JP2008020244A - Inspection method of bearing member of fluid bearing device - Google Patents

Inspection method of bearing member of fluid bearing device Download PDF

Info

Publication number
JP2008020244A
JP2008020244A JP2006190373A JP2006190373A JP2008020244A JP 2008020244 A JP2008020244 A JP 2008020244A JP 2006190373 A JP2006190373 A JP 2006190373A JP 2006190373 A JP2006190373 A JP 2006190373A JP 2008020244 A JP2008020244 A JP 2008020244A
Authority
JP
Japan
Prior art keywords
bearing
bearing member
radial
radial bearing
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006190373A
Other languages
Japanese (ja)
Inventor
Masaaki Toda
正明 戸田
Hiroshi Akai
洋 赤井
Koji Kawashima
弘次 川島
Yoshihiko Bito
仁彦 尾藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006190373A priority Critical patent/JP2008020244A/en
Publication of JP2008020244A publication Critical patent/JP2008020244A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for inspecting simply and accurately dimension accuracy of a bearing member used for a fluid bearing device. <P>SOLUTION: A reference shaft 21 of an inspection device 20 is pressed elastically into the inner circumference of the bearing member 7 with these rotated integrally, deflection of the surface to be measured such as a housing outer circumferential surface is measured. Hereby, since measurement can be performed without insertion of a stylus 24 into the inner circumference of the bearing member, even a small-sized bearing member can be inspected easily. Since measurement is performed based on highly-accurately set radial bearing surfaces A1, A2, accurate measurement becomes possible. Since the bearing member 7 is fixed to the reference shaft 21 by press fitting utilizing an elastic force, simple fixing becomes possible without requiring a turntable or a fixing element as before. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、流体軸受装置に用いられる軸受部材を検査する方法に関するものである。   The present invention relates to a method for inspecting a bearing member used in a hydrodynamic bearing device.

流体軸受装置は、情報機器、例えばHDD等の磁気ディスク駆動装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク駆動装置、MD、MO等の光磁気ディスク駆動装置等のスピンドルモータ用、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、プロジェクタのカラーホイール、あるいは電気機器、例えばファンモータなどの小型モータ用として好適に使用可能である。   Fluid bearing devices include information devices, such as magnetic disk drive devices such as HDDs, optical disk drive devices such as CD-ROM, CD-R / RW, DVD-ROM / RAM, and magneto-optical disk drive devices such as MD and MO. It can be suitably used for a spindle motor, a polygon scanner motor of a laser beam printer (LBP), a color wheel of a projector, or a small motor such as an electric device such as a fan motor.

例えば、特許文献1に示されている流体軸受装置(動圧軸受装置)は、軸部材を有する回転部材と、内周に軸部材が挿入される軸受スリーブと、内周に軸受スリーブが固定されたハウジングとを備えている。軸受スリーブの内周面にはラジアル軸受面が形成され、ハウジングの上端面にはスラスト軸受面が形成される。ラジアル軸受面と軸部材の外周面との間に形成されるラジアル軸受隙間の流体膜で回転部材をラジアル方向に支持し、スラスト軸受面と回転体の端面との間に形成されるスラスト軸受隙間の流体膜で回転部材をスラスト方向に支持する。   For example, a hydrodynamic bearing device (dynamic pressure bearing device) disclosed in Patent Document 1 includes a rotating member having a shaft member, a bearing sleeve in which the shaft member is inserted on the inner periphery, and a bearing sleeve fixed on the inner periphery. And a housing. A radial bearing surface is formed on the inner peripheral surface of the bearing sleeve, and a thrust bearing surface is formed on the upper end surface of the housing. A thrust bearing gap formed between the thrust bearing surface and the end face of the rotating body by supporting the rotating member in the radial direction with a fluid film of a radial bearing gap formed between the radial bearing surface and the outer peripheral surface of the shaft member. The rotating member is supported in the thrust direction by the fluid film.

このような流体軸受装置の製造工程において、軸受部材を形成した後、各寸法精度を測定する検査を行う場合がある。この検査は、例えば特許文献2に示されるような真円度測定装置を用いて行うことができる。具体的には、例えば軸受部材の内周面(ラジアル軸受面)の寸法精度を検査する場合、軸受部材をターンテーブル上に冶具などにより固定した状態で回転させ、触針により被測定面となるラジアル軸受面の振れを測定することにより、ラジアル軸受面の寸法精度を評価する。   In the manufacturing process of such a hydrodynamic bearing device, after forming the bearing member, an inspection for measuring each dimensional accuracy may be performed. This inspection can be performed using, for example, a roundness measuring apparatus as disclosed in Patent Document 2. Specifically, for example, when inspecting the dimensional accuracy of the inner peripheral surface (radial bearing surface) of a bearing member, the bearing member is rotated on a turntable with a jig or the like, and becomes a surface to be measured by a stylus. By measuring the runout of the radial bearing surface, the dimensional accuracy of the radial bearing surface is evaluated.

特開2005−337343号公報JP 2005-337343 A 特表平10−507268号公報Japanese National Patent Publication No. 10-507268

しかしながら、上記の検査方法では、例えば内径が3mm以下である小径の軸受部材を検査する際、軸受部材の内周面(ラジアル軸受面)に触針を挿入することが困難となる。   However, in the above inspection method, for example, when inspecting a small-diameter bearing member having an inner diameter of 3 mm or less, it is difficult to insert the stylus into the inner peripheral surface (radial bearing surface) of the bearing member.

また、信頼できる測定値を得るためには、軸受部材をターンテーブル上に精度良く固定する必要があるが、高精度の固定は容易ではなく、芯出し調整等の検査工程の複雑化及び長時間化を招く。   In addition, in order to obtain a reliable measurement value, it is necessary to fix the bearing member on the turntable with high accuracy. However, high-precision fixing is not easy, and the inspection process such as centering adjustment is complicated and requires a long time. Invite

また、流体軸受装置は内部への異物の混入を嫌うため、クリーンルーム内で製造する場合がある。このような特殊な環境内へ、上記のようなターンテーブルを有する大掛かりな測定装置を持ち込むことは現実的ではなく、より簡易に軸受部材の寸法精度を検査する方法が望まれている。   In addition, the hydrodynamic bearing device may be manufactured in a clean room because it dislikes the entry of foreign matter inside. It is not practical to bring such a large measuring device having a turntable into such a special environment, and a method for inspecting the dimensional accuracy of the bearing member more simply is desired.

本発明の課題は、流体軸受装置に用いられる軸受部材の寸法精度を、簡易かつ精度良く検査する方法を提供することである。   An object of the present invention is to provide a method for simply and accurately inspecting the dimensional accuracy of a bearing member used in a hydrodynamic bearing device.

前記課題を解決するため、本発明は、内周面にラジアル軸受面が形成された軸受部材と、軸受部材の内周に挿入される軸部材とを備え、ラジアル軸受面と軸部材の外周面との間のラジアル軸受隙間に形成される流体膜で軸部材を回転自在に支持する流体軸受装置において、前記軸受部材の寸法精度を検査するための方法であって、ラジアル軸受面を基準として軸受部材を回転させた状態で、軸受部材の被測定面の振れ幅を測定することを特徴とする。   In order to solve the above problems, the present invention includes a bearing member having a radial bearing surface formed on an inner peripheral surface, and a shaft member inserted into the inner periphery of the bearing member, the radial bearing surface and the outer peripheral surface of the shaft member. In a hydrodynamic bearing device in which a shaft member is rotatably supported by a fluid film formed in a radial bearing gap between the bearing member and the bearing member, a method for inspecting the dimensional accuracy of the bearing member, the bearing being based on the radial bearing surface The runout width of the surface to be measured of the bearing member is measured in a state where the member is rotated.

このように、本発明では、ラジアル軸受面を基準として軸受部材を回転させた状態で、被測定面の振れ幅を測定することで、軸受部材の寸法精度の検査を行う。これにより、触針を軸受部材の内周に挿入する必要は無く、小型の軸受部材の検査も容易に行うことができる。また、ターンテーブルや固定具を必要としないため、装置の簡易化および小型化が図られる。   Thus, in the present invention, the dimensional accuracy of the bearing member is inspected by measuring the runout width of the surface to be measured while the bearing member is rotated with the radial bearing surface as a reference. Thereby, it is not necessary to insert a stylus into the inner periphery of the bearing member, and a small bearing member can be easily inspected. Moreover, since a turntable and a fixture are not required, the apparatus can be simplified and downsized.

このような検査方法は、ラジアル軸受面に基準軸を弾性的に圧入し、これらを一体に回転させることにより行うことができる。このように、弾性を利用した圧入力により軸受部材と基準軸とを固定することで、冶具などを用いてターンテーブルに固定する場合と比べ、簡易に固定することができる。また、予め高精度に加工されたラジアル軸受面を基準とすることで、高精度な位置決めが可能となる。   Such an inspection method can be performed by elastically press-fitting the reference shaft into the radial bearing surface and rotating them together. Thus, by fixing the bearing member and the reference shaft by pressure input using elasticity, it is possible to easily fix compared to the case of fixing to the turntable using a jig or the like. In addition, by using a radial bearing surface that has been processed with high accuracy in advance as a reference, high-accuracy positioning is possible.

以上のように、本発明によれば、軸受部材の寸法精度を、簡易かつ精度良く検査する方法が得られる。   As described above, according to the present invention, a method for simply and accurately inspecting the dimensional accuracy of a bearing member can be obtained.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明が適用される流体軸受装置1を組込んだ情報機器用スピンドルモータの一構成例を概念的に示している。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸部材2およびハブ部10を有する回転部材3を相対回転自在に非接触支持する流体軸受装置(動圧軸受装置)1と、例えば半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5と、ブラケット6とを備えている。ステータコイル4はブラケット6の外周に取付けられ、ロータマグネット5はハブ部10の外径側に設けられたヨーク12に固定されている。流体軸受装置1の軸受部材7は、ブラケット6の内周に固定される。また、ハブ部10には、図示は省略するが、情報記録媒体としてのディスクが一又は複数枚保持される。このように構成されたスピンドルモータにおいて、ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間に発生する励磁力でロータマグネット5が回転し、これに伴って、ハブ部10およびハブ部10に保持されたディスクが軸部材2と一体に回転する。   FIG. 1 conceptually shows one configuration example of a spindle motor for information equipment incorporating a fluid dynamic bearing device 1 to which the present invention is applied. The spindle motor is used in a disk drive device such as an HDD, and includes a hydrodynamic bearing device (dynamic pressure bearing device) 1 that supports a rotating member 3 having a shaft member 2 and a hub portion 10 in a non-contact manner so as to be relatively rotatable. For example, a stator coil 4 and a rotor magnet 5 which are opposed to each other via a gap in the radial direction, and a bracket 6 are provided. The stator coil 4 is attached to the outer periphery of the bracket 6, and the rotor magnet 5 is fixed to a yoke 12 provided on the outer diameter side of the hub portion 10. The bearing member 7 of the hydrodynamic bearing device 1 is fixed to the inner periphery of the bracket 6. Although not shown, the hub unit 10 holds one or more disks as information recording media. In the spindle motor configured as described above, when the stator coil 4 is energized, the rotor magnet 5 is rotated by the exciting force generated between the stator coil 4 and the rotor magnet 5. The disk held by the portion 10 rotates integrally with the shaft member 2.

図2は、流体軸受装置1を示している。この流体軸受装置1は、軸受部材7と、軸受部材7の一端を閉口する蓋部材11と、軸受部材7および蓋部材11に対して相対回転する回転部材3とを主に備えている。なお、説明の便宜上、軸方向両端に形成される軸受部材7の開口部のうち、蓋部材11で閉口される側を下側、閉口側と反対の側を上側として以下説明する。   FIG. 2 shows the hydrodynamic bearing device 1. The hydrodynamic bearing device 1 mainly includes a bearing member 7, a lid member 11 that closes one end of the bearing member 7, and a rotating member 3 that rotates relative to the bearing member 7 and the lid member 11. For the sake of convenience of explanation, of the openings of the bearing member 7 formed at both ends in the axial direction, the side closed by the lid member 11 will be described as the lower side, and the side opposite to the closed side will be described as the upper side.

軸受部材7は、軸方向両端を開口した形状をなし、略円筒状のスリーブ部8、およびスリーブ部8の外径側に位置し、スリーブ部8と一体又は別体に形成されるハウジング部9とを備えている。   The bearing member 7 has a shape in which both ends in the axial direction are open. The sleeve portion 8 has a substantially cylindrical shape, and is positioned on the outer diameter side of the sleeve portion 8. The housing portion 9 is formed integrally with or separate from the sleeve portion 8. And.

スリーブ部8は、弾性体で円筒状に形成される。この実施形態では、スリーブ部8は、銅を主成分とする焼結金属の多孔質体で円筒状に形成され、ハウジング部9の内周面9cに、例えば接着(ルーズ接着を含む)、圧入(圧入接着を含む)、溶着(超音波溶着を含む)等、適宜の手段で固定される。   The sleeve portion 8 is an elastic body and is formed in a cylindrical shape. In this embodiment, the sleeve portion 8 is made of a sintered metal porous body mainly composed of copper and formed in a cylindrical shape. For example, the sleeve portion 8 is bonded to the inner peripheral surface 9c of the housing portion 9 (including loose bonding) or press-fitted. It is fixed by appropriate means such as (including press-fit adhesion) and welding (including ultrasonic welding).

スリーブ部8の内周面8aの全面又は一部円筒領域には、ラジアル動圧発生部として複数の動圧溝を配列した領域が形成され、該領域がラジアル軸受面となる。この実施形態では、例えば図3に示すように、複数の動圧溝8a1、8a2をヘリングボーン形状に配列したラジアル軸受面A1、A2が軸方向に離隔して形成される。   A region where a plurality of dynamic pressure grooves are arranged as a radial dynamic pressure generating portion is formed on the entire inner surface or a part of the cylindrical region of the inner peripheral surface 8a of the sleeve portion 8, and this region serves as a radial bearing surface. In this embodiment, as shown in FIG. 3, for example, radial bearing surfaces A1 and A2 in which a plurality of dynamic pressure grooves 8a1 and 8a2 are arranged in a herringbone shape are formed apart in the axial direction.

スリーブ部8の下端面8bの全面又は一部環状領域には、スラスト動圧発生部として、例えば図4に示すように、複数の動圧溝8b1をスパイラル状に配列した領域が形成され、該領域が第1スラスト軸受面B1となる。   As shown in FIG. 4, for example, as shown in FIG. 4, a region in which a plurality of dynamic pressure grooves 8 b 1 are arranged in a spiral shape is formed on the entire lower surface 8 b of the sleeve portion 8 or a partial annular region. The region is the first thrust bearing surface B1.

ハウジング部9は、金属材料又は樹脂材料で略円筒状に形成される。この実施形態では、ハウジング部9は、その軸方向両端を開口した形状をなし、かつ一端側を蓋部材11で封口している。他端側の端面(上端面)9aの全面または一部環状領域には、スラスト動圧発生部として、例えば図5に示すように、複数の動圧溝9a1をスパイラル形状に配列した領域が形成され、該領域が第2スラスト軸受面B2となる。ハウジング部9の上方部外周には、上方(封口側とは反対の側)に向かって漸次拡径するテーパ面9bが形成される。ハウジング部9の下方部外周には円筒面9eが形成され、この円筒面9eがブラケット6の内周に、接着、圧入、溶着等の手段で固定される。   The housing part 9 is formed in a substantially cylindrical shape with a metal material or a resin material. In this embodiment, the housing part 9 has a shape in which both ends in the axial direction are opened, and one end side is sealed with the lid member 11. As shown in FIG. 5, for example, as shown in FIG. 5, a region in which a plurality of dynamic pressure grooves 9a1 are arranged in a spiral shape is formed on the entire end surface (upper end surface) 9a on the other end side or a partial annular region. This region becomes the second thrust bearing surface B2. A tapered surface 9b is formed on the outer periphery of the upper portion of the housing portion 9 and gradually increases in diameter toward the upper side (the side opposite to the sealing side). A cylindrical surface 9e is formed on the outer periphery of the lower portion of the housing portion 9, and this cylindrical surface 9e is fixed to the inner periphery of the bracket 6 by means such as adhesion, press-fitting, and welding.

ハウジング部9の下端側を封口する蓋部材11は、金属あるいは樹脂で形成され、ハウジング部9の下端内周側に設けられた段部9dに、接着、圧入、溶着等の手段で固定される。   The lid member 11 that seals the lower end side of the housing portion 9 is formed of metal or resin, and is fixed to a step portion 9d provided on the inner peripheral side of the lower end of the housing portion 9 by means such as adhesion, press fitting, and welding. .

回転部材3は、この実施形態では、スリーブ部8の内周に挿入される軸部材2と、軸部材2の上端に設けられ、軸受部材7の開口側に配置されるハブ部10とを備えている。   In this embodiment, the rotating member 3 includes a shaft member 2 that is inserted into the inner periphery of the sleeve portion 8, and a hub portion 10 that is provided at the upper end of the shaft member 2 and is disposed on the opening side of the bearing member 7. ing.

軸部材2は、この実施形態では金属製で、ハブ部10と別体に形成される。軸部材2の外周面2aは、軸部材2をスリーブ部8の内周に挿入した状態では、スリーブ部8の内周面8aに形成された動圧溝8a1、8a2形成領域(ラジアル軸受面A1、A2)と対向する。そして、軸部材2の回転時、スリーブ部8の内周面8aとの間に後述する第一、第二ラジアル軸受部R1、R2のラジアル軸受隙間をそれぞれ形成する(図2を参照)。   The shaft member 2 is made of metal in this embodiment, and is formed separately from the hub portion 10. When the shaft member 2 is inserted into the inner periphery of the sleeve portion 8, the outer peripheral surface 2a of the shaft member 2 is formed with dynamic pressure grooves 8a1 and 8a2 formed on the inner peripheral surface 8a of the sleeve portion 8 (radial bearing surface A1). , A2). When the shaft member 2 rotates, radial bearing gaps of first and second radial bearing portions R1 and R2 described later are formed between the inner peripheral surface 8a of the sleeve portion 8 (see FIG. 2).

軸部材2の下端には、抜止めとしてフランジ部2bが別体に設けられる。フランジ部2bは金属製で、例えばねじ結合等の手段により軸部材2に固定される。フランジ部2bの上端面2b1は、スリーブ部8の下端面8bに形成された動圧溝8b1形成領域(第一スラスト軸受面B1)と対向し、軸部材2の回転時、動圧溝8b1形成領域との間に後述する第一スラスト軸受部T1のスラスト軸受隙間を形成する(図2を参照)。また、軸部材2の上端には凹部(この実施形態では環状溝)2cが形成されており、軸部材2をインサート部品とする樹脂の射出成形でハブ部10を形成する場合、上記凹部2cがハブ部10に対する軸部材2の抜止めとして作用する。   A flange portion 2b is separately provided at the lower end of the shaft member 2 as a retaining member. The flange portion 2b is made of metal and is fixed to the shaft member 2 by means such as screw connection. The upper end surface 2b1 of the flange portion 2b is opposed to the dynamic pressure groove 8b1 formation region (first thrust bearing surface B1) formed in the lower end surface 8b of the sleeve portion 8, and the dynamic pressure groove 8b1 is formed when the shaft member 2 rotates. A thrust bearing gap of a first thrust bearing portion T1 described later is formed between the region (see FIG. 2). Further, a concave portion (annular groove in this embodiment) 2c is formed at the upper end of the shaft member 2, and when the hub portion 10 is formed by resin injection molding using the shaft member 2 as an insert part, the concave portion 2c is formed. It acts as a retaining member for the shaft member 2 with respect to the hub portion 10.

ハブ部10は、軸受部材7の開口側(上側)を覆う円盤部10aと、円盤部10aの外周部から軸方向下方に延びる筒状部10bと、筒状部10bから外径側に突出する鍔部10cおよび鍔部10cの上端に形成されるディスク搭載面10dとを備える。図示されていないディスクは、円盤部10aの外周に外嵌され、ディスク搭載面10dに載置される。そして、図示しない適当な保持手段(クランパなど)によってディスクがハブ部10に保持される。   The hub part 10 projects to the outer diameter side from the disk part 10a that covers the opening side (upper side) of the bearing member 7, the cylindrical part 10b that extends downward in the axial direction from the outer peripheral part of the disk part 10a, and the cylindrical part 10b. And a disc mounting surface 10d formed at the upper end of the flange portion 10c. A disk (not shown) is fitted on the outer periphery of the disk portion 10a and placed on the disk mounting surface 10d. Then, the disc is held on the hub portion 10 by an appropriate holding means (such as a clamper) (not shown).

上記構成のハブ部10は、例えば液晶ポリマー(LCP)、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)等の結晶性樹脂や、ポリフェニルサルフォン(PPSU)、ポリエーテルサルフォン(PES)、ポリエーテルイミド(PEI)等の非晶性樹脂をベース樹脂とする樹脂組成物の射出成形で成形される。この実施形態では、ハブ部10は、軸部材2をインサート部品として射出成形される。また、炭素繊維やガラス繊維等の繊維状充填材、チタン酸カリウム等のウィスカ状充填材、マイカ等の鱗片状充填材、カーボンブラック、黒鉛、カーボンナノマテリアル、各種金属粉等の繊維状または粉末状の導電性充填材を、目的に応じて上記ベース樹脂に適量配合したものを使用することもできる。   The hub portion 10 having the above configuration includes, for example, a crystalline resin such as liquid crystal polymer (LCP), polyphenylene sulfide (PPS), and polyetheretherketone (PEEK), polyphenylsulfone (PPSU), and polyethersulfone (PES). The resin composition is formed by injection molding of a resin composition using an amorphous resin such as polyetherimide (PEI) as a base resin. In this embodiment, the hub portion 10 is injection-molded using the shaft member 2 as an insert part. Also, fibrous or powder such as carbon fiber and glass fiber, whisker-like filler such as potassium titanate, scaly filler such as mica, carbon black, graphite, carbon nanomaterial, various metal powders, etc. A suitable amount of the conductive filler in the form of a base resin can be used depending on the purpose.

円盤部10aの下端面10a1は、ハウジング部9の一端開口側に設けられた上端面9aの動圧溝9a1形成領域(第二スラスト軸受面B2)と対向し、軸部材2の回転時、上端面9aとの間に後述する第二スラスト軸受部T2のスラスト軸受隙間を形成する(図2を参照)。   The lower end surface 10a1 of the disk portion 10a is opposed to the dynamic pressure groove 9a1 formation region (second thrust bearing surface B2) of the upper end surface 9a provided on the one end opening side of the housing portion 9, and when the shaft member 2 rotates, A thrust bearing gap of a second thrust bearing portion T2 described later is formed between the end surface 9a (see FIG. 2).

筒状部10bの内周面10b1は、ハウジング部9の外周上端に設けられたテーパ面9bと対向し、このテーパ面9bとの間に径方向寸法が上方に向かって漸次縮小するテーパ状のシール空間Sを形成する。このシール空間Sは、ハブ部10(回転部材3)の回転時、スラスト軸受部T2のスラスト軸受隙間の外径側と連通する。後述する潤滑油を流体軸受装置1内部に充満させた状態では、潤滑油の油面は常時シール空間Sの範囲内にある。   An inner peripheral surface 10b1 of the cylindrical portion 10b is opposed to a tapered surface 9b provided at the upper end of the outer periphery of the housing portion 9, and has a tapered shape in which the radial dimension gradually decreases upward between the tapered surface 9b. A seal space S is formed. The seal space S communicates with the outer diameter side of the thrust bearing gap of the thrust bearing portion T2 when the hub portion 10 (the rotating member 3) rotates. In a state where the lubricating oil described later is filled in the hydrodynamic bearing device 1, the oil level of the lubricating oil is always within the range of the seal space S.

流体軸受装置1内部に充満される潤滑油としては、種々のものが使用可能であるが、HDD等のディスク駆動装置用の流体軸受装置に提供される潤滑油には、その使用時あるいは輸送時における温度変化を考慮して、低蒸発率及び低粘度性に優れたエステル系潤滑油、例えばジオクチルセバケート(DOS)、ジオクチルアゼレート(DOZ)等が好適に使用可能である。   Various types of lubricating oil can be used as the fluid filled in the hydrodynamic bearing device 1, but the lubricating oil provided to the hydrodynamic bearing device for a disk drive device such as an HDD may be used at the time of use or transportation. Considering the temperature change in the above, an ester-based lubricating oil excellent in low evaporation rate and low viscosity, such as dioctyl sebacate (DOS), dioctyl azelate (DOZ), etc. can be suitably used.

上記構成の流体軸受装置1において、軸部材2の回転時、スリーブ部8の内周面8aに形成された動圧溝8a1、8a2形成領域(第1、第2ラジアル軸受面A1、A2)は、対向する軸部材2の外周面2aとの間にラジアル軸受隙間を形成する。そして、軸部材2の回転に伴い、上記ラジアル軸受隙間の潤滑油が動圧溝8a1、8a2の軸方向中心側に押し込まれ、その圧力が上昇する。このように、動圧溝8a1、8a2によって生じる潤滑油の動圧作用によって、軸部材2をラジアル方向に非接触支持する第一ラジアル軸受部R1と第二ラジアル軸受部R2とがそれぞれ構成される。   In the hydrodynamic bearing device 1 configured as described above, when the shaft member 2 rotates, the dynamic pressure grooves 8a1 and 8a2 formation regions (first and second radial bearing surfaces A1 and A2) formed on the inner peripheral surface 8a of the sleeve portion 8 are formed. A radial bearing gap is formed between the opposing outer peripheral surface 2a of the shaft member 2. As the shaft member 2 rotates, the lubricating oil in the radial bearing gap is pushed toward the axial center of the dynamic pressure grooves 8a1 and 8a2, and the pressure rises. As described above, the first radial bearing portion R1 and the second radial bearing portion R2 that support the shaft member 2 in a non-contact manner in the radial direction are configured by the dynamic pressure action of the lubricating oil generated by the dynamic pressure grooves 8a1 and 8a2. .

これと同時に、スリーブ部8の下端面8bに形成される動圧溝8b1形成領域(第1スラスト軸受面B1)とこれに対向するフランジ部2bの上端面2b1との間のスラスト軸受隙間、およびハウジング部9の上端面9aに形成される動圧溝9a1形成領域(第2スラスト軸受面B2)とこれに対向するハブ部10の下端面10a1との間のスラスト軸受隙間に形成される潤滑油膜の圧力が、動圧溝8b1、9a1の動圧作用により高められる。そして、これら油膜の圧力によって、回転部材3(ハブ部10)をスラスト方向に非接触支持する第一スラスト軸受部T1と第二スラスト軸受部T2とがそれぞれ構成される。   At the same time, a thrust bearing gap between the dynamic pressure groove 8b1 formation region (first thrust bearing surface B1) formed on the lower end surface 8b of the sleeve portion 8 and the upper end surface 2b1 of the flange portion 2b opposed to the region, Lubricating oil film formed in a thrust bearing gap between the dynamic pressure groove 9a1 formation region (second thrust bearing surface B2) formed in the upper end surface 9a of the housing portion 9 and the lower end surface 10a1 of the hub portion 10 facing the region. Is increased by the dynamic pressure action of the dynamic pressure grooves 8b1 and 9a1. The first thrust bearing portion T1 and the second thrust bearing portion T2 that support the rotating member 3 (hub portion 10) in a non-contact manner in the thrust direction are configured by the pressure of these oil films.

また、この実施形態では、スリーブ部8の外周面8dに軸方向溝13が形成される。これにより、軸受内部に充満された潤滑油を循環させることが可能となり、局所的な負圧の発生に伴う気泡の生成等を回避できる。具体的には、ハブ部10の円盤部10aの下側端面10a1とスリーブ部8の上側端面8cとの間の隙間、第一、第二ラジアル軸受部R1、R2の軸受隙間、および第二スラスト軸受部T2の軸受隙間にそれぞれ充填された潤滑油が循環可能となる。この実施形態では、スリーブ部8の内周面8aに形成された動圧溝8a1が軸方向で上下非対称に形成されることで、第一ラジアル軸受部R1の軸受隙間の潤滑油を下方へ押し込み、軸受内部の潤滑油を強制的に循環させる構成となっている(図3を参照)。このような強制的な循環が特に必要なければ、ラジアル軸受面の動圧溝を軸方向で上下対称に形成してもよい。   In this embodiment, the axial groove 13 is formed on the outer peripheral surface 8 d of the sleeve portion 8. As a result, it is possible to circulate the lubricating oil filled in the bearing, and avoid the generation of bubbles accompanying the occurrence of local negative pressure. Specifically, the clearance between the lower end surface 10a1 of the disk portion 10a of the hub portion 10 and the upper end surface 8c of the sleeve portion 8, the bearing clearances of the first and second radial bearing portions R1, R2, and the second thrust The lubricating oil filled in the bearing gaps of the bearing portion T2 can be circulated. In this embodiment, the dynamic pressure groove 8a1 formed on the inner peripheral surface 8a of the sleeve portion 8 is formed to be asymmetric in the vertical direction so that the lubricating oil in the bearing gap of the first radial bearing portion R1 is pushed downward. The lubricating oil inside the bearing is forcibly circulated (see FIG. 3). If such forced circulation is not particularly necessary, the dynamic pressure grooves on the radial bearing surface may be formed vertically symmetrical in the axial direction.

このような流体軸受装置1において、軸受部材7の寸法精度、特にラジアル軸受面A1、A2に対する各部位の寸法精度は、軸受性能に大きな影響を及ぼす。例えば、ラジアル軸受面A1、A2とハウジング部9の外周面の円筒面9eとの同軸度の精度が悪いと、ブラケット6に円筒面9eを固定した状態で、回転軸が傾斜、あるいは偏心するため、回転部材3の回転精度が低下する。また、ラジアル軸受面A1、A2に対するハウジング部9の外周上方部に形成されたテーパ面9bの振れ精度が悪いと、回転部材3の回転時に形成されるシール空間Sの隙間幅の精度が低下し、シール機能の低下やシール空間Sを介して対向する部材同士の接触を招く。さらに、ラジアル軸受面A1、A2の中心軸に対するスラスト軸受面B1、B2の直角度の精度が悪いと、ラジアル軸受隙間やスラスト軸受隙間の隙間幅の精度が低下し、軸受剛性が低下するおそれがある。   In such a hydrodynamic bearing device 1, the dimensional accuracy of the bearing member 7, particularly the dimensional accuracy of each part with respect to the radial bearing surfaces A1 and A2, greatly affects the bearing performance. For example, if the accuracy of the coaxiality between the radial bearing surfaces A1 and A2 and the cylindrical surface 9e of the outer peripheral surface of the housing portion 9 is poor, the rotating shaft is inclined or decentered with the cylindrical surface 9e fixed to the bracket 6. The rotational accuracy of the rotating member 3 is reduced. Moreover, if the deflection accuracy of the tapered surface 9b formed on the outer peripheral upper portion of the housing portion 9 with respect to the radial bearing surfaces A1 and A2 is poor, the accuracy of the gap width of the seal space S formed when the rotary member 3 rotates is lowered. Further, the sealing function is deteriorated and the members facing each other through the seal space S are brought into contact. Furthermore, if the accuracy of the perpendicularity of the thrust bearing surfaces B1 and B2 with respect to the central axis of the radial bearing surfaces A1 and A2 is poor, the accuracy of the radial bearing clearance and the clearance width of the thrust bearing clearance may decrease, and the bearing rigidity may decrease. is there.

このような不具合を回避するため、軸受部材7を形成した後、その寸法精度を測定し、所定の基準を満たすか否かを検査する必要がある。本発明はこの検査方法に係るものであり、その一例を以下に示す。   In order to avoid such problems, it is necessary to measure the dimensional accuracy after forming the bearing member 7 and inspect whether or not a predetermined standard is satisfied. The present invention relates to this inspection method, and an example thereof is shown below.

図6に示す検査装置20は、軸受部材7の内周に圧入される基準軸21と、基準軸21を回転駆動する駆動部22と、被測定面の振れ幅を測定するゲージ23および触針24とで構成される。基準軸21の外径は、軸受部材7の内径、詳しくはラジアル軸受面A1、A2に形成される動圧発生部の背部(図3にクロスハッチングで示す)の内径よりも、圧入代の分だけ大径に設定される。圧入代の幅は、焼結金属で形成されるスリーブ部8の弾性変形の範囲内で設定される。駆動部22には、図示しないスピンドルが組み込まれている。このスピンドルには、回転精度に優れたエアスピンドルを用いるのが好ましい。   An inspection apparatus 20 shown in FIG. 6 includes a reference shaft 21 that is press-fitted into the inner periphery of the bearing member 7, a drive unit 22 that rotationally drives the reference shaft 21, a gauge 23 that measures the deflection width of the surface to be measured, and a stylus. 24. The outer diameter of the reference shaft 21 is larger than the inner diameter of the bearing member 7, more specifically, the inner diameter of the back portion (shown by cross-hatching in FIG. 3) of the dynamic pressure generating portion formed on the radial bearing surfaces A1 and A2. Only large diameter is set. The width of the press-fitting allowance is set within the range of elastic deformation of the sleeve portion 8 formed of sintered metal. A spindle (not shown) is incorporated in the drive unit 22. As this spindle, it is preferable to use an air spindle excellent in rotational accuracy.

検査工程を以下に示す。まず、軸受部材7の内周に基準軸21を圧入することにより、軸受部材7を基準軸21に対して固定する。このように、軸受部材7の固定が基準軸21の圧入のみで行うことができるため、例えば固定具を用いてターンテーブル等に固定する従来の方法と比べ、簡易に固定ができる。また、高精度に加工されたラジアル軸受面A1、A2を基準とすることで、軸受部材7の高精度な位置決めが可能となる。   The inspection process is shown below. First, the bearing member 7 is fixed to the reference shaft 21 by press-fitting the reference shaft 21 into the inner periphery of the bearing member 7. Thus, since the bearing member 7 can be fixed only by press-fitting the reference shaft 21, it can be fixed more easily than a conventional method of fixing to a turntable or the like using a fixing tool, for example. Further, the bearing member 7 can be positioned with high accuracy by using the radial bearing surfaces A1, A2 processed with high accuracy as a reference.

次に、駆動部22の駆動力により、基準軸21および軸受部材7を一体に回転させる。この状態で、ゲージ23および触針24により被測定面の振れ幅を測定する。この振れ幅の測定値に基づいて、ラジアル軸受面A1、A2に対する被測定面の同軸度、振れ精度、あるいは直角度等の寸法精度を評価することができる。例えば、図6のように、触針24をハウジング9の外周面の円筒面9eと接触させ、この面の振れ幅を測定することにより、ラジアル軸受面A1、A2に対する円筒面9eの同軸度等を評価することができる。また、図示は省略するが、触針24をハウジング9の外周面のテーパ面9bに接触させ、この面の振れ幅を測定することにより、ラジアル軸受面A1、A2に対するテーパ面9bの振れ精度等を評価することができる。あるいは、同じく図示は省略するが、触針24をハウジング9の上端面9aに形成されたスラスト軸受面B2に接触させ、この面の振れ幅を測定することにより、ラジアル軸受面A1、A2に対するスラスト軸受面B2の直角度等を評価することができる。   Next, the reference shaft 21 and the bearing member 7 are integrally rotated by the driving force of the driving unit 22. In this state, the deflection width of the surface to be measured is measured with the gauge 23 and the stylus 24. Based on the measured value of the deflection width, the dimensional accuracy such as the coaxiality, deflection accuracy, or squareness of the measured surface with respect to the radial bearing surfaces A1 and A2 can be evaluated. For example, as shown in FIG. 6, the stylus 24 is brought into contact with the cylindrical surface 9e on the outer peripheral surface of the housing 9, and the degree of coaxiality of the cylindrical surface 9e with respect to the radial bearing surfaces A1 and A2 is measured by measuring the swing width of this surface. Can be evaluated. Although illustration is omitted, the stylus 24 is brought into contact with the tapered surface 9b on the outer peripheral surface of the housing 9, and the deflection width of this surface is measured to thereby determine the deflection accuracy of the tapered surface 9b with respect to the radial bearing surfaces A1 and A2. Can be evaluated. Alternatively, although not shown, the stylus 24 is brought into contact with the thrust bearing surface B2 formed on the upper end surface 9a of the housing 9, and the thrust with respect to the radial bearing surfaces A1 and A2 is measured by measuring the swing width of this surface. The perpendicularity of the bearing surface B2 can be evaluated.

このように本発明の検査方法は、従来の測定装置のように軸受部材の内周面に触針を挿入する必要がないため、小型の軸受部材でも容易に寸法精度を検査することができる。   As described above, the inspection method of the present invention does not require a stylus to be inserted into the inner peripheral surface of the bearing member as in the conventional measuring apparatus, so that the dimensional accuracy can be easily inspected even with a small bearing member.

また、このような検査装置20は、上記のように簡易な仕組みであるため、ターンテーブル等を有する従来の検査装置に比べ、小型化が可能となる。よって、クリーンルームなどの特殊な環境内にも容易に搬入することができる。   In addition, since such an inspection apparatus 20 has a simple mechanism as described above, the inspection apparatus 20 can be reduced in size as compared with a conventional inspection apparatus having a turntable or the like. Therefore, it can be easily carried into a special environment such as a clean room.

本発明の検査方法が適用される軸受部材7は上記に限られない。例えば、図7に示すような一端が閉塞されたカップ状の軸受部材7にも適用できる。この軸受部材7は、蓋部材11とハウジング部9とが一体に成形され、下端開口部が封口されている。この軸受部材7の検査は、その上端開口部から基準軸21を圧入し、図6に示す実施形態とは上下反転させた状態で行われる。   The bearing member 7 to which the inspection method of the present invention is applied is not limited to the above. For example, the present invention can also be applied to a cup-shaped bearing member 7 whose one end is closed as shown in FIG. In the bearing member 7, the lid member 11 and the housing portion 9 are integrally formed, and the lower end opening is sealed. The inspection of the bearing member 7 is performed in a state where the reference shaft 21 is press-fitted from the upper end opening and is inverted upside down from the embodiment shown in FIG.

図8に示す軸受部材7は、ハウジング部9とスリーブ部8とが樹脂材料で一体成形されている。ここで用いられる樹脂材料は、軸受面に要求される耐摩耗性、耐油性等に加え、優れた弾性を有するものが使用される。このとき、ラジアル軸受面A1、A2は樹脂で形成され、軸受部材7の内周に、樹脂の弾性を利用して基準軸21が圧入される。   As for the bearing member 7 shown in FIG. 8, the housing part 9 and the sleeve part 8 are integrally molded with the resin material. As the resin material used here, a material having excellent elasticity in addition to wear resistance and oil resistance required for the bearing surface is used. At this time, the radial bearing surfaces A1 and A2 are formed of resin, and the reference shaft 21 is press-fitted into the inner periphery of the bearing member 7 using the elasticity of the resin.

また、上記では、ラジアル軸受面A1、A2が焼結金属あるいは樹脂といった弾性体で形成される場合を示したが、ラジアル軸受面A1、A2を形成する材料はこれに限らない。例えば上記以外の材料でも、弾性変形の範囲内で、基準軸21との十分な固定力が得られるものであれば使用可能である。また、ラジアル軸受面A1、A2を各種金属材料などの非弾性体で形成し、検査装置20の基準軸21を弾性体で形成することにより、軸受部材7と基準軸21との弾性的な圧入力による固定が可能となる。あるいは、基準軸21を拡径、縮径が可能な構造とすれば、縮径状態の基準軸21を軸受部材7の内周に挿入した後、基準軸21を拡径させることで、軸受部材7の材質にかかわらず、軸受部材7をラジアル軸受面A1、A2を基準とした固定が可能となる。   In the above description, the radial bearing surfaces A1 and A2 are formed of an elastic body such as sintered metal or resin. However, the material for forming the radial bearing surfaces A1 and A2 is not limited thereto. For example, materials other than those described above can be used as long as a sufficient fixing force with the reference shaft 21 can be obtained within the range of elastic deformation. In addition, the radial bearing surfaces A1 and A2 are formed of an inelastic body such as various metal materials, and the reference shaft 21 of the inspection apparatus 20 is formed of an elastic body, so that the elastic pressure between the bearing member 7 and the reference shaft 21 is increased. Fixed by input. Alternatively, if the reference shaft 21 has a structure capable of expanding and reducing the diameter, the reference shaft 21 in a reduced diameter state is inserted into the inner periphery of the bearing member 7 and then the reference shaft 21 is expanded to thereby increase the diameter of the bearing member. Regardless of the material 7, the bearing member 7 can be fixed on the basis of the radial bearing surfaces A1 and A2.

流体軸受装置1を構成する他の要素も上記実施形態に限られない。例えば、上記実施形態では、金属製の軸部材2をインサート部品とする樹脂の射出成形で、軸部材2と一体にハブ部10を射出成形する場合を説明したが、例えばハブ部10のみを樹脂で射出成形した後、ハブ部10とは別体に形成した金属製の軸部材2の端部をハブ部10中央に設けた孔に圧入することで一体化することもできる。あるいは、軸部材2を樹脂製とし、ハブ部10と軸部材2とを共に樹脂の射出成形で一体に形成することもできる。   Other elements constituting the hydrodynamic bearing device 1 are not limited to the above embodiment. For example, in the above-described embodiment, the case where the hub portion 10 is injection-molded integrally with the shaft member 2 by the resin injection molding using the metal shaft member 2 as an insert part has been described. After the injection molding, the end portion of the metal shaft member 2 formed separately from the hub portion 10 can be integrated by being press-fitted into a hole provided in the center of the hub portion 10. Alternatively, the shaft member 2 can be made of resin, and the hub portion 10 and the shaft member 2 can be integrally formed by resin injection molding.

また、上記実施形態では、フランジ部2bの上端面2b1とスリーブ部8の下端面8bとの間、およびハブ部10とハウジング部9との間にそれぞれスラスト軸受部T1、T2を設けた場合を説明したが、本発明は、スラスト軸受部T1、T2の形成箇所に関係なく適用可能である。すなわち、ハブ部10の下端面10a1がスラスト軸受隙間を形成するか否かは問題とならず、例えば図示は省略するが、スラスト軸受部T1、T2が共にフランジ部2bの両端面とこれらの面に対向する面との間に形成されたものであってもよい。   In the above embodiment, the thrust bearing portions T1 and T2 are provided between the upper end surface 2b1 of the flange portion 2b and the lower end surface 8b of the sleeve portion 8 and between the hub portion 10 and the housing portion 9, respectively. As described above, the present invention is applicable regardless of the locations where the thrust bearing portions T1 and T2 are formed. That is, it does not matter whether or not the lower end surface 10a1 of the hub portion 10 forms a thrust bearing gap. For example, although illustration is omitted, both the thrust bearing portions T1 and T2 have both end surfaces of the flange portion 2b and these surfaces. It may be formed between the surface and the opposite surface.

また、以上の実施形態では、ラジアル軸受部R1、R2およびスラスト軸受部T1、T2として、へリングボーン形状やスパイラル形状の動圧溝により潤滑油の動圧作用を発生させる構成を例示しているが、本発明はこれに限定されるものではない。   In the above embodiment, the radial bearing portions R1 and R2 and the thrust bearing portions T1 and T2 are exemplified by the configuration in which the dynamic pressure action of the lubricating oil is generated by the dynamic pressure grooves having a herringbone shape or a spiral shape. However, the present invention is not limited to this.

例えば、ラジアル軸受部R1、R2として、図示は省略するが、軸方向の溝を円周方向の複数箇所に形成した、いわゆるステップ状の動圧発生部、あるいは、円周方向に複数の円弧面を配列し、対向する軸部材2の真円状外周面2aとの間に、くさび状の径方向隙間(軸受隙間)を形成した、いわゆる多円弧軸受を採用してもよい。   For example, although not shown as radial bearing portions R1 and R2, a so-called step-like dynamic pressure generating portion in which axial grooves are formed at a plurality of locations in the circumferential direction, or a plurality of circular arc surfaces in the circumferential direction. A so-called multi-arc bearing in which wedge-shaped radial gaps (bearing gaps) are formed between the shaft member 2 and the opposite circular outer peripheral surface 2a may be employed.

あるいは、スリーブ部8の内周面8aを、動圧発生部としての動圧溝や円弧面等を設けない真円外周面とし、この内周面8aと対向する軸部材2の真円状外周面2aとで、いわゆる真円軸受を構成することができる。この場合、真円状のスリーブ部8の内周面8aがラジアル軸受面となる。   Alternatively, the inner peripheral surface 8a of the sleeve portion 8 is a perfect circular outer peripheral surface not provided with a dynamic pressure groove or a circular arc surface as a dynamic pressure generating portion, and the perfect outer periphery of the shaft member 2 facing the inner peripheral surface 8a. A so-called perfect circle bearing can be constituted by the surface 2a. In this case, the inner peripheral surface 8a of the perfect circular sleeve portion 8 is a radial bearing surface.

また、第一スラスト軸受部T1と第二スラスト軸受部T2の一方又は双方は、同じく図示は省略するが、動圧発生部が形成される領域(例えばスリーブ部8の下端面8b、ハウジング部9の上端面9a)に、複数の半径方向溝形状の動圧溝を円周方向所定間隔に設けた、いわゆるステップ軸受、あるいは波型軸受(ステップ型が波型になったもの)等で構成することもできる。   In addition, one or both of the first thrust bearing portion T1 and the second thrust bearing portion T2 are also omitted in the drawing, but the region where the dynamic pressure generating portion is formed (for example, the lower end surface 8b of the sleeve portion 8 and the housing portion 9). Is formed of a so-called step bearing or corrugated bearing (in which the step shape is a corrugated shape) in which a plurality of radial groove-shaped dynamic pressure grooves are provided at predetermined intervals in the circumferential direction. You can also.

また、以上の実施形態では、スリーブ部8の側にラジアル動圧発生部(動圧溝8a1、8a2)が、また、スリーブ部8やハウジング部9の側にスラスト動圧発生部(動圧溝8b1、9a1)がそれぞれ形成される場合を説明したが、これら動圧発生部が形成される領域は、例えばこれらに対向する軸部材2の外周面2aやフランジ部2bの上端面2b1、あるいはハブ部10の下端面10a1の側に設けることもできる。   In the above embodiment, the radial dynamic pressure generating portion (dynamic pressure grooves 8a1 and 8a2) is provided on the sleeve portion 8 side, and the thrust dynamic pressure generating portion (dynamic pressure groove is provided on the sleeve portion 8 and housing portion 9 side. 8b1 and 9a1) have been described. The regions where the dynamic pressure generating portions are formed are, for example, the outer peripheral surface 2a of the shaft member 2 and the upper end surface 2b1 of the flange portion 2b, or the hub. It can also be provided on the lower end surface 10a1 side of the portion 10.

また、以上の説明では、流体軸受装置1の内部に充満し、ラジアル軸受隙間や、スラスト軸受隙間に動圧作用を生じる流体として、潤滑油を例示したが、それ以外にも各軸受隙間に動圧作用を発生可能な流体、例えば空気等の気体や、磁性流体等の流動性を有する潤滑剤、あるいは潤滑グリース等を使用することもできる。   In the above description, the lubricating oil is exemplified as the fluid that fills the inside of the hydrodynamic bearing device 1 and generates a dynamic pressure action in the radial bearing gap or the thrust bearing gap. A fluid capable of generating a pressure action, for example, a gas such as air, a fluid lubricant such as a magnetic fluid, or lubricating grease may be used.

流体軸受装置1を組込んだスピンドルモータの断面図である。It is sectional drawing of the spindle motor incorporating the fluid dynamic bearing device. 流体軸受装置1の断面図である。1 is a cross-sectional view of a hydrodynamic bearing device 1. FIG. スリーブ部8の断面図である。3 is a cross-sectional view of a sleeve portion 8. FIG. スリーブ部8の下面図である。4 is a bottom view of a sleeve portion 8. FIG. ハウジング部9の上面図である。FIG. 6 is a top view of the housing part 9. 軸受部材7を検査装置20に設置した状態を示す断面図である。FIG. 6 is a cross-sectional view showing a state in which the bearing member 7 is installed in the inspection device 20. 他の実施形態にかかる軸受部材7を検査装置20に設置した状態を示す断面図である。It is sectional drawing which shows the state which installed the bearing member 7 concerning other embodiment in the test | inspection apparatus 20. FIG. 他の実施形態にかかる軸受部材7を検査装置20に設置した状態を示す断面図である。It is sectional drawing which shows the state which installed the bearing member 7 concerning other embodiment in the test | inspection apparatus 20. FIG.

符号の説明Explanation of symbols

1 流体軸受装置
2 軸部材
3 回転部材
7 軸受部材
8 スリーブ部
9 ハウジング部
10 ハブ部
20 検査装置
21 基準軸
22 駆動部
23 ゲージ
24 触針
A1、A2 ラジアル軸受面
B1、B2 スラスト軸受面
R1、R2 ラジアル軸受部
T1、T2 スラスト軸受部
S シール空間
DESCRIPTION OF SYMBOLS 1 Fluid dynamic bearing apparatus 2 Shaft member 3 Rotating member 7 Bearing member 8 Sleeve part 9 Housing part 10 Hub part 20 Inspection apparatus 21 Reference | standard shaft 22 Drive part 23 Gauge 24 Contact needle A1, A2 Radial bearing surface B1, B2 Thrust bearing surface R1, R2 Radial bearing part T1, T2 Thrust bearing part S Seal space

Claims (2)

内周面にラジアル軸受面が形成された軸受部材と、軸受部材の内周に挿入される軸部材とを備え、ラジアル軸受面と軸部材の外周面との間のラジアル軸受隙間に形成される流体膜で軸部材を回転自在に支持する流体軸受装置において、前記軸受部材の寸法精度を検査するための方法であって、
ラジアル軸受面を基準として軸受部材を回転させた状態で、被測定面の振れ幅を測定することを特徴とする軸受部材の検査方法。
A bearing member having a radial bearing surface formed on the inner peripheral surface and a shaft member inserted into the inner periphery of the bearing member are formed in a radial bearing gap between the radial bearing surface and the outer peripheral surface of the shaft member. In a hydrodynamic bearing device that rotatably supports a shaft member with a fluid film, a method for inspecting the dimensional accuracy of the bearing member,
An inspection method for a bearing member, comprising: measuring a runout width of a surface to be measured in a state where the bearing member is rotated with respect to a radial bearing surface.
ラジアル軸受面に弾性的に圧入した基準軸を回転させることにより、軸受部材を回転させる請求項1記載の軸受部材の検査方法。   The bearing member inspection method according to claim 1, wherein the bearing member is rotated by rotating a reference shaft that is elastically press-fitted into the radial bearing surface.
JP2006190373A 2006-07-11 2006-07-11 Inspection method of bearing member of fluid bearing device Withdrawn JP2008020244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006190373A JP2008020244A (en) 2006-07-11 2006-07-11 Inspection method of bearing member of fluid bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006190373A JP2008020244A (en) 2006-07-11 2006-07-11 Inspection method of bearing member of fluid bearing device

Publications (1)

Publication Number Publication Date
JP2008020244A true JP2008020244A (en) 2008-01-31

Family

ID=39076301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006190373A Withdrawn JP2008020244A (en) 2006-07-11 2006-07-11 Inspection method of bearing member of fluid bearing device

Country Status (1)

Country Link
JP (1) JP2008020244A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013144974A2 (en) 2012-03-29 2013-10-03 Tvs Motor Company Limited A method of predicting throttle position based on engine speed signal and a vehicle using the same
KR101412664B1 (en) * 2013-10-23 2014-06-27 (주) 에스.피.시스템스 a test jig for guide roller
CN106153337A (en) * 2016-06-22 2016-11-23 东南大学 A kind of Permanent-magnet bearing axial carrying capacity test device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013144974A2 (en) 2012-03-29 2013-10-03 Tvs Motor Company Limited A method of predicting throttle position based on engine speed signal and a vehicle using the same
KR101412664B1 (en) * 2013-10-23 2014-06-27 (주) 에스.피.시스템스 a test jig for guide roller
CN106153337A (en) * 2016-06-22 2016-11-23 东南大学 A kind of Permanent-magnet bearing axial carrying capacity test device

Similar Documents

Publication Publication Date Title
US8454239B2 (en) Fluid dynamic bearing device and assembling method thereof
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
JP2008069805A (en) Dynamic pressure bearing device
JP4476670B2 (en) Hydrodynamic bearing device
US8511899B2 (en) Fluid dynamic bearing device, and manufacturing method of bearing member
JP4762757B2 (en) Hydrodynamic bearing device
JP2008020244A (en) Inspection method of bearing member of fluid bearing device
JP2005337490A (en) Dynamic pressure bearing device
JP4642682B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP2007267503A (en) Dynamic pressure bearing apparatus
JP2006258123A (en) Dynamic pressure bearing device
JP2008144847A (en) Dynamic pressure bearing device
JP2008075687A (en) Fluid bearing device
JP4739030B2 (en) Hydrodynamic bearing device
JP2008069835A (en) Dynamic pressure bearing device
JP5133156B2 (en) Fluid dynamic bearing device
JP2008298684A (en) Testing method for fluid bearing device
JP2007263232A (en) Fluid bearing device
JP4522869B2 (en) Hydrodynamic bearing device
JP2007102963A (en) Disk driving device
JP4675880B2 (en) Method for manufacturing fluid dynamic bearing device
JP2009098071A (en) Method of inspecting bearing member of fluid bearing device
JP2008128446A (en) Fluid bearing device
JP2006071029A (en) Dynamic pressure bearing device
JP5602535B2 (en) Fluid dynamic bearing device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091006