck according to claim 8, wherein the electrically insulating bonding material is one of glass, resin, and inorganic adhesive. 上記電気絶縁性接合材が、樹脂であって、かつ上記内部電極膜が低融点軟質金属からなることを特徴とする請求項6〜8のいずれか1項に記載の静電チャック。 The electrostatic chuck according to claim 6, wherein the electrically insulating bonding material is a resin, and the internal electrode film is made of a low melting point soft metal. 上記電気絶縁性接合材が、ガラスであって、かつ上記内部電極膜がSi基合金からなることを特徴とする請求項6〜8のいずれか1項に記載の静電チャック。   The electrostatic chuck according to claim 6, wherein the electrically insulating bonding material is glass, and the internal electrode film is made of a Si-based alloy. 上記樹脂が、熱硬化性樹脂あるいは熱融着性樹脂のいずれかであることを特徴とする請求項9〜10のいずれか1項に記載の静電チャック。

The electrostatic chuck according to claim 9, wherein the resin is either a thermosetting resin or a heat-fusible resin.

JP2006201748A 2006-07-25 2006-07-25 Electrostatic chuck Pending JP2008028297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006201748A JP2008028297A (en) 2006-07-25 2006-07-25 Electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006201748A JP2008028297A (en) 2006-07-25 2006-07-25 Electrostatic chuck

Publications (1)

Publication Number Publication Date
JP2008028297A true JP2008028297A (en) 2008-02-07

Family

ID=39118597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006201748A Pending JP2008028297A (en) 2006-07-25 2006-07-25 Electrostatic chuck

Country Status (1)

Country Link
JP (1) JP2008028297A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012028622A (en) * 2010-07-26 2012-02-09 Tokyo Electron Ltd Substrate mounting table, resin protrusion layer formation method on substrate mounting surface, and resin protrusion layer transfer member
JP2014093467A (en) * 2012-11-06 2014-05-19 Taiheiyo Cement Corp Method for manufacturing electrode built-in type ceramic sintered body
WO2015013142A1 (en) * 2013-07-22 2015-01-29 Applied Materials, Inc. An electrostatic chuck for high temperature process applications
WO2015175429A1 (en) * 2014-05-16 2015-11-19 Applied Materials, Inc. Electrostatic carrier for handling substrates for processing
KR20200000695A (en) * 2018-06-25 2020-01-03 (주) 엔피홀딩스 Back electrodes type electro static chuck of laminating apparatus, its manufacturing method and laminating apparatus
KR20200110736A (en) * 2017-08-25 2020-09-25 컴포넌트 알이-엔지니어링 컴퍼니, 인코포레이티드 Semiconductor substrate support having multiple electrodes and method for manufacturing same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012028622A (en) * 2010-07-26 2012-02-09 Tokyo Electron Ltd Substrate mounting table, resin protrusion layer formation method on substrate mounting surface, and resin protrusion layer transfer member
JP2014093467A (en) * 2012-11-06 2014-05-19 Taiheiyo Cement Corp Method for manufacturing electrode built-in type ceramic sintered body
US9711386B2 (en) 2013-07-22 2017-07-18 Applied Materials, Inc. Electrostatic chuck for high temperature process applications
WO2015013142A1 (en) * 2013-07-22 2015-01-29 Applied Materials, Inc. An electrostatic chuck for high temperature process applications
TWI637459B (en) * 2013-07-22 2018-10-01 應用材料股份有限公司 An electrostatic chuck for high temperature process applications
CN106463448A (en) * 2014-05-16 2017-02-22 应用材料公司 Electrostatic carrier for handling substrates for processing
JP2017518649A (en) * 2014-05-16 2017-07-06 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Electrostatic carrier supporting substrate for processing
US9740111B2 (en) 2014-05-16 2017-08-22 Applied Materials, Inc. Electrostatic carrier for handling substrates for processing
WO2015175429A1 (en) * 2014-05-16 2015-11-19 Applied Materials, Inc. Electrostatic carrier for handling substrates for processing
CN106463448B (en) * 2014-05-16 2020-01-21 应用材料公司 Electrostatic carrier for handling substrates for processing
KR20200110736A (en) * 2017-08-25 2020-09-25 컴포넌트 알이-엔지니어링 컴퍼니, 인코포레이티드 Semiconductor substrate support having multiple electrodes and method for manufacturing same
JP2021501985A (en) * 2017-08-25 2021-01-21 コンポーネント リ−エンジニアリング カンパニー インコーポレイテッド Semiconductor substrate support with multiple electrodes and its manufacturing method
JP7242637B2 (en) 2017-08-25 2023-03-20 ワトロー エレクトリック マニュファクチャリング カンパニー Semiconductor substrate support with multiple electrodes and manufacturing method thereof
KR102558926B1 (en) 2017-08-25 2023-07-21 와틀로 일렉트릭 매뉴팩츄어링 컴파니 Semiconductor substrate support with multiple electrodes and method for manufacturing same
KR20200000695A (en) * 2018-06-25 2020-01-03 (주) 엔피홀딩스 Back electrodes type electro static chuck of laminating apparatus, its manufacturing method and laminating apparatus
KR102155583B1 (en) * 2018-06-25 2020-09-14 (주) 엔피홀딩스 Back electrodes type electro static chuck of laminating apparatus, its manufacturing method and laminating apparatus

Similar Documents

Publication Publication Date Title
KR101098956B1 (en) Fuel cell stack and seal for a fuel cell stack, as well as a production method for it
KR101535316B1 (en) Frit sealing of large device
JP4891235B2 (en) Circuit board, manufacturing method thereof, and electronic component using the same
TWI408709B (en) Ceramic electronic component and method for manufacturing the same
JP6110159B2 (en) Composite member and manufacturing method thereof
JP2008028297A (en) Electrostatic chuck
JPH10501925A (en) Electrostatic chuck
JP7334285B2 (en) Multi-component leadless stack
JP2008218978A (en) Electrostatic chuck and manufacturing method therefor
JP2018006737A (en) Holding device and manufacturing method of holding device
JP4331983B2 (en) Wafer support member and manufacturing method thereof
KR20190019173A (en) METHOD FOR MANUFACTURING PARTS FOR SEMICONDUCTOR MANUFACTURING DEVICE
US10692794B2 (en) Radiation plate structure, semiconductor device, and method for manufacturing radiation plate structure
JP7050455B2 (en) Manufacturing method of electrostatic chuck
JP5048370B2 (en) Insulator and insulating joint
JP3434416B2 (en) Plasma display panel sealing structure
JPH0870036A (en) Electrostatic chuck
WO2022085307A1 (en) Ceramic assembly, electrostatic chuck device, and method for manufacturing ceramic assembly
WO2015105148A1 (en) Metal/ceramic bonded body, diaphragm vacuum gauge, bonding method for metal and ceramic, and production method for diaphragm vacuum gauge
JP6801501B2 (en) Manufacturing method of insulated circuit board
WO2021153154A1 (en) Ceramic joined body, electrostatic chuck device, and method for producing ceramic joined body
JP2005050886A (en) Compound substrate and its manufacturing method
US8957327B2 (en) Feed-through assembly
JP2020107671A (en) Insulation circuit board manufacturing method and insulation circuit board manufactured using the method
JP7143256B2 (en) Wafer mounting table and its manufacturing method