JP2008014671A - Magnetic encoder device - Google Patents

Magnetic encoder device Download PDF

Info

Publication number
JP2008014671A
JP2008014671A JP2006183702A JP2006183702A JP2008014671A JP 2008014671 A JP2008014671 A JP 2008014671A JP 2006183702 A JP2006183702 A JP 2006183702A JP 2006183702 A JP2006183702 A JP 2006183702A JP 2008014671 A JP2008014671 A JP 2008014671A
Authority
JP
Japan
Prior art keywords
magnetic field
field detection
magnetic
detection element
circumferential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006183702A
Other languages
Japanese (ja)
Other versions
JP2008014671A5 (en
Inventor
Takefumi Kabashima
武文 椛島
Ikuma Murokita
幾磨 室北
Shiro Yoshitomi
史朗 吉冨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2006183702A priority Critical patent/JP2008014671A/en
Publication of JP2008014671A publication Critical patent/JP2008014671A/en
Publication of JP2008014671A5 publication Critical patent/JP2008014671A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hollow-body type magnetic encoder device, with low cost for manufacturing or assembling and, moreover, which has high reliability with high resistance to noise. <P>SOLUTION: In this magnetic encoder device a ring-shaped permanent magnet 2 which is magnetized parallel with one direction perpendicular to the central axis of a rotating body 1 is fixed internally to the ring-shaped rotating body 1; a ring-shaped fixed body 3 is disposed opposite to the inner periphery of the permanent magnet 2 via a void; and a magnetic field detecting unit 4 is formed at one location on the fixed body 3, where a magnetic field detecting element which detects the radial magnetic flux of the permanent magnet 2, and a magnetic field detecting element which detects the circumferential magnetic flux are disposed in proximity. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、回転体の回転位置を検出する磁気式エンコーダ装置の、特に中空部を有する磁気式エンコーダ装置に関する。   The present invention relates to a magnetic encoder device that detects a rotational position of a rotating body, and more particularly to a magnetic encoder device having a hollow portion.

ロボットなどに用いられるアクチュエータは、パワー線や信号線を通すために、中空タイプのアクチュエータが用いられる。このため、回転体の回転角度を検出するエンコーダも中空タイプのエンコーダが用いられる。
従来の中空エンコーダとして平行に磁化されたリング状の永久磁石を回転体の内周側に固定し、この永久磁石からの磁界を固定体に固定した磁界検出素子で検出し、回転体の絶対位置を検出するようにした磁気式エンコーダ装置が開示されている(例えば特許文献1参照)。
As an actuator used for a robot or the like, a hollow type actuator is used to pass a power line or a signal line. For this reason, a hollow type encoder is also used as an encoder for detecting the rotation angle of the rotating body.
As a conventional hollow encoder, a ring-shaped permanent magnet magnetized in parallel is fixed to the inner peripheral side of the rotating body, and the magnetic field from this permanent magnet is detected by a magnetic field detection element fixed to the fixed body, and the absolute position of the rotating body There is disclosed a magnetic encoder device that detects the above (see, for example, Patent Document 1).

図9は、従来の磁気式エンコーダの構造図である。
図において、1は磁性体からなる回転体、2は回転体1の内周側に固定したリング状の永久磁石で、回転体1の中心軸に垂直平面内で一方向に平行に磁化されている。3は中空部を有する磁性体からなる固定体である。また、40は固定体3に互いに周方向に90度間隔で取り付けられた4個の磁界検出素子で、永久磁石2の外周面に対して空隙を介して対向し、かつ互いに機械角で90度位相をずらしてA1相検出素子41とB1 相検出素子42を設け、さらにA1 相検出素子41に対して機械角で180度位相をずらしてA2 相検出素子43を、B1相検出素子42に対して機械角で180度位相をずらしてB2 相検出素子44を設けてある。
磁界検出素子41〜44は、回転体1の回転に応じて永久磁石2が発生する磁界の変化を検出する。この検出信号を信号処理回路5で回転角度に変換し、回転体1の絶対値位置を検出している。
WO2005/040729
FIG. 9 is a structural diagram of a conventional magnetic encoder.
In the figure, 1 is a rotating body made of a magnetic material, 2 is a ring-shaped permanent magnet fixed to the inner peripheral side of the rotating body 1, and is magnetized in parallel in one direction within a plane perpendicular to the central axis of the rotating body 1. Yes. Reference numeral 3 denotes a fixed body made of a magnetic body having a hollow portion. Reference numeral 40 denotes four magnetic field detecting elements attached to the fixed body 3 at intervals of 90 degrees in the circumferential direction, opposed to the outer peripheral surface of the permanent magnet 2 via a gap, and 90 degrees in mechanical angle with each other. The A1 phase detection element 41 and the B1 phase detection element 42 are provided by shifting the phase, and the A2 phase detection element 43 is shifted from the A1 phase detection element 41 by a mechanical angle of 180 degrees with respect to the B1 phase detection element 42. Thus, the B2 phase detection element 44 is provided with a phase difference of 180 degrees by the mechanical angle.
The magnetic field detection elements 41 to 44 detect changes in the magnetic field generated by the permanent magnet 2 in accordance with the rotation of the rotating body 1. This detection signal is converted into a rotation angle by the signal processing circuit 5 to detect the absolute value position of the rotating body 1.
WO2005 / 040729

特許文献1で開示された中空エンコーダは、発磁体である永久磁石が偏心して回転する場合に発生する角度誤差を低減するために、A相、B相の差動検出を行っている。そのため4個の磁界検出素子が必要となる。このため、磁界検出素子数が増え、磁界検出素子を駆動する端子や信号を検出する端子が増えるとともに、リード線もそれぞれの磁界検出素子に対して駆動側2本と出力側2本の合計4本が必要であり、磁界検出素子全体では16本と多くのリード線が必要になるという問題があった。このため製作や組立に要するコストが高くなる問題があった。また磁界検出素子の駆動端子や信号検出端子およびリード本数が増えるため、ノイズに弱く信頼性を低下させる問題があった。   The hollow encoder disclosed in Patent Document 1 performs differential detection of the A phase and the B phase in order to reduce an angular error that occurs when a permanent magnet that is a magnetic generator rotates eccentrically. Therefore, four magnetic field detection elements are required. For this reason, the number of magnetic field detection elements is increased, the number of terminals for driving the magnetic field detection elements and the number of terminals for detecting signals is increased, and the lead wires are a total of four drive side and two output sides for each magnetic field detection element. There is a problem that a large number of lead wires are required as the entire magnetic field detection element. For this reason, there was a problem that the cost required for production and assembly becomes high. Further, since the number of drive terminals, signal detection terminals, and leads of the magnetic field detection element increases, there is a problem that it is vulnerable to noise and the reliability is lowered.

本発明はこのような問題点に鑑みてなされたもので、製作や組立に要するコストが低く、しかも、ノイズに強く信頼性の高い磁気式エンコーダ装置を提供することを目的とする。   The present invention has been made in view of such problems, and an object of the present invention is to provide a magnetic encoder device that is low in cost for manufacturing and assembly and that is highly resistant to noise and highly reliable.

上記問題を解決するため、本発明は、次のように構成したものである。
請求項1に記載の発明は、リング状の回転体に内接して固定され、前記回転体の中心軸と垂直方向の一方向に平行に磁化されたリング状の永久磁石と前記永久磁石の内周側に空隙を介して対向しリング状の固定体に取り付けられた磁界検出素子とを備えた磁気式エンコーダと、前記磁界検出素子からの信号を処理する信号処理回路とを備えた磁気式エンコーダ装置において、前記永久磁石の径方向磁束を検出する径方向磁界検出素子と周方向磁束を検出する周方向磁界検出素子を近接して配置し磁界検出部を形成したことを特徴としている。
また、請求項2に記載の発明は、前記径方向磁界検出素子と前記周方向磁界検出素子を径方向に近接して配置したことを特徴としている。
また、請求項3に記載の発明は、前記径方向磁界検出素子と前記周方向磁界検出素子を周方向に近接して配置したことを特徴としている。
また、請求項4に記載の発明は、前記磁界検出部は、径方向磁束を検出する前記磁界検出素子と周方向磁束を検出する前記磁界検出素子を半導体技術により形成したものであることを特徴としている。
また、請求項5に記載の発明は、前記回転体は磁性体からなることを特徴としている。
また、請求項6に記載の発明は、前記固定体は磁性体からなることを特徴としている。
In order to solve the above problems, the present invention is configured as follows.
According to the first aspect of the present invention, there is provided a ring-shaped permanent magnet that is inscribed and fixed to a ring-shaped rotating body and is magnetized parallel to one direction perpendicular to the central axis of the rotating body. A magnetic encoder provided with a magnetic encoder having a magnetic field detecting element attached to a ring-shaped fixed body facing the circumferential side through a gap, and a signal processing circuit for processing a signal from the magnetic field detecting element The apparatus is characterized in that a magnetic field detection unit is formed by arranging a radial magnetic field detection element for detecting a radial magnetic flux of the permanent magnet and a circumferential magnetic field detection element for detecting a circumferential magnetic flux in proximity to each other.
The invention according to claim 2 is characterized in that the radial magnetic field detection element and the circumferential magnetic field detection element are arranged close to each other in the radial direction.
The invention according to claim 3 is characterized in that the radial magnetic field detection element and the circumferential magnetic field detection element are arranged close to each other in the circumferential direction.
According to a fourth aspect of the present invention, in the magnetic field detection unit, the magnetic field detection element for detecting a radial magnetic flux and the magnetic field detection element for detecting a circumferential magnetic flux are formed by semiconductor technology. It is said.
The invention according to claim 5 is characterized in that the rotating body is made of a magnetic material.
According to a sixth aspect of the present invention, the fixed body is made of a magnetic material.

請求項1に記載の発明によると、径方向磁界検出素子と周方向磁界検出素子を近接して配置し磁界検出部を形成したので、磁界検出部の個数が4個から1個に、磁界検出素子数は4個から2個になり、磁界検出素子の駆動端子や信号検出端子およびリード本数を1/2以下にすることができ、製作や組立に要するコストを低減することができる。また耐ノイズ性に優れた高信頼性の中空構造タイプのエンコーダを提供できる。
また、請求項2に記載の発明によると、径方向磁界検出素子と周方向磁界検出素子を径方向に近接して配置すれば、径方向磁界検出素子と周方向磁界検出素子の検出する磁束の位相差を、精度よく電気角で90度にすることができる。それゆえ角度検出誤差が小さく、高精度の中空構造タイプのエンコーダを提供できる。
また、請求項3に記載の発明によると、径方向磁界検出素子と周方向磁界検出素子を周方向に近接して配置すれば、磁界検出部を配置する径方向のスペース(ギャップ長)を小さくすることができるので大きい検出信号が得られる。従って、耐ノイズ性に優れた高信頼性の中空構造タイプのエンコーダを提供できる。
また、請求項4に記載の発明によると、径方向磁界検出素子と周方向磁界検出素子を半導体技術により形成すれば、径方向磁界検出素子と周方向磁界検出素子を極めて接近して磁界検出部を構成できるので、さらに高精度の小型の中空構造のエンコーダを提供できる。さらに、ギャップ長を小さくすることができるので耐ノイズ性に優れた高信頼性の中空構造タイプのエンコーダを提供できる。
According to the first aspect of the present invention, the radial magnetic field detection element and the circumferential magnetic field detection element are arranged close to each other to form the magnetic field detection unit, so that the number of magnetic field detection units is reduced from four to one. The number of elements is reduced from four to two, and the number of drive terminals, signal detection terminals, and leads of the magnetic field detection element can be reduced to ½ or less, and the cost required for manufacturing and assembly can be reduced. In addition, a highly reliable hollow structure type encoder excellent in noise resistance can be provided.
According to the second aspect of the present invention, if the radial magnetic field detection element and the circumferential magnetic field detection element are arranged close to each other in the radial direction, the magnetic flux detected by the radial magnetic field detection element and the circumferential magnetic field detection element is reduced. The phase difference can be accurately set to 90 degrees in electrical angle. Therefore, a highly accurate hollow structure type encoder with small angle detection error can be provided.
According to the invention of claim 3, if the radial magnetic field detection element and the circumferential magnetic field detection element are arranged close to each other in the circumferential direction, the radial space (gap length) in which the magnetic field detection unit is arranged can be reduced. Therefore, a large detection signal can be obtained. Therefore, a highly reliable hollow structure type encoder having excellent noise resistance can be provided.
According to the fourth aspect of the present invention, if the radial magnetic field detection element and the circumferential magnetic field detection element are formed by semiconductor technology, the radial magnetic field detection element and the circumferential magnetic field detection element are very close to each other, and the magnetic field detection unit Therefore, it is possible to provide a highly accurate and small-sized hollow structure encoder. Furthermore, since the gap length can be reduced, a highly reliable hollow structure type encoder having excellent noise resistance can be provided.

以下、本発明の実施の形態について図を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の第1実施例を示す磁気式エンコーダの構造図である。
図において、1は磁性体からなる回転体、2は回転体1の内周側に固定したリング状の永久磁石で、回転体1の中心軸の垂直方向に一方向に磁化されている。3は中空部を有する磁性体からなる固定体である。また、4は磁界検出部で永久磁石2と空隙部を介して固定体3上の一個所に固定されている。なお、図中の点線は磁束線を示している。
FIG. 1 is a structural diagram of a magnetic encoder showing a first embodiment of the present invention.
In the figure, 1 is a rotating body made of a magnetic material, and 2 is a ring-shaped permanent magnet fixed to the inner peripheral side of the rotating body 1, and is magnetized in one direction perpendicular to the central axis of the rotating body 1. Reference numeral 3 denotes a fixed body made of a magnetic body having a hollow portion. Reference numeral 4 denotes a magnetic field detection unit which is fixed to one place on the fixed body 3 through the permanent magnet 2 and the gap. In addition, the dotted line in a figure has shown the magnetic flux line.

エンコーダの外径は50mm、中空径は20mmである。永久磁石は外径40mmの直線異方性を有するSmCo系のリング状磁石を用いた。また回転体、固定体の材質はそれぞれSS41、積層鋼板S14を用いた。また、磁界検出部4の磁界検出素子にはホール素子を用いた。
図2は本実施例における磁界検出部の磁界検出素子の配置図である。
径方向磁束を検出するホール素子45(径方向磁界検出素子)と周方向磁束を検出するホール素子46(周方向磁界検出素子)を、径方向に2mm離して配置し磁界検出部4を構成した。図示しないがホール素子45および46からのリード線は、それぞれの磁界検出素子に対して駆動側2本と出力側2本の合計4本で、2個の磁界検出素子全体では8本となり、従来の1/2となる。
The outer diameter of the encoder is 50 mm and the hollow diameter is 20 mm. As the permanent magnet, an SmCo-based ring magnet having a linear anisotropy of 40 mm in outer diameter was used. Moreover, SS41 and laminated steel sheet S14 were used for the material of the rotating body and the fixed body, respectively. A Hall element was used as the magnetic field detection element of the magnetic field detection unit 4.
FIG. 2 is a layout diagram of the magnetic field detection elements of the magnetic field detection unit in the present embodiment.
The hall element 45 (radial magnetic field detection element) for detecting the radial magnetic flux and the hall element 46 (circumferential magnetic field detection element) for detecting the circumferential magnetic flux are arranged 2 mm apart in the radial direction to constitute the magnetic field detection unit 4. . Although not shown, there are four lead wires from the hall elements 45 and 46 for the respective magnetic field detection elements, ie, two on the driving side and two on the output side, and the total number of the two magnetic field detection elements is eight. 1/2 of this.

次に本発明の磁気式エンコーダ装置の動作について述べる。
図3は、本発明の磁気式エンコーダ装置の信号処理回路のブロック図である。
図において、51、52は増幅器、53は規格化回路、54は角度演算回路である。
図4は本実施例における径方向および周方向磁界検出素子の検出する径方向検出磁束密度および周方向検出磁束密度を示すグラフである。
Next, the operation of the magnetic encoder device of the present invention will be described.
FIG. 3 is a block diagram of a signal processing circuit of the magnetic encoder device of the present invention.
In the figure, 51 and 52 are amplifiers, 53 is a normalization circuit, and 54 is an angle calculation circuit.
FIG. 4 is a graph showing the radial direction detected magnetic flux density and the circumferential direction detected magnetic flux density detected by the radial direction and circumferential direction magnetic field detecting elements in the present embodiment.

回転体1が回転すると、永久磁石2も回転し、図4に示すような1回転に対し1サイクルの径方向および周方向磁束密度波形を発生する。径方向磁束を検出するホール素子45と、周方向磁束を検出するホール素子46からは回転体1の1回転に対し1サイクルの正弦波状の信号VaおよびVbが出力される。A相信号VaとB相信号Vbは互いに90度位相の異なる信号となる。   When the rotating body 1 rotates, the permanent magnet 2 also rotates, generating one cycle of radial and circumferential magnetic flux density waveforms for one rotation as shown in FIG. From the Hall element 45 for detecting the radial magnetic flux and the Hall element 46 for detecting the circumferential magnetic flux, sinusoidal signals Va and Vb of one cycle are output for one rotation of the rotating body 1. The A-phase signal Va and the B-phase signal Vb are signals that are 90 degrees out of phase with each other.

ホール素子45およびホール素子46で検出された磁界は電気信号に変換され、図3に示す増幅器51および52でそれぞれ増幅される。この増幅された信号は規格化回路53に入力され、信号の振幅が規格化されたA相信号VAおよびB相信号VB信号に変換される。規格化処理後の信号波形を図5に示す。A相信号VAおよびB相信号VBは角度演算回路54に入力され、arctan(VA/VB)の演算処理により角度信号θが得られる。   The magnetic fields detected by the Hall element 45 and the Hall element 46 are converted into electric signals and amplified by the amplifiers 51 and 52 shown in FIG. This amplified signal is input to the normalization circuit 53 and converted into an A-phase signal VA and a B-phase signal VB signal in which the amplitude of the signal is normalized. FIG. 5 shows the signal waveform after the normalization process. The A-phase signal VA and the B-phase signal VB are input to the angle calculation circuit 54, and the angle signal θ is obtained by the arctan (VA / VB) calculation process.

次に本発明の磁気式エンコーダ装置の特性について述べる。
本発明のエンコーダと基準エンコーダ(分解能105万PPR)を結合し、外部から低速で回転させ、本発明のエンコーダ装置の検出角度と基準エンコーダの検出角度を測定、比較評価した。
Next, the characteristics of the magnetic encoder device of the present invention will be described.
The encoder of the present invention and the reference encoder (resolution: 1.05 million PPR) were combined and rotated at low speed from the outside, and the detection angle of the encoder device of the present invention and the detection angle of the reference encoder were measured and compared and evaluated.

図6は、回転体1が回転したときの、角度信号を示すグラフである。また、図7は角度信号と基準エンコーダの検出角度との差(検出角度誤差)を示すグラフである。
図7から角度誤差0.08度、精度12bitの高精度な性能を有することがわかった。
なお、実施例はSmCo系磁石で説明したが、本発明は、磁石の材質によらず、NeFeB系磁石、ボンド磁石やフェライト磁石においても同様な効果がある。また磁界検出素子としてはホール素子を用いたが、磁気抵抗素子を用いても同様な効果がある。
FIG. 6 is a graph showing an angle signal when the rotating body 1 rotates. FIG. 7 is a graph showing the difference (detection angle error) between the angle signal and the detection angle of the reference encoder.
From FIG. 7, it was found that the angle error was 0.08 degrees and the accuracy was 12 bits.
In addition, although the Example demonstrated the SmCo type | system | group magnet, this invention has the same effect also in a NeFeB type | system | group magnet, a bond magnet, and a ferrite magnet irrespective of the material of a magnet. Further, although a Hall element is used as the magnetic field detection element, the same effect can be obtained by using a magnetoresistive element.

図8は本発明の第2実施例を示す磁界検出部の磁界検出素子の配置図である。
図に示すように径方向磁界検出素子45および周方向磁界検出素子46をギャップ内で周方向に近接して並べて配置し磁界検出部4を構成した。磁界検出素子45、46の配置方法を除けば、他の構造および信号処理回路は実施例1と同じである。
FIG. 8 is a layout diagram of the magnetic field detection elements of the magnetic field detection unit according to the second embodiment of the present invention.
As shown in the figure, the magnetic field detector 4 is configured by arranging the radial magnetic field detection element 45 and the circumferential magnetic field detection element 46 side by side in the gap in the circumferential direction. Except for the arrangement method of the magnetic field detection elements 45 and 46, other structures and signal processing circuits are the same as those in the first embodiment.

第1実施例では径方向に近接して並べてホール素子45、46を配置するので、磁気検出部4を配置するスペースを確保するために4mmのギャップ長が必要であった。しかし本実施例では、ホール素子45と46を周方向に配置し磁気検出部4を構成したので、ギャップ長2mmにすることができ、そのため出力信号を大きくすることができる。それゆえSN比が大きくなり耐ノイズ性が向上した。   In the first embodiment, since the Hall elements 45 and 46 are arranged close to each other in the radial direction, a gap length of 4 mm is necessary to secure a space for arranging the magnetic detection unit 4. However, in this embodiment, the Hall elements 45 and 46 are arranged in the circumferential direction to constitute the magnetic detection unit 4, so that the gap length can be set to 2 mm, so that the output signal can be increased. Therefore, the SN ratio is increased and the noise resistance is improved.

図示しないが第3実施例は、径方向磁界検出素子45および周方向磁界検出素子46からなる磁界検出部を半導体技術により形成したものである。他の構造および処理回路は実施例1と同じである。   Although not shown, in the third embodiment, a magnetic field detection unit including a radial magnetic field detection element 45 and a circumferential magnetic field detection element 46 is formed by semiconductor technology. Other structures and processing circuits are the same as those in the first embodiment.

半導体技術により、径方向と周方向の2軸分の磁界検出素子を100μm角に形成できるので、実施例1の半分以下のスペースで磁界検出部を構成できる。そのためギャップ長を小さくでき信号出力も大きくなる。また磁界検出素子45と46の駆動端子2本と信号出力端子2本の内1本を共通化できる。このため実施例1および2では8本のリード数を必要とするのに対し本実施例では5本のリード線で磁界検出部を構成できる。したがって高出力で耐ノイズ性に優れた小型の中空構造のエンコーダを低コストで提供できる。また、磁界検出素子を極めて近接して磁界検出部を構成できるので、高精度で小型の中空構造のエンコーダを提供できる。   With the semiconductor technology, the magnetic field detection elements for two axes in the radial direction and the circumferential direction can be formed in 100 μm square, so that the magnetic field detection unit can be configured with a space less than half that of the first embodiment. Therefore, the gap length can be reduced and the signal output is also increased. In addition, one of the two drive terminals and the two signal output terminals of the magnetic field detection elements 45 and 46 can be shared. Therefore, in the first and second embodiments, the number of leads of 8 is required, whereas in this embodiment, the magnetic field detection unit can be configured with 5 lead wires. Therefore, it is possible to provide a low-cost encoder having a small hollow structure with high output and excellent noise resistance. In addition, since the magnetic field detection unit can be configured by bringing the magnetic field detection elements very close to each other, it is possible to provide a highly accurate and small-sized hollow structure encoder.

本発明は、小型、薄型、低コストで中空構造の磁気式エンコーダ装置を実現できるので、ロボットなどに用いられる中空アクチュエータの回転角度を検出する磁気式エンコーダ装置として適用できる。   The present invention can realize a magnetic encoder device having a hollow structure with a small size, a thin shape, and a low cost, and therefore can be applied as a magnetic encoder device that detects a rotation angle of a hollow actuator used in a robot or the like.

本発明の第1実施例を示す磁気式エンコーダの構造図である。1 is a structural diagram of a magnetic encoder showing a first embodiment of the present invention. 本発明の第1実施例における磁界検出部の磁界検出素子の配置図である。FIG. 3 is a layout diagram of magnetic field detection elements of the magnetic field detection unit according to the first embodiment of the present invention. 本発明の磁気式エンコーダ装置の信号処理回路のブロック図である。It is a block diagram of the signal processing circuit of the magnetic encoder apparatus of this invention. 本発明の径方向検出磁束密度および周方向検出磁束密度を示すグラフである。It is a graph which shows the radial direction detection magnetic flux density and circumferential direction detection magnetic flux density of this invention. 本発明の規格化処理後の信号波形である。It is a signal waveform after the normalization process of this invention. 本発明の回転体が回転したときの、角度信号を示すグラフである。It is a graph which shows an angle signal when the rotary body of this invention rotates. 本発明の磁気式エンコーダ装置の検出角度誤差を示すグラフである。It is a graph which shows the detection angle error of the magnetic encoder apparatus of this invention. 本発明の第2実施例を示す磁界検出部の磁界検出素子の配置図である。It is an arrangement view of magnetic field detection elements of a magnetic field detection unit showing a second embodiment of the present invention. 従来の磁気式エンコーダの構造図である。It is a structural diagram of a conventional magnetic encoder.

符号の説明Explanation of symbols

1 回転体
2 永久磁石
3 固定体
4 磁界検出素子部
40 磁界検出素子
41 A1相磁界検出素子
42 A2相磁界検出素子
43 B1相磁界検出素子
44 B2相磁界検出素子
45 径方向磁界検出素子
46 周方向磁界検出素子
5 信号処理回路
51、52 増幅器
53 振幅調整回路
54 角度演算回路
DESCRIPTION OF SYMBOLS 1 Rotating body 2 Permanent magnet 3 Fixed body 4 Magnetic field detection element part 40 Magnetic field detection element 41 A1 phase magnetic field detection element 42 A2 phase magnetic field detection element 43 B1 phase magnetic field detection element 44 B2 phase magnetic field detection element 45 Radial direction magnetic field detection element 46 Circumference Direction magnetic field detection element 5 Signal processing circuit 51, 52 Amplifier 53 Amplitude adjustment circuit 54 Angle calculation circuit

Claims (6)

リング状の回転体に内接して固定され、前記回転体の中心軸と垂直方向の一方向に平行に磁化されたリング状の永久磁石と前記永久磁石の内周側に空隙を介して対向しリング状の固定体に取り付けられた磁界検出素子とを備えた磁気式エンコーダと、
前記磁界検出素子からの信号を処理する信号処理回路とを備えた磁気式エンコーダ装置において、
前記永久磁石の径方向磁束を検出する径方向磁界検出素子と周方向磁束を検出する周方向磁界検出素子を近接して配置し磁界検出部を形成したことを特徴とする磁気式エンコーダ装置。
A ring-shaped permanent magnet fixed in contact with the ring-shaped rotating body and magnetized parallel to one direction perpendicular to the central axis of the rotating body is opposed to the inner peripheral side of the permanent magnet via a gap. A magnetic encoder comprising a magnetic field detection element attached to a ring-shaped fixed body;
In a magnetic encoder device comprising a signal processing circuit for processing a signal from the magnetic field detection element,
A magnetic encoder device comprising a radial magnetic field detection element for detecting a radial magnetic flux of the permanent magnet and a circumferential magnetic field detection element for detecting a circumferential magnetic flux arranged close to each other to form a magnetic field detection unit.
前記径方向磁界検出素子と前記周方向磁界検出素子を径方向に近接して配置したことを特徴とする請求項1記載の磁気式エンコーダ装置。   2. The magnetic encoder device according to claim 1, wherein the radial magnetic field detection element and the circumferential magnetic field detection element are arranged close to each other in the radial direction. 前記径方向磁界検出素子と前記周方向磁界検出素子を周方向に近接して配置したことを特徴とする請求項1記載の磁気式エンコーダ装置。   2. The magnetic encoder device according to claim 1, wherein the radial magnetic field detection element and the circumferential magnetic field detection element are arranged close to each other in the circumferential direction. 前記磁界検出部は、前記径方向磁界検出素子と前記周方向磁界検出素子を半導体技術により形成したものであることを特徴とする請求項1記載の磁気式エンコーダ装置。   2. The magnetic encoder device according to claim 1, wherein the magnetic field detection unit is formed by forming the radial magnetic field detection element and the circumferential magnetic field detection element by a semiconductor technology. 前記回転体は磁性体からなることを特徴とする請求項1記載の磁気式エンコーダ装置。   The magnetic encoder device according to claim 1, wherein the rotating body is made of a magnetic material. 前記固定体は磁性体からなることを特徴とする請求項1記載の磁気式エンコーダ装置。   The magnetic encoder device according to claim 1, wherein the fixed body is made of a magnetic material.
JP2006183702A 2006-07-03 2006-07-03 Magnetic encoder device Pending JP2008014671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006183702A JP2008014671A (en) 2006-07-03 2006-07-03 Magnetic encoder device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006183702A JP2008014671A (en) 2006-07-03 2006-07-03 Magnetic encoder device

Publications (2)

Publication Number Publication Date
JP2008014671A true JP2008014671A (en) 2008-01-24
JP2008014671A5 JP2008014671A5 (en) 2009-04-23

Family

ID=39071838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006183702A Pending JP2008014671A (en) 2006-07-03 2006-07-03 Magnetic encoder device

Country Status (1)

Country Link
JP (1) JP2008014671A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010008359A (en) * 2008-06-30 2010-01-14 Furukawa Electric Co Ltd:The Rotating angle detecting apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999013296A1 (en) * 1997-09-08 1999-03-18 Kabushiki Kaisha Yaskawa Denki Magnetic encoder
WO2005040729A1 (en) * 2003-10-24 2005-05-06 Kabushiki Kaisha Yaskawa Denki Magnetic encoder device and actuator
JP2006047227A (en) * 2004-08-06 2006-02-16 Denso Corp Rotation angle detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999013296A1 (en) * 1997-09-08 1999-03-18 Kabushiki Kaisha Yaskawa Denki Magnetic encoder
WO2005040729A1 (en) * 2003-10-24 2005-05-06 Kabushiki Kaisha Yaskawa Denki Magnetic encoder device and actuator
JP2006047227A (en) * 2004-08-06 2006-02-16 Denso Corp Rotation angle detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010008359A (en) * 2008-06-30 2010-01-14 Furukawa Electric Co Ltd:The Rotating angle detecting apparatus

Similar Documents

Publication Publication Date Title
JP4836058B2 (en) Magnetic encoder device
JP4678371B2 (en) Magnetic encoder device
JP5583317B2 (en) Rotation detection device and bearing with rotation detection device
JP5120384B2 (en) Rotation angle detection device, rotator, and rotation angle detection method
TWI579533B (en) Absolute encoder devices and motors
JP4319153B2 (en) Magnetic sensor
JP4621987B2 (en) Magnetic encoder device and actuator
JPWO2007055135A1 (en) Magnetic encoder device
WO2017209271A1 (en) Linear motion and rotation detector, linear motion and rotation detector unit, and linear motion and rotation drive device
US8928313B2 (en) Magnetic encoder with improved resolution
JP2008267868A (en) Rotation detector, and bearing with rotation detector
JP2004251831A (en) Rotary angle detector
JP2000065596A5 (en) Magnetic encoder and motor with magnetic encoder
JP2011257432A (en) Position detector and linear driving apparatus
JP2006208049A (en) Rotation angle detection apparatus
JP4900838B2 (en) Position detection device and linear drive device
WO2009084346A1 (en) Magnetic encoder
JP6054011B1 (en) Magnetic sensor and rotating device
JP2008014671A (en) Magnetic encoder device
JP6791013B2 (en) Two-axis integrated motor
JP2009069092A (en) Rotation detector and bearing with rotation detector
JP2018105757A (en) Magnetic encoder device
JP5007922B2 (en) Magnetic encoder device
WO2010124573A1 (en) Magnetically conductive ring
JP5573042B2 (en) Magnetic encoder

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090306

A621 Written request for application examination

Effective date: 20090306

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111104

A02 Decision of refusal

Effective date: 20120313

Free format text: JAPANESE INTERMEDIATE CODE: A02