JP3770670B2 - Substrate glass for display devices - Google Patents

Substrate glass for display devices Download PDF

Info

Publication number
JP3770670B2
JP3770670B2 JP30171396A JP30171396A JP3770670B2 JP 3770670 B2 JP3770670 B2 JP 3770670B2 JP 30171396 A JP30171396 A JP 30171396A JP 30171396 A JP30171396 A JP 30171396A JP 3770670 B2 JP3770670 B2 JP 3770670B2
Authority
JP
Japan
Prior art keywords
glass
thermal expansion
substrate
range
strain point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30171396A
Other languages
Japanese (ja)
Other versions
JPH09202641A (en
Inventor
汎史 町下
正 村本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP30171396A priority Critical patent/JP3770670B2/en
Publication of JPH09202641A publication Critical patent/JPH09202641A/en
Application granted granted Critical
Publication of JP3770670B2 publication Critical patent/JP3770670B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass

Description

【0001】
【発明の属する技術分野】
本発明は、各種表示装置用基板ガラス、特にプラズマディスプレイ (PDP) 用基板ガラスとして好適なガラスであって、電気溶融法を含めた溶融、およびフロート法による成形 (製板) が容易な表示装置用基板ガラス、およびその製法に関する。
【0002】
【従来の技術】
従来、表示装置用基板ガラスとしては、ソーダ石灰シリカ系ガラスが用いられるケースが多い。一例としてPDP用ガラス基板においては、ガラス基板にニッケルやアルミニウム等の電極や絶縁塗膜等をスクリーン印刷などにより施し、600 ℃に近い温度での焼成を繰返してパネルを製作する。基板ガラスは電極や塗膜との熱膨張率が異なるとそれらの亀裂や剥離を生じ易いので、熱膨張率を整合させる必要があり、前記ソーダ石灰シリカ系ガラスにおいては熱膨張率がほぼ90×10-7/℃と、電極や塗膜との熱膨張率に近い点において有用であるが、歪点が510 ℃近辺の温度であるため繰返し焼成に際して熱変形を生じ易く、製作歩留りを著しく悪化させるという問題がある。
【0003】
特開平3−40933 号にはSiO2成分、Al2O3 成分、CaO 成分をはじめとするアルカリ土類金属酸化物、Na2O成分をはじめとするアルカリ金属酸化物等よりなる基板用ガラス組成物であって、600 ℃付近の熱処理においても殆ど変形せず、また熱膨張率もソーダ石灰シリカ系ガラスと殆ど変わらないガラスが開示されている。
【0004】
【発明が解決しようとする課題】
前記開示例においては、SiO2が過多であり、またアルカリ成分(Li2O 、Na2O、およびK2O ) が過少であるのでガラスの高温粘度が高く、溶融およびフロート法成形が容易とはいえない。さらに開示例においては媒溶・清澄剤としてSO3 、Sb2O3 、またはAs2O3 を採用したことを例示しているが、例えば直接通電溶融する場合においてはそれらが電極と反応して電極を変質劣化させたり、ガラスに着色を与えたりするという問題がある。
【0005】
本発明はそれら解決すべき課題に鑑みて種々検討の末、完成に達したものであり、直接通電溶融を含めた溶融、フロート法成形に適し、適度な熱特性、電気特性を有し、特にPDP用として好適な表示装置用基板ガラスを提供するものである。
【0006】
【課題を解決するための手段】
本発明は、重量%表示で、SiO2 52 〜54、Al2O3 7 〜11、ZrO2 1〜5 、MgO 1 〜5 、CaO 5 〜 9、SrO O 〜5 、BaO 8 〜14、MgO +CaO +SrO+BaO 20〜25、TiO2 0〜1 、Li2O 0〜5 、Na2O 2〜6 、K2O 7 〜11、およびLi2O+Na2O+K2O が13〜15の範囲で含有する表示装置用基板ガラス、さらに、ガラスの歪点が 590℃以上、室温から 300℃における熱膨張率が84〜88 (×10-7/℃) 、 250℃における体積抵抗率が109 Ω・cm 以上、K 2 O Na 2 O 重量比が 2.0 以上である上記表示装置用基板ガラスである。
【0007】
【発明の実施の形態】
本発明の成分系において、SiO2はガラスの主成分であり、重量%において52%未満ではガラスの歪点が低下し、化学的耐久性を悪化させる。他方54%を越えるとガラス融液の高温粘度が高くなり、フロート法成形が困難になる。従って52〜54%、好ましくは53〜54%の範囲とする。
【0008】
Al2O3 は 7%未満であるとガラスの歪点が低下し、他方11%を超えるとガラス融液の高温粘度が高くなり、失透傾向が増大し、フロート法成形が困難になる。従って 7〜11%、好適には 8〜11%の範囲がよい。
【0009】
ZrO2はガラスの歪点を上昇させ、失透の発生を抑える作用を有するので1 %以上含有させることが好ましく、5%を超えると逆に失透傾向が増大し、ガラスの溶融およびフロート法成形を困難とするので、1 5 %の範囲で含有させるのが望ましい。
【0010】
MgO は他の二価成分酸化物に比べ歪点を上昇させる作用を有するが 1%未満ではその作用が不充分であり、他方 5%を超えると失透傾向が大きくなる。従って1〜5 %、好ましくは 2〜4 %の範囲とする。
【0011】
CaO はBaO との共存下でガラス融液の高温粘度を下げる作用を有するが、 5%未満ではその作用が不充分であり、他方 9%を超えると失透傾向が大きくなる。従って 5〜 9%、好ましくは 6〜8 %の範囲とする。
【0012】
BaO は前記のごとくCaO との共存下でガラス融液の高温粘度を下げ失透の発生を抑制する作用を有するが、 8%未満では失透を抑制する作用が不充分であり、他方14%を超えるとガラスの歪点が低下し過ぎる。従って 8〜14%、好ましくは9〜13%の範囲とする。
【0013】
SrO は必須成分ではないが、CaO およびBaO との共存下でガラス融液の高温粘度を下げる作用を有する。なおSrOの含有量は 5%以下の範囲とするもので、 5%を超えると歪点が低下し過ぎ、また熱膨張率を過大とする。
【0014】
さらに、上記組成範囲内において、アルカリ土類金属酸化物 (CaO 、MgO、BaO 、SrO ) の合計を20〜25%の範囲とすることによって、ガラスの溶融性を良好な範囲に維持しつつ、粘度−温度勾配を適度として成形性を良好とし、耐熱性、化学的耐久性等に優れ、適切な範囲の熱膨張率を有するガラスを得ることができる。アルカリ土類金属酸化物の合計が25%を越えると特に熱膨張率が上昇するとともに失透傾向が増大し、化学的耐久性が低下する。20%未満では、高温粘度が上昇して溶融および成形を困難とし、熱膨張率が低下する。
【0015】
TiO2は必須成分ではないが、ガラスの化学的耐久性を向上し、またガラス溶融に際して失透傾向を低減するうえで1%以下導入するものである。ただし1%を越えて導入するとガラスに着色を与えるので好ましくない。
【0016】
Na2OはK2O とともにガラス溶融剤として作用し、またガラスの熱膨張率を適度な大きさに維持するうえで不可欠である。Na2Oが 2%未満であると熱膨張率が低くなり過ぎ、 6%を超えると歪点が低下し過ぎる。従って 2〜6 %、好ましくは3〜5 %の範囲とする。
【0017】
K2O は上記理由およびNa2Oとの混合アルカリ効果によりアルカリイオンの移動を抑制し、ガラスの体積抵抗率を高める。 7%未満であるとそれら作用が不充分であり、11%を超えると熱膨張率が過大となり、また歪点も低下し過ぎるため、7〜11%、好適には 8〜10%の範囲とする。
【0018】
Li2Oは必須成分ではないがガラスの高温粘度を下げ、ガラス原料の溶融を促進する。ただし 5%を越えて含有させるとガラスの歪点が低下し過ぎるので 5%以下の範囲で導入するのが望ましい。
【0019】
前記アルカリ成分 (Na2O、K2O 、Li2O) の量に関し、その合計量を13〜15%にすることにより、歪点、熱膨張率、高温粘度および失透温度を適切な範囲に維持することができる。アルカリ成分の合計量が13%未満では熱膨張率が低下し、失透傾向が増大する。15%を越えると歪点が低下し過ぎるうえに、体積抵抗率が低下する。従って13〜15%の範囲とするものである。
【0020】
さらに、前記アルカリ成分において、K2O /Na2O重量比を2.0 以上とすることにより、ガラス中でのアルカリイオンの移動が抑制され、体積抵抗率を上昇させる作用を有する。K2O /Na2O重量比が2.0 未満ではその作用が不充分である。
【0021】
本発明において、原料バッチ中に塩化物、フッ化物を導入するのが望ましく、例えばCaF2、MgF2、NaCl、CaCl2 等の金属フッ化物、塩化物を導入することにより、ガラス融液の粘度、表面張力を降下させ溶融、清澄性を向上し、かつ電気溶融法を採用した場合においては電極を変質劣化させないうえで有効であるが、フッ素、または塩素分として原料バッチのガラス換算量 (酸化物)100重量%に対して0.5 重量%以下外挿添加するのが肝要であり、0.5 重量%を超えると炉材の浸食等が激しくなる傾向があるうえに、ガラスの歪点を低下させる。
【0022】
さらにガラスの溶融、清澄性を向上させる原料としては硝酸塩の導入が好ましい。すなわち例えば硝酸バリウム、硝酸ナトリウム、硝酸カリウム等の原料形態で原料バッチ中に導入するが、硝酸塩の殆どはガラスの初期溶融の過程で酸素を発生し、S 、FeおよびTiのようなガラス中の微量還元成分を酸化状態に維持するため、これら還元成分がモリブデン等の電極と反応して電極が損耗するような弊害を抑制する。
【0023】
硝酸塩はNO3 として原料バッチのガラス換算量 (酸化物)100重量%に対して 4重量%以下、さらに望ましくは 1〜 4重量%の範囲で外挿添加するのが好ましい。 4重量%を超えると原料バッチの溶解速度が過大となり、安定した溶融状態を得るのが困難となる。
前記塩化物、フッ化物または硝酸塩は必要に応じ適宜導入するもので、両者を併存させてもよい。
【0024】
本発明において、直接通電による電気溶融法を採用する場合は、汎用されるモリブデン等の電極と反応して合金を形成したりするようなことは避けねばならず、従って原料バッチ中に清澄剤としてのAs2O3 、Sb2O3 およびS分、硫酸塩 (ガラス中に一部SO3 として残留する) や反応性を有するZnO 原料の混入は避けた方がよい。
【0025】
さらにフロート法成形による量産を容易とし、成形時の窒素および水素等の還元雰囲気下で揮発したり、ガラスに着色を与えないようにするために、PbO 、ZnO 等の揮発成分や、As2O3 、Sb2O3 等の反応着色性成分の混入も避けるべきである。
特に前記した電気溶融およびフロ−ト法成形に悪影響を及ぼすAs2O3 、Sb2O3、およびZnO は実質的に含有してはならない。
【0026】
なお、前記電極との反応性成分、還元雰囲気との反応性成分、揮発性成分およびFe2O3 、MnO2、その他不純物としての極微量の混入は本発明を妨げるものではない。また、S分、硫酸塩はガラス中でSO3 として 0.1重量%以下の混入であればさしたる影響はなく、許容できる。
【0027】
本発明においてはガラスの歪点を 590℃以上としたことにより、600 ℃程度の各種繰返し熱処理に対しても基板ガラスが歪んだりすることがなく、また熱膨張率 (室温〜300 ℃) を84〜88 (×10-7/℃) としたことにより、厚膜等との熱膨張率差をなくし、あるいは僅少として厚膜等との密着性を良好とし、さらに体積抵抗率(250℃) を109 Ω・cm 以上としたことにより、優れた電気絶縁性を有するガラスが得られる。
【0028】
【実施例】
珪砂、水酸化アルミニウム、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、ジルコン砂、炭酸ナトリウム、炭酸カリウムおよび硝酸バリウムよりなる調合原料を白金製耐火坩堝に充填し電気炉内で1500℃、約 4時間加熱溶融した。次に溶融ガラスを鋳型に流し込み、約 200mm□×35mm厚の大きさのガラスブロックとし、 630℃に保持した電気炉に移入して該炉内で徐冷した。
【0029】
原料調合に基づくガラス (酸化物) 組成を表1に示す。なお Ba(NO 3 ) 2 のかたちで導入される NO 3 分についてはガラス酸化物組成計 100 重量%に対する外挿添加・導入量 ( 重量% ) で示した。
【0030】
これらのガラス試料について、室温〜 300℃における平均熱膨張率(X10-7/℃) 、歪点 (ガラスが粘度1014.5ポイズを示す温度) 、作業温度(104ポイズの温度) 、および失透温度を測定し、また 250℃における体積抵抗率 (Ω・cm)を測定した。それらの結果を表1に示す。
【0031】
【表1】

Figure 0003770670
【0032】
表1 中実施例NO.1〜NO.4は本発明におけるガラスであり、製作過程における溶融、清澄性とも良好であり、ガラスの歪点は590 ℃以上で耐熱性が良好である。
熱膨張率も84〜88×10-7/℃の範囲で電極や厚膜との熱膨張率に近似しており、体積抵抗率も109 Ω・cm 以上で電気絶縁性に優れ、表示装置用基板ガラス、殊にPDP用の基板ガラスとして好適である。
【0033】
【発明の効果】
本発明のガラスは、熱膨張率、歪点、体積抵抗率等の点で表示装置用基板ガラス、特にPDP用の基板ガラスとして好適であり、またガラスの溶融性も良好で、直接通電法による溶融性およびフロート法による成形性に適し、均質なガラスを連続的に低いコストで製造することができ、量産に適するという効果を奏する。[0001]
BACKGROUND OF THE INVENTION
The present invention is a glass that is suitable as a substrate glass for various display devices, particularly a plasma display (PDP) substrate glass, and is a display device that can be easily melted and formed (plate-making) by a float method including an electric melting method. The present invention relates to a substrate glass for glass and a manufacturing method thereof.
[0002]
[Prior art]
Conventionally, soda-lime-silica glass is often used as a substrate glass for display devices. As an example, in a PDP glass substrate, an electrode such as nickel or aluminum, an insulating coating film, or the like is applied to the glass substrate by screen printing or the like, and firing at a temperature close to 600 ° C. is repeated to produce a panel. Since the substrate glass is prone to cracking and peeling if the thermal expansion coefficient differs from that of the electrode or the coating film, it is necessary to match the thermal expansion coefficient. In the soda-lime-silica glass, the thermal expansion coefficient is almost 90 ×. 10 -7 / ° C, which is useful in terms of the coefficient of thermal expansion of the electrode and coating film, but because the strain point is around 510 ° C, it is prone to thermal deformation during repeated firing, and the production yield is greatly deteriorated. There is a problem of making it.
[0003]
Japanese Patent Application Laid-Open No. 3-40933 discloses a glass composition for a substrate comprising an SiO 2 component, an Al 2 O 3 component, an alkaline earth metal oxide including a CaO component, an alkali metal oxide including a Na 2 O component, and the like. A glass is disclosed which is hardly deformed by heat treatment at around 600 ° C. and whose thermal expansion coefficient is almost the same as that of soda-lime-silica glass.
[0004]
[Problems to be solved by the invention]
In the above disclosed examples, SiO 2 is excessive and the alkali components (Li 2 O, Na 2 O, and K 2 O) are excessive, so that the high-temperature viscosity of the glass is high, and melting and float forming are easy. I can't say that. Furthermore, in the disclosed example, it is exemplified that SO 3 , Sb 2 O 3 , or As 2 O 3 is employed as a solvent / clarifier, but in the case of direct electric melting, for example, they react with the electrode. There is a problem that the electrode deteriorates and deteriorates or the glass is colored.
[0005]
The present invention has been completed after various studies in view of the problems to be solved, and is suitable for melting including direct current melting and float method molding, and has appropriate thermal characteristics and electrical characteristics. The present invention provides a substrate glass for a display device suitable for PDP.
[0006]
[Means for Solving the Problems]
The present invention is, in weight percentages, SiO 2 52 ~54, Al 2 O 3 7 ~11, ZrO 2 1 ~5, MgO 1 ~5, CaO 5 ~ 9, SrO O ~5, BaO 8 ~14, MgO + CaO + SrO + BaO 20-25, TiO 2 0-1, Li 2 O 0-5, Na 2 O 2-6, K 2 O 7 -11 and Li 2 O + Na 2 O + K 2 O in the range of 13-15 Substrate glass for display devices, furthermore, the glass has a strain point of 590 ° C or higher, the thermal expansion coefficient from room temperature to 300 ° C is 84 to 88 (× 10 -7 / ° C), and the volume resistivity at 250 ° C is 10 9 Ω · cm The above- described substrate glass for a display device having a K 2 O / Na 2 O weight ratio of 2.0 or more.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In the component system of the present invention, SiO 2 is a main component of glass, and if the weight percentage is less than 52%, the strain point of the glass is lowered and the chemical durability is deteriorated. On the other hand, if it exceeds 54%, the high-temperature viscosity of the glass melt increases and float molding becomes difficult. Therefore, the range is 52 to 54%, preferably 53 to 54%.
[0008]
If Al 2 O 3 is less than 7%, the strain point of the glass is lowered. On the other hand, if it exceeds 11%, the high-temperature viscosity of the glass melt increases, the tendency to devitrification increases, and float forming becomes difficult. Therefore, the range of 7 to 11%, preferably 8 to 11% is preferable.
[0009]
ZrO 2 has the effect of increasing the strain point of glass and suppressing the occurrence of devitrification, so it is preferable to contain 1 % or more. If it exceeds 5%, the tendency of devitrification will increase and the glass melting and float process. Since it makes molding difficult, it is desirable to contain in the range of 1 to 5 %.
[0010]
MgO has the effect of increasing the strain point compared to other divalent component oxides, but if it is less than 1%, the effect is insufficient, and if it exceeds 5%, the tendency to devitrify becomes large. Therefore, the range is 1 to 5%, preferably 2 to 4%.
[0011]
CaO has the effect of lowering the high-temperature viscosity of the glass melt in the presence of BaO. However, when it is less than 5%, the effect is insufficient, and when it exceeds 9%, the tendency to devitrification increases. Therefore, the range is 5 to 9%, preferably 6 to 8%.
[0012]
BaO has the effect of reducing the high-temperature viscosity of the glass melt and suppressing the occurrence of devitrification in the presence of CaO as described above. However, if it is less than 8%, the effect of suppressing devitrification is insufficient, while the other 14% If it exceeds 1, the strain point of the glass is too low. Therefore, the range is 8 to 14%, preferably 9 to 13%.
[0013]
SrO is not an essential component, but has the effect of lowering the high temperature viscosity of the glass melt in the presence of CaO and BaO. The SrO content should be in the range of 5% or less. If it exceeds 5%, the strain point will be too low and the coefficient of thermal expansion will be excessive.
[0014]
Furthermore, within the above composition range, by keeping the total of alkaline earth metal oxides (CaO, MgO, BaO, SrO) in the range of 20-25%, while maintaining the glass meltability in a good range, It is possible to obtain a glass having an appropriate viscosity-temperature gradient, good moldability, excellent heat resistance, chemical durability, and the like, and having an appropriate range of thermal expansion coefficient. When the total of alkaline earth metal oxides exceeds 25%, the coefficient of thermal expansion increases, the tendency to devitrification increases, and the chemical durability decreases. If it is less than 20%, the high-temperature viscosity increases, making melting and molding difficult, and the coefficient of thermal expansion decreases.
[0015]
Although TiO 2 is not an essential component, it is introduced in an amount of 1% or less in order to improve the chemical durability of the glass and reduce the tendency to devitrification when the glass is melted. However, if it exceeds 1%, the glass is colored, which is not preferable.
[0016]
Na 2 O acts as a glass melting agent together with K 2 O, and is indispensable for maintaining the thermal expansion coefficient of glass at an appropriate size. If Na 2 O is less than 2%, the coefficient of thermal expansion will be too low, and if it exceeds 6%, the strain point will be too low. Therefore, the range is 2 to 6%, preferably 3 to 5%.
[0017]
K 2 O suppresses the migration of alkali ions due to the above reasons and the mixed alkali effect with Na 2 O, and increases the volume resistivity of the glass. If it is less than 7%, these effects are insufficient, and if it exceeds 11%, the coefficient of thermal expansion is excessive and the strain point is too low. Therefore, the range is 7 to 11%, preferably 8 to 10%. To do.
[0018]
Although Li 2 O is not an essential component, it lowers the high temperature viscosity of the glass and promotes melting of the glass raw material. However, if the content exceeds 5%, the strain point of the glass becomes too low, so it is desirable to introduce it in a range of 5% or less.
[0019]
Regarding the amount of the alkali components (Na 2 O, K 2 O, Li 2 O), by setting the total amount to 13 to 15%, the strain point, coefficient of thermal expansion, high temperature viscosity, and devitrification temperature are in appropriate ranges. Can be maintained. If the total amount of alkali components is less than 13%, the coefficient of thermal expansion decreases and the tendency to devitrification increases. If it exceeds 15%, the strain point is lowered too much and the volume resistivity is lowered. Therefore, the range is 13 to 15%.
[0020]
Furthermore, in the alkaline component, by setting the K 2 O / Na 2 O weight ratio of 2.0 or more, the movement of the alkali ions in the glass is suppressed, it has an effect of increasing the volume resistivity. If the K 2 O / Na 2 O weight ratio is less than 2.0, the action is insufficient.
[0021]
In the present invention, the chloride in the feed the batch, it is desirable to introduce the fluoride, for example CaF 2, MgF 2, NaCl, metal fluoride CaCl 2, etc., by introducing a chloride, the viscosity of the glass melt In the case where the surface tension is lowered to improve melting and clarity, and the electric melting method is adopted, it is effective in preventing deterioration and deterioration of the electrode. Material) It is important to add 0.5% by weight or less to 100% by weight. If it exceeds 0.5% by weight, erosion of the furnace material tends to become severe, and the strain point of the glass is lowered.
[0022]
Furthermore, it is preferable to introduce nitrate as a raw material for improving the melting and clarifying properties of the glass. That is, for example, barium nitrate, sodium nitrate, potassium nitrate, etc., are introduced into the raw material batch, but most of the nitrates generate oxygen during the initial melting of the glass, and trace amounts in the glass such as S, Fe and Ti In order to maintain the reducing component in an oxidized state, adverse effects such as reaction of the reducing component with an electrode such as molybdenum and wear of the electrode are suppressed.
[0023]
Nitrate is preferably extrapolated as NO 3 in an amount of 4% by weight or less, more preferably in the range of 1 to 4% by weight with respect to 100% by weight of the glass equivalent (oxide) of the raw material batch. If it exceeds 4% by weight, the dissolution rate of the raw material batch becomes excessive, and it becomes difficult to obtain a stable molten state.
The chloride, fluoride, or nitrate is appropriately introduced as necessary, and both may coexist.
[0024]
In the present invention, when adopting the electric melting method by direct energization, it is necessary to avoid forming an alloy by reacting with a commonly used electrode such as molybdenum, and therefore as a clarifier in the raw material batch. It is better to avoid mixing As 2 O 3 , Sb 2 O 3 and S, sulfates (partially remaining as SO 3 in the glass) and reactive ZnO raw materials.
[0025]
Furthermore, in order to facilitate mass production by float method molding and to volatilize in a reducing atmosphere such as nitrogen and hydrogen during molding and to prevent coloring glass, volatile components such as PbO and ZnO and As 2 O 3. Mixing of reactive coloring components such as Sb 2 O 3 should also be avoided.
In particular, As 2 O 3 , Sb 2 O 3 , and ZnO which adversely affect the above-described electric melting and float forming should not be substantially contained.
[0026]
It should be noted that the present invention does not impede the incorporation of a trace component as a reactive component with the electrode, a reactive component with a reducing atmosphere, a volatile component, Fe 2 O 3 , MnO 2 , or other impurities. In addition, the S component and the sulfate are acceptable as long as they are not more than 0.1% by weight as SO 3 in the glass.
[0027]
In the present invention, since the strain point of the glass is set to 590 ° C. or higher, the substrate glass is not distorted even by various repeated heat treatments of about 600 ° C., and the coefficient of thermal expansion (room temperature to 300 ° C.) is 84. -88 (× 10 -7 / ° C) eliminates the difference in coefficient of thermal expansion from thick film, etc., or makes the adhesion to thick film etc. small, and further reduces volume resistivity (250 ° C). By setting it to 10 9 Ω · cm or more, a glass having excellent electrical insulation can be obtained.
[0028]
【Example】
Filling a platinum refractory crucible with silica, aluminum hydroxide, magnesium carbonate, calcium carbonate, barium carbonate, zircon sand, sodium carbonate, potassium carbonate and barium nitrate in a platinum refractory crucible and heating and melting in an electric furnace at 1500 ° C for about 4 hours did. Next, the molten glass was poured into a mold to form a glass block having a size of about 200 mm □ × 35 mm, transferred to an electric furnace maintained at 630 ° C., and slowly cooled in the furnace.
[0029]
Table 1 shows the glass (oxide) composition based on the raw material formulation. The amount of NO 3 introduced in the form of Ba (NO 3 ) 2 is indicated by extrapolated addition / introduction amount ( wt% ) with respect to 100 wt% of the glass oxide composition meter .
[0030]
For these glass samples, the average coefficient of thermal expansion (X10 -7 / ° C) from room temperature to 300 ° C, strain point (temperature at which the glass exhibits a viscosity of 10 14.5 poise), working temperature (temperature of 10 4 poise), and devitrification The temperature was measured, and the volume resistivity (Ω · cm) at 250 ° C. was measured. The results are shown in Table 1.
[0031]
[Table 1]
Figure 0003770670
[0032]
In Table 1, Examples No. 1 to No. 4 are glasses in the present invention, which are good in melting and fining in the production process, and have a glass having a strain point of 590 ° C. or higher and good heat resistance.
The thermal expansion coefficient is in the range of 84 to 88 × 10 -7 / ° C, which is close to the thermal expansion coefficient with electrodes and thick films, and the volume resistivity is 10 9 Ω · cm or more, providing excellent electrical insulation and a display device. It is suitable as a substrate glass for glass, particularly as a substrate glass for PDP.
[0033]
【The invention's effect】
The glass of the present invention is suitable as a substrate glass for a display device, particularly a substrate glass for a PDP, in terms of thermal expansion coefficient, strain point, volume resistivity, etc., and also has good meltability of the glass. Suitable for meltability and moldability by the float process, homogeneous glass can be produced continuously at a low cost, and there is an effect that it is suitable for mass production.

Claims (4)

重量%表示で、SiO2 52 〜54、Al2O3 7 〜11、ZrO2 1〜5 、MgO 1 〜5 、CaO 5 〜 9、SrO O 〜5 、BaO 8 〜14、MgO +CaO +SrO+BaO 20〜25、TiO2 0〜1 、Li2O 0〜5 、Na2O 2〜6 、K2O 7 〜11、およびLi2O+Na2O+K2O を13〜15の範囲で含有し、ガラスの歪点が 590 ℃以上、室温から 300 ℃における熱膨張率が 84 88 ( × 10 -7 /℃ ) 250 ℃における体積抵抗率が 10 9 Ω・ cm 以上であることを特徴とする表示装置用基板ガラス。In terms of% by weight, SiO 2 52 to 54, Al 2 O 3 7 to 11, ZrO 2 1 to 5, MgO 1 to 5, CaO 5 to 9, SrO O to 5, BaO 8 to 14, MgO + CaO + SrO + BaO 20 to 25, TiO 2 0-1, Li 2 O 0-5, Na 2 O 2-6, K 2 O 7-11, and Li 2 O + Na 2 O + K 2 O in the range of 13-15 , strain of the glass point is 590 ° C. or higher, the thermal expansion coefficient 84 ~ 88 (× 10 -7 / ℃) at 300 ° C. from room temperature, for a display device, wherein the volume resistivity at 250 ° C. is 10 9 Ω · cm or more Substrate glass. KK 22 O O / NaNa 22 OO 重量比をWeight ratio 2.0 2.0 以上とすることを特徴とする請求項1に記載の表示装置用基板ガラス。It is set as the above, The substrate glass for display apparatuses of Claim 1 characterized by the above-mentioned. 重量%表示で、  In weight% display ZrOZrO 22 The 1.01.0 ~ 3.93.9 含有することを特徴とする請求項1または2に記載の表示装置用基板ガラス。The substrate glass for a display device according to claim 1, which is contained. ガラスの歪点が  The strain point of the glass 600600 ℃以上であることを特徴とする、請求項1乃至3のいずれかに記載の表示装置用基板ガラス。The substrate glass for a display device according to any one of claims 1 to 3, wherein the glass substrate has a temperature of not lower than ° C.
JP30171396A 1995-11-20 1996-11-13 Substrate glass for display devices Expired - Fee Related JP3770670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30171396A JP3770670B2 (en) 1995-11-20 1996-11-13 Substrate glass for display devices

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-301501 1995-11-20
JP30150195 1995-11-20
JP30171396A JP3770670B2 (en) 1995-11-20 1996-11-13 Substrate glass for display devices

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005179809A Division JP4183697B2 (en) 1995-11-20 2005-06-20 Manufacturing method of substrate glass for display devices

Publications (2)

Publication Number Publication Date
JPH09202641A JPH09202641A (en) 1997-08-05
JP3770670B2 true JP3770670B2 (en) 2006-04-26

Family

ID=26562707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30171396A Expired - Fee Related JP3770670B2 (en) 1995-11-20 1996-11-13 Substrate glass for display devices

Country Status (1)

Country Link
JP (1) JP3770670B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5854153A (en) * 1997-01-09 1998-12-29 Corning Incorporated Glasses for display panels
JP3384286B2 (en) * 1997-06-20 2003-03-10 日本板硝子株式会社 Glass substrate for magnetic recording media
KR100431727B1 (en) * 1997-09-29 2004-09-04 삼성코닝 주식회사 Substrate glasses for plasma display panel
KR100431728B1 (en) * 1997-11-03 2004-09-08 삼성코닝 주식회사 Substrate glass composition for plasma image display panel, improving contrast and having high deformation point and low expansibility
DE69902839T2 (en) 1998-04-28 2003-05-28 Asahi Glass Co Ltd Flat glass and substrate glass for electronics
TW565539B (en) 1998-08-11 2003-12-11 Asahi Glass Co Ltd Glass for a substrate
JP5018279B2 (en) * 2007-03-07 2012-09-05 セントラル硝子株式会社 Substrate glass for display devices
JP2009155148A (en) 2007-12-26 2009-07-16 Central Glass Co Ltd Glass composition

Also Published As

Publication number Publication date
JPH09202641A (en) 1997-08-05

Similar Documents

Publication Publication Date Title
JP3804112B2 (en) Alkali-free glass, alkali-free glass manufacturing method and flat display panel
KR100472804B1 (en) Heat Resistant Glass Composition
JP2871163B2 (en) Alkali-free glass
JPH11180728A (en) Substrate glass composition for display device
JPH11180727A (en) Substrate glass composition for display device
JP3800443B2 (en) Non-alkali glass substrate for display and method for producing the same
JPH11310433A (en) Substrate glass for display device
KR100395116B1 (en) Substrate Glasses for Plasma Displays
JP3669022B2 (en) Substrate glass composition and plasma display substrate using the same
JPH1059741A (en) Non-alkali glass and its production
WO2006137683A1 (en) High strain-point glass composition for substrate
JPH11335133A (en) Substrate glass for display device
JP3741526B2 (en) Substrate glass for display devices
JPH10114538A (en) Alkali-free glass and its production
JP3770670B2 (en) Substrate glass for display devices
JP3748533B2 (en) Low melting glass and method for producing the same
JP4183697B2 (en) Manufacturing method of substrate glass for display devices
JP4045662B2 (en) Heat resistant glass composition and plasma display panel using the same
JPH02133334A (en) Alkali-free glass
JP3460298B2 (en) Glass composition for substrates
JPH08290939A (en) Glass for substrate
WO2006080292A1 (en) Substrate glass for display
JPH0818845B2 (en) Glass substrate for electronic equipment
JPH09110460A (en) Alkali-free glass
JP3867817B2 (en) Substrate glass

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060207

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140217

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees