JP2008024558A - Lead-free glass composition for sealing metal-made vacuum double container - Google Patents

Lead-free glass composition for sealing metal-made vacuum double container Download PDF

Info

Publication number
JP2008024558A
JP2008024558A JP2006200408A JP2006200408A JP2008024558A JP 2008024558 A JP2008024558 A JP 2008024558A JP 2006200408 A JP2006200408 A JP 2006200408A JP 2006200408 A JP2006200408 A JP 2006200408A JP 2008024558 A JP2008024558 A JP 2008024558A
Authority
JP
Japan
Prior art keywords
glass
weight
sealing
lead
double container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006200408A
Other languages
Japanese (ja)
Inventor
Junichi Nakamura
淳一 中村
Sadataka Mayumi
禎隆 真弓
Hideyuki Kuribayashi
秀行 栗林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Yamamura Glass Co Ltd
Original Assignee
Nihon Yamamura Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Yamamura Glass Co Ltd filed Critical Nihon Yamamura Glass Co Ltd
Priority to JP2006200408A priority Critical patent/JP2008024558A/en
Priority to PCT/JP2007/063214 priority patent/WO2008013028A1/en
Publication of JP2008024558A publication Critical patent/JP2008024558A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/04Frit compositions, i.e. in a powdered or comminuted form containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C29/00Joining metals with the aid of glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lead-free glass composition for sealing a metal-made vacuum double container which contains no lead, is small in the crystal deposition when degassing and firing in vacuum sealing or the like and is surely sealing at a low temperature of ≤550°C at high yield. <P>SOLUTION: The lead-free glass composition used for vacuum-sealing an exhaust port of the metal made vacuum double container, contains 75.0-83.0 wt.% Bi<SB>2</SB>O<SB>3</SB>, 5.0-10.0 wt.% B<SB>2</SB>O<SB>3</SB>, 5.0-10.0 wt.% ZnO, 2.0-5.0 wt.% BaO, 0.5-2.0 wt.% CuO (where, excluding 2.0 wt.%) and 0.05-2.0 wt.% CoO expressed in terms of oxide as effective ingredients and does not contain PbO and SiO<SB>2</SB>. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は金属製真空二重容器の封着用無鉛ガラス組成物に関する。詳しくは、魔法瓶、携帯用保温ボトル、ランチジャー等、主としてステンレス製真空二重容器を低温で真空封着し、真空を良好に保持することができる無鉛ガラス組成物に関する。   The present invention relates to a lead-free glass composition for sealing metal vacuum double containers. More specifically, the present invention relates to a lead-free glass composition capable of maintaining a good vacuum by vacuum-sealing mainly a vacuum double container made of stainless steel such as a thermos bottle, a portable heat retaining bottle, a launcher and the like.

金属製、例えばステンレス製の真空二重容器は、その内外容器間の空隙にある空気を排気して減圧(真空)状態にする必要がある。このため真空二重容器に排気孔を設けて、該排気孔から所定の排気処理温度にて空気を排気する、いわゆる脱ガス処理と、その後更に雰囲気温度を封着温度に昇温させ、予め排気孔近傍に配置しておいた封着用ガラス組成物の塊を軟化させ、自重にて排気孔に流れるようにして該排気口を閉塞する、いわゆる封着処理とが行われていた。
ところで、例えばSUS304を使用したステンレス製真空容器の真空封着においては、ステンレス鋼の鋭敏化現象を防ぐため、従来は低温にて封着可能な鉛ガラスが用いられていた。
この鉛ガラスとしては、例えば特開平8−119670号公報に開示のPbO−B−ZnO−SiO−Al−Bi−V系ガラスで示される鉛ガラスがある。
しかしながら、鉛ガラスは鉛を主成分とするため、人体、環境、その他の点において悪影響を持つ問題がある。このため鉛成分を含まないガラスが望まれるようになった。
このような経緯から、最近は鉛ガラスの代わりとして、例えば特開2005−350314号公報に開示されているSnO−Pを主成分とするリン酸ガラスが提供されている。また特開2002−348152号公報や特開2005−213103号公報に開示されているBiを主成分とするビスマスガラスが提供され、これらのガラスの封着ガラスへの適用が試みられている。
A vacuum double container made of metal, for example, stainless steel, needs to be evacuated (vacuum) by evacuating air in the gap between the inner and outer containers. For this reason, an exhaust hole is provided in the vacuum double container, air is exhausted from the exhaust hole at a predetermined exhaust processing temperature, and so-called degassing processing, and then the ambient temperature is further raised to the sealing temperature and exhausted in advance. A so-called sealing treatment has been performed in which a lump of the glass composition for sealing that has been arranged in the vicinity of the hole is softened and flows into the exhaust hole by its own weight to close the exhaust port.
By the way, in the vacuum sealing of a stainless steel vacuum vessel using, for example, SUS304, lead glass that can be sealed at a low temperature has been conventionally used in order to prevent the sensitization phenomenon of stainless steel.
As this lead glass, for example, lead glass represented by PbO—B 2 O 3 —ZnO—SiO 2 —Al 2 O 3 —Bi 2 O 3 —V 2 O 5 glass disclosed in JP-A-8-119670. There is.
However, since lead glass contains lead as a main component, there is a problem that it has an adverse effect on the human body, environment, and other points. For this reason, the glass which does not contain a lead component came to be desired.
For these reasons, phosphate glass mainly composed of SnO—P 2 O 5 disclosed in, for example, JP-A-2005-350314 has been provided as a substitute for lead glass. Further, bismuth glass mainly composed of Bi 2 O 3 disclosed in Japanese Patent Application Laid-Open No. 2002-348152 and Japanese Patent Application Laid-Open No. 2005-213103 is provided, and application of these glasses to sealing glass is attempted. Yes.

特開2005−350314号公報JP-A-2005-350314 特開2002−348152号公報JP 2002-348152 A 特開2005−213103号広報JP 2005-213103 PR

しかしながら上記特許文献1に記載のリン酸ガラスでは、比重が小さく、このためステンレス製真空二重容器の作製におけるような加重無しでの焼成では、フロー性(流動性)が十分ではなく、排気孔の封着を良好に行うことができない問題があった。
また上記文献2に記載のビスマスガラスでは、融点が高いため、SUS304等のオーステナイト系ステンレス鋼において鋭敏化現象が起こらない低温、例えば550℃以下の低温では、前記ガラスのフロー性が悪く、排気孔をうまく封着できない問題があった。
また上記文献3に記載のビスマスガラスは、加重しながら焼成を行う場合には、520℃以下の温度でも封着に使用することが可能である。が、その一方、加重無しでの焼成においては、低融化が十分でないため、前記ステンレスの鋭敏化が起こらない低温でのフロー性が悪く、排気孔の封着がうまくできない問題があった。
ところでビスマスガラスでは、一般にガラスを低融化すると結晶が析出し易くなり、このため焼成時に結晶が析出し易く、よってガラスのフロー性が悪くなり、封着がうまくできない問題があった。
また封着の工程においては、封着処理の前処理として脱ガス処理を行うが、この脱ガス処理においては、300〜320℃程度の温度で90分程度保持する必要がある。しかし、このような条件で処理を行うとビスマスガラスのガラス中に結晶の核が発生し、これが封着処理の際に結晶析出を促進させ、フロー性を悪化させる原因となる。この傾向は、脱ガス温度が高く、時間が長いほど顕著となる。
その他、真空封着作業においては真空炉を使用する必要があるが、真空炉における伝熱は輻射のみであり、一般的に炉内での温度のバラツキが大きくなる傾向にある。この温度のバラツキは、そこで処理されたガラスを用いた封着処理での結晶析出の度合いのバラツキ、ひいてはフロー性のバラツキとなって現れる。
なお勿論、封着処理中の温度、時間も結晶析出の度合い、フロー性に影響するので、封着処理中の温度バラツキも封着性能に大きな影響を及ぼす。
以上の問題を分析した本願発明者によれば、ビスマスガラスにおいて、封着性能のバラツキを抑制して良好で安定した封着を確保するためには、ビスマスガラスを低融化すると共に、ビスマスガラスにおける結晶析出の抑制が必要であるという結論に達した。
However, the phosphate glass described in Patent Document 1 has a small specific gravity. Therefore, in the firing without load as in the production of a stainless steel vacuum double container, the flowability (fluidity) is not sufficient, and the exhaust holes There has been a problem that the sealing cannot be performed satisfactorily.
In addition, since the bismuth glass described in Document 2 has a high melting point, the flowability of the glass is poor at a low temperature at which sensitization does not occur in an austenitic stainless steel such as SUS304, for example, at a low temperature of 550 ° C. or lower. There was a problem that could not be sealed well.
Further, the bismuth glass described in the above-mentioned document 3 can be used for sealing even at a temperature of 520 ° C. or lower when firing is performed while applying a load. On the other hand, in firing without load, since low melting is not sufficient, there is a problem that the stainless steel is not sensitized and the flowability at low temperature is poor and the exhaust holes cannot be sealed well.
By the way, in bismuth glass, generally, when the glass is melted low, crystals are likely to precipitate, and therefore, crystals are liable to precipitate at the time of firing.
In the sealing step, degassing is performed as a pretreatment for the sealing. In this degassing, it is necessary to hold at a temperature of about 300 to 320 ° C. for about 90 minutes. However, when the treatment is performed under such conditions, crystal nuclei are generated in the glass of bismuth glass, which promotes crystal precipitation during the sealing treatment and causes deterioration in flowability. This tendency becomes more prominent as the degassing temperature is higher and the time is longer.
In addition, it is necessary to use a vacuum furnace in the vacuum sealing operation, but heat transfer in the vacuum furnace is only radiation, and generally there is a tendency for temperature variation in the furnace to increase. This variation in temperature appears as a variation in the degree of crystal precipitation in the sealing process using the glass processed there, and as a result, a variation in flow characteristics.
Of course, since the temperature and time during the sealing process also affect the degree of crystal precipitation and the flowability, temperature variations during the sealing process also have a significant effect on the sealing performance.
According to the present inventor who analyzed the above problems, in bismuth glass, in order to suppress a variation in sealing performance and ensure a good and stable sealing, the bismuth glass has a low melting point and bismuth glass. The conclusion was reached that suppression of crystal precipitation is necessary.

そこで本発明は上記従来における封着用ガラス組成物での問題を解消し、鉛を含有せず、また脱ガス処理時及び真空封着処理時等の焼成時において結晶析出が少なく、550℃以下の低温で良好に且つ歩留まりよく、確実に封着を行うことができる金属製真空二重容器の封着用無鉛ガラス組成物の提供を課題とする。   Therefore, the present invention solves the above-mentioned problems with the conventional glass composition for sealing, does not contain lead, has little crystal precipitation at the time of firing such as degassing treatment and vacuum sealing treatment, and is 550 ° C. or less. It is an object of the present invention to provide a lead-free glass composition for sealing a vacuum double container made of metal that can be reliably sealed at a low temperature with good yield.

本発明者は上記課題を解決すべく鋭意研究を重ねた結果、Bi系ガラス組成物として、且つ550℃以下の低温の封着処理温度において確実に封着がなされるものを見出し、本発明を完成した。
即ち、本発明の金属製真空二重容器の封着用無鉛ガラス組成物は、金属製真空二重容器の排気口を真空封着するのに用いられる無鉛ガラス組成物であって、酸化物換算で、Bi:75.0〜83.0重量%、B:5.0〜10.0重量%、ZnO:5.0〜10.0重量%、BaO:2.0〜5.0重量%、CuO:0.5〜2.0重量%(但し2.0重量%を含まず)、CoO:0.05〜2.0重量%を含有し、PbOとSiOとを有効成分として含有しない組成であることを第1の特徴としている。
ここで有効成分として含有しないとは、PbO及びSiOが金属製真空二重容器の封着用ガラス組成物を構成する実質的な成分としては含有しないことを意味し、PbOやSiOが含有されていても不純物として含有している場合には、これも「有効成分として含有しない」の範疇である。
また本発明の金属製真空二重容器の封着用無鉛ガラス組成物は、上記第1の特徴に加えて、酸化物換算で、更にAl:1.0重量%以下、Fe:2.0重量%以下、NiO:2.0重量%以下を含有する組成であることを第2の特徴としている。
As a result of intensive studies to solve the above-mentioned problems, the present inventor has found a Bi 2 O 3 glass composition that can be reliably sealed at a low sealing treatment temperature of 550 ° C. or lower, The present invention has been completed.
That is, the lead-free glass composition for sealing a metal vacuum double container of the present invention is a lead-free glass composition used for vacuum-sealing the exhaust port of a metal vacuum double container, , Bi 2 O 3: 75.0~83.0 wt%, B 2 O 3: 5.0~10.0 wt%, ZnO: 5.0 to 10.0 wt%, BaO: 2.0~5 0.0% by weight, CuO: 0.5 to 2.0% by weight (excluding 2.0% by weight), CoO: 0.05 to 2.0% by weight, PbO and SiO 2 are effective The first feature is that the composition is not contained as a component.
Here, the free as an active ingredient means that the PbO and SiO 2 does not contain as substantive components constituting the sealing glass composition of the metallic vacuum double container, PbO and SiO 2 is contained Even if it is contained as an impurity, it is also in the category of “not contained as an active ingredient”.
The sealing lead-free glass composition of the metallic vacuum double container of the present invention, in addition to the first feature, in terms of oxide, further Al 2 O 3: 1.0 wt% or less, Fe 2 O 3 The second feature is that the composition contains: 2.0% by weight or less and NiO: 2.0% by weight or less.

請求項1に記載の金属製真空二重容器の封着用無鉛ガラス組成物によれば、環境や人体に有害な鉛を含むことなく、またSiOを含むことなく、550℃以下の低温での溶融が可能で、且つ焼成時での結晶析出を十分に抑制することができる。よって金属製真空二重容器、特にステンレス鋼製の真空二重容器にも良好に適応して、排気孔の真空封着を低温で良好に、確実に、歩留まりよく行うことが可能となった。 According to the lead-free glass composition for sealing a vacuum double container made of metal according to claim 1, at a low temperature of 550 ° C. or lower without containing lead harmful to the environment and the human body and without containing SiO 2 . Melting is possible, and crystal precipitation during firing can be sufficiently suppressed. Therefore, the present invention can be applied well to metal vacuum double containers, particularly stainless steel vacuum double containers, and it is possible to perform vacuum sealing of the exhaust holes at a low temperature in a reliable and reliable manner.

また請求項2に記載の金属製真空二重容器の封着用無鉛ガラス組成物によれば、記載の成分を追加することで、上記請求項1に記載の構成による効果を一層良好に、確実に達成することができる。   Moreover, according to the lead-free glass composition for sealing a metal vacuum double container according to claim 2, the effects of the configuration according to claim 1 can be more reliably and reliably added by adding the components described above. Can be achieved.

本発明の金属製真空二重容器の封着用無鉛ガラス組成物は、例えばステンレス製の真空二重容器を低温で真空封着するのに適して実施することができる。
また本発明の金属製真空二重容器の封着用無鉛ガラス組成物は、原料として酸化ビスマス、ホウ酸、酸化亜鉛、炭酸バリウム、酸化銅、酸化コバルト、水酸化アルミニウム、酸化鉄(Fe)、酸化ニッケル(NiO)等を用い、これを目標組成になるように各原料を調合し、1000℃〜1100℃で加熱溶融し、1〜2時間保持した後、棒状、円柱状、球状、半球状、おはじき状等の成形体として成形することができる。
The lead-free glass composition for sealing a metal vacuum double container of the present invention can be suitably used for vacuum-sealing, for example, a stainless steel vacuum double container at a low temperature.
In addition, the lead-free glass composition for sealing a metal vacuum double container of the present invention includes bismuth oxide, boric acid, zinc oxide, barium carbonate, copper oxide, cobalt oxide, aluminum hydroxide, iron oxide (Fe 2 O 3) as raw materials. ), Using nickel oxide (NiO), etc., each raw material is prepared so as to have a target composition, heated and melted at 1000 ° C. to 1100 ° C., held for 1 to 2 hours, and then rod-shaped, cylindrical, spherical, It can be molded as a hemispherical or hajiki shaped molded body.

本発明に係る封着用ガラス組成物の各成分組成の範囲について説明する。
Biは網目形成酸化物であり、且つ低融化に必須の成分である。
その含有範囲としては、75.0〜83.0重量%とする。75.0重量%未満ではガラスの軟化点が高くなり、フロー性が悪化する。一方、83.0重量%を超えるとガラスが不安定となり、ガラス焼成時に結晶が析出し易くなり、フロー性が悪化し、封着不良が発生する。
Biの含有範囲は、好ましくは77.0〜82.0重量%とする。より好ましくは78.0〜81.0重量%とする。
The range of each component composition of the glass composition for sealing which concerns on this invention is demonstrated.
Bi 2 O 3 is a network-forming oxide and an essential component for low melting.
The content range is 75.0 to 83.0% by weight. If it is less than 75.0% by weight, the softening point of the glass becomes high and the flowability deteriorates. On the other hand, if it exceeds 83.0% by weight, the glass becomes unstable, and crystals are likely to precipitate during the baking of the glass, the flowability is deteriorated, and sealing failure occurs.
The content range of Bi 2 O 3 is preferably 77.0 to 82.0% by weight. More preferably, the content is 78.0 to 81.0% by weight.

はガラスを安定させるのに必須の網目形成酸化物である。
その含有範囲としては、5.0〜10.0重量%とする。5.0重量%未満ではガラスが不安定になり、ガラス焼成時に結晶が析出し易くなり、フロー性が悪化する。また10.0重量%を超えるとガラスの軟化点が高くなり、焼成時のフロー性が悪化する。
の含有範囲は、好ましくは5.5〜9.0重量%とする。より好ましくは6.0〜8.0重量%とする。
B 2 O 3 is a network-forming oxide essential for stabilizing the glass.
The content range is 5.0 to 10.0% by weight. If it is less than 5.0% by weight, the glass becomes unstable, crystals tend to precipitate during glass firing, and the flowability deteriorates. On the other hand, if it exceeds 10.0% by weight, the softening point of the glass becomes high and the flowability during firing deteriorates.
The content range of B 2 O 3 is preferably 5.5 to 9.0% by weight. More preferably, the content is 6.0 to 8.0% by weight.

ZnOはガラスを低融化し、またガラスを安定化させる効果を奏するものとして、必須の成分である。
その含有範囲としては、5.0〜10.0重量%とする。5.0重量%未満ではガラスの軟化点が上昇する。また結晶析出が激しくなり、フロー性が著しく悪化する。一方、10.0重量%を超えると逆にガラスが不安定となり、結晶が析出し易くなる。
ZnOの含有範囲は、好ましくは6.0〜9.0重量%とする。より好ましくは6.5〜8.0重量%とする。
ZnO is an essential component as an effect of lowering the glass melting and stabilizing the glass.
The content range is 5.0 to 10.0% by weight. If it is less than 5.0% by weight, the softening point of the glass increases. Moreover, crystal precipitation becomes intense and the flowability is remarkably deteriorated. On the other hand, if it exceeds 10.0% by weight, the glass becomes unstable and crystals tend to precipitate.
The content range of ZnO is preferably 6.0 to 9.0% by weight. More preferably, the content is 6.5 to 8.0% by weight.

BaOは必須成分であり、ガラスを低融化すると共に安定化させ、焼成時の結晶析出を抑制させる効果がある。
その含有範囲としては、2.0〜5.0重量%とする。2.0重量%未満では軟化点が高くなる。またガラス焼成時に結晶が析出し易くなる。一方、5.0重量%を超えるとガラスが不安定となり、ガラス焼成時に結晶が析出し易くなり、フロー性が悪化する。
BaOの含有範囲は、好ましくは2.5〜4.5重量%とする。より好ましくは3.0〜4.0重量%とする。
BaO is an essential component, and has the effect of stabilizing and reducing the melting of the glass and suppressing crystal precipitation during firing.
The content range is 2.0 to 5.0% by weight. If it is less than 2.0% by weight, the softening point becomes high. In addition, crystals are likely to precipitate during glass firing. On the other hand, if it exceeds 5.0% by weight, the glass becomes unstable, and crystals are likely to precipitate during the baking of the glass, resulting in poor flow properties.
The content range of BaO is preferably 2.5 to 4.5% by weight. More preferably, the content is 3.0 to 4.0% by weight.

CuOは必須成分であり、ガラスを低融化すると共に安定化させ、ガラス焼成時の結晶析出を抑制し、フロー性を良好にする。またステンレス鋼との密着性を向上させる効果がある。
その含有範囲としては、0.5〜2.0重量%(但し2.0重量%を含まず)とする。0.5重量%未満ではCuO添加の上記効果が不十分となり、ガラス焼成時に結晶が析出し易くなる。一方、CuOの添加が2.O重量%以上になっても、結晶が析出し易くなり、フロー性が悪化する。
CuOの含有範囲は、好ましくは1.0〜1.9重量%とする。より好ましくは1.5〜1.8重量%とする。
CuO is an essential component, which lowers and stabilizes the glass, suppresses crystal precipitation during glass firing, and improves flowability. Moreover, there exists an effect which improves adhesiveness with stainless steel.
The content range is 0.5 to 2.0% by weight (excluding 2.0% by weight). If the amount is less than 0.5% by weight, the above effect of CuO addition is insufficient, and crystals are likely to precipitate during glass firing. On the other hand, the addition of CuO is 2. Even if it becomes O weight% or more, a crystal | crystallization will precipitate easily and flow property will deteriorate.
The content range of CuO is preferably 1.0 to 1.9% by weight. More preferably, the content is 1.5 to 1.8% by weight.

CoOは必須成分である。ガラスを安定化させ、ステンレス鋼との濡れ性を良好にし、焼成時の結晶析出を抑制する効果を奏する。
その含有範囲としては、0.05〜2.0重量%とする。0.05重量%未満ではCoO添加による上記効果が不十分となり、ガラス焼成時に結晶が析出し易くなる。一方、CoO添加が2.O重量%を超えると、軟化点が上昇し、ガラス焼成時のフロー性が悪化する。
CoOの含有範囲は、好ましくは0.1〜1.5重量%とする。より好ましくは0.2〜1.0重量%とする。
CoO is an essential component. It stabilizes glass, improves wettability with stainless steel, and has the effect of suppressing crystal precipitation during firing.
The content range is 0.05 to 2.0% by weight. If it is less than 0.05% by weight, the above-mentioned effect due to the addition of CoO becomes insufficient, and crystals are likely to precipitate during glass firing. On the other hand, the addition of CoO is 2. When it exceeds O weight%, a softening point will rise and the flow property at the time of glass baking will deteriorate.
The content range of CoO is preferably 0.1 to 1.5% by weight. More preferably, the content is 0.2 to 1.0% by weight.

Alは任意成分であるが、添加することでガラスを安定化させ、ガラス焼成時の結晶析出の抑制に効果がある。
Alの含有量は1.0重量%以下とする。1.0重量%を超えると軟化点が上昇し、ガラス焼成時にフロー性が悪化する。またガラス溶融時に未溶解物が残り、焼成時に結晶化し易くなることがある。
Alの含有量は、好ましくは0.05〜0.5重量%とする。より好ましくは0.1〜0.3重量%とする。
Al 2 O 3 is an optional component, but adding it stabilizes the glass and is effective in suppressing crystal precipitation during glass firing.
The content of Al 2 O 3 is 1.0% by weight or less. If it exceeds 1.0% by weight, the softening point increases, and the flowability deteriorates during glass firing. In addition, undissolved material may remain when the glass is melted, and may be easily crystallized during firing.
The content of Al 2 O 3 is preferably 0.05 to 0.5% by weight. More preferably, the content is 0.1 to 0.3% by weight.

Feは任意成分であるが、添加することでガラスを安定化させ、ガラス焼成時の結晶析出の抑制に効果がある。更にはステンレス鋼との密着性を向上させる効果がある。
Feの含有量は2.0重量%以下とする。2.0重量%を超えると軟化点が上昇し、ガラス焼成時にフロー性が悪化する。
Feの含有量は、好ましくは1.0重量%以下とする。より好ましくは0.05〜0.3重量%とする。
Fe 2 O 3 is an optional component, but adding it stabilizes the glass and is effective in suppressing crystal precipitation during glass firing. Furthermore, there is an effect of improving the adhesion with stainless steel.
The content of Fe 2 O 3 is 2.0% by weight or less. If it exceeds 2.0% by weight, the softening point rises and the flowability deteriorates during glass firing.
The content of Fe 2 O 3 is preferably 1.0% by weight or less. More preferably, the content is 0.05 to 0.3% by weight.

NiOは任意成分であるが、添加することでガラスを安定化させ、ステンレス鋼との密着性を向上させる効果がある。
NiOの含有量は2.0重量%以下とする。2.0重量%を超えると軟化点が上昇し、ガラス焼成時にフロー性が悪化する。
NiOの含有量は、好ましくは1.0重量%以下とする。より好ましくは0.1〜0.5重量%とする。
NiO is an optional component, but adding it has the effect of stabilizing the glass and improving the adhesion to stainless steel.
The content of NiO is 2.0% by weight or less. If it exceeds 2.0% by weight, the softening point rises and the flowability deteriorates during glass firing.
The content of NiO is preferably 1.0% by weight or less. More preferably, the content is 0.1 to 0.5% by weight.

なおSiOはガラスの網目形成成分であり、溶融時のガラスの安定化に寄与する。しかし焼成時に結晶の析出を促進させ、ガラスのフロー性を悪化させるので、本発明のガラス組成物には含有させないようにした。 Note that SiO 2 is a glass network forming component and contributes to stabilization of the glass during melting. However, since the precipitation of crystals is promoted at the time of firing and the flowability of the glass is deteriorated, it is not included in the glass composition of the present invention.

その他、Vはガラスの粘性を下げ、表面張力を下げる効果があるが、ガラス焼成時には結晶の析出を促進し、フロー性が悪化するので、含まれないのが好ましい。
またLiO、NaO、KOなどのアルカリ金属酸化物は、網目修飾成分であり、これらが含まれるとガラスは低融化されるが、不安定となり、焼成時に結晶が析出し易くなる。また耐久性も劣化する。特に魔法瓶等のステンレス製真空二重容器が自動食器洗浄器等で洗浄されうることを考慮すると、ガラスには耐温水性が必要となるので、LiO、NaO、KOなどのアルカリ金属酸化物は、含まれないのが好ましい。
In addition, V 2 O 5 has the effect of lowering the viscosity of the glass and lowering the surface tension. However, it is preferable that V 2 O 5 is not included because it promotes the precipitation of crystals during the firing of the glass and deteriorates the flowability.
Alkali metal oxides such as Li 2 O, Na 2 O, and K 2 O are network modifiers, and if they are included, the glass is melted low, but becomes unstable and crystals are likely to precipitate during firing. Become. Also, durability is deteriorated. Considering that stainless steel vacuum double containers such as thermos can be cleaned with an automatic dishwasher or the like, the glass needs to have hot water resistance, so that Li 2 O, Na 2 O, K 2 O, etc. Alkali metal oxides are preferably not included.

上記した本発明の第1、第2の特徴を有するガラス組成物では、360℃以下のガラス転移点Tgを有し、また室温から250℃の範囲において100〜110×10−7/Kの平均熱膨張係数αを有する。
このような本発明の第1、第2の特徴を有するガラス組成物は、ステンレス鋼の鋭敏化現象を生じさせない温度での焼成において、封着に適した十分なフロー性を有し、また結晶析出を十分に抑制することができる。よってステンレス製真空二重容器の封着用ガラス組成物として好適である。
The glass composition having the first and second features of the present invention described above has a glass transition point Tg of 360 ° C. or lower, and an average of 100 to 110 × 10 −7 / K in the range of room temperature to 250 ° C. It has a thermal expansion coefficient α.
Such a glass composition having the first and second features of the present invention has a sufficient flow property suitable for sealing when fired at a temperature at which the sensitization phenomenon of stainless steel does not occur, and has a crystal structure. Precipitation can be sufficiently suppressed. Therefore, it is suitable as a glass composition for sealing a stainless steel vacuum double container.

本発明の金属製真空二重容器の封着用無鉛ガラス組成物の製造は、既述したように、原料として酸化ビスマス、ホウ酸、酸化亜鉛、炭酸バリウム、酸化銅、酸化コバルト、水酸化アルミニウム、酸化鉄(Fe)、酸化ニッケル(NiO)等を用い、これを目標組成になるように各原料を調合し、この調合原料を1000〜1100℃で加熱溶融して行う。
ここで本発明のガラス組成物作製においては、調合原料を一旦、加熱溶融した後に冷却してこれをガラスフレークにし、更にこのガラスフレークを1050〜1100℃で再溶融する工程を経て、棒状、円柱状、球状、半球状、おはじき状等の成形体として成形する工程を採用することが好ましい。このように、調合原料を一旦、溶融、冷却によりガラスフレーク化した後、再溶融工程を経て最終成形体を製造するようにした理由は次の通りである。
As described above, the production of the lead-free glass composition for sealing a metal vacuum double container of the present invention, as described above, bismuth oxide, boric acid, zinc oxide, barium carbonate, copper oxide, cobalt oxide, aluminum hydroxide, Using iron oxide (Fe 2 O 3 ), nickel oxide (NiO), etc., each raw material is prepared so as to have a target composition, and this prepared raw material is heated and melted at 1000 to 1100 ° C.
Here, in the preparation of the glass composition of the present invention, the raw material for preparation is once heated and melted, and then cooled to form glass flakes. Further, the glass flakes are remelted at 1050 to 1100 ° C. It is preferable to employ a step of forming as a columnar, spherical, hemispherical, hajiki-shaped or the like. The reason why the final molded body is manufactured through the remelting step after the raw material is once melted and made into glass flakes by cooling is as follows.

即ち、調合原料を直接、溶融してなる第1段階の融液には、融液中に未溶解物、結晶が含まれると共に、組成のムラ(融液中の場所による組成のムラ)があり、攪拌を導入しても前記未溶解物、結晶の存在、組成のムラの解消は容易ではない。そしてこのような未溶解物、結晶、組成ムラのある融液から得られるガラスは、焼成時に前記未溶解物や結晶を核にして結晶化が促進され易く、また各ガラス成形体の間での組成がばらつく。
これに対して第1段階の融液から一旦ガラスフレークを冷却成形し、これを再溶融する工程を入れることで、前記の問題を解消することができる。再溶融によって未融解物、結晶、組成ムラが低減された第2段階のガラス融液からは、焼成時に結晶析出が抑制され、またガラス間での含有組成のバラツキの少ないガラスを得ることができる。これによって、真空二重容器の排気孔の封着を低温にて容易に、確実に且つ歩留まりよく行うことができる。
再溶融温度は1050〜1100℃とする。1050℃未満の場合は、未溶解物、結晶が溶けず、また1100℃以上の場合は、Bi等の揮発し易い成分が揮発して組成ズレを起こす。
That is, the first-stage melt obtained by directly melting the blended raw material contains undissolved substances and crystals in the melt and has compositional irregularities (compositional irregularities depending on the location in the melt). However, even if stirring is introduced, it is not easy to eliminate the undissolved material, the presence of crystals, and uneven composition. And the glass obtained from such undissolved material, crystals, and melts with uneven composition is easily promoted for crystallization with the undissolved material and crystals as nuclei at the time of firing. The composition varies.
On the other hand, the above-mentioned problem can be solved by adding a process of once cooling the glass flakes from the melt of the first stage and remelting them. From the second-stage glass melt in which the unmelted material, crystals, and composition unevenness are reduced by remelting, it is possible to obtain a glass in which crystal precipitation is suppressed during firing and the content of the composition is not varied between the glasses. . As a result, the exhaust holes of the vacuum double container can be easily and reliably sealed at a low temperature with a high yield.
The remelting temperature is 1050 to 1100 ° C. When the temperature is lower than 1050 ° C., undissolved substances and crystals do not dissolve. When the temperature is higher than 1100 ° C., easily volatile components such as Bi 2 O 3 are volatilized and composition shift occurs.

以下に実施例をあげて、本発明を更に説明する。なお本発明は、これらの実施例により何ら限定されるものではない。
表1、表2に示す成分組成となるように実施例1〜5、比較例1〜4について、原料を調合して混合し、これを1000〜1100℃で溶融し、次いで急冷ロールを用いてガラスフレークを得た。このガラスフレークを1050〜1100℃の温度で再溶融し、その後、適当な粘度となるまで融液温度を下げて、液滴成形を実施し、直径約4mm、厚み約約2mm、質量約200mgの半球状ガラスを得た。
同様に表1、表2に示す成分組成となるように、実施例6〜10、比較例5〜7について原料を調合して混合し、1000〜1100℃の温度にて溶融し、適当な粘度となるまで融液温度を下げて、上記と同様に半球状のガラスを得た。
The following examples further illustrate the invention. In addition, this invention is not limited at all by these Examples.
About Examples 1-5 and Comparative Examples 1-4 so that it may become a component composition shown in Table 1, Table 2, a raw material was prepared and mixed, this was melted at 1000-1100 degreeC, and then it used the quenching roll. Glass flakes were obtained. This glass flake is remelted at a temperature of 1050 to 1100 ° C., then the melt temperature is lowered until the viscosity becomes an appropriate viscosity, and droplet forming is performed. The diameter is about 4 mm, the thickness is about 2 mm, and the mass is about 200 mg. A hemispherical glass was obtained.
Similarly, the raw materials were prepared and mixed for Examples 6 to 10 and Comparative Examples 5 to 7 so as to have the component compositions shown in Tables 1 and 2, and melted at a temperature of 1000 to 1100 ° C. The melt temperature was lowered until a hemispherical glass was obtained in the same manner as described above.

Figure 2008024558
Figure 2008024558

Figure 2008024558
Figure 2008024558

上記実施例1〜10、比較例1〜7の半球状のガラス試料を、SUS304ステンレス鋼板上に配置し、脱ガス処理条件として、320℃で90分間保持した。次いで封着処理条件として520℃で20分間保持して、焼成した。
焼成後のガラス表面を観察し、フロー性、結晶化の程度、耐久性、総合判定を行った。
フロー性については、焼成後のガラス直径をd、厚みをhとして、d/hが14以上の場合は◎(優)、10以上14未満の場合は○(良)、6以上10未満の場合は△(可)、6未満の場合は×(不可)とした。
結晶化については、焼成後のガラス表面の2mm×2mmの範囲内において、肉眼で確認できる析出結晶の数が10個未満の場合は◎、10以上であるが光沢を残している場合は○、光沢は確認されないが結晶析出が表面のみの場合は△、結晶発生が内部まで観察される場合は×とした。なお結晶析出が表面のみの場合は、真空封着には問題がない。
耐久性については、水道水を用いた煮沸試験を1時間実施し、煮沸前後の重量減少率が0.8%未満の場合は○、0.8%以上の場合は×とした。
The hemispherical glass samples of Examples 1 to 10 and Comparative Examples 1 to 7 were placed on a SUS304 stainless steel plate and held at 320 ° C. for 90 minutes as degassing treatment conditions. Subsequently, it was baked by holding at 520 ° C. for 20 minutes as a sealing treatment condition.
The glass surface after firing was observed, and flowability, degree of crystallization, durability, and comprehensive judgment were performed.
Regarding the flow property, if the glass diameter after firing is d and the thickness is h, when d / h is 14 or more, ◎ (excellent), when 10 or more and less than 14, ○ (good), when 6 or more and less than 10 Is △ (possible), and less than 6 is x (impossible).
For crystallization, in the range of 2 mm × 2 mm on the glass surface after firing, ◎ if the number of precipitated crystals that can be visually confirmed is less than 10, ◎ if it is 10 or more but remains glossy, Gloss was not confirmed, but Δ was given when the crystal precipitation was only on the surface, and x was given when crystal formation was observed up to the inside. If the crystal precipitation is only on the surface, there is no problem with vacuum sealing.
About durability, the boiling test using a tap water was implemented for 1 hour, and when the weight decreasing rate before and behind boiling was less than 0.8%, it was set as (circle), and when 0.8% or more, it was set as x.

総合判定については次のようにした。
フロー性、結晶化とも◎で、且つ耐久性が○の場合は、総合判定を◎とする。
フロー性、結晶化の一方が◎で他方が○であり、且つ耐久性が○の場合は、総合判定を○とする。
フロー性、結晶化の何れかに△があり、耐久性が○の場合は、総合判定は△とする。
フロー性、結晶化、耐久性の何れかに×がある場合は、総合判定は×とした。
総合判定で◎、○及び△のものは真空封着に支障なく使用できるが、×のものは真空封着に支障をきたす。
The overall judgment was as follows.
If both flowability and crystallization are ◎ and the durability is ○, the overall judgment is ◎.
When one of flowability and crystallization is ◎, the other is ○, and the durability is ○, the overall judgment is ○.
If there is Δ in either flowability or crystallization and the durability is ○, the overall judgment is Δ.
When any of the flowability, crystallization, and durability had x, the comprehensive judgment was x.
In the comprehensive judgment, ◎, ○, and △ can be used without any trouble in vacuum sealing, but those with × have trouble in vacuum sealing.

またガラスの転移点Tgの測定については、ガラスを粉末にしたものを、DTA装置を用いて測定した。熱膨張係数αの測定は、ガラスのバルク体を約5mm×5mm×15mmに切り出したものを、TMA装置を用いて測定した。
結果を表1、表2に示す。
Moreover, about the measurement of the transition point Tg of glass, what powdered glass was measured using the DTA apparatus. The thermal expansion coefficient α was measured using a TMA apparatus obtained by cutting a glass bulk body into about 5 mm × 5 mm × 15 mm.
The results are shown in Tables 1 and 2.

表から明らかなように、実施例1〜4では総合判定が◎であった。また実施例5〜8では総合判定が○であった。また実施例9、10は総合判定が△であった。一方、比較例1〜7は何れも総合判定が×であった。   As is clear from the table, the comprehensive judgment was “◎” in Examples 1-4. Moreover, in Examples 5-8, the comprehensive judgment was (circle). In Examples 9 and 10, the overall judgment was Δ. On the other hand, in Comparative Examples 1 to 7, the overall judgment was x.

以上で説明したように、本発明の金属製真空二重容器の封着用無鉛ガラス組成物は、スンレス鋼を用いた金属製真空二重容器の真空封着に良好に用いることができ、二重容器の真空を保持し、保温性を良好に保つのに役立つ。   As explained above, the lead-free glass composition for sealing a metal vacuum double container of the present invention can be used favorably for vacuum sealing of a metal vacuum double container using a stainless steel, It helps to keep the container vacuum and maintain good thermal insulation.

Claims (2)

金属製真空二重容器の排気口を真空封着するのに用いられる無鉛ガラス組成物であって、酸化物換算で、
Bi : 75.0〜83.0重量%
: 5.0〜10.0重量%
ZnO : 5.0〜10.0重量%
BaO : 2.0〜5.0重量%
CuO : 0.5〜2.0重量%(但し2.0重量%を含まず)
CoO : 0.05〜2.0重量%
を含有し、PbOとSiOとを有効成分として含有しない組成であることを特徴とする金属製真空二重容器の封着用無鉛ガラス組成物。
It is a lead-free glass composition used for vacuum-sealing the exhaust port of a metal vacuum double container, and in terms of oxide,
Bi 2 O 3 : 75.0-83.0% by weight
B 2 O 3 : 5.0 to 10.0% by weight
ZnO: 5.0 to 10.0% by weight
BaO: 2.0 to 5.0% by weight
CuO: 0.5 to 2.0% by weight (excluding 2.0% by weight)
CoO: 0.05 to 2.0% by weight
And a lead-free glass composition for sealing a vacuum double container made of metal, characterized in that it contains PbO and SiO 2 as active ingredients.
酸化物換算で、更に
Al : 1.0重量%以下
Fe : 2.0重量%以下
NiO : 2.0重量%以下
を含有する組成であることを特徴とする請求項1に記載の金属製真空二重容器の封着用無鉛ガラス組成物。
The composition further contains Al 2 O 3 : 1.0 wt% or less, Fe 2 O 3 : 2.0 wt% or less, and NiO: 2.0 wt% or less in terms of oxide. A lead-free glass composition for sealing a metal vacuum double container according to 1.
JP2006200408A 2006-07-24 2006-07-24 Lead-free glass composition for sealing metal-made vacuum double container Withdrawn JP2008024558A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006200408A JP2008024558A (en) 2006-07-24 2006-07-24 Lead-free glass composition for sealing metal-made vacuum double container
PCT/JP2007/063214 WO2008013028A1 (en) 2006-07-24 2007-07-02 Lead-free glass composition for sealing metallic vacuum double container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006200408A JP2008024558A (en) 2006-07-24 2006-07-24 Lead-free glass composition for sealing metal-made vacuum double container

Publications (1)

Publication Number Publication Date
JP2008024558A true JP2008024558A (en) 2008-02-07

Family

ID=38981344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006200408A Withdrawn JP2008024558A (en) 2006-07-24 2006-07-24 Lead-free glass composition for sealing metal-made vacuum double container

Country Status (2)

Country Link
JP (1) JP2008024558A (en)
WO (1) WO2008013028A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010016318A1 (en) * 2008-08-06 2010-02-11 日本電気硝子株式会社 Sealing glass
CN102089251A (en) * 2008-07-16 2011-06-08 费罗公司 Hot-melt sealing glass compositions and methods of making and using the same
JP2015048287A (en) * 2013-09-03 2015-03-16 タイガー魔法瓶株式会社 Lead-free glass for sealing of vacuum double vessel made of stainless steel
CN104445919A (en) * 2014-11-27 2015-03-25 华南理工大学 Low-melting-point low-expansion-coefficient optical glass applied to surface modification and preparation method of optical glass
JP2019001692A (en) * 2017-06-19 2019-01-10 日本山村硝子株式会社 Lead-free glass composition for sealing stainless steel-made vacuum double container
JP2019038722A (en) * 2017-08-28 2019-03-14 日本電気硝子株式会社 Sealing material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102066275A (en) * 2008-09-04 2011-05-18 日本电气硝子株式会社 Glass composition for electrode formation and electrode formation material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61111935A (en) * 1984-11-02 1986-05-30 Hitachi Ltd Glass composition
JPH09235136A (en) * 1995-12-25 1997-09-09 Asahi Glass Co Ltd Low-melting point class composition and glass ceramics composition for sealing
JP4016507B2 (en) * 1998-10-21 2007-12-05 日本電気硝子株式会社 Bismuth glass composition
JP2002348152A (en) * 2001-05-29 2002-12-04 Tiger Vacuum Bottle Co Ltd Metallic vacuum double container and method for making the same, sealing composition
JP4266109B2 (en) * 2002-10-07 2009-05-20 日本板硝子株式会社 Glass frit for sealing
JP2005052208A (en) * 2003-08-05 2005-03-03 Nippon Electric Glass Co Ltd Glass lined for sealing metal vacuum double container
JP4537092B2 (en) * 2004-03-01 2010-09-01 パナソニック株式会社 Glass composition and magnetic head

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102089251A (en) * 2008-07-16 2011-06-08 费罗公司 Hot-melt sealing glass compositions and methods of making and using the same
WO2010016318A1 (en) * 2008-08-06 2010-02-11 日本電気硝子株式会社 Sealing glass
JP2010057893A (en) * 2008-08-06 2010-03-18 Nippon Electric Glass Co Ltd Sealing glass
JP2015048287A (en) * 2013-09-03 2015-03-16 タイガー魔法瓶株式会社 Lead-free glass for sealing of vacuum double vessel made of stainless steel
CN104445919A (en) * 2014-11-27 2015-03-25 华南理工大学 Low-melting-point low-expansion-coefficient optical glass applied to surface modification and preparation method of optical glass
JP2019001692A (en) * 2017-06-19 2019-01-10 日本山村硝子株式会社 Lead-free glass composition for sealing stainless steel-made vacuum double container
JP2019038722A (en) * 2017-08-28 2019-03-14 日本電気硝子株式会社 Sealing material
JP7116353B2 (en) 2017-08-28 2022-08-10 日本電気硝子株式会社 sealing material

Also Published As

Publication number Publication date
WO2008013028A1 (en) 2008-01-31

Similar Documents

Publication Publication Date Title
JP2008024558A (en) Lead-free glass composition for sealing metal-made vacuum double container
JP5384203B2 (en) Sealing glass
JP5671041B2 (en) Aluminosilicate glass with high heat resistance and low working temperature
WO2008050772A1 (en) Bismuth-base glass composition and bismuth-base material
JP2009221048A (en) Vanadium-based glass composition and vanadium-based material
JP2007332018A (en) Bismuth-based sealing material and bismuth-based paste material
JP5170817B2 (en) Glass melting method
JP2008254974A (en) Bismuth-based low melting point glass composition
JP5150058B2 (en) Lead-free glass composition for sealing stainless steel vacuum double containers
JP6148943B2 (en) Lead-free glass for sealing stainless steel vacuum double containers
CN116177871A (en) Alkali-free glass
JP3741526B2 (en) Substrate glass for display devices
WO2001090012A1 (en) Glass composition and glass forming material comprising said composition
KR960015144B1 (en) Lead silicated glasses
JP3770670B2 (en) Substrate glass for display devices
JP5382609B2 (en) Glass substrate
JP6876537B2 (en) Stainless steel vacuum double container sealed lead-free glass composition
JP2019031403A (en) Sealing material
CN105324342B (en) Alkali-free glass
JP2005330181A (en) Method for producing substrate glass for display device
WO2010134414A1 (en) Exhaust pipe for display
CN105414795A (en) Low-temperature-resistant antioxidative lead-free solder and preparation method thereof
JP5252364B2 (en) Glass melting equipment and glass melting method
JP7132735B2 (en) Metal Vacuum Double Container Sealing Glass Composition and Metal Vacuum Double Container
JP2009280429A (en) Optical glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090428

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20111207