JP2008025587A - Power generating method by low-pressure turbine and power generator by low-pressure turbine - Google Patents

Power generating method by low-pressure turbine and power generator by low-pressure turbine Download PDF

Info

Publication number
JP2008025587A
JP2008025587A JP2007250383A JP2007250383A JP2008025587A JP 2008025587 A JP2008025587 A JP 2008025587A JP 2007250383 A JP2007250383 A JP 2007250383A JP 2007250383 A JP2007250383 A JP 2007250383A JP 2008025587 A JP2008025587 A JP 2008025587A
Authority
JP
Japan
Prior art keywords
propeller
blade
moving blade
wind
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007250383A
Other languages
Japanese (ja)
Other versions
JP5397724B2 (en
Inventor
Yasuo Matsuura
康夫 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MATSURA MATSUE
MATSUURA MATSUE
Original Assignee
MATSURA MATSUE
MATSUURA MATSUE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MATSURA MATSUE, MATSUURA MATSUE filed Critical MATSURA MATSUE
Priority to JP2007250383A priority Critical patent/JP5397724B2/en
Publication of JP2008025587A publication Critical patent/JP2008025587A/en
Application granted granted Critical
Publication of JP5397724B2 publication Critical patent/JP5397724B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Wind Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To produce electric power at low costs, by constituting a turbine of a plurality of propellers and propeller type windmills, employing air having normal temperatures and normal pressures as a driving fluid, rotating the propellers by a simple drive mechanism and a less power to produce wind with high energy and converting the wind into torques by the propeller type windmill to generate power. <P>SOLUTION: In order to obtain a wind having an energy corresponding to the generated electric energy, a first moving blade 1 and a second moving blade 8 are arranged after adjusting bores, number of revolutions and blade quantities and by the blower 7, air is blown into an air fluid inlet angle, which is set in the blade cross section in the top end vicinity of the propeller causing wind by rotating the propeller 3 of the first moving blade. The wind is blown for turning into the propeller 8 of the second moving blade, and to match the revolving direction, the propeller 11 of the second moving blade is turned in the same method as the propeller 3 of the first moving blade. In order to convert the wind into torques and to obtain an energy output corresponding to the generated electric energy, bores, number of revolutions, the number of blades of the wind mill rotor 18 of the third moving blade are adjusted, and the air is blown into the rotor 18 to turn. By this way, the generator 21 generates power. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高温高圧の燃焼ガスもしくは蒸気を駆動流体とする高圧タービンに代え、常温常圧の空気を駆動流体に複数プロペラとプロペラ型風車でタービンを構成し、複数プロペラを少ない動力で回転させ大きなエネルギーをもつ風をつくり、この風をプロペラ型風車に受けトルクに転換、出力を調整し、コストの安い電気を発電する低圧タービンによる発電方法とその低圧タービンによる発電装置に関するものである。   The present invention replaces a high-pressure turbine using high-temperature and high-pressure combustion gas or steam as a driving fluid, and forms a turbine with a plurality of propellers and a propeller-type windmill using air at normal temperature and normal pressure as the driving fluid, and rotates the plurality of propellers with less power. The present invention relates to a power generation method using a low-pressure turbine and a power generation apparatus using the low-pressure turbine, which generates wind with large energy, receives the wind into a propeller-type wind turbine, converts the torque into torque, adjusts the output, and generates electricity at low cost.

一般に発電用動力機関として用いられるタービンは低圧タービンである風車、およびスチームタービンならびにガスタービンなどの高圧タービンである。このうち風車は自然の風を駆動流体とするため熱効率は良いが稼動率は低く、また、ロータの回転で発生する反転後流のため複数の風車を同じ回転軸で連結できず、風のエネルギーを大きな出力とするには大口径且つ低速回転と規模が大きくなり建設コストは高く、稼動率が低いことから発電コストを低減するには限度がある。   Turbines that are generally used as power generation engines are wind turbines that are low-pressure turbines, and high-pressure turbines such as steam turbines and gas turbines. Among them, wind turbines use natural wind as the driving fluid, so heat efficiency is good, but the operation rate is low, and because of the reverse wake generated by the rotation of the rotor, it is not possible to connect multiple wind turbines with the same rotating shaft, so wind energy Large output, large rotation, large scale, large construction cost, high construction cost and low operating rate, there is a limit to reducing power generation cost.

一方、高圧タービンは高温高圧の駆動流体を使い、回転翼である動翼の回転で発生した反転後流の回転方向を固定翼である静翼で補正することにより複数動翼を同じ回転軸で連結し回転数を速め、風車に比べ高い稼動率と小さな規模で大きな出力にすることができるが、駆動流体が高温高圧のため機構が複雑となり機器製造費用は高く、また、駆動流体を高温高圧にするために使用した燃料の燃焼による発生熱量のほとんどをタービン外に排出するため熱効率は低く、発電コストは高い。   On the other hand, a high-pressure turbine uses a high-temperature and high-pressure drive fluid, and corrects the rotation direction of the reverse wake generated by the rotation of the rotor blade, which is the rotor blade, by correcting the rotating blades with the same rotating shaft by using the stationary blade, which is a fixed blade. It can be connected and speeded up to achieve a higher operating rate and smaller output than a windmill, but the drive fluid is high temperature and high pressure, so the mechanism is complicated and the equipment manufacturing cost is high. Because most of the heat generated by the combustion of the fuel used to make it is discharged outside the turbine, the thermal efficiency is low and the power generation cost is high.

したがって、発電用動力機関としてのタービンには高圧タービンの稼動率と装置規模、風車の熱効率をもつものが望まれ、また、地球温暖化防止のため二酸化炭素の発生抑制が要請されており、燃焼による二酸化炭素の発生をともなわない駆動流体を使用するタービンが望まれる。このような状況のなかで、これまでにも発電コストを下げるための技術は公開されている。   Therefore, a turbine as a power generation engine that has a high-pressure turbine operating rate, equipment scale, and wind turbine thermal efficiency is desired, and carbon dioxide generation suppression is required to prevent global warming. There is a desire for a turbine that uses a driving fluid that does not involve the generation of carbon dioxide. Under such circumstances, techniques for reducing power generation costs have been disclosed.

例えば、特許文献1には「ハイブリッド風力発電機」として、風の流れ方向に順次直径を拡大し互いに回転方向の異なる3個の風車を直列に配置し、円錐形の外殻で覆うことにより風のエネルギーの損失を抑えるとともに、この外殻に太陽電池を装着し発電量を補充しようとするものである。   For example, Patent Document 1 discloses a “hybrid wind power generator” in which three wind turbines having diameters that are sequentially enlarged in the wind flow direction and different in rotation direction are arranged in series and covered with a conical outer shell. In addition to suppressing the loss of energy, a solar cell is attached to the outer shell to replenish the amount of power generation.

また、特許文献2には「風力発電用発電装置」として、二個のプロペラ型風車を風の流れ方向に直列に配置。前部の風車のロータを発電機の回転子に、後部の風車のロータを回転可能とした発電機の固定子に取付け、前部風車の回転による反転後流を受けた後部風車が前部風車に対し逆方向に回転することを利用し、発電機の回転子と固定子を異なる方向に回転させ、回転数を増やし発電機の出力と回転速度の比例関係から、同一規模の発電機の発電量を増し、もしくは発電機の小型化を図るものである。   In Patent Document 2, two “propeller-type windmills” are arranged in series in the wind flow direction as “a wind turbine generator”. The wind turbine rotor at the front is attached to the rotor of the generator, and the rotor of the wind turbine at the rear is attached to the stator of the generator so that the rotor is rotatable. Rotating the generator's rotor and stator in different directions by using the rotation in the opposite direction, increasing the number of rotations, and generating power from the generator of the same scale from the proportional relationship between the generator's output and rotation speed The amount is increased or the generator is downsized.

特開2003―3944JP2003-3944 特開2003―65204JP 2003-65204 A

しかしながら、上述の特許文献1に開示された発明においては、同文献により風車が風のエネルギーを出力に変換する変換率を30%とすれば、風のエネルギーを100として、変換量は第1の風車で30、第1の風車の反転後流を受け逆転する第2の風車で21、第2の風車の反転後流を受け第1の風車と同じ方向で回転する第3の風車で14.7の計65.7である。しかしながら、これら3個の風車で変換した風のエネルギーをトルクで発電機に伝えるには風車の回転方向、回転数に合わせた二重ないし三重の回転軸が必要となり、伝達機構は複雑になる。   However, in the invention disclosed in Patent Document 1 described above, if the conversion rate at which the windmill converts wind energy into output is 30% according to the same document, the wind energy is set to 100 and the conversion amount is the first. 30 in the windmill, 21 in the second windmill that receives and reverses the reverse flow of the first windmill, and 14 in the third windmill that receives the reverse flow of the second windmill and rotates in the same direction as the first windmill. That is a total of 65.7. However, in order to transmit the wind energy converted by these three windmills to the generator by torque, a double or triple rotation shaft according to the rotation direction and rotation speed of the windmill is required, and the transmission mechanism becomes complicated.

また、上述の特許文献2に開示された発明においては、風の流れ方向に直列に配置した二個のプロペラ型風車の後のロータが前の風車の反転後流で逆回転する関係を利用し、前部風車のロータを発電機の回転子に、後部風車のロータを回転可能とした発電機の固定子に取付け、発電機の回転子と固定子を異なる方向に回転させ回転数を増やし、回転速度と出力の比例関係から、同一規模の発電機の発電量を増やし、もしくは発電機の小型化を図るものであるが、発電機の固定子を回転させることにより発電機の機構は複雑となり、また、自然の風を駆動流体とする限り規模は大きくなり、稼動率は上がらない。   Further, in the invention disclosed in Patent Document 2 described above, a relationship is used in which the rotor behind the two propeller-type wind turbines arranged in series in the wind flow direction rotates in the reverse wake of the front wind turbine. The front wind turbine rotor is attached to the generator rotor, and the rear wind turbine rotor is attached to the generator stator which is rotatable, the generator rotor and stator are rotated in different directions to increase the number of revolutions, From the proportional relationship between the rotational speed and output, the power generation amount of the generator of the same scale is increased or the generator is reduced in size, but the generator mechanism becomes complicated by rotating the stator of the generator. In addition, as long as natural wind is used as the driving fluid, the scale increases and the operation rate does not increase.

本発明においては、常温常圧の空気を駆動流体に複数プロペラとプロペラ型風車でタービンを構成、個々プロペラの口径、回転数、ブレード枚数を調整し大きなエネルギーをもつ風をつくるとともに、少ない動力でプロペラを駆動し回転させる簡素な動力機構にすること、および風のもつ大きなエネルギーをトルクに変換し発電量に対応した出力にするためにプロペラ型風車のロータの口径、回転数、ブレード枚数を調整し、発電コストの低廉な発電方法とすることを課題とする。   In the present invention, a turbine is composed of a plurality of propellers and a propeller-type windmill using air at normal temperature and pressure as a driving fluid, and each individual propeller is adjusted in aperture, rotation speed, and number of blades to create a large energy wind and with less power. A simple power mechanism that drives and rotates the propeller, and adjusts the diameter, rotation speed, and number of blades of the rotor of the propeller type wind turbine in order to convert the large energy of the wind into torque and output corresponding to the amount of power generation However, an object is to provide a power generation method with low power generation cost.

本発明の請求項1に記載の低圧タービンによる発電方法は、第1の動翼のプロペラを駆動し回転させることにより流体である空気を吸引加速し風をつくる工程と、プロペラはそれを構成する複数のブレードの断面が回転軸を中心にラセン状に配置されており、回転によりブレード断面に設定された流体の流入角が位相し、前方からの加速流体が流入角に流入し回転すること、および流体が常温常圧の空気であればプロペラの回転でつくられる風はプロペラの直径、回転数、ブレード枚数に比例し、エネルギーの大きな風をつくるにはプロペラの直径を大きくし、回転数、ブレード枚数を増やせばよいことから、第1の動翼のプロペラで吸引加速された風の流れ方向に、間隔を置いて直列に配置した第1の動翼のプロペラより直径の大きな第2の動翼のプロペラに第1の動翼のプロペラで加速した風を吹込みプロペラを回転させる工程と、この回転方向に合わせ第2の動翼のプロペラを駆動し回転させることにより空気をさらに吸引加速し大きなエネルギーをもつ風とする工程と、第2の動翼のプロペラより直径の大きな第3の動翼のプロペラ型風車で、この大きなエネルギーの風を受けロータを回転させ風のエネルギーをトルクに変換、発電量に対応した出力にする工程と、このトルクで発電機を回転し発電をおこなう工程からなり、大きな風のエネルギーをトルクに変換、出力を調整し発電する作用を有している。   According to a first aspect of the present invention, there is provided a power generation method using a low-pressure turbine, wherein a step of driving and rotating a propeller of a first moving blade to suck and accelerate air as a fluid to generate wind, and the propeller constitutes the method. Cross sections of the plurality of blades are arranged in a spiral shape around the rotation axis, and the inflow angle of the fluid set in the blade cross section by rotation is in phase, and the acceleration fluid from the front flows into the inflow angle and rotates, If the fluid is air at normal temperature and normal pressure, the wind generated by the rotation of the propeller is proportional to the propeller diameter, rotation speed, and the number of blades. Since the number of blades may be increased, the second blade having a diameter larger than that of the first rotor blade propellers arranged in series at intervals in the direction of wind flow sucked and accelerated by the propeller of the first rotor blade. The step of rotating the propeller by blowing the wind accelerated by the propeller of the first blade into the propeller of the blade, and rotating the propeller of the second blade according to this rotation direction, further sucking and accelerating air This is the process of making the wind with a large energy and the propeller type wind turbine of the third rotor blade having a diameter larger than that of the propeller of the second rotor blade. By receiving this large energy wind, the rotor is rotated to turn the wind energy into torque. It has a process of converting and generating an output corresponding to the amount of power generation, and a process of generating power by rotating the generator with this torque, and has the function of converting large wind energy into torque and adjusting the output to generate power.

請求項2に記載の低圧タービンによる発電方法は、一般的にプロペラを回転させるには、プロペラを構成するブレード断面に流体である空気が流入する角度と直角に発生する揚力が、ブレード断面に流体が流入する角度の延長上に発生する抗力より大きくなるように回転軸から動力を与える方法による。この方法はプロペラを構成するブレード断面に空気が流入する角度に空気を吹込むに等しく、この角度への空気の吹込みによりプロペラは回転すること、また、プロペラの回転時のプロペラのブレード上の推力およびトルクの発生分布はブレード先端付近で高く、局所的に推力およびトルクの発生分布の高いブレード先端付近に空気を吹込むことにより、プロペラに回転軸から動力を与え空気を捲込み回転させる場合に比べ抗力は減少し、より少ない動力でプロペラが回転することは実験で確認される。したがって、第1の動翼のプロペラおよび第2の動翼のプロペラは、プロペラの回転により空気がプロペラを構成するブレード断面へ流入する角度で、局所的に推力およびトルクの発生分布の高いプロペラ先端付近に空気を吹込みプロペラを回転させる工程により、プロペラに回転軸から動力を与え回転させる場合に比べ少ない動力と複数のプロペラを回転軸で連結せず、もしくは多重の回転軸とすることなく、個々独立させることにより簡素な機構で大きなエネルギーをもつ風をつくりだす作用を有している。   In the power generation method using the low-pressure turbine according to claim 2, in general, in order to rotate the propeller, a lift force generated at right angles to an angle at which air as a fluid flows into the blade cross section constituting the propeller is generated in the blade cross section. This is based on a method in which power is applied from the rotating shaft so as to be larger than the drag generated on the extension of the angle at which the gas flows. This method is equivalent to blowing air at an angle at which air flows into the blade cross section constituting the propeller, and the propeller is rotated by blowing air at this angle, and the propeller blade is rotated on the propeller blade. The thrust and torque generation distribution is high near the blade tip. When air is blown locally near the blade tip where the thrust and torque generation distribution is high, the propeller is powered from the rotating shaft and the air is swept in. It is confirmed by experiments that the drag is reduced compared to, and the propeller rotates with less power. Accordingly, the propeller tip of the first blade and the propeller of the second blade have a propeller tip having a high distribution of thrust and torque locally at an angle at which air flows into the blade cross section constituting the propeller by the rotation of the propeller. By blowing air in the vicinity and rotating the propeller, the motive power from the rotating shaft to the propeller is rotated and less power and multiple propellers are not connected by the rotating shaft or multiple rotating shafts, By making them independent, they have a simple mechanism to create a wind with large energy.

請求項3に記載の低圧タービンによる発電装置は請求項1に記載の低圧タービンによる発電方法を発電装置として捉えたものであり、第1の動翼のプロペラからの風の流れ方向に直列に間隔をおいて配置した第1の動翼のプロペラより直径の大きな第2の動翼のプロペラと、第2の動翼のプロペラより直径の大きな第3の動翼のプロペラ型風車のロータと、これに連結した発電機で構成し、第1の動翼のプロペラおよび第2の動翼のプロペラで大きなエネルギーをもつ風を起し、この風を第3の動翼のプロペラ型風車に受けロータを回転させ、風のエネルギーをトルクに変換し出力を調整、発電機を稼動し発電をおこなうものであり、本請求項記載の発明の作用は請求項1の発明と同様である。   A power generation apparatus using a low-pressure turbine according to a third aspect captures the power generation method using the low-pressure turbine according to the first aspect as a power generation apparatus, and is spaced in series in the flow direction of the wind from the propeller of the first moving blade. A rotor of a second rotor blade having a diameter larger than the propeller of the first rotor blade disposed at a position, and a rotor of a propeller-type wind turbine of a third rotor blade having a diameter larger than the propeller of the second rotor blade, The first rotor blade propeller and the second rotor blade propeller generate a large amount of wind, and this wind is received by the third rotor blade propeller type windmill. Rotating, converting wind energy into torque, adjusting the output, operating the generator to generate power, and the operation of the present invention is the same as that of the first aspect.

請求項4に記載の低圧タービンによる発電装置は請求項2に記載の低圧タービンによる発電方法を発電装置として捉えたものであり、第1の動翼のプロペラおよび第2の動翼のプロペラについて、プロペラの回転により流体である空気がプロペラを構成するブレード断面へ流入する角度で、局所的に推力およびトルクの発生分布の高いプロペラ先端付近に空気を吹込みプロペラを回転させる手段を設け、少ない動力と簡素な機構でプロペラを回転させるものであり、本請求項記載の発明の作用は請求項2の発明と同様である。   A power generator using a low-pressure turbine according to a fourth aspect captures the power generation method using the low-pressure turbine according to claim 2 as a power generator, and the propeller of the first moving blade and the propeller of the second moving blade are: Providing a means to rotate the propeller by blowing air near the tip of the propeller where the thrust and torque generation distribution is locally high at the angle at which the fluid air flows into the blade cross-section that constitutes the propeller due to the rotation of the propeller. The propeller is rotated by a simple mechanism, and the action of the present invention is the same as that of the second aspect.

請求項5に記載の低圧タービンによる発電装置は、第1の動翼と第2の動翼の間を第2の動翼の口径と同じ口径の円筒形外殻を設けることにより、第1の動翼で加速された風と第2の動翼で吸引する流体である空気を偏流させず、また、第2の動翼の口径と第3の動翼の口径に合わせ拡大した円錐形の外殻で第2の動翼と第3の動翼の間の空間を密閉することにより風の拡散を防ぎ、風のエネルギーの式=(1/2)×(空気密度)×(受風面積)×(風速)から風のエネルギーをつくる大きな要素となる速い風速をつくる作用を有している。 The power generator using the low-pressure turbine according to claim 5 is provided with a cylindrical outer shell having the same diameter as that of the second moving blade between the first moving blade and the second moving blade. The air accelerated by the blades and the air that is the fluid sucked by the second blades do not drift, and the outside of the conical shape expanded to match the diameters of the second and third blades. Sealing the space between the second and third rotor blades with a shell prevents the wind from diffusing, and the wind energy formula = (1/2) × (air density) × (wind receiving area) X (Wind speed) It has the effect | action which produces the high wind speed which becomes a big element which produces the energy of a wind from 3 .

請求項6に記載低圧タービンによる発電装置は、第1の動翼、第2の動翼、第3の動翼の3個の回転機械により風速の早い風を利用するため騒音が発生、発電量が増えるにしたがい風となる空気の質量は増え騒音は大きくなる。したがって、第1の動翼と第2の動翼の間に設けた円筒形外殻の延長に吸気筒を設け、また、第2の動翼と第3の動翼の間の空間を密閉した円錐形外殻および発電機の外周を外殻で覆い、消音器をつけた複数の排気口を設けこの外殻の内部を常温常圧に近い状態にするとともに、発生騒音の外部漏出を防ぐ作用を有している。   The power generation apparatus using the low-pressure turbine according to claim 6 generates noise due to the use of wind having a high wind speed by the three rotating machines of the first moving blade, the second moving blade, and the third moving blade. As the value increases, the mass of air that becomes wind increases and the noise increases. Therefore, an intake cylinder is provided in the extension of the cylindrical outer shell provided between the first moving blade and the second moving blade, and the space between the second moving blade and the third moving blade is sealed. Covers the outer periphery of the conical outer shell and generator with the outer shell, and provides multiple exhaust ports with silencers to keep the inside of the outer shell close to normal temperature and normal pressure, and to prevent external leakage of generated noise have.

本発明は第1の動翼のプロペラの局所的に推力およびトルク発生分布の高いプロペラ先端付近に、流体である空気をプロペラを構成するブレード断面へ流入する角度に吹込み回転させ、周辺の空気を吸引加速し風を起し、この風をその流れ方向に直列に間隔を置き配置した第1の動翼のプロペラより直径の大きな第2の動翼のプロペラに吹込み回転させる。この回転方向に合わせ第2の動翼のプロペラを、第1の動翼のプロペラと同じ方法で回転させ、さらに空気を吸引加速することにより大きなエネルギーをもつ風とし、この風を第3の動翼のプロペラ型風車に吹込み、ロータを回転させ風のエネルギーをトルクに変換し出力を調整、発電機を稼動し発電をおこなう低圧タービンによる発電方法とその低圧タービンによる発電装置である。   The present invention blows and rotates air, which is a fluid, in the vicinity of the propeller tip where the thrust and torque generation distribution of the first rotor blade is locally high at an angle that flows into the blade cross section constituting the propeller. The air is sucked and accelerated to generate a wind, and this wind is blown into a propeller of a second moving blade having a diameter larger than that of the first moving blade propeller spaced in series in the flow direction. According to this rotational direction, the propeller of the second blade is rotated in the same manner as the propeller of the first blade, and air is sucked and accelerated to generate a large energy wind. A power generation method using a low-pressure turbine and a power generation device using the low-pressure turbine that blows into a propeller-type windmill of blades, rotates the rotor to convert wind energy into torque, adjusts the output, operates the generator, and generates power.

この方法による場合、空気速度は音速を限界とする。この制約のもとでプロペラの回転により発生する流体である空気の質量とプロペラの直径、回転数、ブレード枚数との関係は、回転数およびブレード枚数を一定としプロペラ直径をn倍にすれば空気の質量はn倍、また、プロペラ直径およびブレード枚数を一定とし回転数をn倍にすれば空気の質量はn倍、プロペラ直径および回転数を一定としブレード枚数をn倍にすれば空気の質量はn倍前後となる。 When this method is used, the speed of air is limited to the speed of sound. Under this restriction, the relationship between the mass of air, which is a fluid generated by the rotation of the propeller, the diameter of the propeller, the number of rotations, and the number of blades is constant if the number of rotations and the number of blades are constant and the propeller diameter is increased by n times. the mass n 4 times, also, the air if the rotational speed and the propeller diameter and number of blades is constant if n times the mass of air is n 2 times the propeller diameter and the rotational speed is constant number of blades n times The mass of is about n times.

この空気の質量とプロペラ回転用動力との関係は、第1の動翼のプロペラ先端付近で流体である空気をブレード断面へ流入する角度に吹込みプロペラを回転させ風を起し、この風を第1の動翼より直径の大きな第2の動翼のプロペラに吹付け回転させ、この回転方向に合わせ第2の動翼のプロペラを第1の動翼のプロペラと同じ方法で回転させることにより、プロペラの回転用動力は回転軸から動力を与え回転させる場合に比べ低減する。   The relationship between the air mass and propeller rotation power is that the air that is the fluid flows near the tip of the propeller of the first rotor blade at an angle at which the air flows into the blade cross section, and the propeller is rotated to generate wind. By spraying and rotating the propeller of the second blade having a larger diameter than the first blade, and rotating the propeller of the second blade in the same manner as the propeller of the first blade according to this rotation direction The power for rotating the propeller is reduced as compared with the case where the power is rotated from the rotating shaft.

プロペラ先端付近でブレード断面へ流入する角度に流体である空気を吹込む手段はブロアーである。プロペラ回転用動力はブロアーに要する電力であり発電機より自給する。ブロアーの稼動電力は吹込量と吹込圧によるが、ブレード断面へ空気が流入する角度はプロペラが空気を捲込む角度であり、プロペラの回転により吹込圧は低く、ブロアー稼動電力はプロペラ直径に対応する吹込量により、吹込圧は吹込量と吹込口径の関係で設定される。第2の動翼のプロペラの直径は第1の動翼のプロペラの直径より大きく、より大きな動力を必要とする。プロペラで加速された空気は収束し拡散する。したがって、第1の動翼のプロペラで加速した空気の拡散域を第2の動翼のプロペラの直径に準じた範囲に合わせプロペラ間隔を調整、第1の動翼のプロペラで加速した空気で第2の動翼のプロペラを回転させ、この回転方向に合わせ第2の動翼のプロペラを第1の動翼のプロペラと同じ方法で回転させることにより、第2の動翼のプロペラ回転用のブロアーの所要電力は低減し、ブロアーへの給電量の発電量に占める割合は低下する。   A means for blowing air, which is a fluid at an angle of flowing into the blade cross section near the tip of the propeller, is a blower. The power for propeller rotation is the power required for the blower and is supplied by the generator. The operating power of the blower depends on the blowing amount and the blowing pressure, but the angle at which air flows into the blade cross section is the angle at which the propeller inhales air. Depending on the blowing amount, the blowing pressure is set by the relationship between the blowing amount and the blowing diameter. The diameter of the propeller of the second blade is larger than the diameter of the propeller of the first blade and requires more power. The air accelerated by the propeller converges and diffuses. Therefore, the air diffusion area accelerated by the propeller of the first moving blade is adjusted to the range corresponding to the diameter of the propeller of the second moving blade, the propeller interval is adjusted, and the first airfoil accelerated by the propeller of the first moving blade is used. The second blade propeller is rotated, and the second blade propeller is rotated in the same manner as the first blade propeller according to the direction of rotation, thereby rotating the second blade propeller rotation blower. The required power is reduced, and the ratio of the amount of power supplied to the blower to the amount of power generation is reduced.

第1の動翼のプロペラと第2の動翼のプロペラで起した風のエネルギーは、空気の速度限界である音速に近いほど大きく、これに近い速度の風とする。このエネルギーをトルクに変換する第3の動翼のプロペラ型風車は、第2の動翼と第3の動翼の間の空間を円錐形の外殻で密閉していることから、第2の動翼のプロペラから吹込まれる空気の質量を一定とすれば、出力はプロペラ型風車のロータ直径で変化する。ロータ直径を第2の動翼のプロペラ直径相当に縮小すれば風速は速くなり、ロータの回転数も増え出力は大きくなるが、風のエネルギーを出力へ変換するロータのブレード枚数が増加する。ロータのブレード枚数には物理的な制約があり、この制約に適合するブレード枚数となるように第2の動翼のプロペラ直径より第3の動翼のプロペラ型風車のロータ直径を大きくし、このロータの直径で設定される風のエネルギーを出力に変換、発電をおこなう。   The energy of wind generated by the propellers of the first blade and the second blade is larger as it approaches the speed of sound, which is the velocity limit of air, and the wind speed is close to this. In the propeller type wind turbine of the third moving blade that converts this energy into torque, the space between the second moving blade and the third moving blade is sealed with a conical outer shell. If the mass of the air blown from the propeller of the rotor blade is constant, the output changes with the rotor diameter of the propeller type windmill. If the rotor diameter is reduced to a value equivalent to the propeller diameter of the second rotor blade, the wind speed increases, the rotor speed increases, and the output increases, but the number of blades of the rotor that converts wind energy into output increases. There is a physical restriction on the number of blades of the rotor. The rotor diameter of the propeller type wind turbine of the third blade is made larger than the diameter of the propeller of the second blade so that the number of blades conforms to this restriction. Wind energy set by the diameter of the rotor is converted into output to generate electricity.

プロペラ型風車に連結する発電機を商用周波数の交流発電機とすれば、回転数=(120×周波数)/極数より、周波数60Hz、極数4として回転数は1,800rpm、この回転数にあわせ第2の動翼のプロペラから吹き込む空気の質量により第3の動翼のプロペラ型風車のロータ直径と変換する風のエネルギーを設定、これに見合う出力をロータのブレード枚数で調整する。一方、発電機の出力は回転数に比例し、同一出力で周波数を高め回転を早めれば規模は小さくなる。本発明の低圧タービンによる発電方法とその低圧タービンによる発電装置では、第1の動翼と第2の動翼の口径、回転数、ブレード枚数を調整、音速に近い速度の風とし、第3の動翼のロータのブレード枚数をその物理的な制約下、最大限に増やすことによりロータ直径を縮小、早い回転数とし小規模な発電機で大きな発電量とすることができる。但し、用途で周波数を変換する必要があり、発電量と装置製造費用で発電コストを調整する。   If the generator connected to the propeller-type wind turbine is an AC generator of commercial frequency, the rotation speed = (120 × frequency) / number of poles, the frequency is 60 Hz, the number of poles is 4, and the rotation speed is 1,800 rpm. In addition, the rotor energy of the propeller type wind turbine of the third rotor blade and the energy of the wind to be converted are set by the mass of air blown from the propeller of the second rotor blade, and the output corresponding to this is adjusted by the number of blades of the rotor. On the other hand, the output of the generator is proportional to the rotational speed, and the scale becomes smaller if the frequency is increased with the same output and the rotation is accelerated. In the power generation method using the low-pressure turbine and the power generation apparatus using the low-pressure turbine according to the present invention, the diameter, the rotation speed, and the number of blades of the first moving blade and the second moving blade are adjusted so that the wind speed is close to the speed of sound. By increasing the number of blades of the rotor blade as much as possible under the physical constraints, the rotor diameter can be reduced, the rotation speed can be increased, and a large amount of power can be generated with a small generator. However, it is necessary to convert the frequency depending on the application, and the power generation cost is adjusted by the power generation amount and the device manufacturing cost.

本発明の実施例を図により説明する   Embodiments of the present invention will be described with reference to the drawings.

以下に本発明の実施の形態にかかる低圧タービンによる発電方法について図1を参照しながら説明する。図1は本発明の実施形態にかかる低圧タービンによる発電方法の構成図である。図1において低圧タービンによる発電方法は第1の動翼1、第1の動翼の外殻2、第1の動翼の支持材3、第1の動翼のプロペラ4、第1の動翼のプロペラへの空気吹込ノズル5、円筒形外殻6、第1の動翼の空気吹込ブロアー7、第2の動翼8、第2の動翼外殻9、第2の動翼の支持材10、第2の動翼のプロペラ11、第2の動翼のプロペラへの空気吹込ノズル12、第2の動翼の空気吹込ブロアー13、円錐形外殻14、第3の動翼15、第3の動翼の外殻16、第3の動翼の支持材17、第3の動翼の風車ロータ18、回転軸19、発電機外殻20、発電機21、発電機支持材22で構成する。第1の動翼1は円筒形外殻6と直径の同じ第1の動翼の外殻2に等間隔に設けた第1の動翼の支持材3で固定され、第1の動翼の外殻2の外側に設けた第1の動翼への空気吹込ブロアー7から、第1の動翼の支持材3を通して、流体である空気を第1の動翼のプロペラ4の先端付近でプロペラを構成するブレード断面へ空気が流入する角度に第1の動翼のプロペラへの空気吹込ノズル5で空気を吹込みプロペラを回転させる。   A power generation method using a low-pressure turbine according to an embodiment of the present invention will be described below with reference to FIG. FIG. 1 is a configuration diagram of a power generation method using a low-pressure turbine according to an embodiment of the present invention. In FIG. 1, a power generation method using a low-pressure turbine includes a first moving blade 1, a first moving blade outer shell 2, a first moving blade support 3, a first moving blade propeller 4, and a first moving blade. Air blowing nozzle 5, cylindrical outer shell 6, first moving blade air blowing blower 7, second moving blade 8, second moving blade outer shell 9, support material for the second moving blade 10, second blade propeller 11, second blade propeller air blowing nozzle 12, second blade air blowing blower 13, conical outer shell 14, third blade 15, 3 rotor blade outer shell 16, third rotor blade support member 17, third rotor blade wind turbine rotor 18, rotating shaft 19, generator outer shell 20, generator 21, and generator support member 22. To do. The first moving blade 1 is fixed to the outer shell 2 of the first moving blade having the same diameter as the cylindrical outer shell 6 by a first moving blade support 3 provided at equal intervals. From the air blowing blower 7 to the first moving blade provided outside the outer shell 2, the air as a fluid is passed through the first moving blade support member 3 in the vicinity of the tip of the propeller 4 of the first moving blade. The air is blown into the propeller of the first moving blade at an angle at which air flows into the blade cross section constituting the blade, and the propeller is rotated.

第1の動翼のプロペラ4の回転により空気は吸引加速され、回転しながら風となり収束後、拡散する。この風の拡散域を第2の動翼の支持材10で第2の動翼外殻9に固定された第2の動翼のプロペラ11の直径に準じた範囲にするように第1の動翼のプロペラ4との間隔を調整し、この風で第2の動翼のプロペラ11を回転させるとともに、この回転の方向に合わせ第2の動翼外殻9の外側に設けた第2の動翼の空気吹込ブロアー13から第2の動翼のプロペラ11へ第2の動翼のプロペラへの空気吹込ノズル12で、第2の動翼のプロペラ11の先端付近でプロペラを構成するブレード断面へ空気が流入する角度に空気を吹込みプロペラを回転させる。第2の動翼のプロペラ11の回転により空気は吸引加速され、加速にともない吸引される空気を第1の動翼1と第2の動翼8との間に設けた円筒形外殻6の第1の動翼のプロペラ4と第2の動翼のプロペラ11の口径差による空間から吸引し大きなエネルギーをもつ風とする。   The air is sucked and accelerated by the rotation of the propeller 4 of the first moving blade, becomes a wind while rotating, and then diffuses after convergence. The first movement is made such that the wind diffusion area is in a range according to the diameter of the propeller 11 of the second blade fixed to the second blade outer shell 9 by the second blade support 10. The distance from the blade propeller 4 is adjusted, and the second blade propeller 11 is rotated by this wind, and the second motion provided outside the second blade outer shell 9 in accordance with the direction of rotation. From the air blowing blower 13 of the blade to the propeller 11 of the second moving blade, the air blowing nozzle 12 to the propeller of the second moving blade, to the blade cross section constituting the propeller near the tip of the propeller 11 of the second moving blade The propeller is rotated by blowing air at an angle at which the air flows. Air is sucked and accelerated by the rotation of the propeller 11 of the second blade, and the cylindrical outer shell 6 provided between the first blade 1 and the second blade 8 is sucked and accelerated. The wind is sucked from the space due to the difference in diameter between the propeller 4 of the first moving blade and the propeller 11 of the second moving blade, and has a large energy.

第2の動翼のプロペラ11の回転により大きなエネルギーをもった風は、円錐形外殻14を通して、第3の動翼の支持材17で第3の動翼外殻16に固定された第3の動翼15に吹込み第3の動翼の風車ロータ18を回転させトルクに転換、風のエネルギーをロータ枚数で出力を調整、転換されたトルクを回転軸19で、発電機支持材22で発電機外殻20に固定された発電機21に伝え、発電機21を回転し発電をおこなう。   The wind having a large energy due to the rotation of the propeller 11 of the second moving blade passes through the conical outer shell 14 and the third moving blade fixed to the third moving blade outer shell 16 by the support member 17 of the third moving blade. The wind turbine rotor 18 of the third rotor blade is rotated to convert it into torque, the output of wind energy is adjusted by the number of rotors, and the converted torque is rotated by the rotating shaft 19 and the generator support 22 The power is transmitted to the generator 21 fixed to the generator outer shell 20, and the generator 21 is rotated to generate power.

以下に本発明の実施の形態にかかる低圧タービンによる発電方法のうちプロペラへの空気吹込方法について図2を参照しながら説明する。図2は本発明の実施形態にかかる低圧タービンによる発電方法のうちプロペラへの空気吹込方法の構成図であり、空気吹込ブロアーの例である。   In the following, an air blowing method to a propeller in a power generation method using a low-pressure turbine according to an embodiment of the present invention will be described with reference to FIG. FIG. 2 is a configuration diagram of an air blowing method to a propeller in a power generation method using a low-pressure turbine according to an embodiment of the present invention, which is an example of an air blowing blower.

図2において空気吹込方法はプロペラを構成するブレード23、ブレ−ド断面24、空気吹込ノズル25、空気吹込ブロアー26、回転軸27で構成する。プロペラは同じ形状をもつ複数のブレード23により構成され、各々のブレード断面24は回転軸27を中心にラセン状に配置されている。空気吹込ノズル25はこの配置に対応し、各々のブレード断面へ流体が流入する角度に応じて、複数の空気吹込ノズル25を向い合せに配置する。空気がブレード断面へ流入する角度に、空気を吹込みプロペラを回転させる場合、各々のブレード23に流体が流入する角度は、ブレードの翼形において設定されている角度となる。したがって、流体吹込ノズル23は翼形に応じて設定された角度に固定し、流量で回転数を調整する。空気吹込ブロアー26の配置は流体吹込ノズル25の配置にしたがい、空気を空気吹込ノズル25に送り込む。   In FIG. 2, the air blowing method includes a blade 23 constituting a propeller, a blade cross section 24, an air blowing nozzle 25, an air blowing blower 26, and a rotating shaft 27. The propeller is constituted by a plurality of blades 23 having the same shape, and each blade cross section 24 is arranged in a spiral shape around a rotating shaft 27. The air blowing nozzles 25 correspond to this arrangement, and a plurality of air blowing nozzles 25 are arranged facing each other according to the angle at which the fluid flows into each blade cross section. When air is blown at an angle at which the air flows into the blade cross section and the propeller is rotated, the angle at which the fluid flows into each blade 23 is an angle set in the blade airfoil. Therefore, the fluid blowing nozzle 23 is fixed at an angle set according to the airfoil, and the rotational speed is adjusted by the flow rate. The air blowing blower 26 is arranged in accordance with the arrangement of the fluid blowing nozzle 25, and air is fed into the air blowing nozzle 25.

以下に本発明の実施の形態にかかる低圧タービンによる発電方法のうち騒音防止方法について図3を参照しながら説明する。図3は本発明の実施形態にかかる低圧タービンによる発電方法のうち騒音防止方法の構成図であり、騒音防止用外殻とこれに設置する吸気筒および排気筒の例である。   The noise prevention method among the power generation methods using the low-pressure turbine according to the embodiment of the present invention will be described below with reference to FIG. FIG. 3 is a block diagram of a noise prevention method of the power generation method using the low-pressure turbine according to the embodiment of the present invention, and shows an example of a noise prevention outer shell, an intake cylinder and an exhaust cylinder installed on the outer shell.

図3において騒音防止方法は円筒形外殻6を延長した吸気筒28、円錐形外殻14および発電機21ならびに発電機外殻20の外周を覆った外殻29、この外殻29に設けた消音器30を設置した複数の排気筒31で構成する。本発明の実施の形態にかかる低圧タービンによる発電方法は、第1の動翼1、第2の動翼8、第3の動翼15の3個の回転機械により風速の速い風を利用するため騒音が発生し、発電量が増えるにしたがい風となる空気の質量は増え騒音は大きくなる。この騒音の外部漏出を防止するため円筒形外殻14を上方に向け延長した吸気筒22を設け空気吸入側からの騒音を上方に拡散させる。また、騒音の大きい排気側では、風がそのエネルギーをトルクに転換した後、拡散することから、円錐形外殻14および発電機21ならびに発電機外殻20の外周に大きな容量をもつ外殻29を設け、この外殻29に消音器30をつけた複数の排気筒31を配置し、外殻29の内部を常温常圧に近い状態とし発生騒音の外部漏出を防ぐ。   In FIG. 3, the noise prevention method is provided with an intake cylinder 28 extending the cylindrical outer shell 6, a conical outer shell 14 and a generator 21, an outer shell 29 covering the outer periphery of the generator outer shell 20, and the outer shell 29. It comprises a plurality of exhaust pipes 31 provided with a silencer 30. The power generation method using the low-pressure turbine according to the embodiment of the present invention uses a wind having a high wind speed by the three rotating machines of the first moving blade 1, the second moving blade 8, and the third moving blade 15. As noise is generated and the amount of power generation increases, the mass of air that becomes wind increases and the noise increases. In order to prevent this noise from leaking outside, an intake cylinder 22 is provided in which the cylindrical outer shell 14 extends upward to diffuse the noise from the air intake side upward. On the exhaust side where noise is loud, the wind diffuses after converting its energy into torque, so that the outer shell 29 having a large capacity on the outer periphery of the conical outer shell 14 and the generator 21 and the generator outer shell 20. A plurality of exhaust pipes 31 with silencers 30 attached to the outer shell 29 are arranged to make the inside of the outer shell 29 close to room temperature and normal pressure to prevent external leakage of generated noise.

以上に説明において、本実施形態にかかる低圧タービンによる発電方法においては、少ない動力量で大きなエネルギーをもつ風をつくり、この風のエネルギーをプロペラ型風車でトルクに変換、出力を調整し発電機を回転させ発電をおこなうものであり、タービンとしての熱効率および稼動率はともに高く、燃焼に伴う二酸化炭素の発生もなく、機構的に簡素な発電コストの低廉な低圧タービンによる発電方法となる。   In the above description, in the power generation method using the low-pressure turbine according to the present embodiment, a wind having a large energy is generated with a small amount of power, the wind energy is converted into torque by a propeller type windmill, the output is adjusted, and the generator is adjusted. The power generation is performed by rotating, and both the thermal efficiency and operation rate of the turbine are high, the generation of carbon dioxide accompanying combustion is not generated, and the power generation method is low-pressure turbine with a mechanically simple power generation cost.

次に図4を参照しながら本発明の実施の形態にかかる低圧タービンによる発電装置について説明する。本実施形態は先に説明した低圧タービンによる発電方法を発電装置として捉えるものである。既に図1を参照して方法の発明について説明した際に、その方法についても実質的には説明したと考えられるが理解を容易にするために再度フロー図を参照しながら説明するものである。   Next, a power generation apparatus using a low-pressure turbine according to an embodiment of the present invention will be described with reference to FIG. In the present embodiment, the power generation method using the low-pressure turbine described above is regarded as a power generation apparatus. When the method invention has already been described with reference to FIG. 1, it is considered that the method has also been substantially described, but for the sake of easy understanding, the method will be described again with reference to the flowchart.

図4は本発明の実施の形態にかかる低圧タービンによる発電装置のフロー図である。図2においてステップS―1は第1の動翼のプロペラの先端付近のブレード断面に流体である空気が流入する角度で、空気を吹込みプロペラを回転させ周辺の空気を吸引加速し、風とする手段である。ステップS―2はステップS―1で加速した空気を第2の動翼のプロペラに吹付け回転させ、その回転方向に第2の動翼のプロペラの先端付近のブレード断面に空気が流入する角度で、空気を吹込みプロペラの回転させ、空気をさらに吸引加速することにより、大きなエネルギーをもつ風とする手段である。ステップS―3はエネルギーの大きな風を第3の動翼のプロペラ型風車に吹込み、風のエネルギーをトルクに転換し出力を調整する手段である。S―4は転換されたトルクを回転軸で発電機に伝え発電機を回転させ発電する手段である。S―5は第1の動翼、第2の動翼、第3の動翼の3個の回転機械により、風速の早い風とするために発生する騒音の外部への漏出を防ぐ手段である。以上説明した本実施形態にかかる低圧タービンによる発電装置も先に説明した低圧タービンによる発電方法と同様の効果を得ることができる。   FIG. 4 is a flowchart of the power generation apparatus using the low-pressure turbine according to the embodiment of the present invention. In FIG. 2, step S-1 is the angle at which air, which is a fluid, flows into the blade cross section near the tip of the first rotor blade propeller, blows air, rotates the propeller, sucks and accelerates the surrounding air, It is means to do. In step S-2, the air accelerated in step S-1 is blown and rotated on the propeller of the second blade, and the angle at which air flows into the blade cross section near the tip of the propeller of the second blade in the rotation direction Then, the air is blown and the propeller is rotated, and the air is further sucked and accelerated to generate wind having a large energy. Step S-3 is a means for blowing a high-energy wind into the propeller-type wind turbine of the third moving blade, converting the wind energy into torque, and adjusting the output. S-4 is a means for transmitting the converted torque to the generator through the rotating shaft to generate power by rotating the generator. S-5 is a means for preventing leakage of noise generated due to the high wind speed by the three rotating machines of the first moving blade, the second moving blade, and the third moving blade. . The power generation apparatus using the low-pressure turbine according to the present embodiment described above can achieve the same effects as the power generation method using the low-pressure turbine described above.

本発明の実施形態に係る低圧タービンによる発電方法の構成図である。It is a block diagram of the electric power generation method by the low pressure turbine which concerns on embodiment of this invention. 本発明の実施形態に係る低圧タービンによる発電方法のうちプロペラへの流 体吹込方法についての構成図である。It is a block diagram about the fluid injection method to the propeller among the power generation methods by the low pressure turbine which concerns on embodiment of this invention. 図3は本発明の実施形態にかかる低圧タービンによる発電方法のうち騒音発 生防止方法の構成図である。FIG. 3 is a configuration diagram of a noise generation prevention method in the power generation method using the low-pressure turbine according to the embodiment of the present invention. 本発明の実施形態に係る低圧タービンによる発電装置のフロー図である。It is a flowchart of the electric power generating apparatus by the low pressure turbine which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1:第1の動翼
2:第1の動翼の外殻
3:第1の動翼の支持材
4:第1の動翼のプロペラ
5:第1の動翼のプロペラへの空気吹込ノズル
6:円筒形外殻
7:第1の動翼の空気吹込ブロアー
8:第2の動翼
9:第2の動翼の外殻
10:第2の動翼の支持材
11:第2の動翼のプロペラ
12:第2の動翼のプロペラへの空気吹込ノズル
13:第2の動翼の空気吹込ブロアー
14:円錐形外殻
15:第3の動翼
16:第3の動翼の外殻
17:第3の動翼の支持材
18:第3の動翼の風車ロータ
19:回転軸
20:発電機外殻
21:発電機
22:発電機支持材
23:ブレード
24:ブレード断面
25:空気吹込みノズル
26:空気吹込みブロアー
27:回転軸
28:吸気筒
29:外殻
30:消音器
31:排気筒
1: First blade
2: Outer shell of first blade 3: Support material for first blade
4: First blade impeller
5: Nozzle for blowing air into the first rotor blade propeller 6: Cylindrical outer shell
7: Air blowing blower of the first moving blade 8: Second moving blade 9: Outer shell of the second moving blade
10: Support material for second blade
11: Second blade propeller
12: Air blowing nozzle to the propeller of the second blade
13: Air blowing blower of the second moving blade
14: Conical outer shell 15: Third moving blade
16: Outer shell of third blade
17: Support material for third blade
18: Third rotor blade wind turbine rotor 19: Rotating shaft
20: Generator outer shell 21: Generator 22: Generator support material 23: Blade 24: Blade cross section 25: Air blowing nozzle 26: Air blowing blower 27: Rotating shaft 28: Intake cylinder 29: Outer shell 30: Silence 31: Exhaust pipe

Claims (6)

第1の動翼のプロペラを駆動し回転させ流体である空気を吸引加速し風をつくる工程と、この風を第1の動翼のプロペラの直径より大きな第2の動翼のプロペラに吹込み第2の動翼のプロペラを回転させるとともに、この回転方向に合わせ第2の動翼のプロペラを駆動し回転させ、空気をさらに吸引加速することによって大きなエネルギーをもつ風にする工程と、この大きなエネルギーをもつ風を第2の動翼のプロペラより直径の大きな第3の動翼のプロペラ型風車に吹込み、ロータを回転させ風のエネルギーをトルクに転換し出力を調整、発電機を駆動し発電する工程を有することを特徴とする低圧タービンによる発電方法。   A step of driving and rotating the propeller of the first blade to suck and accelerate air as a fluid to generate wind, and blowing this wind into the propeller of the second blade larger than the diameter of the propeller of the first blade A step of rotating the propeller of the second rotor blade, driving and rotating the propeller of the second rotor blade in accordance with the direction of rotation, and further sucking and accelerating air to generate a wind having a large energy; The wind with energy is blown into the propeller type wind turbine of the third rotor blade, which is larger in diameter than the propeller of the second rotor blade, the rotor is rotated, the wind energy is converted into torque, the output is adjusted, the generator is driven A power generation method using a low-pressure turbine, comprising a step of generating power. 前記第1の動翼のプロペラおよび第2の動翼のプロペラは、プロペラの回転により流体である空気がプロペラを構成するブレード断面への流入する角度で、局所的に推力およびトルクの発生分布の高いプロペラ先端付近に空気を吹込むことによりプロペラを回転させる工程を有することを特徴とする請求項1記載の低圧タービンによる発電方法。   The propeller of the first moving blade and the propeller of the second moving blade have a distribution of thrust and torque generation distribution locally at an angle at which air, which is a fluid, flows into a blade cross section constituting the propeller by rotation of the propeller. The power generation method using a low-pressure turbine according to claim 1, further comprising a step of rotating the propeller by blowing air in the vicinity of the tip of the high propeller. 第1の動翼と第2の動翼と第3の動翼は、第1の動翼からの風の流れ方向に直列に間隔をおき配置、第1の動翼のプロペラより直径の大きな第2の動翼のプロペラと、第2の動翼のプロペラより直径の大きな第3の動翼のプロペラ型風車のロータと、第3の動翼のプロペラ型風車に連結した発電機からなることを特徴とする低圧タービンによる発電装置。   The first moving blade, the second moving blade, and the third moving blade are spaced in series in the flow direction of the wind from the first moving blade, and the first moving blade is larger in diameter than the propeller of the first moving blade. A rotor of a second rotor blade, a rotor of a third rotor blade propeller-type wind turbine having a diameter larger than that of the second rotor blade, and a generator coupled to the propeller-type wind turbine of the third rotor blade. A power generator using a low-pressure turbine. 前記第1の動翼のプロペラおよび第2の動翼のプロペラは、プロペラの回転により流体である空気がプロペラを構成するブレード断面へ流入する角度で、局所的に推力およびトルクの発生分布の高いプロペラ先端付近に空気を吹込みプロペラを回転させる手段を設けたことを特徴とする請求項3の記載の低圧タービンによる発電装置。   The propeller of the first moving blade and the propeller of the second moving blade have a high distribution of thrust and torque locally at an angle at which air, which is a fluid, flows into the blade cross section constituting the propeller by rotation of the propeller. 4. A power generator using a low-pressure turbine according to claim 3, wherein means for blowing air into the vicinity of the tip of the propeller and rotating the propeller are provided. 前記第1の動翼と第2の動翼の間には第2の動翼の口径と同じ口径の円筒形外殻を設けるとともに、第2の動翼の口径と第3の動翼の口径に合わせ拡大した円錐形の外殻を設け、第2の動翼と第3の動翼の間の空間を密閉することを特徴とする請求項3又は請求項4の記載の低圧タービンによる発電装置。   A cylindrical outer shell having the same diameter as that of the second moving blade is provided between the first moving blade and the second moving blade, and the diameter of the second moving blade and the diameter of the third moving blade. 5. A power generator using a low-pressure turbine according to claim 3, wherein a conical outer shell that is enlarged in accordance with the pressure is provided to seal a space between the second blade and the third blade. . 前記第1の動翼と第2の動翼の間に設けた円筒形外殻に接続した吸気筒を設けるとともに、第2の動翼と第3の動翼の間の空間を密閉した円錐形外殻および発電機の外周を外殻で覆いこの外殻に消音器を付けた排気口を設けたことを特徴とする請求項3又は請求項4又は請求項5の記載の低圧タービンによる発電装置。   A conical shape in which an intake cylinder connected to a cylindrical outer shell provided between the first moving blade and the second moving blade is provided, and a space between the second moving blade and the third moving blade is sealed. 6. A power generator using a low-pressure turbine according to claim 3, wherein the outer shell and the outer periphery of the generator are covered with the outer shell, and an exhaust port with a silencer is provided in the outer shell. .
JP2007250383A 2007-09-27 2007-09-27 Power generation method using low pressure turbine and power generation apparatus using low pressure turbine Expired - Fee Related JP5397724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007250383A JP5397724B2 (en) 2007-09-27 2007-09-27 Power generation method using low pressure turbine and power generation apparatus using low pressure turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007250383A JP5397724B2 (en) 2007-09-27 2007-09-27 Power generation method using low pressure turbine and power generation apparatus using low pressure turbine

Publications (2)

Publication Number Publication Date
JP2008025587A true JP2008025587A (en) 2008-02-07
JP5397724B2 JP5397724B2 (en) 2014-01-22

Family

ID=39116435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007250383A Expired - Fee Related JP5397724B2 (en) 2007-09-27 2007-09-27 Power generation method using low pressure turbine and power generation apparatus using low pressure turbine

Country Status (1)

Country Link
JP (1) JP5397724B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010106826A (en) * 2009-09-03 2010-05-13 Matsuura Matsue Method and device for generating power by circulating air through coupled pipes and driving low-pressure turbine
KR101079858B1 (en) 2011-04-27 2011-11-16 최용석 Wind power generator
JP2015149881A (en) * 2014-02-06 2015-08-20 俊洋 小島 Blower power generator
KR101754663B1 (en) * 2015-11-20 2017-09-06 김병만 Domino type air wind power generation
KR102083804B1 (en) * 2018-09-18 2020-03-05 윤해상 Power generator for ventilation
WO2020159137A1 (en) * 2019-01-31 2020-08-06 주식회사 미로 Air circulator having dual rotary vane
CN113530871A (en) * 2021-08-10 2021-10-22 西安热工研究院有限公司 Power frequency dynamic switching method for frequency converter fault state of axial flow fan of power station

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000220561A (en) * 1999-01-28 2000-08-08 Naoyoshi Hosoda Wind power generator
JP2005124380A (en) * 2003-10-19 2005-05-12 Masayoshi Maruchi Hatsuden-o (king of power generation)
JP2005137101A (en) * 2003-10-29 2005-05-26 Tatsumi Ryoki:Kk Power generating system
JP2007215329A (en) * 2006-02-10 2007-08-23 Jiro Hirose Generator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000220561A (en) * 1999-01-28 2000-08-08 Naoyoshi Hosoda Wind power generator
JP2005124380A (en) * 2003-10-19 2005-05-12 Masayoshi Maruchi Hatsuden-o (king of power generation)
JP2005137101A (en) * 2003-10-29 2005-05-26 Tatsumi Ryoki:Kk Power generating system
JP2007215329A (en) * 2006-02-10 2007-08-23 Jiro Hirose Generator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010106826A (en) * 2009-09-03 2010-05-13 Matsuura Matsue Method and device for generating power by circulating air through coupled pipes and driving low-pressure turbine
KR101079858B1 (en) 2011-04-27 2011-11-16 최용석 Wind power generator
JP2015149881A (en) * 2014-02-06 2015-08-20 俊洋 小島 Blower power generator
KR101754663B1 (en) * 2015-11-20 2017-09-06 김병만 Domino type air wind power generation
KR102083804B1 (en) * 2018-09-18 2020-03-05 윤해상 Power generator for ventilation
WO2020159137A1 (en) * 2019-01-31 2020-08-06 주식회사 미로 Air circulator having dual rotary vane
CN113530871A (en) * 2021-08-10 2021-10-22 西安热工研究院有限公司 Power frequency dynamic switching method for frequency converter fault state of axial flow fan of power station

Also Published As

Publication number Publication date
JP5397724B2 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
JP5397724B2 (en) Power generation method using low pressure turbine and power generation apparatus using low pressure turbine
US8358023B2 (en) Driving turbine blade assembly comprising a passage through which a fluid may pass
RU2493427C2 (en) Wind-driven power plant, generator to generate power from ambient air and method to generate power from moving ambient air
JP2007127124A (en) Power generation system and method of operating same
JP2006177370A (en) Wind power generating device
CA2699774A1 (en) Wind turbine with two successive propellers
JP5571866B1 (en) Apparatus and method for reducing air flow for low emission combustion over an extended range of a single shaft gas turbine
JP2008064100A (en) Device for enhancing efficiency of energy extraction system
JP2010001881A5 (en)
US9410430B2 (en) Turbine apparatus with counter-rotating blades
JP2008069777A (en) Device, turbocharger for vehicle, hybrid vehicle, and method of operating hybrid vehicle
US20180171966A1 (en) Wind turbine with rotating augmentor
CN102434218B (en) Fluid turbine engine
JP2011122508A (en) Power generator
JPH0264270A (en) Impulse turbine with self-variable pitch guide vanes
JP2007154759A (en) Hybrid type wind power generating device
CN101691853B (en) Horizontal shaft wind driven generator
JP5115890B2 (en) Method and apparatus for generating electricity by driving air through low-pressure turbine by circulating air through connected pipes
US10260367B2 (en) Power transmission system for turbines or compressors having counter-rotating blades
CN212837972U (en) Radial flow turbine rotor overspeed control system and turbine
US10190436B2 (en) Power transmission system for turbine, a turbocharger, a compressor, or a pump
CN203248313U (en) Novel wind driven generator
JP2011169261A (en) Wind power generator
JP3240617U (en) wind turbine
JPH04237801A (en) Two-shaft contrarotating axial turbine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131010

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees