JP2008027910A - High power led lamp with heat dissipation exhancement - Google Patents

High power led lamp with heat dissipation exhancement Download PDF

Info

Publication number
JP2008027910A
JP2008027910A JP2007185352A JP2007185352A JP2008027910A JP 2008027910 A JP2008027910 A JP 2008027910A JP 2007185352 A JP2007185352 A JP 2007185352A JP 2007185352 A JP2007185352 A JP 2007185352A JP 2008027910 A JP2008027910 A JP 2008027910A
Authority
JP
Japan
Prior art keywords
liquid
lamp
light source
power led
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007185352A
Other languages
Japanese (ja)
Inventor
Kun-Yuan Chiang
江昆淵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LIQUIDLEDS LIGHTING CO Ltd
Original Assignee
LIQUIDLEDS LIGHTING CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LIQUIDLEDS LIGHTING CO Ltd filed Critical LIQUIDLEDS LIGHTING CO Ltd
Publication of JP2008027910A publication Critical patent/JP2008027910A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/56Cooling arrangements using liquid coolants
    • F21V29/58Cooling arrangements using liquid coolants characterised by the coolants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/232Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating an essentially omnidirectional light distribution, e.g. with a glass bulb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/233Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating a spot light distribution, e.g. for substitution of reflector lamps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • F21S8/08Lighting devices intended for fixed installation with a standard
    • F21S8/085Lighting devices intended for fixed installation with a standard of high-built type, e.g. street light
    • F21S8/086Lighting devices intended for fixed installation with a standard of high-built type, e.g. street light with lighting device attached sideways of the standard, e.g. for roads and highways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/51Cooling arrangements using condensation or evaporation of a fluid, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/60Cooling arrangements characterised by the use of a forced flow of gas, e.g. air
    • F21V29/67Cooling arrangements characterised by the use of a forced flow of gas, e.g. air characterised by the arrangement of fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • F21V29/75Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with fins or blades having different shapes, thicknesses or spacing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • F21V29/77Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical diverging planar fins or blades, e.g. with fan-like or star-like cross-section
    • F21V29/773Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical diverging planar fins or blades, e.g. with fan-like or star-like cross-section the planes containing the fins or blades having the direction of the light emitting axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/04Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
    • F21V3/06Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by the material
    • F21V3/062Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by the material the material being plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/04Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
    • F21V3/06Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by the material
    • F21V3/061Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by the material the material being glass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49109Connecting at different heights outside the semiconductor or solid-state body

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low cost high power LED lamp for lighting in which heat dissipation is improved. <P>SOLUTION: A kind of a high power LED lamp including a case with a space for filling liquid provides a light source module in which a high power LED light source passes the above liquid. A first part of an axial direction heat conductor is neighboring with the light source module and a second part reaches the light source module alongside an axial direction of the space of the liquid. Heat is introduced from the light source module to the case through the liquid. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は一種のランプに関するもので、特に照明目的に使用される高出力LEDランプに関するものである。   The present invention relates to a kind of lamp, and more particularly to a high-power LED lamp used for illumination purposes.

LEDは耐用期限が長く、電力節約型で廃棄物による環境汚染を引き起こさないなど環境保護の観点から優れており、既に装飾灯(水中ライトなど)や指示灯(交通信号ランプなど)に広く汎用されている。しかし、単位出力で発生する発光輝度の不足、放熱効率の不良、照明角度の不足などの問題点が存在し、照明用途には適していない。白色LEDの改良、単位出力で発生する発光輝度の向上に伴い、輝度不足の問題は解決し、発光輝度が従来の白熱電球の発光輝度(30 lm/W)を上回る白色LEDが既に商品化され、蛍光灯の発光輝度(100 lm/W)も上回る白色LEDも近く生産される見通しである。そこで、放熱効率不良および照明角度不足が、現在、LEDを照明に使用する上での主な問題点である。
図1は、典型的な低出力LED100であり、エポキシ樹脂透明レンズ110が半導体結晶102を覆い、正極ピン106と負極ピン108は金線104を経由して半導体結晶102に接続される。低出力LED100は作動時に発生する熱量が少ないため、正極ピン106と負極ピン108を経て熱伝導がPCB(図中には示されていない)上の銅箔に到達する熱伝導拡散はLED100の放熱を促進するに十分であり、放熱の問題を考慮する必要はない。低出力LED100は主に装飾灯や指示灯に用いられ、電力損失は0.3〜0.4W未満である。図2は先行の低出力LEDランプ112で、標準電球ソケット120とケーシング122の接合を含み、PCB116はケーシング122中にあり、複数の低出力LED100がPCB116に固定されており、樹脂層114がケーシング122に充填されていることでPCB116および低出力LEDのピンを保護し、電源転換駆動モジュール118がPCB116と標準電球ソケット120の間に接続され、低出力LED100を駆動する。各低出力LED100が発生する熱はPCB116の銅箔を通じて伝導拡散されるため、別途、放熱器の必要がない。ケーシング122は金属またはプラスチック製で、ケーシング122が金属の場合、そのほとんどで構造強度が必要なことから、非熱伝導性または放熱が必要となる。
図3は先行の高出力LED124で、正極ピン138および負極ピン140は金線132および133を経由して半導体結晶130に接続される。封止樹脂128で放熱パッド136上に固定し、この構造をプラスチックケーシング134中に配置し、光学レンズ126を封止樹脂128に被せ、プラスチックケーシング134と嵌め込む。高出力LED124の電力損失は0.3Wを上回り、作動時に発生する熱量も高いことから、使用の際、過熱損壊を回避するための放熱を考慮しなければならない。図4は高出力LED124の放熱を促進する構造142で、放熱パッド136および放熱フィン146をメタルコアプリント基板(MCPCB)144に接着させたものを含む。高出力LED124が作動時に発生する熱は、放熱パッド136を経由してMCPCB144に伝導され、更に放熱フィン146に伝導され、空気の自然対流が熱を空気中に消散する。放熱パッド136は高熱伝導性を持ち、材料は金属、グラファイト、炭素繊維、セラミック、または複合材料などがある。図5は先行の前部放熱式高出力LEDランプ148で、高熱伝導性金属製の反射カップ150を含む。外部には環状型放熱フィン158を有し、ガラスまたはプラスチック製の光学レンズ152は反射カップ150の口に固定し、高出力LED124は反射カップの底部に設置、電源転換駆動モジュール154は高出力LED124と標準電球ソケット156の間に接続する。高出力LED124が発生する光は、反射カップ150により反射され、光学レンズ152を透過する。それにより発生する熱は反射カップ150を経由して放熱フィン158に伝導され、空気の自然対流で消散する。放熱フィン158は対流放熱の面積を増加させるが、熱伝導経路が長く、高出力LED124が発生する熱を迅速に放熱フィン158まで伝導することができず、高出力LED124の過熱を引き起こす。過熱問題を解決するため、図6に示す後部放熱式のランプ構造が開発された。後部放熱式高出力LEDランプ160は、高出力LED124を覆う光学レンズ162を含み、熱伝導管164が高出力LED124と電源転換駆動モジュール168の間に接続されている。熱伝導管164には放熱フィン166が多数装着されており、電源転換駆動モジュール168は電源入力端子170が1セット装備されている。高出力LED124が作動時に発生する熱は熱伝導管164に直接進入し、放熱フィン166を伝わって空気の自然対流で消散する。熱伝導経路が短いため、熱伝導管164は迅速に高出力LED124が発生する熱を放熱フィン166経由で発散するが、後部放熱式ランプ160は空気流通が良好な環境でなければ放熱フィン166を使用した自然対流放熱効果が得られない。後部放熱式高出力LEDランプ160を照明用に使用する際、埋込み式または吊り下げ式の照明器具など据付環境に良好な空気流通が備わっていない場合、放熱効果が大幅に低減する。図7は、後部放熱式高出力LED160を埋込み式照明器具で使用した見取り図である。高出力LEDランプ160をシェード172で覆い、シェード172は天井下地174と天井板176の間に設置する。高出力LED160がシェード172で覆い包まれているため、空気対流がシェード172により制限を受け、放熱効果に限界を生じている。図8は、後部放熱式高出力LEDランプ160を吊り下げ式の照明器具に使用した見取り図で、高出力LEDランプ160を天井下地174と天井板176の間に固定しているため、自然対流の放熱効果が天井下地174と天井板176の間の狭い空間に限られている。吊り下げ式照明器具のランプカバーの数が増加すると、累積された温度上昇が放熱効果を低下させる。その他、熱帯または亜熱帯地域では、天井板176と天井下地174の間の空気温度はしばしば40℃を超えるため、高出力LEDランプ160の放熱効果に限界を与えている。
熱伝達は伝導、対流および放射などの方式で行なわれるが、前掲の高出力LEDランプ148および160は高熱伝導材のみを利用して熱を伝導しており、発熱体が増加しても、空気接触の面積を増やし、室温下の自然対流で放熱している。放熱面積が同じだった場合、自然対流の放熱量は強制対流(ファンなど)の4分の1から10分の1である上、理想的な放熱機能を達成するには、自然対流の放熱フィン間隔は通常比較的大きく、自然対流放熱器の体積も強制対流放熱器に比べ、かなり巨大なものになる。ファンの耐用期限および信頼性を考慮した場合、強制対流放熱は高出力LEDの持つ長い耐用期限と信頼性から見ても実行可能性が無い。よって、LED出力の向上に伴い、照明要件に対応する上で、放熱問題は非常に解決困難な問題となっている。
LEDs have a long service life, are energy-saving, and are superior in terms of environmental protection, such as not causing environmental pollution due to waste. They are already widely used for decorative lights (such as underwater lights) and indicator lights (such as traffic signal lamps). ing. However, there are problems such as a lack of light emission luminance generated by unit output, a poor heat dissipation efficiency, and a lack of illumination angle, which are not suitable for lighting applications. With the improvement of white LEDs and the increase in emission brightness generated by unit output, the problem of insufficient brightness has been solved, and white LEDs whose emission brightness exceeds that of conventional incandescent bulbs (30 lm / W) have already been commercialized. White LEDs exceeding the luminous intensity of fluorescent lamps (100 lm / W) are expected to be produced soon. Therefore, heat radiation efficiency failure and insufficient illumination angle are the main problems in using LEDs for illumination at present.
FIG. 1 shows a typical low-power LED 100 in which an epoxy resin transparent lens 110 covers the semiconductor crystal 102, and the positive electrode pin 106 and the negative electrode pin 108 are connected to the semiconductor crystal 102 via a gold wire 104. The low-power LED100 generates less heat during operation, so the heat conduction diffusion that reaches the copper foil on the PCB (not shown in the figure) through the positive and negative pins 106 and 108 is the heat dissipation of the LED100. This is sufficient to promote heat dissipation, and it is not necessary to consider the problem of heat dissipation. The low-power LED 100 is mainly used for decorative lights and indicator lights, and the power loss is less than 0.3 to 0.4 W. FIG. 2 shows a preceding low-power LED lamp 112, which includes a joint between a standard bulb socket 120 and a casing 122, the PCB 116 is in the casing 122, a plurality of low-power LEDs 100 are fixed to the PCB 116, and the resin layer 114 is the casing 122 is filled to protect the pins of the PCB 116 and the low power LED, and a power conversion drive module 118 is connected between the PCB 116 and the standard light bulb socket 120 to drive the low power LED 100. Since the heat generated by each low-power LED 100 is conductively diffused through the copper foil of the PCB 116, there is no need for a separate heat sink. The casing 122 is made of metal or plastic, and when the casing 122 is made of metal, most of the structure 122 needs structural strength. Therefore, non-thermal conductivity or heat dissipation is required.
FIG. 3 shows a preceding high-power LED 124, where the positive electrode pin 138 and the negative electrode pin 140 are connected to the semiconductor crystal 130 via gold wires 132 and 133. The structure is fixed on the heat radiation pad 136 with a sealing resin 128, this structure is placed in the plastic casing 134, the optical lens 126 is covered with the sealing resin 128, and the plastic casing 134 is fitted. Since the power loss of the high-power LED 124 exceeds 0.3 W and the amount of heat generated during operation is high, heat dissipation must be taken into consideration in order to avoid overheating damage during use. FIG. 4 shows a structure 142 that promotes heat dissipation of the high-power LED 124, including a structure in which a heat dissipation pad 136 and a heat dissipation fin 146 are bonded to a metal core printed circuit board (MCPCB) 144. The heat generated when the high-power LED 124 is operated is conducted to the MCPCB 144 via the radiation pad 136 and further conducted to the radiation fins 146, and natural convection of air dissipates the heat into the air. The heat dissipating pad 136 has high thermal conductivity, and the material may be metal, graphite, carbon fiber, ceramic, or composite material. FIG. 5 shows a leading front heat dissipation type high power LED lamp 148 including a reflective cup 150 made of a high thermal conductivity metal. There is an annular heat radiating fin 158 on the outside, the optical lens 152 made of glass or plastic is fixed to the mouth of the reflective cup 150, the high output LED 124 is installed at the bottom of the reflective cup, and the power conversion drive module 154 is the high output LED 124 And a standard bulb socket 156. Light generated by the high-power LED 124 is reflected by the reflection cup 150 and passes through the optical lens 152. The heat generated thereby is conducted to the heat radiating fins 158 via the reflection cup 150 and dissipated by natural convection of air. Although the heat radiation fin 158 increases the area of convection heat radiation, the heat conduction path is long, and heat generated by the high power LED 124 cannot be quickly conducted to the heat radiation fin 158, causing the high power LED 124 to overheat. In order to solve the overheating problem, the rear heat dissipation type lamp structure shown in Fig. 6 was developed. The rear heat dissipation type high-power LED lamp 160 includes an optical lens 162 that covers the high-power LED 124, and a heat conduction tube 164 is connected between the high-power LED 124 and the power source conversion drive module 168. A large number of heat radiation fins 166 are mounted on the heat conduction tube 164, and the power supply conversion drive module 168 is equipped with one set of power input terminals 170. The heat generated when the high-power LED 124 is operated directly enters the heat conduction tube 164 and is dissipated by natural convection of air through the heat radiation fins 166. Because the heat conduction path is short, the heat conduction tube 164 quickly dissipates the heat generated by the high-power LED 124 via the heat radiation fins 166, but the rear heat radiation type lamp 160 uses the heat radiation fins 166 unless the air circulation is good. The natural convection heat dissipation effect used cannot be obtained. When the rear heat radiation type high power LED lamp 160 is used for lighting, if there is no good air circulation in the installation environment such as an embedded or hanging type lighting fixture, the heat radiation effect is greatly reduced. FIG. 7 is a sketch of the rear heat dissipation type high power LED 160 used in an embedded lighting fixture. The high-power LED lamp 160 is covered with a shade 172, and the shade 172 is installed between the ceiling base 174 and the ceiling plate 176. Since the high-power LED 160 is covered with the shade 172, the air convection is restricted by the shade 172, and the heat dissipation effect is limited. Fig. 8 is a sketch of the rear heat dissipation type high power LED lamp 160 used in a hanging type lighting fixture. Since the high power LED lamp 160 is fixed between the ceiling base 174 and the ceiling plate 176, natural convection The heat radiation effect is limited to a narrow space between the ceiling base 174 and the ceiling plate 176. As the number of lamp covers in the hanging luminaire increases, the accumulated temperature rise reduces the heat dissipation effect. In addition, in the tropical or subtropical region, the air temperature between the ceiling plate 176 and the ceiling base 174 often exceeds 40 ° C., which limits the heat dissipation effect of the high-power LED lamp 160.
Heat transfer is performed by methods such as conduction, convection, and radiation. However, the high-power LED lamps 148 and 160 mentioned above conduct heat only by using a high-thermal-conductivity material. The contact area is increased and heat is dissipated by natural convection at room temperature. When the heat dissipation area is the same, the heat dissipation of natural convection is 1/4 to 1/10 of forced convection (fans, etc.), and in order to achieve an ideal heat dissipation function, natural convection heat dissipation fins The spacing is usually relatively large, and the volume of the natural convection radiator is considerably larger than that of the forced convection radiator. Considering the lifetime and reliability of the fan, forced convection heat dissipation is not feasible even from the long lifetime and reliability of high-power LEDs. Therefore, with the improvement of LED output, the heat dissipation problem is very difficult to solve in order to meet the lighting requirements.

高出力LEDが過熱損壊するのを防ぐには、高出力LEDの接合部作動温度は120℃未満でなければならず、高出力LEDの発光輝度(ルーメン値)および耐用期限が全て接合部作動温度に反比例することから、高出力LEDの放熱効率を向上させるには、接合部作動温度の低下が高出力LEDを照明目的に使用するための基礎となる。図9は、高出力LEDの発光輝度比率と接合部作動温度の関係図であり、これによると理想的状態において、発光輝度比率を最小80%に保つためには高出力LEDの接合部作動温度が95℃未満でなければならない。図10は、高出力LEDの耐用期限と接合部作動温度の関係図であり、これによると理想的状態において、耐用期限を最小50khrに保つためには高出力LEDの接合部作動温度が95℃未満でなければならない。
高出力LEDランプ148のもう一つの欠点は、光学的損失が大きい点である。これは、高出力LED124が発する光が反射カップ150内で何度も反射した後、一部が投射光にならず、光がレンズ152を通過した時にも再度一部が反射カップ150に反射されて戻ることにより、光の有効利用率が低下することによるものである。
米国特許公開番号第20040004435号は凹溝を覆う蓋を含むLED封止を提供している。凹溝に充填した冷却液がLEDチップを包み込み、冷却液が直接接触するLEDチップに放熱を提供する。理論上はこれで放熱効率が向上するように見えるのだが、この構造では冷却液は熱導体の役割しか果たさないため、実質的には放熱効率向上の有効性向上は難しい。固体に比較して液体の熱伝導は劣っていることから、冷却液を従来の樹脂に代替してLEDチップに直接接触させれば放熱効率が低下する。さらに、高出力への応用では、LEDチップの能動接合部はおよそ110℃程度で作動し、能動接合部周囲の冷却液が非常に高い温度まで過熱されるため、冷却液と蓋の間に温度勾配が発生する。また冷却液は良導体ではないため、熱をLEDチップから周囲の空気に迅速に伝えることができず、能動接合部付近の冷却液が非常に高温になり、その上、熱が能動接合部付近の冷却液中に留まってしまう。もう一つの欠点として、封止が小さいことから充填できる冷却液が非常に少なく、放熱に関してほとんど意味がないことがある。また、LEDチップ能動接合部の作動温度は約110℃であるため、能動接合部周囲の冷却液が気泡発生器と化してしまい、放熱効率を低下させる可能性もある。熱が冷却液のルートで効果的に消散されないため、LEDチップが発生する熱はほとんどが従来のLED同様、電極および金属線でピンに伝わる。そのほか、当該封止は冷却液が接触するベアチップがLEDチップを侵食し、損壊を引き起こす可能性ももう一つの欠点となりうる。
図11は、従来の白熱電球の配光曲線図である。この図によると、発光輝度比率60%以上の照明角度は280°である。図12は典型的な高出力LEDの配光曲線図である。この図では、発光輝度比率60%以上の照明角度は110°であることが分かる。即ち、高出力LEDの照明目的使用上のもう一つの問題点は照明角度不足であり、環境照明に必要な広範で均質な光線という条件を満たすことができない。また、光学設計上、照明角度不足という問題を解決しなければ、高出力LEDを照明に使用する新たな機会を作り出すこともできない。
よって、放熱改善、照明角度増加、照明輝度向上を実現した高出力LEDランプが望まれている。
To prevent high-power LEDs from overheating, the high-power LED junction operating temperature must be less than 120 ° C, and the high-power LED luminous intensity (lumen value) and lifetime are all junction operating temperatures. In order to improve the heat dissipation efficiency of high-power LEDs, a decrease in the junction operating temperature is the basis for using high-power LEDs for lighting purposes. Figure 9 shows the relationship between the luminous intensity ratio of the high-power LED and the junction operating temperature. According to this figure, in an ideal state, the junction operating temperature of the high-power LED is required to keep the luminous luminance ratio at a minimum of 80%. Must be less than 95 ° C. Figure 10 shows the relationship between the lifetime of a high-power LED and the junction operating temperature. According to this figure, in an ideal state, the junction operating temperature of the high-power LED is 95 ° C to keep the lifetime at a minimum of 50 khr. Must be less than
Another drawback of the high power LED lamp 148 is the high optical loss. This is because after the light emitted by the high-power LED 124 is reflected many times in the reflection cup 150, some of the light does not become projection light, and part of the light is reflected again by the reflection cup 150 when the light passes through the lens 152. This is because the effective utilization rate of light decreases due to the return.
US Patent Publication No. 20040004435 provides an LED seal that includes a lid over a recessed groove. The cooling liquid filled in the groove envelops the LED chip and provides heat dissipation to the LED chip that is in direct contact with the cooling liquid. Theoretically, this seems to improve the heat dissipation efficiency, but in this structure, since the coolant only serves as a heat conductor, it is substantially difficult to improve the effectiveness of the heat dissipation efficiency. Since the heat conduction of the liquid is inferior to that of the solid, the heat dissipation efficiency decreases if the cooling liquid is replaced with a conventional resin and brought into direct contact with the LED chip. In addition, for high power applications, the active junction of the LED chip operates at around 110 ° C, and the coolant around the active junction is overheated to a very high temperature, so the temperature between the coolant and the lid A gradient occurs. In addition, since the coolant is not a good conductor, heat cannot be quickly transferred from the LED chip to the surrounding air, the coolant near the active junction becomes very hot, and the heat near the active junction. It stays in the coolant. Another disadvantage is that because the seal is small, there is very little cooling liquid that can be filled, and there is little meaning regarding heat dissipation. In addition, since the operating temperature of the LED chip active junction is about 110 ° C., the cooling liquid around the active junction becomes a bubble generator, which may reduce the heat dissipation efficiency. Since heat is not effectively dissipated in the coolant route, most of the heat generated by the LED chip is transferred to the pins by electrodes and metal wires, as in conventional LEDs. In addition, the sealing may be another drawback that the bare chip that contacts the coolant may erode the LED chip and cause damage.
FIG. 11 is a light distribution curve diagram of a conventional incandescent bulb. According to this figure, the illumination angle with a light emission luminance ratio of 60% or more is 280 °. FIG. 12 is a light distribution curve diagram of a typical high-power LED. In this figure, it can be seen that the illumination angle with the light emission luminance ratio of 60% or more is 110 °. That is, another problem in the use of the high-power LED for the purpose of illumination is a lack of illumination angle, and it cannot satisfy the condition of a wide and uniform light beam necessary for environmental illumination. Moreover, unless the problem of insufficient illumination angle is solved by optical design, it will not be possible to create new opportunities to use high-power LEDs for illumination.
Therefore, a high-power LED lamp that has improved heat dissipation, increased illumination angle, and improved illumination brightness is desired.

本発明の目的は、照明に使用する高出力LEDランプを提供することにある。
本発明の目的は、低コストの高出力LEDランプを提供することにある。
本発明の目的は、放熱を改善した高出力LEDランプを提供することにある。
本発明の目的は、照明角度を増加させた高出力LEDランプを提供することにある。
本発明の目的は、照明輝度を向上させた高出力LEDランプを提供することにある。
本発明に基づき、液体充填用空間を持つ容器を含む一種の高出力LEDランプで、高出力LED光源が当該液体を通過する光源モジュールを提供する。軸方向熱伝導器は第一部分が当該光源モジュールに隣接し、第二部分が当該液体中の当該空間の軸方向に沿って当該光源モジュールまで達している。当該光源モジュールの温度が上昇すると、当該軸方向熱伝導器が熱を当該光源モジュールから当該液体を通して当該容器へ伝達するため、光源モジュールは迅速で良好な放熱が可能になる。
当該液体は熱発散および照明角度拡大、輝度向上を促進する。良好な実施例では、当該液体が発生させる熱対流がさらに放熱を向上し、コストも先行の金属放熱フィンの5分の1から10分の1である。光が当該液体に進入すると、光の拡散で照明角度が拡大する。光は当該液体および容器の間で全反射し、良好なスポットライト効果および照明輝度の増加を可能にする。
An object of the present invention is to provide a high-power LED lamp used for illumination.
An object of the present invention is to provide a low-cost high-power LED lamp.
An object of the present invention is to provide a high-power LED lamp with improved heat dissipation.
An object of the present invention is to provide a high-power LED lamp having an increased illumination angle.
An object of the present invention is to provide a high-power LED lamp with improved illumination brightness.
In accordance with the present invention, a light source module is provided which is a kind of high power LED lamp including a container having a space for filling liquid, in which the high power LED light source passes through the liquid. The first portion of the axial heat conductor is adjacent to the light source module, and the second portion reaches the light source module along the axial direction of the space in the liquid. When the temperature of the light source module rises, the axial heat conductor transfers heat from the light source module through the liquid to the container, so that the light source module can quickly and well dissipate heat.
The liquid promotes heat dissipation, illumination angle expansion, and brightness improvement. In a preferred embodiment, the heat convection generated by the liquid further improves heat dissipation, and the cost is 1/5 to 1/10 that of the preceding metal heat dissipation fin. When light enters the liquid, the illumination angle is expanded by the diffusion of light. The light is totally reflected between the liquid and the container, allowing a good spotlight effect and increased illumination brightness.

図13は本発明に基づく高出力LEDランプ200、図14はその分解図である。高出力LEDランプ200には、容器202の液体充填用空間203内に、透明または半透明の液体204を充填する。光源モジュールは、電力損失0.3W超の高出力LED封止体206などを含み、内部にMCPCB210上の電源コード222を配置している。封止樹脂208は高出力LED封止体206およびMCPCB210を担体212上に固定し、かつ水密作用を発生する。軸方向フィン付属品211は高出力LED封止体206の前方に配置し、かつ担体212と熱接続させる。軸方向熱伝導管213は一端を位置決めリング214および密閉蓋216に挿入し、もう一端を担体212に接続する。密閉材料218は、密閉蓋216上の密閉容器202の管開口部に配置する。電源転換駆動モジュール220は光源モジュールおよび標準電球台座224の間に配置し、電源コード226から引き入れる電源を固定の直流電流に転換し、電源コード222を経由して高出力LED封止体206を駆動する。密閉蓋216の断面図は図15に示すとおりである。楔形になっている縁232および溝234により密閉材料218が更に良好な密閉効果を達成する。図13に戻って説明を続ける。担体212、軸方向熱伝導管213および軸方向フィン付属品211は全て熱の良導体で製造され、軸方向熱伝導管213および軸方向フィン付属品211は液体充填用空間203の軸方向に沿って延伸される。良好な実施例では、軸長が液体充填用空間203の軸長の4分の1から1倍の間にある。軸方向熱伝導管213は担体212後方の液体内で高出力LED封止体206まで達し、軸方向フィン付属品211は担体212前方の液体内で、高出力LED封止体206まで到達する。熱は軸方向熱伝導管213および軸方向フィン付属品211を経由して液体204中の比較的冷たい部分に伝導される。高出力LED封止体206が発生する熱は、MCPCB210および担体212を経由して、軸方向熱伝導管213および軸方向フィン付属品211へ伝導され、更に液体204へ伝達される。図13の矢印が示すとおり、液体204は熱伝導および熱対流を経て熱を容器202へ消散し、さらに熱を環境空気中に消散する。容器202と環境空気の間の接触面積が大きいため、自然空気対流が放熱を促進し、高出力LED封止体206の接合部作動温度を低下させる。たとえ液体204の熱伝導が金属またはその他固体材料を下回ったとしても、軸方向熱伝導管213および軸方向フィン付属品211が十分な熱伝導性を有し、迅速に担体212から液体204に伝導することから、液体204への熱移転は強化される。軸方向熱伝導管213および軸方向フィン付属品211は熱を迅速に液体204の比較的冷たい部分に伝えることで、液体204中の対流を促進できる。高出力LED封止体206が点灯したとき、液体204中の高出力LED封止体206は熱源となり、容器202はボイラーに類似した状態になる。この状況下で、高出力LED封止体206が付近の液体を過熱し、熱くなった液体が上昇流動すると、液体204中に自然対流が発生する。   FIG. 13 is a high-power LED lamp 200 according to the present invention, and FIG. 14 is an exploded view thereof. The high-power LED lamp 200 is filled with a transparent or translucent liquid 204 in a liquid filling space 203 of the container 202. The light source module includes a high-power LED encapsulant 206 having a power loss of more than 0.3 W, and a power cord 222 on the MCPCB 210 is disposed therein. The sealing resin 208 fixes the high-power LED sealing body 206 and the MCPCB 210 on the carrier 212 and generates a watertight action. An axial fin accessory 211 is placed in front of the high power LED encapsulant 206 and is in thermal connection with the carrier 212. One end of the axial heat conduction tube 213 is inserted into the positioning ring 214 and the sealing lid 216, and the other end is connected to the carrier 212. The sealing material 218 is disposed in the tube opening of the sealed container 202 on the sealing lid 216. The power conversion drive module 220 is disposed between the light source module and the standard light bulb base 224, converts the power drawn from the power cord 226 into a fixed DC current, and drives the high-power LED sealed body 206 via the power cord 222 To do. A cross-sectional view of the sealing lid 216 is as shown in FIG. Due to the wedge-shaped edges 232 and grooves 234, the sealing material 218 achieves a better sealing effect. Returning to FIG. 13, the description will be continued. The carrier 212, the axial heat conducting tube 213, and the axial fin accessory 211 are all manufactured from a good heat conductor, and the axial heat conducting tube 213 and the axial fin accessory 211 are along the axial direction of the liquid filling space 203. Stretched. In a preferred embodiment, the axial length is between one quarter and one time the axial length of the liquid filling space 203. The axial heat conducting tube 213 reaches the high power LED encapsulant 206 in the liquid behind the carrier 212, and the axial fin accessory 211 reaches the high power LED encapsulant 206 in the liquid in front of the carrier 212. Heat is conducted to the relatively cooler portions of the liquid 204 via the axial heat transfer tube 213 and the axial fin attachment 211. Heat generated by the high-power LED encapsulant 206 is conducted to the axial heat conduction tube 213 and the axial fin attachment 211 via the MCPCB 210 and the carrier 212 and further transferred to the liquid 204. As shown by the arrows in FIG. 13, the liquid 204 dissipates heat to the container 202 through heat conduction and convection, and further dissipates heat into the ambient air. Since the contact area between the container 202 and the ambient air is large, natural air convection promotes heat dissipation and lowers the joint operating temperature of the high-power LED encapsulant 206. Even if the thermal conductivity of the liquid 204 is lower than that of a metal or other solid material, the axial heat transfer tube 213 and the axial fin attachment 211 have sufficient thermal conductivity to quickly conduct from the carrier 212 to the liquid 204. Thus, heat transfer to the liquid 204 is enhanced. The axial heat transfer tube 213 and the axial fin attachment 211 can transfer heat quickly to a relatively cool portion of the liquid 204 to facilitate convection in the liquid 204. When the high-power LED sealing body 206 is lit, the high-power LED sealing body 206 in the liquid 204 becomes a heat source, and the container 202 is in a state similar to a boiler. Under this situation, when the high-power LED sealing body 206 overheats the liquid in the vicinity and the heated liquid rises and flows, natural convection occurs in the liquid 204.

容器202は、高出力LED封止体206の電力損失に基づき、寸法を選択できる。容器202の平滑な外部表面は空気流動に有効で、迅速に放熱の効果を達成する。容器202は、反射性側壁228および透明または半透明の前壁203を有し、反射性側壁228は金属めっきまたは光学膜の生成が可能である。容器202はガラス、プラスチック、シリコンゴム、或いはその他透明または半透明の材料により製造する。担体212、軸方向熱伝導管213および軸方向フィン付属品211は、金属、グラファイト、炭素繊維、セラミックまたは複合材料、或いはその他高熱伝導材料で製造する。液体204は、水、オリーブ油、パラフィン油、および低粘度の潤滑油など無色、無毒、低粘度の透明または半透明のものが最適である。環境温度−30℃から35℃の寒帯地域では、液体204は水を基本とし、メタノール、エタノール、グリコールまたはその他不凍剤を添加する。環境温度が35℃から60℃の熱帯地域では、液体204は油を基本とする。
一部の実施例では、図16に示すとおり、液体204に微量の染料を添加し、光236が液体204を透過する際、液体中の浮遊染料微粒238が光236の反射および屈折を発生する結果、側方向照明を向上し、照明角度を拡大し、ヒトの眼に入射する光を軟化させる。液体204中に添加する染料は、光の色により異なる色を選定する。例えば、白色光および多色光に応用する場合は白色染料を選定し、赤、青、緑、橙、黄などその他の光の色に応用する場合は高出力LED封止体206が発生する光と同じ色の染料を選定すると、表示する色彩を明るく豊富なものにできる。高出力LED封止体206が発生する光が紫色の光である場合、液体204に蛍光パウダーまたは蛍光液を添加し、蛍光物が紫外光を吸収した後、発する可視光の特性を利用し、液体204中に異なる蛍光パウダーまたは蛍光液を添加することで、ランプ200が多色の蛍光灯として使用できるようにすることもできる。必要に応じ、液体204中に界面活性剤を添加し、染料または蛍光パウダーを液体204中に均等に分布させることができる。
図13が示すランプ200は、スポットライト(プロジェクターランプ)または環境照明とすることもできる。ランプ200をスポットライトとする場合、液体204は透明とし、染料は添加しない。容器202は反射性側壁228を持つものとし、高出力LED封止体206の前方に光学レンズを設置し、光の投射を導く。ランプ200を環境照明とする場合、透明の前壁230の投射角度は110°超が望ましく、容器202は透明側壁228および透明前壁230を有するものとする。液体204中には微量の染料を添加する。
図17は、環境照明の実施例であり、従来の電球を代替しうるものである。ランプ240は、容器202を含み、その液体充填用空間203に透明の液体204を充填する。光源モジュールは、高熱伝導担体244の円錐形の表面上に固定した複数の高出力LED封止体206を含む。位置決めリング214が固定する軸方向熱伝導管242は担体244と機械接続する。密閉蓋216は容器202の管開口部を密閉する。電源転換駆動モジュール220は、高出力LED封止体206と標準電球台座224の間に接続し、発生した直流電流を軸方向熱伝導管242中の電源コードを経由して、高出力LED封止体206を駆動する。同軸熱伝導棒245は担体244に熱接続し、且つ液体充填用空間203の軸方向に沿って担体244まで到達し、熱を液体204中で消散する。良好な実施例では、同軸熱伝導棒245の軸長が液体充填用空間203の軸長の4分の1から2倍の間である。液体204中で高出力LED封止体206まで到達しているため、熱を迅速に担体244から液体204中へ伝導する。良好な実施例では、軸方向熱伝導管242および軸方向熱伝導棒245を金属、グラファイト、炭素繊維、セラミック、または複合材料性の熱伝導管とし、軸方向熱伝導棒245は柱状またはその他のいかなる形状でもよい。本実施例では、容器202を透明な球状とし、液体204は微量の染料を含む。別の実施例では、高出力LED封止体206は異なる色を含み、単回で全部または一部の高出力LED封止体206を点灯できるものとした。
図18は、環境照明の別の実施例で、従来の蛍光灯を代替しうるものである。ランプ246には、管状物250を含む容器、管状物250の両端を覆う向かい合わせになった反射カップ252および253を含む光源モジュールがあり、高出力LED封止体206および207はそれぞれ反射カップ252および253内に配置する。容器の液体充填用空間203内に微量の染料を有する透明の液体204を充填する。電源供給装置248は高出力LED封止体206および207に電気接続する。反射カップ252および253は集光効果を有し、管状物250は透明で、高出力LED封止体206および207の光を透過する。高出力LED封止体206および207は、管状物250の両端にあるため、一部の光は管状物250に沿って全反射を発生し、且つ液体204中の浮遊染料微粒により反射および屈折を生じることで、均等な照明効果を達成する。本実施例では、反射カップ252および253は熱の良導体で製造し、高出力LED封止体206および207の放熱を高める。それだけでなく、高出力LED封止体206および207が発生する熱は主に軸方向熱伝導棒251を経由して液体204に伝達され、液体204中で軸方向熱伝導棒251の台座が高出力LED封止体206および207の担体に接続し、且つ高出力LED封止体206および207まで達していることから、放熱効果を更に高めている。高出力LED封止体206および207は同時に点灯することも、1つだけを点灯することも可能である。
図19は、超高出力環境照明の実施例である。ランプ254中にある光源モジュールは担体264上に固定した複数の高出力LED封止体206を含む。放熱器256は担体264に貼り付いており、フィン262も有している。複数の光学レンズ258はそれぞれ高出力LED封止体206前方に配置し、必要な照明角度を実現する。放熱器256と隣接する容器260は液体充填用空間203を有し、透明な液体204を充填する。特別な点としては、複数の軸方向熱伝導棒266が担体264または放熱器256と接続し、高出力LED封止体206の放熱を強化している。本実施例では、液体充填用空間203内の液体204には染料を添加せずに照明角度を広げている。
図20は、超高出力環境照明の別の実施例である。電球と互換性のあるランプ268中の光源モジュールは複数の高出力LED封止体206を固定したリング状の表面を持つ担体270を含む。容器274に液体276を充填し、且つ担体270に隣接させる。上掲の実施例で説明した構造に加え、軸方向熱伝導棒272の台座は担体270付近とするが、直接担体270には接続させない。先端部は液体276中で高出力LED封止体206まで到達させる。高出力LED封止体206の作動中は、高出力LED封止体206および担体270付近の液体276が高温になり、高温になった液体276は軸方向熱伝導管272を加熱するため、軸方向熱伝導管272が熱を光源モジュールから液体276を経由して容器274に伝達する。
図21は、放熱を更に向上させるための見取り図である。スリーブ278を図17のランプ240の軸方向熱伝導棒245に加え、図21の矢印が示すとおり、軸方向熱伝導棒245が熱を担体244から周囲の液体204に伝達し、スリーブ278内の比較的高温の液体が上方へ流動することで、液体204で比較的強い熱対流が発生し、放熱が向上する。
図22は更に別の電球と互換性のあるランプ280であり、光源モジュールは複数の高出力LED封止体206を固定したディスク状の表面を持つ担体282を含む。蓋284は高出力LED封止体206を覆うことで、高出力LED封止体206および担体282を直接液体276に接触させず、容器274が担体270に隣接し、液体276を充填した空間を有している。軸方向熱伝導棒286は担体270と熱接続し、熱を担体270から液体276を経由して容器274に伝達する。軸方向熱伝導棒286は液体276中で高出力LED封止体206および担体286まで達している。
本発明では、液体中に浸された軸方向熱伝導体が主に熱を作動中のLED封止体から液体を経由して均等に容器へと消散する。ランプ中の軸方向熱伝導体は、管状、棒状、柱状、フィン状の形態の熱伝導管とすることができ、柔軟でも堅牢でもよい。軸方向熱伝導体は担体と直接接続しても、または接続しなくてもよい。高出力LED封止体および担体が液体と直接接触しない場合、担体からの熱を良好に吸収するためには軸方向熱伝導体は担体と直接熱接続することが望ましい。高出力LED封止体および/または担体が液体と直接接触している場合、軸方向熱伝導体は第一部分だけを担体に隣接する液体中に浸し、周囲の液体を加熱することで、担体および高出力LED封止体からの熱を吸収する。第二部分は液体中で担体および高出力LED封止体まで到達させる。
本発明を採用すれば、高出力LEDが異なる照明目的の応用または要件に適応するため、液体の材料も簡単に変更でき、容器のサイズや形状など幾何学的構造も変更でき、迅速な放熱と照明光学の最適化が実現できる。
The container 202 can be dimensioned based on the power loss of the high power LED encapsulant 206. The smooth outer surface of the container 202 is effective for air flow and quickly achieves a heat dissipation effect. The container 202 has a reflective side wall 228 and a transparent or translucent front wall 203, and the reflective side wall 228 can be metal-plated or produce an optical film. The container 202 is made of glass, plastic, silicon rubber, or other transparent or translucent material. The carrier 212, the axial heat transfer tube 213, and the axial fin attachment 211 are made of metal, graphite, carbon fiber, ceramic or composite material, or other high heat transfer materials. The liquid 204 is optimally colorless, non-toxic, low viscosity transparent or translucent, such as water, olive oil, paraffin oil, and low viscosity lubricating oil. In cold regions where the ambient temperature is between -30 ° C. and 35 ° C., the liquid 204 is based on water and methanol, ethanol, glycol or other antifreeze is added. In tropical regions where the ambient temperature is between 35 ° C and 60 ° C, the liquid 204 is oil based.
In some embodiments, as shown in FIG. 16, when a small amount of dye is added to the liquid 204 and the light 236 passes through the liquid 204, the floating dye particles 238 in the liquid generate reflection and refraction of the light 236. As a result, the side illumination is improved, the illumination angle is expanded, and the light incident on the human eye is softened. As the dye added to the liquid 204, a different color is selected depending on the color of light. For example, when applying to white light and multicolor light, select a white dye, and when applying to other light colors such as red, blue, green, orange, yellow, the light generated by the high-power LED encapsulant 206 By selecting the same color dye, the displayed colors can be bright and rich. When the light generated by the high-power LED encapsulant 206 is violet light, add fluorescent powder or fluorescent liquid to the liquid 204 and use the characteristics of visible light emitted after the phosphor absorbs ultraviolet light, By adding different fluorescent powders or fluorescent liquids to the liquid 204, the lamp 200 can be used as a multicolor fluorescent lamp. If necessary, a surfactant can be added in the liquid 204 to evenly distribute the dye or fluorescent powder in the liquid 204.
The lamp 200 shown in FIG. 13 can also be a spotlight (projector lamp) or environmental lighting. When the lamp 200 is a spotlight, the liquid 204 is transparent and no dye is added. The container 202 has a reflective side wall 228, and an optical lens is installed in front of the high-power LED sealing body 206 to guide light projection. When the lamp 200 is used for ambient lighting, the projection angle of the transparent front wall 230 is preferably more than 110 °, and the container 202 has a transparent side wall 228 and a transparent front wall 230. A small amount of dye is added to the liquid 204.
FIG. 17 shows an embodiment of environmental lighting, which can replace a conventional light bulb. The lamp 240 includes a container 202 and fills the liquid filling space 203 with a transparent liquid 204. The light source module includes a plurality of high power LED encapsulants 206 fixed on the conical surface of the high thermal conductivity carrier 244. The axial heat conducting tube 242 fixed by the positioning ring 214 is mechanically connected to the carrier 244. A sealing lid 216 seals the tube opening of the container 202. The power conversion drive module 220 is connected between the high-power LED sealing body 206 and the standard light bulb base 224, and the generated direct current is sealed via the power cord in the axial heat conduction tube 242 to seal the high-power LED. Drive the body 206. The coaxial heat conducting rod 245 is thermally connected to the carrier 244 and reaches the carrier 244 along the axial direction of the liquid filling space 203 to dissipate the heat in the liquid 204. In the preferred embodiment, the axial length of the coaxial heat conducting rod 245 is between one quarter and twice the axial length of the liquid filling space 203. Since the high-power LED encapsulant 206 is reached in the liquid 204, heat is quickly conducted from the carrier 244 into the liquid 204. In a preferred embodiment, the axial heat transfer tube 242 and the axial heat transfer rod 245 are metal, graphite, carbon fiber, ceramic, or composite heat transfer tubes, and the axial heat transfer rod 245 is columnar or other Any shape is acceptable. In this embodiment, the container 202 has a transparent spherical shape, and the liquid 204 contains a trace amount of dye. In another embodiment, the high-power LED encapsulant 206 includes different colors, and all or some of the high-power LED encapsulants 206 can be lit at a single time.
FIG. 18 shows another embodiment of the environmental lighting that can replace the conventional fluorescent lamp. The lamp 246 includes a light source module including a container including a tubular object 250, and reflecting cups 252 and 253 facing each other that cover both ends of the tubular object 250. And place within 253. The liquid filling space 203 of the container is filled with a transparent liquid 204 having a small amount of dye. The power supply 248 is electrically connected to the high power LED encapsulants 206 and 207. The reflection cups 252 and 253 have a light collecting effect, the tubular body 250 is transparent, and transmits the light of the high-power LED sealing bodies 206 and 207. Since the high-power LED encapsulants 206 and 207 are located at both ends of the tubular body 250, some light is totally reflected along the tubular body 250, and is reflected and refracted by floating dye particles in the liquid 204. This produces a uniform lighting effect. In the present embodiment, the reflective cups 252 and 253 are made of a good heat conductor to enhance the heat dissipation of the high-power LED sealing bodies 206 and 207. In addition, the heat generated by the high-power LED encapsulants 206 and 207 is transferred to the liquid 204 mainly via the axial heat conduction rod 251, and the pedestal of the axial heat conduction rod 251 is high in the liquid 204. Since it is connected to the carrier of the output LED sealing bodies 206 and 207 and reaches the high output LED sealing bodies 206 and 207, the heat dissipation effect is further enhanced. The high-power LED sealing bodies 206 and 207 can be lit at the same time, or only one can be lit.
FIG. 19 is an example of ultra-high power environmental lighting. The light source module in the lamp 254 includes a plurality of high power LED encapsulants 206 secured on a carrier 264. The radiator 256 is affixed to the carrier 264 and also has fins 262. The plurality of optical lenses 258 are respectively arranged in front of the high-power LED sealing body 206 to realize a necessary illumination angle. A container 260 adjacent to the radiator 256 has a liquid filling space 203 and is filled with a transparent liquid 204. As a special point, a plurality of axial heat conducting rods 266 are connected to the carrier 264 or the radiator 256 to enhance the heat radiation of the high-power LED encapsulant 206. In this embodiment, the illumination angle is widened without adding a dye to the liquid 204 in the liquid filling space 203.
FIG. 20 is another example of ultra high power ambient lighting. The light source module in the lamp 268 compatible with the light bulb includes a carrier 270 having a ring-shaped surface to which a plurality of high-power LED encapsulants 206 are fixed. Container 274 is filled with liquid 276 and adjacent carrier 270. In addition to the structure described in the above embodiment, the pedestal of the axial heat conducting rod 272 is in the vicinity of the carrier 270, but is not directly connected to the carrier 270. The tip is made to reach the high-power LED sealing body 206 in the liquid 276. During the operation of the high-power LED encapsulant 206, the liquid 276 near the high-power LED encapsulant 206 and the carrier 270 becomes high temperature, and the heated liquid 276 heats the axial heat conduction tube 272. A directional heat transfer tube 272 transfers heat from the light source module to the container 274 via the liquid 276.
FIG. 21 is a sketch for further improving heat dissipation. The sleeve 278 is added to the axial heat conducting rod 245 of the lamp 240 in FIG. 17, and the axial heat conducting rod 245 transfers heat from the carrier 244 to the surrounding liquid 204 as indicated by the arrows in FIG. Since the relatively high-temperature liquid flows upward, a relatively strong thermal convection is generated in the liquid 204, and heat dissipation is improved.
FIG. 22 shows a lamp 280 that is compatible with yet another bulb, and the light source module includes a carrier 282 having a disk-like surface to which a plurality of high-power LED encapsulants 206 are fixed. The lid 284 covers the high-power LED encapsulant 206 so that the high-power LED encapsulant 206 and the carrier 282 do not directly contact the liquid 276, and the container 274 is adjacent to the carrier 270 and the space filled with the liquid 276 is formed. Have. The axial heat conducting rod 286 is in thermal connection with the carrier 270 and transfers heat from the carrier 270 via the liquid 276 to the container 274. The axial heat conducting rod 286 reaches the high power LED encapsulant 206 and the carrier 286 in the liquid 276.
In the present invention, the axial heat conductor immersed in the liquid mainly dissipates heat from the LED sealing body in operation to the container evenly via the liquid. The axial heat conductor in the lamp can be a heat conduction tube in the form of a tube, rod, column or fin, and may be flexible or robust. The axial heat conductor may or may not be directly connected to the carrier. If the high power LED encapsulant and the carrier are not in direct contact with the liquid, it is desirable that the axial heat conductor be in direct thermal connection with the carrier in order to better absorb the heat from the carrier. When the high power LED encapsulant and / or carrier is in direct contact with the liquid, the axial heat conductor immerses only the first part in the liquid adjacent to the carrier and heats the surrounding liquid, thereby heating the carrier and Absorbs heat from high-power LED encapsulant. The second part reaches the carrier and the high power LED encapsulant in the liquid.
Adopting the present invention, high power LEDs can be adapted to different lighting purpose applications or requirements, so the liquid material can also be changed easily, the geometric structure such as the size and shape of the container can be changed, and quick heat dissipation and Optimization of illumination optics can be realized.

先行の低出力LEDである。It is a leading low-power LED. 先行の低出力LEDランプである。It is a preceding low-power LED lamp. 先行の高出力LEDである。It is a leading high-power LED. 先行の高出力LEDの放熱補助構造である。It is a heat dissipation auxiliary structure for the preceding high-power LED. 先行の前部放熱式高出力LEDランプである。It is a leading front heat dissipation type high power LED lamp. 先行の後部放熱式高出力LEDランプである。It is a leading rear heat dissipation type high power LED lamp. 埋め込み式照明器具に使用した先行の後部放熱式高出力LEDランプの見取り図である。It is a sketch of the preceding rear heat dissipation type high output LED lamp used for the embedded lighting fixture. 吊り下げ式照明器具に使用した先行の後部放熱式高出力LEDランプの見取り図である。It is a sketch of the preceding rear heat radiation type high output LED lamp used for the hanging type lighting fixture. 高出力LED発光輝度比率と接合部作動温度の関係図である。FIG. 6 is a relationship diagram between a high-power LED light emission luminance ratio and a junction operating temperature. 高出力LED耐用期限と接合部作動温度の関係図である。FIG. 4 is a relationship diagram between a high-power LED lifetime and a junction operating temperature. 従来の白熱電球の配光曲線図である。It is a light distribution curve figure of the conventional incandescent lamp. 典型的な高出力LEDの配光曲線図である。It is a light distribution curve figure of typical high output LED. 本発明に基づいた高出力LEDランプである。1 is a high-power LED lamp according to the present invention. 図13の高出力LEDランプの分解図である。FIG. 14 is an exploded view of the high-power LED lamp of FIG. 密閉蓋の断面図である。It is sectional drawing of a sealing lid. 図13の高出力LEDランプ浮遊染料微粒の側方向照明補助の見取り図である。FIG. 14 is a sketch of side illumination assistance for the high-power LED lamp floating dye granules of FIG. 環境照明に使用された実施例である。It is the Example used for environmental lighting. 環境照明に使用された別の実施例である。It is another Example used for environmental lighting. 超高出力環境照明に使用された実施例である。It is the Example used for the super high output environmental illumination. 超高出力環境照明に使用された別の実施例である。It is another Example used for ultra high power environmental lighting. 更に放熱を向上する構造である。Further, the structure improves heat dissipation. 超高出力環境照明に使用された別の実施例である。It is another Example used for ultra high power environmental lighting.

Claims (18)

高出力発光ダイオードランプ。以下のものを含む。
液体充填用空間を有する容器、
当該空間中の液体、
高出力発光ダイオード光源を提供する光源モジュール、
軸方向熱伝導器。
その第一部分が光源モジュールに隣接し、第二部分が液体中で当該空間の軸方向に沿って当該光源モジュールまで達しており、熱が当該光源モジュールから液体を経由して容器まで伝達される。
High power light emitting diode lamp. Includes:
A container having a liquid filling space;
Liquid in the space,
A light source module providing a high power light emitting diode light source,
Axial heat conductor.
The first part is adjacent to the light source module, the second part reaches the light source module along the axial direction of the space in the liquid, and heat is transferred from the light source module to the container via the liquid.
請求項1に記載されたランプで、その内当該軸方向熱伝導器が細長い棒状のもの。 2. The lamp according to claim 1, wherein the axial heat conductor is an elongated rod. 請求項1に記載されたランプで、その内当該軸方向熱伝導器が管状のもの。 2. The lamp according to claim 1, wherein the axial heat conductor is tubular. 請求項1に記載されたランプで、その内当該軸方向熱伝導器が柱状のもの。 2. The lamp according to claim 1, wherein the axial heat conductor is columnar. 請求項1に記載されたランプで、その内当該軸方向熱伝導器が軸方向フィン付属品を含むもの。 2. The lamp of claim 1, wherein the axial heat conductor includes an axial fin accessory. 請求項1に記載されたランプで、その内当該軸方向熱伝導器が熱伝導管を含むもの。 2. The lamp according to claim 1, wherein the axial heat conductor includes a heat conducting tube. 請求項1に記載されたランプで、その内当該光源モジュールが熱伝導担体にマウントされた一つまたは複数の高出力発光ダイオード封止体を含むもの。 2. The lamp according to claim 1, wherein the light source module includes one or a plurality of high-power light emitting diode encapsulants mounted on a heat conducting carrier. 請求項7に記載されたランプで、その内当該担体が当該軸方向熱伝導器の第一部分に接続されているもの。 8. A lamp as claimed in claim 7, wherein the carrier is connected to the first part of the axial heat conductor. 請求項8に記載されたランプで、その内当該担体および当該軸方向熱伝導器の第一部分が直接当該液体に接触しているもの。 9. A lamp as claimed in claim 8, wherein the carrier and the first part of the axial heat conductor are in direct contact with the liquid. 請求項8に記載されたランプで、更に蓋により当該担体および当該高出力発光ダイオード封止体と当該液が隔離されているもの。 9. The lamp according to claim 8, wherein the carrier and the sealed high-power light emitting diode are separated from the liquid by a lid. 請求項7に記載されたランプで、その内当該担体が当該軸方向熱伝導器に隣接しているが、接続されていないもの。 8. A lamp as claimed in claim 7, wherein the carrier is adjacent to the axial heat conductor but is not connected. 請求項11に記載されたランプで、その内当該担体および当該軸方向熱伝導器の第一部分のいずれもが直接当該液体と接触していないもの。 12. The lamp of claim 11, wherein none of the carrier and the first portion of the axial heat conductor are in direct contact with the liquid. 請求項1に記載されたランプで、更に当該軸方向熱伝導器において熱対流を促進するスリーブを含むもの。 The lamp of claim 1, further comprising a sleeve that promotes thermal convection in the axial heat conductor. 請求項1に記載されたランプで、その内当該光源モジュールが複数の高出力発光ダイオード封止体により当該光源を少なくとも2色持つものを含む。 The lamp according to claim 1, wherein the light source module includes at least two colors of the light source by a plurality of high-power light emitting diode sealing bodies. 請求項1に記載されたランプで、その内当該液体が複数のリン光または蛍光微粒を含むもの。 2. The lamp according to claim 1, wherein the liquid contains a plurality of phosphorescent or fluorescent particles. 請求項1に記載されたランプで、その内当該液体に不凍剤を含むもの。 2. The lamp according to claim 1, wherein the liquid contains an antifreeze. 請求項1に記載されたランプで、更に当該容器中で当該光源を引き出す光学レンズを含むもの。 2. The lamp according to claim 1, further comprising an optical lens for extracting the light source in the container. 請求項1に記載されたランプで、その内当該光源モジュールが2つの向かい合った反射カップを含み、各反射カップが一つまたは複数の高出力発光ダイオード封止体を有し、管状物を含む当該容器が2つの反射カップの間の当該液体中に配置され、当該軸方向熱伝導器の第一部分が全てまたはどちらかの反射カップに隣接し、当該軸方向熱伝導器の第二部分が当該管状物の軸方向に沿って延伸されているもの。 The lamp of claim 1, wherein the light source module includes two opposing reflective cups, each reflective cup having one or more high power light emitting diode seals and including a tubular object. A container is placed in the liquid between two reflective cups, the first portion of the axial heat conductor is adjacent to all or one of the reflective cups, and the second portion of the axial heat conductor is the tubular What is stretched along the axial direction of the object.
JP2007185352A 2006-07-17 2007-07-17 High power led lamp with heat dissipation exhancement Pending JP2008027910A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/487,386 US7922359B2 (en) 2006-07-17 2006-07-17 Liquid-filled LED lamp with heat dissipation means

Publications (1)

Publication Number Publication Date
JP2008027910A true JP2008027910A (en) 2008-02-07

Family

ID=38537548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007185352A Pending JP2008027910A (en) 2006-07-17 2007-07-17 High power led lamp with heat dissipation exhancement

Country Status (7)

Country Link
US (3) US7922359B2 (en)
EP (1) EP1881259B1 (en)
JP (1) JP2008027910A (en)
KR (2) KR101014910B1 (en)
CN (1) CN101109502B (en)
DE (1) DE602007005054D1 (en)
TW (1) TWI332560B (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231276A (en) * 2008-03-21 2009-10-08 Liquidleds Lighting Corp Led lamp and manufacturing method therefor
WO2009157285A1 (en) * 2008-06-27 2009-12-30 東芝ライテック株式会社 Light-emitting element lamp and lighting fixture
JP2010040259A (en) * 2008-08-01 2010-02-18 Toshiaki Inoue Led bulb
JP2010108637A (en) * 2008-10-28 2010-05-13 Harison Toshiba Lighting Corp Vehicle headlight
JP2010199049A (en) * 2009-02-23 2010-09-09 ▲緑▼點高新科技股▲分▼有限公司 High performance light emitter
WO2011087023A1 (en) * 2010-01-14 2011-07-21 東芝ライテック株式会社 Light bulb-shaped lamp and lighting fixture
JP2011165662A (en) * 2010-02-11 2011-08-25 Power Photon Co Ltd Modulized light-emitting diode apparatus with enhanced heat dissipation
JP2011243375A (en) * 2010-05-17 2011-12-01 Sharp Corp Light-emitting device, illumination device, and vehicle headlight
JP2012519350A (en) * 2009-02-27 2012-08-23 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ LED based lamp and thermal management system for the lamp
US8324789B2 (en) 2009-09-25 2012-12-04 Toshiba Lighting & Technology Corporation Self-ballasted lamp and lighting equipment
US8354783B2 (en) 2009-09-24 2013-01-15 Toshiba Lighting & Technology Corporation Light-emitting device.having a frame member surrounding light-emitting elements and illumination device utilizing light-emitting device
US8376562B2 (en) 2009-09-25 2013-02-19 Toshiba Lighting & Technology Corporation Light-emitting module, self-ballasted lamp and lighting equipment
US8382325B2 (en) 2009-06-30 2013-02-26 Toshiba Lighting & Technology Corporation Lamp and lighting equipment using the same
US8395304B2 (en) 2009-09-25 2013-03-12 Toshiba Lighting & Technology Corporation Lamp and lighting equipment with thermally conductive substrate and body
US8415889B2 (en) 2009-07-29 2013-04-09 Toshiba Lighting & Technology Corporation LED lighting equipment
US8500316B2 (en) 2010-02-26 2013-08-06 Toshiba Lighting & Technology Corporation Self-ballasted lamp and lighting equipment
WO2013132549A1 (en) * 2012-03-07 2013-09-12 パナソニック株式会社 Lamp
JP2014003032A (en) * 2013-08-30 2014-01-09 Toshiba Lighting & Technology Corp Electric bulb type lamp and luminaire
JP2014507061A (en) * 2011-03-01 2014-03-20 スイッチ バルブ カンパニー インク Liquid displacer in LED bulb
US8678618B2 (en) 2009-09-25 2014-03-25 Toshiba Lighting & Technology Corporation Self-ballasted lamp having a light-transmissive member in contact with light emitting elements and lighting equipment incorporating the same
JP2014150072A (en) * 2011-02-01 2014-08-21 Switch Bulb Co Inc Led bulb
US8833991B2 (en) 2010-02-10 2014-09-16 Sharp Kabushiki Kaisha Light emitting device, with light guide member having smaller exit section, and illuminating device, and vehicle headlight including the same
US8858041B2 (en) 2005-04-08 2014-10-14 Toshiba Lighting & Technology Corporation Lamp having outer shell to radiate heat of light source
US8876344B2 (en) 2009-12-17 2014-11-04 Sharp Kabushiki Kaisha Vehicle headlamp with excitation light source, light emitting part and light projection section
US9018828B2 (en) 2007-10-16 2015-04-28 Toshiba Lighting & Technology Corporation Light emitting element lamp and lighting equipment
JP2015135824A (en) * 2011-07-14 2015-07-27 三菱電機照明株式会社 Street light and lamp replacement method
US9816677B2 (en) 2010-10-29 2017-11-14 Sharp Kabushiki Kaisha Light emitting device, vehicle headlamp, illumination device, and laser element
JP2018174135A (en) * 2017-03-31 2018-11-08 液光固態照明股▲ふん▼有限公司 Led lamp including heat dissipation effect

Families Citing this family (224)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2614803C (en) * 2005-04-05 2015-08-25 Tir Technology Lp Electronic device package with an integrated evaporator
US9412926B2 (en) 2005-06-10 2016-08-09 Cree, Inc. High power solid-state lamp
CA2645231A1 (en) 2006-05-02 2007-11-15 Superbulbs, Inc. Heat removal design for led bulbs
WO2007130357A2 (en) * 2006-05-02 2007-11-15 Superbulbs, Inc. Method of light dispersion and preferential scattering of certain wavelengths of light for light-emitting diodes and bulbs constructed therefrom
US8702257B2 (en) * 2006-05-02 2014-04-22 Switch Bulb Company, Inc. Plastic LED bulb
US7985005B2 (en) * 2006-05-30 2011-07-26 Journée Lighting, Inc. Lighting assembly and light module for same
KR100786095B1 (en) * 2006-08-10 2007-12-21 엘지전자 주식회사 Method and system for operating led
TW200828632A (en) * 2006-12-28 2008-07-01 Yu-Nung Shen Package body of luminous source
WO2008154172A1 (en) * 2007-06-08 2008-12-18 Superbulbs, Inc. Apparatus for cooling leds in a bulb
US20090001372A1 (en) * 2007-06-29 2009-01-01 Lumination Llc Efficient cooling of lasers, LEDs and photonics devices
WO2009035693A1 (en) 2007-09-14 2009-03-19 Superbulbs, Inc. Phosphor-containing led light bulb
JP5443677B2 (en) * 2007-09-21 2014-03-19 オリンパスメディカルシステムズ株式会社 Illumination device and endoscope
WO2009045438A1 (en) 2007-10-03 2009-04-09 Superbulbs, Inc. Glass led light bulbs
US8415695B2 (en) * 2007-10-24 2013-04-09 Switch Bulb Company, Inc. Diffuser for LED light sources
US8337048B2 (en) * 2007-10-31 2012-12-25 Yu-Nung Shen Light source package having a six sided light emitting die supported by electrodes
US8118447B2 (en) 2007-12-20 2012-02-21 Altair Engineering, Inc. LED lighting apparatus with swivel connection
US7712918B2 (en) 2007-12-21 2010-05-11 Altair Engineering , Inc. Light distribution using a light emitting diode assembly
FR2926926A1 (en) * 2008-01-30 2009-07-31 Fd Eclairage Architectural Sa Electric light source for use in e.g. headlight of motor vehicle, has heat transfer fluid provided in thermal conductive contact with rear surface of plate/support of LED, where plate has dissipator immersed in heat transfer fluid
US7866850B2 (en) 2008-02-26 2011-01-11 Journée Lighting, Inc. Light fixture assembly and LED assembly
US7810965B2 (en) 2008-03-02 2010-10-12 Lumenetix, Inc. Heat removal system and method for light emitting diode lighting apparatus
US9102857B2 (en) * 2008-03-02 2015-08-11 Lumenetix, Inc. Methods of selecting one or more phase change materials to match a working temperature of a light-emitting diode to be cooled
CN101561121B (en) * 2008-04-15 2014-05-28 液光固态照明股份有限公司 Glass packaging LED bulb and manufacturing method thereof
US8360599B2 (en) 2008-05-23 2013-01-29 Ilumisys, Inc. Electric shock resistant L.E.D. based light
DE102008025735C5 (en) * 2008-05-29 2018-03-01 Ledvance Gmbh light unit
CN101614385B (en) * 2008-06-27 2012-07-04 富准精密工业(深圳)有限公司 LED lamp
US7976196B2 (en) 2008-07-09 2011-07-12 Altair Engineering, Inc. Method of forming LED-based light and resulting LED-based light
US7946729B2 (en) 2008-07-31 2011-05-24 Altair Engineering, Inc. Fluorescent tube replacement having longitudinally oriented LEDs
US8033677B1 (en) 2008-08-01 2011-10-11 DeepSea Power and Light, Inc. Deep submersible light with pressure compensation
US20110204777A1 (en) * 2008-08-18 2011-08-25 Switch Bulb Company, Inc. Settable light bulbs
WO2010021676A1 (en) * 2008-08-18 2010-02-25 Superbulbs, Inc. Anti-reflective coatings for light bulbs
US8591066B2 (en) * 2008-08-19 2013-11-26 Spectronics Corporation Modular lamp head and assembly for non-destructive testing
DE102008039365A1 (en) * 2008-08-22 2010-03-04 Osram Gesellschaft mit beschränkter Haftung lighting device
US8674626B2 (en) 2008-09-02 2014-03-18 Ilumisys, Inc. LED lamp failure alerting system
WO2010030332A1 (en) * 2008-09-11 2010-03-18 Superbulbs, Inc. End-of-life bulb circuitry
US8256924B2 (en) 2008-09-15 2012-09-04 Ilumisys, Inc. LED-based light having rapidly oscillating LEDs
US7902761B2 (en) 2008-10-03 2011-03-08 Next Gen Illumination, Inc Dimmable LED lamp
US8444292B2 (en) 2008-10-24 2013-05-21 Ilumisys, Inc. End cap substitute for LED-based tube replacement light
US7938562B2 (en) 2008-10-24 2011-05-10 Altair Engineering, Inc. Lighting including integral communication apparatus
US8214084B2 (en) 2008-10-24 2012-07-03 Ilumisys, Inc. Integration of LED lighting with building controls
US8324817B2 (en) 2008-10-24 2012-12-04 Ilumisys, Inc. Light and light sensor
US8653984B2 (en) 2008-10-24 2014-02-18 Ilumisys, Inc. Integration of LED lighting control with emergency notification systems
US8901823B2 (en) 2008-10-24 2014-12-02 Ilumisys, Inc. Light and light sensor
US20100118542A1 (en) * 2008-11-12 2010-05-13 Keen Stephen B Appartus for Controlling and Removing Heat from a High Intensity Discharge Lamp Assembly
US8152336B2 (en) * 2008-11-21 2012-04-10 Journée Lighting, Inc. Removable LED light module for use in a light fixture assembly
US8430531B2 (en) 2009-01-08 2013-04-30 Terralux, Inc. Advanced cooling method and device for LED lighting
US8556452B2 (en) 2009-01-15 2013-10-15 Ilumisys, Inc. LED lens
US8021025B2 (en) * 2009-01-15 2011-09-20 Yeh-Chiang Technology Corp. LED lamp
US8362710B2 (en) 2009-01-21 2013-01-29 Ilumisys, Inc. Direct AC-to-DC converter for passive component minimization and universal operation of LED arrays
US8664880B2 (en) 2009-01-21 2014-03-04 Ilumisys, Inc. Ballast/line detection circuit for fluorescent replacement lamps
US20100187961A1 (en) * 2009-01-27 2010-07-29 Keith Scott Phosphor housing for light emitting diode lamp
US7969075B2 (en) 2009-02-10 2011-06-28 Lumenetix, Inc. Thermal storage system using encapsulated phase change materials in LED lamps
WO2010093448A2 (en) * 2009-02-11 2010-08-19 Anthony Mo Led diffusion techniques
WO2010096498A1 (en) * 2009-02-17 2010-08-26 Cao Group, Inc. Led light bulbs for space lighting
JP5637344B2 (en) 2009-02-19 2014-12-10 東芝ライテック株式会社 Lamp apparatus and lighting apparatus
CN101865374B (en) * 2009-02-19 2014-05-07 东芝照明技术株式会社 Lamp system and lighting apparatus
US8692274B2 (en) 2009-02-24 2014-04-08 Industrial Technology Research Institute Light emitting diode package structure
TWI413284B (en) * 2009-02-24 2013-10-21 Ind Tech Res Inst Light-emitting diode package structure
KR100944181B1 (en) * 2009-04-07 2010-02-24 용남순 Led lamp with a radial shape
JP2010250962A (en) * 2009-04-10 2010-11-04 Toshiba Lighting & Technology Corp Light-emitting module and lighting fixture
DE102009019227A1 (en) 2009-04-28 2011-01-13 Ledon Lighting Jennersdorf Gmbh LED lamp
US8253316B2 (en) * 2009-05-13 2012-08-28 Light Prescriptions Innovators, Llc Dimmable LED lamp
US8330381B2 (en) * 2009-05-14 2012-12-11 Ilumisys, Inc. Electronic circuit for DC conversion of fluorescent lighting ballast
CA2763244A1 (en) * 2009-05-28 2010-12-02 Koninklijke Philips Electronics N.V. Illumination device and method for assembly of an illumination device
US9016915B2 (en) * 2009-05-28 2015-04-28 The Hong Kong University Of Science And Technology Light tube
JP4957927B2 (en) * 2009-05-29 2012-06-20 東芝ライテック株式会社 Light bulb shaped lamp and lighting equipment
US20100301356A1 (en) * 2009-06-02 2010-12-02 Bridgelux, Inc. Light source having light emitting cells arranged to produce a spherical emission pattern
US8299695B2 (en) * 2009-06-02 2012-10-30 Ilumisys, Inc. Screw-in LED bulb comprising a base having outwardly projecting nodes
US8217567B2 (en) * 2009-06-11 2012-07-10 Cree, Inc. Hot light emitting diode (LED) lighting systems
EP2446715A4 (en) 2009-06-23 2013-09-11 Ilumisys Inc Illumination device including leds and a switching power control system
EP2446189A1 (en) 2009-06-25 2012-05-02 Koninklijke Philips Electronics N.V. Heat managing device
TWI370216B (en) * 2009-06-29 2012-08-11 Lextar Electronics Corp Led lighting device
TWI425879B (en) * 2009-07-30 2014-02-01 My Semi Inc Driving system of light emitting diode and driving apparatus thereof
US8596825B2 (en) * 2009-08-04 2013-12-03 3M Innovative Properties Company Solid state light with optical guide and integrated thermal guide
WO2011019945A1 (en) 2009-08-12 2011-02-17 Journee Lighting, Inc. Led light module for use in a lighting assembly
US8816576B1 (en) 2009-08-20 2014-08-26 Led Optical Solutions, Llc LED bulb, assembly, and method
CH701752A1 (en) * 2009-09-03 2011-03-15 Dr Martin Ziegler LED light unit for use as household filament lamp, has light unit housing with outer wall that is heated and outputs part of waste heat of LED as heat radiation, and LED illuminating large solid angle in common manner
WO2011029154A1 (en) * 2009-09-10 2011-03-17 Hamish Mclennan Improved light emitting diode (led) assembly and method of manufacturing the same
US10264637B2 (en) 2009-09-24 2019-04-16 Cree, Inc. Solid state lighting apparatus with compensation bypass circuits and methods of operation thereof
US8901845B2 (en) 2009-09-24 2014-12-02 Cree, Inc. Temperature responsive control for lighting apparatus including light emitting devices providing different chromaticities and related methods
US9713211B2 (en) 2009-09-24 2017-07-18 Cree, Inc. Solid state lighting apparatus with controllable bypass circuits and methods of operation thereof
WO2011037882A2 (en) * 2009-09-25 2011-03-31 Cree, Inc. Lighting device having heat dissipation element
US9068719B2 (en) 2009-09-25 2015-06-30 Cree, Inc. Light engines for lighting devices
US9285103B2 (en) 2009-09-25 2016-03-15 Cree, Inc. Light engines for lighting devices
US8602579B2 (en) 2009-09-25 2013-12-10 Cree, Inc. Lighting devices including thermally conductive housings and related structures
US8777449B2 (en) 2009-09-25 2014-07-15 Cree, Inc. Lighting devices comprising solid state light emitters
CN102052577B (en) * 2009-10-30 2014-06-25 长春藤控股有限公司 LED (Light Emitting Diode) lighting device
US20110141748A1 (en) * 2009-12-14 2011-06-16 Han-Ming Lee LED bracket weld-free plug-in lamp
JP4681071B1 (en) * 2009-12-17 2011-05-11 株式会社スズデン lighting equipment
US8593044B2 (en) * 2010-01-26 2013-11-26 Once Innovations, Inc. Modular architecture for sealed LED light engines
US8258524B2 (en) * 2010-01-26 2012-09-04 Sharp Kabushiki Kaisha Light emitting diode device
US8123389B2 (en) 2010-02-12 2012-02-28 Lumenetix, Inc. LED lamp assembly with thermal management system
GB2477994A (en) * 2010-02-23 2011-08-24 Ecolumens Ltd Liquid cooled semiconductor light
US9275979B2 (en) 2010-03-03 2016-03-01 Cree, Inc. Enhanced color rendering index emitter through phosphor separation
US9310030B2 (en) 2010-03-03 2016-04-12 Cree, Inc. Non-uniform diffuser to scatter light into uniform emission pattern
US9062830B2 (en) 2010-03-03 2015-06-23 Cree, Inc. High efficiency solid state lamp and bulb
US9625105B2 (en) 2010-03-03 2017-04-18 Cree, Inc. LED lamp with active cooling element
US9057511B2 (en) 2010-03-03 2015-06-16 Cree, Inc. High efficiency solid state lamp and bulb
US8562161B2 (en) 2010-03-03 2013-10-22 Cree, Inc. LED based pedestal-type lighting structure
US8882284B2 (en) 2010-03-03 2014-11-11 Cree, Inc. LED lamp or bulb with remote phosphor and diffuser configuration with enhanced scattering properties
US8931933B2 (en) 2010-03-03 2015-01-13 Cree, Inc. LED lamp with active cooling element
US9024517B2 (en) 2010-03-03 2015-05-05 Cree, Inc. LED lamp with remote phosphor and diffuser configuration utilizing red emitters
US9500325B2 (en) 2010-03-03 2016-11-22 Cree, Inc. LED lamp incorporating remote phosphor with heat dissipation features
US8632196B2 (en) 2010-03-03 2014-01-21 Cree, Inc. LED lamp incorporating remote phosphor and diffuser with heat dissipation features
US10359151B2 (en) 2010-03-03 2019-07-23 Ideal Industries Lighting Llc Solid state lamp with thermal spreading elements and light directing optics
US9316361B2 (en) 2010-03-03 2016-04-19 Cree, Inc. LED lamp with remote phosphor and diffuser configuration
CN101871600B (en) * 2010-03-13 2014-02-05 中山伟强科技有限公司 LED street lamp bulb
EP2553316B8 (en) 2010-03-26 2015-07-08 iLumisys, Inc. Led light tube with dual sided light distribution
EP2553332B1 (en) 2010-03-26 2016-03-23 iLumisys, Inc. Inside-out led bulb
US8541958B2 (en) 2010-03-26 2013-09-24 Ilumisys, Inc. LED light with thermoelectric generator
US8128262B2 (en) 2010-03-30 2012-03-06 Abl Ip Holdings Llc Lighting applications with light transmissive optic contoured to produce tailored light output distribution
CN102859275A (en) 2010-05-03 2013-01-02 奥斯兰姆施尔凡尼亚公司 Thermosyphon light engine and luminaire including same
US8476836B2 (en) 2010-05-07 2013-07-02 Cree, Inc. AC driven solid state lighting apparatus with LED string including switched segments
US8733996B2 (en) 2010-05-17 2014-05-27 Sharp Kabushiki Kaisha Light emitting device, illuminating device, and vehicle headlamp
CN101825242A (en) * 2010-05-31 2010-09-08 温辉 Vacuum liquid cooling LED lamp
US20130088866A1 (en) * 2010-06-18 2013-04-11 Vialuminary Ltd. Led street light
US8651708B2 (en) * 2010-06-25 2014-02-18 General Electric Company Heat transfer system for a light emitting diode (LED) lamp
EP2402648A1 (en) * 2010-07-01 2012-01-04 Koninklijke Philips Electronics N.V. TL retrofit LED module outside sealed glass tube
US8454193B2 (en) 2010-07-08 2013-06-04 Ilumisys, Inc. Independent modules for LED fluorescent light tube replacement
US8596813B2 (en) 2010-07-12 2013-12-03 Ilumisys, Inc. Circuit board mount for LED light tube
US9732930B2 (en) * 2010-07-20 2017-08-15 Panasonic Intellectual Property Management Co., Ltd. Light bulb shaped lamp
US10451251B2 (en) 2010-08-02 2019-10-22 Ideal Industries Lighting, LLC Solid state lamp with light directing optics and diffuser
TW201209333A (en) * 2010-08-19 2012-03-01 Foxsemicon Integrated Tech Inc LED bulb
US8217557B2 (en) * 2010-08-31 2012-07-10 Micron Technology, Inc. Solid state lights with thermosiphon liquid cooling structures and methods
US8736171B2 (en) 2010-09-03 2014-05-27 Zybron Optical Electronics, Inc. Light emitting diode replacement bulbs
US8668361B2 (en) 2010-09-22 2014-03-11 Bridgelux, Inc. LED-based replacement for fluorescent light source
US20120081894A1 (en) * 2010-09-30 2012-04-05 Altair Engineering, Inc. Incandescent led replacement lamp
CN101956920B (en) * 2010-10-20 2012-05-23 重庆三弓科技发展有限公司 Liquid cooling type light-emitting diode (LED) radiating lamp
US8523394B2 (en) 2010-10-29 2013-09-03 Ilumisys, Inc. Mechanisms for reducing risk of shock during installation of light tube
EP2672166B1 (en) * 2010-11-04 2019-10-30 Panasonic Intellectual Property Management Co., Ltd. Light bulb shaped lamp and lighting apparatus
US20120120658A1 (en) * 2010-11-13 2012-05-17 Wilk Sylwester D LED lamp
US8487518B2 (en) 2010-12-06 2013-07-16 3M Innovative Properties Company Solid state light with optical guide and integrated thermal guide
US8870415B2 (en) 2010-12-09 2014-10-28 Ilumisys, Inc. LED fluorescent tube replacement light with reduced shock hazard
US8152341B2 (en) 2011-02-04 2012-04-10 Switch Bulb Company, Inc. Expandable liquid volume in an LED bulb
US9234655B2 (en) 2011-02-07 2016-01-12 Cree, Inc. Lamp with remote LED light source and heat dissipating elements
US9068701B2 (en) 2012-01-26 2015-06-30 Cree, Inc. Lamp structure with remote LED light source
US11251164B2 (en) 2011-02-16 2022-02-15 Creeled, Inc. Multi-layer conversion material for down conversion in solid state lighting
CN102683460B (en) * 2011-03-15 2015-10-28 刘阳 A kind of closed radiating device
JP5726339B2 (en) * 2011-03-17 2015-05-27 北京優格莱照明科技有限公司 Liquid-cooled LED lighting
US8282230B2 (en) * 2011-03-23 2012-10-09 Switch Bulb Company, Inc. Liquid displacement beads in LED bulbs
DE102011007221B4 (en) * 2011-04-12 2022-05-19 Ledvance Gmbh lighting device
KR101090187B1 (en) 2011-04-12 2011-12-20 (주) 대영개발 Safety cover for hinge
WO2012147026A1 (en) * 2011-04-29 2012-11-01 Koninklijke Philips Electronics N.V. Led lighting device with lower heat dissipating structure
RU2604647C2 (en) * 2011-04-29 2016-12-10 Конинклейке Филипс Н.В. Lighting led-device with upper heat dissipation structure
US9839083B2 (en) 2011-06-03 2017-12-05 Cree, Inc. Solid state lighting apparatus and circuits including LED segments configured for targeted spectral power distribution and methods of operating the same
US8740415B2 (en) * 2011-07-08 2014-06-03 Switch Bulb Company, Inc. Partitioned heatsink for improved cooling of an LED bulb
US8926140B2 (en) 2011-07-08 2015-01-06 Switch Bulb Company, Inc. Partitioned heatsink for improved cooling of an LED bulb
US8742671B2 (en) 2011-07-28 2014-06-03 Cree, Inc. Solid state lighting apparatus and methods using integrated driver circuitry
WO2013028965A2 (en) 2011-08-24 2013-02-28 Ilumisys, Inc. Circuit board mount for led light
US20130063933A1 (en) * 2011-09-12 2013-03-14 Sanjay K. Roy Modular Integrated High Power LED Luminaire
US8791484B2 (en) * 2011-09-13 2014-07-29 Uniled Lighting Taiwan Inc. LED lamp
US8591069B2 (en) 2011-09-21 2013-11-26 Switch Bulb Company, Inc. LED light bulb with controlled color distribution using quantum dots
CA2792815C (en) 2011-10-10 2020-12-01 Rab Lighting, Inc. Light fixture with peripheral cooling channels
US20130088880A1 (en) * 2011-10-11 2013-04-11 Cooler Master Co., Ltd. Led lighting device
US8662708B2 (en) * 2011-10-18 2014-03-04 Uniled Lighting Taiwan Inc. Double heat sink LED tube
US20130154481A1 (en) 2011-10-31 2013-06-20 Densen Cao Led light source
JP2013105711A (en) * 2011-11-16 2013-05-30 Toshiba Lighting & Technology Corp Luminaire
KR101279551B1 (en) * 2011-11-25 2013-06-28 신관우 Led lamp device and transparents radiant heat insulating liquid used therein
US9482421B2 (en) * 2011-12-30 2016-11-01 Cree, Inc. Lamp with LED array and thermal coupling medium
US9335531B2 (en) * 2011-12-30 2016-05-10 Cree, Inc. LED lighting using spectral notching
US8686623B2 (en) 2012-02-01 2014-04-01 Switch Bulb Company, Inc. Omni-directional channeling of liquids for passive convection in LED bulbs
KR101427121B1 (en) * 2012-02-10 2014-08-07 주식회사 지앤씨 Lighting fixture using lighting emitting diode
US9184518B2 (en) 2012-03-02 2015-11-10 Ilumisys, Inc. Electrical connector header for an LED-based light
KR101318288B1 (en) * 2012-03-12 2013-11-13 고정호 Heat radient insulating liquid filled in led lighting device and led lighting device using the same
WO2013136236A1 (en) * 2012-03-15 2013-09-19 Koninklijke Philips N.V. A liquid motion lamp comprising an led light source
KR101321581B1 (en) * 2012-03-23 2013-10-28 주식회사 지앤씨 Light emitting diode lamp
US9488359B2 (en) 2012-03-26 2016-11-08 Cree, Inc. Passive phase change radiators for LED lamps and fixtures
TWI476351B (en) * 2012-03-30 2015-03-11 Radiant Opto Electronics Corp Light source module and illuminating device using the same
KR20130124632A (en) * 2012-05-07 2013-11-15 주식회사 포스코엘이디 Led illuminating apparatus and method for fabricating wavelength conversion member used for the apparatus
US8985816B2 (en) 2012-06-01 2015-03-24 RAB Lighting Inc. Light fixture with central lighting housing and peripheral cooling housing
KR101310664B1 (en) * 2012-06-04 2013-10-14 김대수 Lighting containing heat transfer liquid
KR101483718B1 (en) * 2012-06-22 2015-01-26 고정호 Multi-array led lamp device and producing method thereof
US9163794B2 (en) 2012-07-06 2015-10-20 Ilumisys, Inc. Power supply assembly for LED-based light tube
US9271367B2 (en) 2012-07-09 2016-02-23 Ilumisys, Inc. System and method for controlling operation of an LED-based light
US20140022789A1 (en) * 2012-07-18 2014-01-23 Li-Yu Lin Light core structure and manufacturing process thereof
EP2893254A1 (en) * 2012-09-07 2015-07-15 Cree, Inc. Lamp with remote led light source and heat dissipating elements
US20140085893A1 (en) * 2012-09-24 2014-03-27 Itzhak Sapir Thermally-Managed Electronic Device
KR101400069B1 (en) * 2012-12-28 2014-05-28 이종석 Led light apperatus equipped with radiant heat and waterproof and moistureproof structure using liquid and illuminating all directions
CN103047628A (en) * 2012-11-29 2013-04-17 安徽冠宇光电科技有限公司 Radiator of light emitting diode (LED) street lamp
KR101351710B1 (en) 2012-12-14 2014-01-14 김대수 Light emitting diode lamp
KR101415690B1 (en) * 2013-01-21 2014-07-04 남두석 Water cooled led bulb
KR101439278B1 (en) * 2013-02-04 2014-09-11 주식회사 알토 Apparatus for pending component chip
US9565782B2 (en) 2013-02-15 2017-02-07 Ecosense Lighting Inc. Field replaceable power supply cartridge
CN103104847A (en) * 2013-02-19 2013-05-15 邹翔 Light-emitting diode (LED) light source
KR101412749B1 (en) * 2013-02-22 2014-07-01 주식회사 지앤씨 Led lighting fixture with blocking alien substance
KR101478293B1 (en) * 2013-02-22 2014-12-31 주식회사 지앤씨 Led lighting fixture with double heat-radiating function
US9285084B2 (en) 2013-03-14 2016-03-15 Ilumisys, Inc. Diffusers for LED-based lights
CN104180204A (en) * 2013-05-23 2014-12-03 范文昌 Semiconductor chip combined illuminating lamp
CN103244932A (en) * 2013-05-29 2013-08-14 江苏文光车辆附件有限公司 External heat dissipation mechanism for LED front steering lamp
US20140362581A1 (en) * 2013-06-05 2014-12-11 Tom Kim Light emitting diode assembly with an internal protrusion providing refraction and heat transfer
KR101318038B1 (en) * 2013-06-17 2013-10-14 김대수 Light emitting diode lamp
CN103471058B (en) * 2013-07-24 2015-10-07 海宁市智慧光电有限公司 Heat abstractor in a kind of LED electricity-saving lamp
KR101330422B1 (en) * 2013-09-12 2013-11-20 이진숙 Lamp having liquid for heat transferring
US9267650B2 (en) 2013-10-09 2016-02-23 Ilumisys, Inc. Lens for an LED-based light
US9267674B2 (en) * 2013-10-18 2016-02-23 3M Innovative Properties Company Solid state light with enclosed light guide and integrated thermal guide
KR20160111975A (en) 2014-01-22 2016-09-27 일루미시스, 인크. Led-based light with addressed leds
US9360188B2 (en) 2014-02-20 2016-06-07 Cree, Inc. Remote phosphor element filled with transparent material and method for forming multisection optical elements
CN103867943A (en) * 2014-02-28 2014-06-18 福建永德吉灯业股份有限公司 LED (light emitting diode) illumination light source
US20150252986A1 (en) * 2014-03-10 2015-09-10 Chih-Ming Yu Lamp structure
US9960322B2 (en) 2014-04-23 2018-05-01 Cree, Inc. Solid state lighting devices incorporating notch filtering materials
US10113343B2 (en) 2014-05-02 2018-10-30 Surna Inc. Thermally isolated high intensity light source
US9510400B2 (en) 2014-05-13 2016-11-29 Ilumisys, Inc. User input systems for an LED-based light
US10477636B1 (en) 2014-10-28 2019-11-12 Ecosense Lighting Inc. Lighting systems having multiple light sources
CA2974983A1 (en) 2015-01-26 2016-08-04 Energyficient Lighting Systems, Inc. Modular led lighting assembly and related systems and methods
US9869450B2 (en) 2015-02-09 2018-01-16 Ecosense Lighting Inc. Lighting systems having a truncated parabolic- or hyperbolic-conical light reflector, or a total internal reflection lens; and having another light reflector
US11306897B2 (en) 2015-02-09 2022-04-19 Ecosense Lighting Inc. Lighting systems generating partially-collimated light emissions
USD755414S1 (en) 2015-02-12 2016-05-03 Tadd, LLC LED lamp
USD755415S1 (en) 2015-03-03 2016-05-03 Tadd, LLC LED lamp
US9746159B1 (en) 2015-03-03 2017-08-29 Ecosense Lighting Inc. Lighting system having a sealing system
US9651227B2 (en) 2015-03-03 2017-05-16 Ecosense Lighting Inc. Low-profile lighting system having pivotable lighting enclosure
US9651216B2 (en) 2015-03-03 2017-05-16 Ecosense Lighting Inc. Lighting systems including asymmetric lens modules for selectable light distribution
US9568665B2 (en) 2015-03-03 2017-02-14 Ecosense Lighting Inc. Lighting systems including lens modules for selectable light distribution
US10161568B2 (en) 2015-06-01 2018-12-25 Ilumisys, Inc. LED-based light with canted outer walls
KR101716135B1 (en) * 2015-06-10 2017-03-14 엘지전자 주식회사 Potable Air conditioner
USD785218S1 (en) 2015-07-06 2017-04-25 Ecosense Lighting Inc. LED luminaire having a mounting system
USD782094S1 (en) 2015-07-20 2017-03-21 Ecosense Lighting Inc. LED luminaire having a mounting system
USD782093S1 (en) 2015-07-20 2017-03-21 Ecosense Lighting Inc. LED luminaire having a mounting system
US9651232B1 (en) 2015-08-03 2017-05-16 Ecosense Lighting Inc. Lighting system having a mounting device
CN106482020A (en) * 2015-08-25 2017-03-08 上海交通大学 A kind of Halogen lamp LED and application under water
USD794842S1 (en) 2015-10-23 2017-08-15 Surna Inc. Thermally isolated high intensity light source with spacers
US10403792B2 (en) * 2016-03-07 2019-09-03 Rayvio Corporation Package for ultraviolet emitting devices
JP6439813B2 (en) * 2017-02-24 2018-12-19 マツダ株式会社 Vehicle lighting
US10260683B2 (en) 2017-05-10 2019-04-16 Cree, Inc. Solid-state lamp with LED filaments having different CCT's
TWI638116B (en) * 2017-09-01 2018-10-11 液光固態照明股份有限公司 Led light bulb and manufacturing method thereof
CN107611244B (en) * 2017-10-19 2023-11-14 深圳莱特光电股份有限公司 LED encapsulation body capable of focusing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001036148A (en) * 1999-07-23 2001-02-09 Matsushita Electric Works Ltd Light source
JP2004055229A (en) * 2002-07-17 2004-02-19 Mitsubishi Electric Lighting Corp Led lighting system and lighting equipment
JP2005327731A (en) * 2004-05-12 2005-11-24 Osram Sylvania Inc Solid state light source having interchangeability with existing socket, and manufacturing method of heat removing machine to eliminate heat from lamp consisting of a plurality of leds
JP2005338251A (en) * 2004-05-25 2005-12-08 Seiko Epson Corp Light source device and projector
JP2006049317A (en) * 2004-07-30 2006-02-16 Agilent Technol Inc Lighting system and method

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3508480A1 (en) 1985-03-09 1986-09-18 Bomin-Solar GmbH & Co KG, 7850 Lörrach Device for illuminating objects, in particular for advertising or decorative purposes
US5174646A (en) * 1990-12-06 1992-12-29 The Regents Of The University Of California Heat transfer assembly for a fluorescent lamp and fixture
US5890794A (en) * 1996-04-03 1999-04-06 Abtahi; Homayoon Lighting units
US6184628B1 (en) * 1999-11-30 2001-02-06 Douglas Ruthenberg Multicolor led lamp bulb for underwater pool lights
US6755554B2 (en) * 2000-05-25 2004-06-29 Matsushita Electric Industrial Co., Ltd. Color wheel assembly and color sequential display device using the same, color wheel unit and color sequential display device using the same, and color sequential display device
TW518775B (en) * 2002-01-29 2003-01-21 Chi-Hsing Hsu Immersion cooling type light emitting diode and its packaging method
US7182484B2 (en) * 2003-03-07 2007-02-27 Fiberstars, Inc. Light appliance and cooling arrangement
US6880956B2 (en) * 2003-07-31 2005-04-19 A L Lightech, Inc. Light source with heat transfer arrangement
US7198386B2 (en) * 2003-09-17 2007-04-03 Integrated Illumination Systems, Inc. Versatile thermally advanced LED fixture
EP2572932B1 (en) * 2003-12-11 2015-04-22 Philips Solid-State Lighting Solutions, Inc. Thermal management for lighting devices
US20050169006A1 (en) * 2004-01-30 2005-08-04 Harvatek Corporation Led chip lamp apparatus
CN2741193Y (en) * 2004-04-08 2005-11-16 吴裕朝 Light-emitting diode device, radiating system of light-emitting diode and illuminator therewith
US20060176699A1 (en) * 2005-02-08 2006-08-10 Crunk Paul D Fluid cooling lighting system
US7275848B2 (en) * 2005-02-16 2007-10-02 Visteon Global Technologies, Inc. Headlamp assembly having cooling channel
US7270446B2 (en) * 2005-05-09 2007-09-18 Lighthouse Technology Co., Ltd Light module with combined heat transferring plate and heat transferring pipes
US7288798B2 (en) * 2005-06-02 2007-10-30 Lighthouse Technology Co., Ltd Light module
GB0511692D0 (en) * 2005-06-08 2005-07-13 Digital Projection Ltd Heat transfer apparatus
US7384165B2 (en) * 2005-07-05 2008-06-10 Kevin Doyle Water feature with an LED system
DE202005013612U1 (en) 2005-08-29 2005-11-17 Ledtech Electronics Corp., Hsin-Tien Ecologically friendly electrical lighting unit has light emitting diodes transmitting through glass tube having reflective surface
US7329033B2 (en) * 2005-10-25 2008-02-12 Visteon Global Technologies, Inc. Convectively cooled headlamp assembly
TWM297441U (en) * 2006-03-30 2006-09-11 Cheng-Jiun Jian LED projection light source module
US20070230185A1 (en) * 2006-03-31 2007-10-04 Shuy Geoffrey W Heat exchange enhancement
US7766512B2 (en) * 2006-08-11 2010-08-03 Enertron, Inc. LED light in sealed fixture with heat transfer agent
CN100572908C (en) * 2006-11-17 2009-12-23 富准精密工业(深圳)有限公司 Led lamp

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001036148A (en) * 1999-07-23 2001-02-09 Matsushita Electric Works Ltd Light source
JP2004055229A (en) * 2002-07-17 2004-02-19 Mitsubishi Electric Lighting Corp Led lighting system and lighting equipment
JP2005327731A (en) * 2004-05-12 2005-11-24 Osram Sylvania Inc Solid state light source having interchangeability with existing socket, and manufacturing method of heat removing machine to eliminate heat from lamp consisting of a plurality of leds
JP2005338251A (en) * 2004-05-25 2005-12-08 Seiko Epson Corp Light source device and projector
JP2006049317A (en) * 2004-07-30 2006-02-16 Agilent Technol Inc Lighting system and method

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8858041B2 (en) 2005-04-08 2014-10-14 Toshiba Lighting & Technology Corporation Lamp having outer shell to radiate heat of light source
US8979315B2 (en) 2005-04-08 2015-03-17 Toshiba Lighting & Technology Corporation Lamp having outer shell to radiate heat of light source
US8992041B2 (en) 2005-04-08 2015-03-31 Toshiba Lighting & Technology Corporation Lamp having outer shell to radiate heat of light source
US9080759B2 (en) 2005-04-08 2015-07-14 Toshiba Lighting & Technology Corporation Lamp having outer shell to radiate heat of light source
US9772098B2 (en) 2005-04-08 2017-09-26 Toshiba Lighting & Technology Corporation Lamp having outer shell to radiate heat of light source
US9249967B2 (en) 2005-04-08 2016-02-02 Toshiba Lighting & Technology Corporation Lamp having outer shell to radiate heat of light source
US9234657B2 (en) 2005-04-08 2016-01-12 Toshiba Lighting & Technology Corporation Lamp having outer shell to radiate heat of light source
US9103541B2 (en) 2005-04-08 2015-08-11 Toshiba Lighting & Technology Corporation Lamp having outer shell to radiate heat of light source
US9018828B2 (en) 2007-10-16 2015-04-28 Toshiba Lighting & Technology Corporation Light emitting element lamp and lighting equipment
US8366503B2 (en) 2008-03-21 2013-02-05 Liquidleds Lighting Corp. LED lamp and production method of the same
JP2009231276A (en) * 2008-03-21 2009-10-08 Liquidleds Lighting Corp Led lamp and manufacturing method therefor
WO2009157285A1 (en) * 2008-06-27 2009-12-30 東芝ライテック株式会社 Light-emitting element lamp and lighting fixture
JP2010040259A (en) * 2008-08-01 2010-02-18 Toshiaki Inoue Led bulb
JP2010108637A (en) * 2008-10-28 2010-05-13 Harison Toshiba Lighting Corp Vehicle headlight
JP2010199049A (en) * 2009-02-23 2010-09-09 ▲緑▼點高新科技股▲分▼有限公司 High performance light emitter
JP2012519350A (en) * 2009-02-27 2012-08-23 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ LED based lamp and thermal management system for the lamp
US8382325B2 (en) 2009-06-30 2013-02-26 Toshiba Lighting & Technology Corporation Lamp and lighting equipment using the same
US8415889B2 (en) 2009-07-29 2013-04-09 Toshiba Lighting & Technology Corporation LED lighting equipment
US8354783B2 (en) 2009-09-24 2013-01-15 Toshiba Lighting & Technology Corporation Light-emitting device.having a frame member surrounding light-emitting elements and illumination device utilizing light-emitting device
US8324789B2 (en) 2009-09-25 2012-12-04 Toshiba Lighting & Technology Corporation Self-ballasted lamp and lighting equipment
US8376562B2 (en) 2009-09-25 2013-02-19 Toshiba Lighting & Technology Corporation Light-emitting module, self-ballasted lamp and lighting equipment
US8678618B2 (en) 2009-09-25 2014-03-25 Toshiba Lighting & Technology Corporation Self-ballasted lamp having a light-transmissive member in contact with light emitting elements and lighting equipment incorporating the same
US8395304B2 (en) 2009-09-25 2013-03-12 Toshiba Lighting & Technology Corporation Lamp and lighting equipment with thermally conductive substrate and body
US8998457B2 (en) 2009-09-25 2015-04-07 Toshiba Lighting & Technology Corporation Self-ballasted lamp and lighting equipment having a support portion in contact with an inner circumference of a base body
US8876344B2 (en) 2009-12-17 2014-11-04 Sharp Kabushiki Kaisha Vehicle headlamp with excitation light source, light emitting part and light projection section
JP2011146253A (en) * 2010-01-14 2011-07-28 Toshiba Lighting & Technology Corp Light bulb-shaped lamp and lighting fixture
WO2011087023A1 (en) * 2010-01-14 2011-07-21 東芝ライテック株式会社 Light bulb-shaped lamp and lighting fixture
US8833991B2 (en) 2010-02-10 2014-09-16 Sharp Kabushiki Kaisha Light emitting device, with light guide member having smaller exit section, and illuminating device, and vehicle headlight including the same
JP2011165662A (en) * 2010-02-11 2011-08-25 Power Photon Co Ltd Modulized light-emitting diode apparatus with enhanced heat dissipation
US8500316B2 (en) 2010-02-26 2013-08-06 Toshiba Lighting & Technology Corporation Self-ballasted lamp and lighting equipment
JP2011243375A (en) * 2010-05-17 2011-12-01 Sharp Corp Light-emitting device, illumination device, and vehicle headlight
US10465873B2 (en) 2010-10-29 2019-11-05 Sharp Kabushiki Kaisha Light emitting device, vehicle headlamp, illumination device, and laser element
US10281102B2 (en) 2010-10-29 2019-05-07 Sharp Kabushiki Kaisha Light emitting device, vehicle headlamp, illumination device, and laser element
US9816677B2 (en) 2010-10-29 2017-11-14 Sharp Kabushiki Kaisha Light emitting device, vehicle headlamp, illumination device, and laser element
JP2014150072A (en) * 2011-02-01 2014-08-21 Switch Bulb Co Inc Led bulb
JP2014507061A (en) * 2011-03-01 2014-03-20 スイッチ バルブ カンパニー インク Liquid displacer in LED bulb
JP2015135824A (en) * 2011-07-14 2015-07-27 三菱電機照明株式会社 Street light and lamp replacement method
JP5291266B1 (en) * 2012-03-07 2013-09-18 パナソニック株式会社 lamp
WO2013132549A1 (en) * 2012-03-07 2013-09-12 パナソニック株式会社 Lamp
JP2014003032A (en) * 2013-08-30 2014-01-09 Toshiba Lighting & Technology Corp Electric bulb type lamp and luminaire
JP2018174135A (en) * 2017-03-31 2018-11-08 液光固態照明股▲ふん▼有限公司 Led lamp including heat dissipation effect

Also Published As

Publication number Publication date
EP1881259A1 (en) 2008-01-23
US7922359B2 (en) 2011-04-12
EP1881259B1 (en) 2010-03-03
US20090273921A1 (en) 2009-11-05
KR20080007525A (en) 2008-01-22
US20080013316A1 (en) 2008-01-17
DE602007005054D1 (en) 2010-04-15
TWI332560B (en) 2010-11-01
KR20100003261A (en) 2010-01-07
US7878697B2 (en) 2011-02-01
US20090273924A1 (en) 2009-11-05
TW200806922A (en) 2008-02-01
KR101014910B1 (en) 2011-02-15
US7997750B2 (en) 2011-08-16
CN101109502A (en) 2008-01-23
KR100982101B1 (en) 2010-09-13
CN101109502B (en) 2010-12-22

Similar Documents

Publication Publication Date Title
JP2008027910A (en) High power led lamp with heat dissipation exhancement
CN100570211C (en) High-power light-emitting diode lamp
US9234655B2 (en) Lamp with remote LED light source and heat dissipating elements
US9068701B2 (en) Lamp structure with remote LED light source
RU2527555C2 (en) Illumination device with inverted-cone heat removal
US8591069B2 (en) LED light bulb with controlled color distribution using quantum dots
WO2008154172A1 (en) Apparatus for cooling leds in a bulb
KR20130092211A (en) Lighting fixture using lighting emitting diode
JP3112794U (en) Radiator for light-emitting diode lamp
TWI270631B (en) High power LED lamp
KR101478293B1 (en) Led lighting fixture with double heat-radiating function
RU2595258C1 (en) Led lamp with forced cooling system
EP2893254A1 (en) Lamp with remote led light source and heat dissipating elements
US8779661B2 (en) Liquid cooled semi conductor
KR101762319B1 (en) Illumination Device
US20140265811A1 (en) Led light bulb with a phosphor structure in an index-matched liquid
TW201411039A (en) Illumination device
KR20120128318A (en) A heat-pipe cooler for ledlight emitting diode
CN108644740A (en) A kind of LED light frame of heat dissipation type high
TWM454493U (en) Light emitting diode bulb
TWM458523U (en) Water-proof lamp
TWM290207U (en) Light emitting diode lamp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120507

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120507

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121120