JP2008014625A - Waste heat recovery system - Google Patents

Waste heat recovery system Download PDF

Info

Publication number
JP2008014625A
JP2008014625A JP2007141989A JP2007141989A JP2008014625A JP 2008014625 A JP2008014625 A JP 2008014625A JP 2007141989 A JP2007141989 A JP 2007141989A JP 2007141989 A JP2007141989 A JP 2007141989A JP 2008014625 A JP2008014625 A JP 2008014625A
Authority
JP
Japan
Prior art keywords
heat
heat recovery
exhaust gas
recovery apparatus
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007141989A
Other languages
Japanese (ja)
Other versions
JP5307987B2 (en
Inventor
Yuki Mukohara
佑輝 向原
Seiji Inoue
誠司 井上
Kimikazu Obara
公和 小原
Yasutoshi Yamanaka
保利 山中
Masashi Miyagawa
雅志 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007141989A priority Critical patent/JP5307987B2/en
Publication of JP2008014625A publication Critical patent/JP2008014625A/en
Application granted granted Critical
Publication of JP5307987B2 publication Critical patent/JP5307987B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0258Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with means to remove contaminants, e.g. getters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/06Control arrangements therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/082Heat exchange elements made from metals or metal alloys from steel or ferrous alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To inexpensively provide a waste heat recovery system 1 for removing hydrogen generated in an inside of a heat pipe 2. <P>SOLUTION: The heat pipe 2 has: a heating part 5 arranged in an inside of an exhaust gas passage 4; and a cooling part 7 arranged in an inside of a cooling water tank 6, and the heating part 5 is connected annularly to the cooling part 7 with a steam flow passage and a liquid reflux flow passage. A mode change-over valve 3 for opening and closing the liquid reflux flow passage is provided between the heating part 5 and the cooling part 7. A steel material having a characteristic of permeating hydrogen at 500°C or more is used in the heating part 5. When a heat blocking mode is set by the mode change-over valve 3, a temperature of the heating part 5 is increased up to 500-800°C substantially equal to a temperature of exhaust gas, because a hydraulic fluid is stored in the cooling part 7. Resultingly, the hydrogen permeates through from the steel material constituting the heating part 5 to be discharged to the outside, and the hydrogen is thereby removed from the inside of the heat pipe 2. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ヒートパイプを用いて排気ガスの熱を回収する排熱回収装置に関する。   The present invention relates to an exhaust heat recovery apparatus that recovers heat of exhaust gas using a heat pipe.

従来、鉄製のコンテナ内部に水を封入したヒートパイプが知られている。このヒートパイプは、コンテナの強度の高さと、水の作動液としての性能の高さから広範囲に使用されている。しかし、この様なヒートパイプでは、鉄と水とが反応して水素ガスが発生し、短時間でヒートパイプの性能を劣化させる問題があった。この水素ガスの発生によるヒートパイプの性能劣化を防止する従来技術として、例えば、特許文献1には、作動液を封入する外筒(コンテナ)の少なくとも一部が、水素ガスを透過する特性を有するパラジウムないしはパラジウム系合金から形成されたヒートパイプが示されている。   Conventionally, a heat pipe in which water is sealed inside an iron container is known. This heat pipe is widely used because of the high strength of the container and the high performance as a hydraulic fluid for water. However, such a heat pipe has a problem that iron and water react with each other to generate hydrogen gas, which degrades the performance of the heat pipe in a short time. As a conventional technique for preventing the performance deterioration of the heat pipe due to the generation of hydrogen gas, for example, Patent Document 1 discloses that at least a part of an outer cylinder (container) that encloses hydraulic fluid has a characteristic of permeating hydrogen gas. A heat pipe formed from palladium or a palladium-based alloy is shown.

また、特許文献2には、コンテナの凝縮部内に、水素ガスを酸化させて水に戻す酸化剤からなる多孔質焼結体を配置したヒートパイプが示されている。
さらに、特許文献3には、アルミニウム、鋼またはねずみ鋳鉄からなるヒートパイプの内側全面に耐水性金属(銅またはニッケルまたは銅およびニッケル)の被膜を形成することにより、水素ガスの発生を防止する技術が開示されている。
実開昭50−49064号公報 特開平6−66486号公報 特開昭61−76883号公報
Patent Document 2 discloses a heat pipe in which a porous sintered body made of an oxidizing agent that oxidizes hydrogen gas and returns it to water is disposed in the condensing part of the container.
Further, Patent Document 3 discloses a technique for preventing generation of hydrogen gas by forming a coating of a water-resistant metal (copper or nickel or copper and nickel) on the entire inner surface of a heat pipe made of aluminum, steel or gray cast iron. Is disclosed.
Japanese Utility Model Publication No. 50-49064 JP-A-6-66486 Japanese Patent Application Laid-Open No. 61-76883

ところが、特許文献1に記載されたヒートパイプでは、コンテナの少なくとも一部を高価なパラジウムないしはパラジウム系合金で形成するため、鉄製コンテナを使用したヒートパイプと比較してコストが高くなる。
また、特許文献2に記載されたヒートパイプは、コンテナの凝縮部内に多孔質焼結体を配置するため、構造が複雑で高価になるだけでなく、発生する水素ガスをどの程度、酸化させて水に戻すことができるのか疑問である。
However, in the heat pipe described in Patent Document 1, since at least a part of the container is formed of expensive palladium or a palladium-based alloy, the cost is higher than that of a heat pipe using an iron container.
Moreover, since the heat pipe described in Patent Document 2 has a porous sintered body disposed in the condensing part of the container, not only is the structure complicated and expensive, but also how much the generated hydrogen gas is oxidized. I am wondering if it can be returned to the water.

さらに、特許文献3に記載された従来技術では、ヒートパイプの内側全面に耐水性金属を被覆処理するのにコストがかかる。また、被膜の一部が熱応力等によって破損した場合に、水素の発生を防ぐことができず、性能低下を招く問題があった。
本発明は、上記事情に基づいて成されたもので、その目的は、ヒートパイプの内部に発生した水素を除去できる排熱回収装置を低コストに提供することにある。
Furthermore, in the prior art described in Patent Document 3, it is expensive to coat the entire inner surface of the heat pipe with a water-resistant metal. In addition, when a part of the coating is damaged by thermal stress or the like, there is a problem in that generation of hydrogen cannot be prevented and performance is deteriorated.
The present invention has been made based on the above circumstances, and an object thereof is to provide an exhaust heat recovery apparatus capable of removing hydrogen generated in a heat pipe at a low cost.

(請求項1の発明)
本発明は、内部に作動流体が封入され、この作動流体の蒸発と凝縮により加熱部から冷却部へ熱輸送するループ式のヒートパイプと、このヒートパイプを用いて排気ガスの熱を回収する熱回収モードと、加熱部から冷却部への熱輸送を停止する熱遮断モードとを切り換えるモード切換弁とを備え、ヒートパイプは、少なくとも加熱部が500℃以上で水素透過性を有する鋼材により構成されていることを特徴とする。
(Invention of Claim 1)
The present invention includes a loop-type heat pipe in which a working fluid is enclosed and heat is transported from a heating unit to a cooling unit by evaporation and condensation of the working fluid, and heat for recovering heat of exhaust gas using the heat pipe. A mode switching valve that switches between a recovery mode and a heat shut-off mode that stops heat transfer from the heating unit to the cooling unit, and the heat pipe is made of a steel material that has hydrogen permeability at least at the heating unit of 500 ° C. or more. It is characterized by.

本発明の排熱回収装置は、モード切換弁により熱回収モードが設定されると、ヒートパイプの内部に封入された作動流体(例えば純水)が、加熱部で排気ガスより受熱して蒸発した後、冷却部で蒸発潜熱を放出して凝縮することにより、排気ガスの熱が加熱部から冷却部へ輸送される。この熱回収モードでは、加熱部から冷却部へ熱輸送されるため、加熱部の温度(ヒートパイプの容器内側の表面温度)は、さほど上昇しない(例えば300℃以下)。
一方、モード切換弁により熱遮断モードが設定されると、加熱部から冷却部への熱輸送が遮断されるため、加熱部の温度が排気ガスの温度と略同じ500〜800℃まで上昇する。ここで、ヒートパイプの加熱部を構成する鋼材には、500℃以上で水素を透過する特性があるため、ヒートパイプの内部に発生した水素は、加熱部を構成する鋼材を透過して外部に排出される。
In the exhaust heat recovery apparatus of the present invention, when the heat recovery mode is set by the mode switching valve, the working fluid (for example, pure water) enclosed in the heat pipe receives heat from the exhaust gas and evaporates in the heating unit. Thereafter, the heat of the exhaust gas is transported from the heating unit to the cooling unit by releasing and condensing the latent heat of vaporization in the cooling unit. In this heat recovery mode, since heat is transported from the heating unit to the cooling unit, the temperature of the heating unit (surface temperature inside the container of the heat pipe) does not increase so much (for example, 300 ° C. or less).
On the other hand, when the heat shut-off mode is set by the mode switching valve, the heat transport from the heating part to the cooling part is interrupted, so that the temperature of the heating part rises to 500 to 800 ° C. which is substantially the same as the temperature of the exhaust gas. Here, since the steel material constituting the heating part of the heat pipe has a characteristic of permeating hydrogen at 500 ° C. or higher, the hydrogen generated inside the heat pipe permeates the steel material constituting the heating part to the outside. Discharged.

(請求項2の発明)
本発明は、内部に作動流体が封入され、この作動流体の蒸発と凝縮により加熱部から冷却部へ熱輸送するヒートパイプと、このヒートパイプの内部で作動流体が蒸発して気相状態となる空間に連通して設けられ、且つ排気ガスより受熱する連通容器とを備え、その連通容器は、500℃以上で水素透過性を有する鋼材により構成されていることを特徴とする。
(Invention of Claim 2)
In the present invention, a working fluid is sealed inside, and a heat pipe that heat-transports from the heating unit to the cooling unit by evaporation and condensation of the working fluid, and the working fluid evaporates inside the heat pipe to be in a gas phase state. A communication container provided in communication with the space and receiving heat from the exhaust gas, the communication container being made of a steel material having hydrogen permeability at 500 ° C. or higher.

本発明の排熱回収装置は、ヒートパイプによって常時熱回収が行われる。つまり、ヒートパイプの内部に封入された作動流体(例えば純水)が、加熱部で排気ガスより受熱して蒸発した後、冷却部で蒸発潜熱を放出して凝縮することにより、排気ガスの熱が加熱部から冷却部へ輸送される。このため、加熱部の温度(ヒートパイプの容器内側の表面温度)は、さほど上昇しない(例えば300℃以下)。
これに対し、ヒートパイプに連通する連通容器は、排気ガスより受熱して500℃以上に加熱される。この連通容器を構成する鋼材には、500℃以上で水素を透過する特性があるため、ヒートパイプの内部に発生した水素は、連通容器を構成する鋼材を透過して外部に排出される。
In the exhaust heat recovery apparatus of the present invention, heat recovery is always performed by a heat pipe. That is, after the working fluid (for example, pure water) enclosed in the heat pipe receives heat from the exhaust gas and evaporates in the heating unit, the cooling unit releases the latent heat of vaporization and condenses, so that the heat of the exhaust gas is obtained. Is transported from the heating section to the cooling section. For this reason, the temperature of the heating part (surface temperature inside the container of the heat pipe) does not increase so much (for example, 300 ° C. or less).
On the other hand, the communication container connected to the heat pipe receives heat from the exhaust gas and is heated to 500 ° C. or higher. Since the steel material constituting the communication container has a characteristic of permeating hydrogen at 500 ° C. or higher, the hydrogen generated inside the heat pipe passes through the steel material constituting the communication container and is discharged to the outside.

(請求項3の発明)
モード切換弁は、ヒートパイプの加熱部と冷却部との間を開閉できる弁体を有し、排気ガス温度または排気ガス温度に相関する物理量を感知して弁体を開閉することを特徴とする。
本発明では、排気ガス温度または排気ガス温度に相関する物理量に応じて弁体を開閉することにより、熱回収モードと熱遮断モードとを切り換えることができる。
(Invention of Claim 3)
The mode switching valve has a valve body capable of opening and closing between a heating part and a cooling part of the heat pipe, and is characterized by sensing a physical quantity correlated with the exhaust gas temperature or the exhaust gas temperature to open and close the valve body. .
In the present invention, the heat recovery mode and the heat cutoff mode can be switched by opening and closing the valve body according to the exhaust gas temperature or a physical quantity correlated with the exhaust gas temperature.

(請求項4の発明)
請求項3に記載した排熱回収装置において、排気ガス温度に相関する物理量は、作動流体の温度または作動流体の圧力であることを特徴とする。
モード切換弁は、排気ガス温度を直接感知するのではなく、排気ガス温度に相関する作動流体の温度または作動流体の圧力を感知して弁体を開閉することもできる。
(Invention of Claim 4)
The exhaust heat recovery apparatus according to claim 3, wherein the physical quantity correlated with the exhaust gas temperature is a temperature of the working fluid or a pressure of the working fluid.
The mode switching valve does not directly sense the exhaust gas temperature, but can also open and close the valve body by sensing the temperature of the working fluid or the pressure of the working fluid correlated with the exhaust gas temperature.

(請求項5の発明)
請求項3または4に記載した排熱回収装置において、モード切換弁は、排気ガス温度を直接あるいは作動流体の物理量より間接的に感知して、排気ガス温度が500℃より低い時に弁体が開状態となり、排気ガス温度が500℃以上の時に弁体が閉状態となることを特徴とする。
上記の構成によれば、排気ガス温度が500℃より低い時は、弁体が開状態となって熱回収モードが設定されることにより、作動流体の蒸発と凝縮により加熱部から冷却部へ熱輸送される。
また、排気ガス温度が500℃以上の時は、弁体が閉状態となって熱遮断モードに切り換わるため、加熱部の温度が排気ガスの温度と略同じ温度(500℃以上)まで上昇する。この場合、ヒートパイプの内部に発生した水素は、加熱部を構成する鋼材を透過して外部に排出される。
(Invention of Claim 5)
5. The exhaust heat recovery apparatus according to claim 3, wherein the mode switching valve senses the exhaust gas temperature directly or indirectly from a physical quantity of the working fluid, and opens the valve body when the exhaust gas temperature is lower than 500 ° C. When the exhaust gas temperature is 500 ° C. or higher, the valve body is closed.
According to the above configuration, when the exhaust gas temperature is lower than 500 ° C., the valve body is opened and the heat recovery mode is set, so that heat is evaporated from the heating part to the cooling part by evaporation and condensation of the working fluid. Transported.
Further, when the exhaust gas temperature is 500 ° C. or higher, the valve body is closed and switched to the heat shut-off mode, so that the temperature of the heating unit rises to substantially the same temperature (500 ° C. or higher) as the exhaust gas temperature. . In this case, the hydrogen generated inside the heat pipe passes through the steel material constituting the heating unit and is discharged to the outside.

(請求項6の発明)
請求項1〜5に記載した何れかの排熱回収装置において、ヒートパイプは、加熱部がステンレス鋼で構成されていることを特徴とする。
ステンレス鋼は、高温での水素透過性が高く、且つ、高温強度や耐食性、耐酸化性に優れることから、本発明の排熱回収装置においては最適な材料である。
(Invention of Claim 6)
The exhaust heat recovery apparatus according to any one of claims 1 to 5, wherein the heat pipe has a heating portion made of stainless steel.
Stainless steel is an optimal material for the exhaust heat recovery apparatus of the present invention because it has high hydrogen permeability at high temperatures and is excellent in high temperature strength, corrosion resistance, and oxidation resistance.

(請求項7の発明)
請求項1〜6に記載した何れかの排熱回収装置において、冷却部は、車両走行用エンジンの冷却水によって冷却されることを特徴とする。
例えば、自動車用の排熱回収装置では、排気ガスの熱を走行用エンジンの冷却水に回収することにより、エンジン始動時には、エンジンの暖機を速やかに行うことが可能である。また、暖房用の熱源として利用することもできる。
(Invention of Claim 7)
The exhaust heat recovery apparatus according to any one of claims 1 to 6, wherein the cooling unit is cooled by cooling water of a vehicle travel engine.
For example, in an exhaust heat recovery device for automobiles, the heat of the exhaust gas is recovered in the cooling water of the traveling engine, so that the engine can be warmed up quickly when the engine is started. It can also be used as a heat source for heating.

本発明を実施するための最良の形態を以下の実施例により詳細に説明する。   The best mode for carrying out the present invention will be described in detail with reference to the following examples.

図1は排熱回収装置1の正面図である。
実施例1に示す排熱回収装置1は、例えば、自動車の走行用エンジンより排出される排気ガスの熱を回収してエンジン冷却水に伝えるもので、以下に説明するループ式のヒートパイプ2と、モード切換弁3等より構成される。
ヒートパイプ2は、内部に作動流体(本実施例では純水)が封入された密閉容器を有する。この密閉容器は、図1に示す様に、排気ガス通路4の内部に配置される加熱部5と、冷却水槽6の内部に配置される冷却部7とを有し、加熱部5と冷却部7とが蒸気流路と液還流路によって環状に連結されている。
FIG. 1 is a front view of the exhaust heat recovery apparatus 1.
The exhaust heat recovery apparatus 1 shown in the first embodiment recovers the heat of exhaust gas discharged from a traveling engine of an automobile and transmits it to the engine coolant, for example, a loop heat pipe 2 described below and And a mode switching valve 3 and the like.
The heat pipe 2 has a sealed container in which a working fluid (pure water in this embodiment) is sealed. As shown in FIG. 1, the sealed container includes a heating unit 5 disposed inside the exhaust gas passage 4 and a cooling unit 7 disposed inside the cooling water tank 6. 7 is connected in an annular shape by a steam flow path and a liquid reflux path.

加熱部5は、排気ガス通路4を流れる排気ガスと作動流体(作動液)との熱交換を行う熱交換器であり、内部を作動流体が流れる複数本のチューブ5aと、この複数本のチューブ5aに連通する一組のヘッダ5b、5cと、チューブ5aの外壁に接触して取り付けられる伝熱用フィン5d等より構成される。この加熱部5を構成する材料には、500℃以上で水素を透過する特性(図2参照)を有する鋼材(例えばステンレス鋼)が用いられている。なお、図2に示すグラフは、オーステナイト系ステンレスの水素透過特性を示すものであり、鋼材の温度が高くなる程、水素透過係数が大きくなる(水素透過性が良くなる)ことを表している。
冷却部7は、冷却水槽6の内部を流れるエンジン冷却水と作動流体(蒸気)との熱交換を行う熱交換器であり、内部を作動流体が流れる複数本のチューブ7aと、この複数本のチューブ7aに連通する一組のヘッダ7b、7c等より構成される。冷却水槽6は、2本の接続パイプ7dを介してエンジンの冷却水回路(図示せず)に接続されている。
The heating unit 5 is a heat exchanger that performs heat exchange between the exhaust gas flowing through the exhaust gas passage 4 and the working fluid (working fluid), and a plurality of tubes 5 a through which the working fluid flows and the plurality of tubes. It is composed of a pair of headers 5b and 5c communicating with 5a, a heat transfer fin 5d attached in contact with the outer wall of the tube 5a, and the like. As a material constituting the heating unit 5, a steel material (for example, stainless steel) having a characteristic of transmitting hydrogen at 500 ° C. or higher (see FIG. 2) is used. In addition, the graph shown in FIG. 2 shows the hydrogen permeation characteristic of austenitic stainless steel, and shows that the hydrogen permeation coefficient increases (the hydrogen permeation improves) as the temperature of the steel material increases.
The cooling unit 7 is a heat exchanger that performs heat exchange between the engine coolant flowing inside the cooling water tank 6 and the working fluid (steam), and includes a plurality of tubes 7a through which the working fluid flows, It consists of a set of headers 7b, 7c and the like communicating with the tube 7a. The cooling water tank 6 is connected to an engine cooling water circuit (not shown) through two connection pipes 7d.

加熱部5と冷却部7は、両者のヘッダ5b、5c、7b、7cを通じて環状に連結されている。具体的には、加熱部5の一方(図示上側)のヘッダ5bと、冷却部7の一方のヘッダ7bとが連結され、加熱部5の他方(図示下側)のヘッダ5cと、冷却部7の他方のヘッダ7cとが連結されている。これにより、加熱部5で排気ガスより受熱して沸騰した蒸気は、加熱部5の一方のヘッダ5bから冷却部7の一方のヘッダ7bへ流入し、冷却部7でエンジン冷却水に放熱して凝縮した作動液は、冷却部7の他方のヘッダ7cから加熱部5の他方のヘッダ5cへ流入することができる。なお、加熱部5の一方のヘッダ5bと冷却部7の一方のヘッダ7bとで蒸気流路が形成され、加熱部5の他方のヘッダ5cと冷却部7の他方のヘッダ7cとで液還流路が形成される。   The heating unit 5 and the cooling unit 7 are connected in a ring shape through both headers 5b, 5c, 7b, and 7c. Specifically, one header 5b (illustrated upper side) of the heating unit 5 and one header 7b of the cooling unit 7 are connected, and the other (lower illustrated) header 5c of the heating unit 5 and the cooling unit 7 are connected. Is connected to the other header 7c. As a result, the steam boiled by receiving heat from the exhaust gas in the heating unit 5 flows from one header 5b of the heating unit 5 into one header 7b of the cooling unit 7, and dissipates heat to the engine cooling water in the cooling unit 7. The condensed hydraulic fluid can flow from the other header 7 c of the cooling unit 7 to the other header 5 c of the heating unit 5. A steam flow path is formed by one header 5 b of the heating unit 5 and one header 7 b of the cooling unit 7, and a liquid reflux path is formed by the other header 5 c of the heating unit 5 and the other header 7 c of the cooling unit 7. Is formed.

モード切換弁3は、例えば、冷却部7の他方のヘッダ7cに組み込まれており、この他方のヘッダ7cに流れ込む作動液の圧力に応じて変位するダイアフラム3aと、このダイアフラム3aの変位に連動して液還流路を開閉できる弁体3bとを有するダイアフラム弁である。
このモード切換弁3は、作動流体によって加熱部5より輸送された熱をエンジン冷却水に回収する熱回収モードと、加熱部5から冷却部7への熱輸送を遮断する熱遮断モードとを切り換えることができる。つまり、作動流体の圧力とダイアフラム室3cに導入される圧力(例えば大気圧)との差圧がダイアフラム弁の設定圧力より低くなると、ダイアフラム3aが図示左側へ変位して弁体3bが液還流路を開くことにより、熱回収モードとなる。また、作動流体の圧力とダイアフラム室3cに導入される圧力との差圧がダイアフラム弁の設定圧力より高くなると、ダイアフラム3aが図示右側へ変位して弁体3bが液還流路を閉じることにより、熱遮断モードとなる。
The mode switching valve 3 is incorporated in, for example, the other header 7c of the cooling unit 7, and is displaced in accordance with the pressure of the hydraulic fluid flowing into the other header 7c, and is linked to the displacement of the diaphragm 3a. And a valve body 3b that can open and close the liquid reflux path.
The mode switching valve 3 switches between a heat recovery mode in which heat transported from the heating unit 5 by the working fluid is recovered in engine cooling water and a heat cutoff mode in which heat transport from the heating unit 5 to the cooling unit 7 is blocked. be able to. That is, when the differential pressure between the pressure of the working fluid and the pressure introduced into the diaphragm chamber 3c (for example, atmospheric pressure) becomes lower than the set pressure of the diaphragm valve, the diaphragm 3a is displaced to the left side in the figure, and the valve body 3b is returned to the liquid return path By opening, the heat recovery mode is set. Further, when the pressure difference between the pressure of the working fluid and the pressure introduced into the diaphragm chamber 3c becomes higher than the set pressure of the diaphragm valve, the diaphragm 3a is displaced to the right side in the figure, and the valve body 3b closes the liquid return path. The heat shut-off mode is set.

次に、排熱回収装置1の作動を説明する。
上記の排熱回収装置1は、エンジン冷却水の温度(以下、冷却水温と言う)が低い時に、排気ガスからエンジン冷却水に熱回収を行い、冷却水温が高い時に熱遮断する。つまり、冷却水温が低い時(例えば70℃以下)は、ダイアフラム3aに作用する作動液の圧力が低く、大気圧との差圧がダイアフラム弁の設定圧力より低いため、モード切換弁3が開弁状態(弁体3bが液還流路を開いた状態)となって熱回収モードが設定される。
また、冷却水温が上昇して、ダイアフラム3aに作用する作動液の圧力が高くなると、大気圧との差圧がダイアフラム弁の設定圧力より高くなり、モード切換弁3が閉弁状態(弁体3bが液還流路を閉じた状態)となって熱遮断モードが設定される。
Next, the operation of the exhaust heat recovery apparatus 1 will be described.
The exhaust heat recovery device 1 recovers heat from the exhaust gas to the engine cooling water when the temperature of the engine cooling water (hereinafter referred to as cooling water temperature) is low, and cuts off the heat when the cooling water temperature is high. That is, when the cooling water temperature is low (for example, 70 ° C. or less), the pressure of the hydraulic fluid acting on the diaphragm 3a is low, and the differential pressure from the atmospheric pressure is lower than the set pressure of the diaphragm valve. The heat recovery mode is set in a state (a state in which the valve body 3b opens the liquid reflux path).
Further, when the coolant temperature rises and the pressure of the hydraulic fluid acting on the diaphragm 3a increases, the differential pressure from the atmospheric pressure becomes higher than the set pressure of the diaphragm valve, and the mode switching valve 3 is closed (valve element 3b). Is in a state in which the liquid reflux path is closed), and the heat cutoff mode is set.

a)熱回収モード
ヒートパイプ2に封入された作動流体は、図3に示す様に、加熱部5で排気ガスより受熱して沸騰した後、蒸気流路(加熱部5の一方のヘッダ5b→冷却部7の一方のヘッダ7b)を通って冷却部7に流れ込み、冷却部7でエンジン冷却水に蒸発潜熱を放出して凝縮する。凝縮した作動液は、液還流路(冷却部7の他方のヘッダ7c→加熱部5の他方のヘッダ5c)を通って加熱部5に還流する。この作動流体の蒸発と凝縮の相変化が連続的に行われることにより、排気ガスの熱がエンジン冷却水に効率良く回収される。作動流体の蒸発潜熱を吸収して昇温したエンジン冷却水は、エンジンの暖機あるいは暖房用の熱源等に利用される。
この熱回収モードでは、加熱部5から冷却部7へ連続して熱輸送されるため、加熱部5の温度(チューブ5aの内側の表面温度)は、さほど上昇することはなく、例えば300℃以下である。
a) Heat recovery mode As shown in FIG. 3, the working fluid sealed in the heat pipe 2 receives heat from the exhaust gas at the heating unit 5 and boils, and then the steam flow path (one header 5 b of the heating unit 5 → It flows into the cooling unit 7 through one header 7b) of the cooling unit 7, and the cooling unit 7 releases the latent heat of evaporation into the engine cooling water to condense. The condensed working fluid flows back to the heating unit 5 through the liquid reflux path (the other header 7c of the cooling unit 7 → the other header 5c of the heating unit 5). By continuously changing the phase of evaporation and condensation of the working fluid, the heat of the exhaust gas is efficiently recovered in the engine coolant. The engine coolant that has been heated by absorbing the latent heat of vaporization of the working fluid is used as a heat source for warming up or heating the engine.
In this heat recovery mode, since heat is continuously transported from the heating unit 5 to the cooling unit 7, the temperature of the heating unit 5 (surface temperature inside the tube 5a) does not increase so much, for example, 300 ° C. or less. It is.

b)熱遮断モード
加熱部5と冷却部7との間で作動流体の循環が停止することにより、加熱部5から冷却部7への熱輸送が遮断される。これにより、図4に示す様に、作動液が冷却部7に貯留されるため、加熱部5の温度が排気ガスの温度と略同じ500〜800℃まで上昇する。
ところで、加熱部5に鋼材を用いた密閉容器の内部に作動液として水を封入したヒートパイプ2では、以下の式(1)に示される様に、鉄が水と反応(高温酸化)して水素が発生する。
2Fe+3H2 O→Fe2 3 +3H2 ………………(1)
これに対し、加熱部5を構成する鋼材(ステンレス鋼)には、500℃以上で水素を透過する特性があるため、ヒートパイプ2の内部に発生した水素は、加熱部5を構成する鋼材を透過して外部に排出される。
b) Heat blocking mode By stopping the circulation of the working fluid between the heating unit 5 and the cooling unit 7, heat transport from the heating unit 5 to the cooling unit 7 is blocked. As a result, as shown in FIG. 4, since the working fluid is stored in the cooling unit 7, the temperature of the heating unit 5 rises to 500 to 800 ° C. which is substantially the same as the temperature of the exhaust gas.
By the way, in the heat pipe 2 in which water is sealed as a working fluid inside a sealed container using steel for the heating unit 5, iron reacts with water (high temperature oxidation) as shown in the following formula (1). Hydrogen is generated.
2Fe + 3H 2 O → Fe 2 O 3 + 3H 2 (1)
On the other hand, since the steel material (stainless steel) constituting the heating unit 5 has a characteristic of permeating hydrogen at 500 ° C. or higher, the hydrogen generated inside the heat pipe 2 is the steel material constituting the heating unit 5. Permeated and discharged outside.

(実施例1の効果)
上記の排熱回収装置1では、ヒートパイプ2の加熱部5が500℃以上に加熱された時(熱遮断モード時)に、ヒートパイプ2の内部に発生した水素が鋼材を透過して外部に排出されることにより、ヒートパイプ2の内部から水素を除去できる。このヒートパイプ2は、加熱部5に高価なパラジウム等を使用する必要はなく、また、ヒートパイプ2の内側全面に耐水性金属の被膜を形成する必要もないので、例えば、先の特許文献1、3に示される公知技術を用いた排熱回収装置より、低コストな排熱回収装置1を提供できる。
また、本実施例のヒートパイプ2は、加熱部5を構成する鋼材より水素を透過させて除去するため、特許文献2に示される様に、ヒートパイプ2の内部に酸化剤からなる多孔質焼結体を配置する必要はなく、ヒートパイプ2の構造が複雑になることもない。
(Effect of Example 1)
In the exhaust heat recovery apparatus 1 described above, when the heating unit 5 of the heat pipe 2 is heated to 500 ° C. or more (in the heat shut-off mode), hydrogen generated inside the heat pipe 2 permeates the steel material to the outside. By being discharged, hydrogen can be removed from the inside of the heat pipe 2. In this heat pipe 2, it is not necessary to use expensive palladium or the like for the heating unit 5, and it is not necessary to form a water-resistant metal film on the entire inner surface of the heat pipe 2. Therefore, the exhaust heat recovery apparatus 1 can be provided at a lower cost than the exhaust heat recovery apparatus using the known technology shown in FIG.
Moreover, since the heat pipe 2 of the present embodiment allows hydrogen to permeate and remove from the steel material constituting the heating unit 5, as shown in Patent Document 2, the porous pipe made of an oxidizing agent is formed inside the heat pipe 2. There is no need to arrange the ligature, and the structure of the heat pipe 2 is not complicated.

なお、この実施例1に記載したモード切換弁3は、作動液の圧力に応じて弁体3bが開閉するダイアフラム弁であるが、例えば、ヒートパイプ2の内部に封入された作動流体の圧力をセンサにより感知して、弁体の開閉動作を電気的に制御する電磁弁を用いることもできる。
また、モード切換弁3は、作動流体の圧力ではなく、作動流体の温度を感知して弁体を開閉させる構成(例えば、サーモスタット弁、電磁弁)でも良い。
The mode switching valve 3 described in the first embodiment is a diaphragm valve that opens and closes according to the pressure of the working fluid. For example, the pressure of the working fluid enclosed in the heat pipe 2 is set to the mode switching valve 3. It is also possible to use an electromagnetic valve that is sensed by a sensor and electrically controls the opening / closing operation of the valve body.
The mode switching valve 3 may be configured to open and close the valve body by sensing the temperature of the working fluid instead of the pressure of the working fluid (for example, a thermostat valve or an electromagnetic valve).

図5は排熱回収装置1の構成を模式的に示した断面図である。
本実施例の排熱回収装置1は、排気ガス温度に応じてモード切換弁3を開閉させる構成である。
モード切換弁3は、例えば、排気ガス温度を直接感知して、その排気ガス温度に応じて弁体が変位するサーモスタット弁、あるいは電磁弁であり、排気ガス温度が500℃より低い時に開弁状態(弁体が液還流路を開いた状態)となり、排気ガス温度が500℃以上の時に閉弁状態(弁体が液還流路を開いた状態)となる。
FIG. 5 is a cross-sectional view schematically showing the configuration of the exhaust heat recovery apparatus 1.
The exhaust heat recovery apparatus 1 of the present embodiment is configured to open and close the mode switching valve 3 according to the exhaust gas temperature.
The mode switching valve 3 is, for example, a thermostat valve or a solenoid valve that directly detects the exhaust gas temperature and displaces the valve body in accordance with the exhaust gas temperature, and is opened when the exhaust gas temperature is lower than 500 ° C. When the exhaust gas temperature is 500 ° C. or higher, the valve is closed (the valve is opened in the liquid return path).

以下、本実施例の作動を説明する。
(a)排気ガス温度が500℃未満の時
モード切換弁3が開弁状態となって熱回収モードに設定される。これにより、ヒートパイプ2に封入された作動流体は、図5(a)に示す様に、加熱部5で排気ガスより受熱して沸騰した後、冷却部7に流れ込み、冷却部7でエンジン冷却水に蒸発潜熱を放出して凝縮液となり、加熱部5に還流する。この作動流体の蒸発と凝縮の相変化が連続的に行われることにより、排気ガスの熱がエンジン冷却水に効率良く回収される。作動流体の蒸発潜熱を吸収して昇温したエンジン冷却水は、エンジンの暖機あるいは暖房用の熱源等に利用される。
Hereinafter, the operation of this embodiment will be described.
(A) When the exhaust gas temperature is less than 500 ° C. The mode switching valve 3 is opened and the heat recovery mode is set. As a result, the working fluid sealed in the heat pipe 2 is boiled by receiving heat from the exhaust gas in the heating unit 5 and then flows into the cooling unit 7 as shown in FIG. The latent heat of vaporization is released into water to form a condensed liquid, which is refluxed to the heating unit 5. By continuously changing the phase of evaporation and condensation of the working fluid, the heat of the exhaust gas is efficiently recovered in the engine coolant. The engine coolant that has been heated by absorbing the latent heat of vaporization of the working fluid is used as a heat source for warming up or heating the engine.

(b)排気ガス温度が500℃以上の時
モード切換弁3が閉弁状態となって熱遮断モードに切り換わる。これにより、加熱部5と冷却部7との間で作動流体の循環が停止して、加熱部5から冷却部7への熱輸送が遮断される。これにより、図5(b)に示す様に、作動液が冷却部7に貯留されるため、加熱部5の温度が排気ガスの温度と略同じ温度(500℃以上)まで上昇する。その結果、ヒートパイプ2の内部に発生した水素は、加熱部5を構成する鋼材(ステンレス鋼)を透過して外部に排出される。
なお、本実施例のモード切換弁3は、排気ガス温度を直接感知する代わりに、排気ガス温度に相関する物理量を感知して弁体を開閉させる構成でも良い。排気ガス温度に相関する物理量としては、排気ガスの流量、流速、圧力、または、作動流体の温度、圧力、または、アクセル開度などがある。
(B) When the exhaust gas temperature is 500 ° C. or higher The mode switching valve 3 is closed and switched to the heat cutoff mode. Thereby, the circulation of the working fluid is stopped between the heating unit 5 and the cooling unit 7, and heat transport from the heating unit 5 to the cooling unit 7 is blocked. Thereby, as shown in FIG.5 (b), since a hydraulic fluid is stored by the cooling part 7, the temperature of the heating part 5 rises to the temperature (500 degreeC or more) substantially the same as the temperature of exhaust gas. As a result, the hydrogen generated inside the heat pipe 2 passes through the steel material (stainless steel) constituting the heating unit 5 and is discharged to the outside.
Note that the mode switching valve 3 of this embodiment may be configured to detect a physical quantity correlated with the exhaust gas temperature and open and close the valve body instead of directly detecting the exhaust gas temperature. The physical quantity correlated with the exhaust gas temperature includes exhaust gas flow rate, flow velocity, pressure, working fluid temperature, pressure, accelerator opening, and the like.

図6は排熱回収装置1の構成を模式的に示した断面図である。
実施例1に記載した排熱回収装置1は、熱回収モードと熱遮断モードとを切り換えるモード切換弁3を備えているが、この実施例2に示す排熱回収装置1は、常時熱回収を行うタイプであり、例えば、図6に示す様に、ヒートパイプ2の内部空間に連通する連通容器9を備えている。
連通容器9は、排気ガス通路4の内部に配置されて、排気ガス通路4を流れる排気ガスに晒されると共に、ヒートパイプ2の内部で作動流体が沸騰して蒸気となる空間(主に加熱部5)に連通管10を介して連通している。この連通容器9は、500℃以上で水素透過性を有する鋼材(例えばステンレス鋼)により構成されている。
FIG. 6 is a cross-sectional view schematically showing the configuration of the exhaust heat recovery apparatus 1.
The exhaust heat recovery apparatus 1 described in the first embodiment includes a mode switching valve 3 that switches between a heat recovery mode and a heat cutoff mode. However, the exhaust heat recovery apparatus 1 shown in the second embodiment always performs heat recovery. For example, as shown in FIG. 6, a communication container 9 that communicates with the internal space of the heat pipe 2 is provided.
The communication container 9 is disposed inside the exhaust gas passage 4 and is exposed to the exhaust gas flowing through the exhaust gas passage 4, and the working fluid boils inside the heat pipe 2 to become steam (mainly a heating unit). 5) through the communication pipe 10. The communication container 9 is made of a steel material (for example, stainless steel) having hydrogen permeability at 500 ° C. or higher.

上記の排熱回収装置1は、ヒートパイプ2によって常時熱回収が行われる。つまり、ヒートパイプ2の加熱部5で作動流体が排気ガスより受熱して蒸発した後、冷却部7で蒸発潜熱を放出して凝縮することにより、排気ガスの熱が加熱部5から冷却部7へ輸送される。この場合、加熱部5の温度(チューブ5aの容器内側の表面温度)は、さほど上昇しない(例えば300℃以下)。
これに対し、ヒートパイプ2に連通する連通容器9は、排気ガスの流れに晒されて500℃以上に加熱される。この連通容器9を構成する鋼材には、500℃以上で水素を透過する特性があるため、ヒートパイプ2の内部に発生した水素は、連通容器9を構成する鋼材を透過して外部に排出される。
In the exhaust heat recovery apparatus 1, heat recovery is always performed by the heat pipe 2. That is, after the working fluid receives heat from the exhaust gas and evaporates in the heating unit 5 of the heat pipe 2, the cooling unit 7 releases latent heat of condensation and condenses, so that the heat of the exhaust gas is changed from the heating unit 5 to the cooling unit 7. To be transported to. In this case, the temperature of the heating unit 5 (surface temperature inside the container of the tube 5a) does not increase so much (for example, 300 ° C. or less).
In contrast, the communication container 9 communicating with the heat pipe 2 is exposed to the flow of exhaust gas and heated to 500 ° C. or higher. Since the steel material constituting the communication container 9 has a characteristic of permeating hydrogen at 500 ° C. or higher, the hydrogen generated inside the heat pipe 2 passes through the steel material constituting the communication container 9 and is discharged to the outside. The

なお、図6に示す構成では、ヒートパイプ2と連通容器9とを連通管10によって接続しているが、例えば、図7に示す様に、連通容器9をヒートパイプ2の加熱部5に隣接して配置することにより、ヒートパイプ2と連通容器9とを繋ぐ連通管10を廃止することもできる。
また、図6及び図7に示す排熱回収装置1は、実施例1と同じく、ループ式のヒートパイプ2を使用しているが、例えば、図8に示す様に、一般的な単管タイプのヒートパイプ2を使用することもできる。
In the configuration shown in FIG. 6, the heat pipe 2 and the communication container 9 are connected by the communication pipe 10. For example, as shown in FIG. 7, the communication container 9 is adjacent to the heating unit 5 of the heat pipe 2. Thus, the communication pipe 10 that connects the heat pipe 2 and the communication container 9 can be eliminated.
The exhaust heat recovery apparatus 1 shown in FIGS. 6 and 7 uses a loop-type heat pipe 2 as in the first embodiment. For example, as shown in FIG. The heat pipe 2 can also be used.

(変形例)
実施例1では、ヒートパイプ2の加熱部5を鋼材(例えばステンレス鋼)で構成する例を記載したが、冷却部7も同じ鋼材で構成しても良い。
(Modification)
In Example 1, although the example which comprised the heating part 5 of the heat pipe 2 with steel materials (for example, stainless steel) was described, you may comprise the cooling part 7 with the same steel materials.

排熱回収装置の正面図である。It is a front view of an exhaust heat recovery device. 鋼材(ステンレス)の水素透過特性を示すグラフである。It is a graph which shows the hydrogen permeation characteristic of steel materials (stainless steel). 熱回収モード時の作動を説明する排熱回収装置の正面図である。It is a front view of an exhaust heat recovery device explaining operation at the time of heat recovery mode. 熱遮断モード時の作動を説明する排熱回収装置の正面図である。It is a front view of an exhaust heat recovery device explaining operation at the time of heat interception mode. 排熱回収装置の構成を模式的に示した断面図である(実施例2)。It is sectional drawing which showed the structure of the waste heat recovery apparatus typically (Example 2). 排熱回収装置の構成を模式的に示した断面図である(実施例3)。(Example 3) which is sectional drawing which showed the structure of the waste heat recovery apparatus typically. 排熱回収装置の構成を模式的に示した断面図である(実施例3)。(Example 3) which is sectional drawing which showed the structure of the waste heat recovery apparatus typically. 排熱回収装置の構成を模式的に示した断面図である(実施例3)。(Example 3) which is sectional drawing which showed the structure of the waste heat recovery apparatus typically.

符号の説明Explanation of symbols

1 排熱回収装置
2 ヒートパイプ
3 モード切換弁
3b モード切換弁の弁体
5 ヒートパイプの加熱部
7 ヒートパイプの冷却部
9 連通容器
DESCRIPTION OF SYMBOLS 1 Waste heat recovery apparatus 2 Heat pipe 3 Mode switching valve 3b Valve body of mode switching valve 5 Heat pipe heating part 7 Heat pipe cooling part 9 Communication container

Claims (7)

内部に作動流体が封入され、この作動流体の蒸発と凝縮により加熱部から冷却部へ熱輸送するループ式のヒートパイプと、
このヒートパイプを用いて排気ガスの熱を回収する熱回収モードと、前記加熱部から前記冷却部への熱輸送を停止する熱遮断モードとを切り換えるモード切換弁とを備え、
前記ヒートパイプは、少なくとも前記加熱部が500℃以上で水素透過性を有する鋼材により構成されていることを特徴とする排熱回収装置。
A loop type heat pipe in which a working fluid is enclosed, and heat is transported from the heating unit to the cooling unit by evaporation and condensation of the working fluid,
A mode switching valve that switches between a heat recovery mode for recovering the heat of the exhaust gas using this heat pipe and a heat shut-off mode for stopping heat transport from the heating unit to the cooling unit,
The heat pipe is composed of a steel material having hydrogen permeability at least at the heating portion of 500 ° C. or higher, wherein the heat pipe is an exhaust heat recovery apparatus.
内部に作動流体が封入され、この作動流体の蒸発と凝縮により加熱部から冷却部へ熱輸送するヒートパイプと、
前記ヒートパイプの内部で作動流体が蒸発して気相状態となる空間に連通して設けられ、且つ排気ガスより受熱する連通容器とを備え、
前記連通容器は、500℃以上で水素透過性を有する鋼材により構成されていることを特徴とする排熱回収装置。
A heat pipe that encloses the working fluid therein and transports heat from the heating section to the cooling section by evaporation and condensation of the working fluid;
A communication vessel provided in communication with the space in which the working fluid evaporates inside the heat pipe to be in a gas phase state and receives heat from the exhaust gas;
The waste heat recovery apparatus, wherein the communication container is made of a steel material having hydrogen permeability at 500 ° C. or higher.
請求項1に記載した排熱回収装置において、
前記モード切換弁は、前記ヒートパイプの前記加熱部と前記冷却部との間を開閉できる弁体を有し、排気ガス温度または排気ガス温度に相関する物理量を感知して前記弁体を開閉することを特徴とする排熱回収装置。
In the exhaust heat recovery apparatus according to claim 1,
The mode switching valve has a valve body capable of opening and closing between the heating unit and the cooling unit of the heat pipe, and opens and closes the valve body by sensing a physical quantity correlated with exhaust gas temperature or exhaust gas temperature. An exhaust heat recovery apparatus characterized by that.
請求項3に記載した排熱回収装置において、
前記排気ガス温度に相関する物理量は、作動流体の温度または作動流体の圧力であることを特徴とする排熱回収装置。
In the exhaust heat recovery apparatus according to claim 3,
The exhaust heat recovery apparatus, wherein the physical quantity correlated with the exhaust gas temperature is a temperature of the working fluid or a pressure of the working fluid.
請求項3または4に記載した排熱回収装置において、
前記モード切換弁は、排気ガス温度を直接あるいは前記作動流体の物理量より間接的に感知して、排気ガス温度が500℃より低い時に前記弁体が開状態となり、排気ガス温度が500℃以上の時に前記弁体が閉状態となることを特徴とする排熱回収装置。
In the exhaust heat recovery apparatus according to claim 3 or 4,
The mode switching valve senses the exhaust gas temperature directly or indirectly from the physical quantity of the working fluid, and when the exhaust gas temperature is lower than 500 ° C, the valve body is opened, and the exhaust gas temperature is 500 ° C or higher. An exhaust heat recovery apparatus characterized in that the valve body is sometimes closed.
請求項1〜5に記載した何れかの排熱回収装置において、
前記ヒートパイプは、前記加熱部がステンレス鋼で構成されていることを特徴とする排熱回収装置。
In the exhaust heat recovery apparatus according to any one of claims 1 to 5,
In the heat pipe, the heating unit is made of stainless steel, and the exhaust heat recovery apparatus is characterized in that it is made of stainless steel.
請求項1〜6に記載した何れかの排熱回収装置において、
前記冷却部は、車両走行用エンジンの冷却水によって冷却されることを特徴とする排熱回収装置。
In the exhaust heat recovery apparatus according to any one of claims 1 to 6,
The exhaust heat recovery apparatus, wherein the cooling unit is cooled by cooling water of a vehicle travel engine.
JP2007141989A 2006-06-09 2007-05-29 Waste heat recovery device Expired - Fee Related JP5307987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007141989A JP5307987B2 (en) 2006-06-09 2007-05-29 Waste heat recovery device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006160884 2006-06-09
JP2006160884 2006-06-09
JP2007141989A JP5307987B2 (en) 2006-06-09 2007-05-29 Waste heat recovery device

Publications (2)

Publication Number Publication Date
JP2008014625A true JP2008014625A (en) 2008-01-24
JP5307987B2 JP5307987B2 (en) 2013-10-02

Family

ID=39071804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007141989A Expired - Fee Related JP5307987B2 (en) 2006-06-09 2007-05-29 Waste heat recovery device

Country Status (1)

Country Link
JP (1) JP5307987B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024527A (en) * 2008-07-23 2010-02-04 Nisshin Steel Co Ltd Stainless steel for heat pipe, heat pipe and high temperature exhaust heat recovering device
DE102009025010A1 (en) 2008-06-18 2010-02-18 Denso Corporation, Kariya-City Waste heat recovery device
JP2010106786A (en) * 2008-10-31 2010-05-13 Denso Corp Exhaust-heat recovery device
US8333068B2 (en) 2008-12-11 2012-12-18 Denso Corporation Exhaust heat recovery device
KR101219359B1 (en) 2010-11-26 2013-01-21 강희주 heat transfer device
JP2014051966A (en) * 2012-08-07 2014-03-20 Denso Corp Exhaust heat recovery device
JP2018128217A (en) * 2017-02-10 2018-08-16 株式会社デンソー Heat exchanger module

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5966610U (en) * 1982-10-28 1984-05-04 日産自動車株式会社 Rapid heating device for automobiles
JPS6038375U (en) * 1983-08-17 1985-03-16 バブコツク日立株式会社 Corrosion resistant heat pipe
JPS60117479U (en) * 1984-01-10 1985-08-08 古河電気工業株式会社 heat pipe
JPS62252894A (en) * 1986-04-23 1987-11-04 Showa Alum Corp Heat pipe
JPH0195289A (en) * 1987-10-05 1989-04-13 Furukawa Electric Co Ltd:The Heat pipe heat exchanger of separate type
JPH02115015U (en) * 1989-03-02 1990-09-14
JPH0445393A (en) * 1990-06-12 1992-02-14 Aisin Seiki Co Ltd Looped heat pipe heat exchanger

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5966610U (en) * 1982-10-28 1984-05-04 日産自動車株式会社 Rapid heating device for automobiles
JPS6038375U (en) * 1983-08-17 1985-03-16 バブコツク日立株式会社 Corrosion resistant heat pipe
JPS60117479U (en) * 1984-01-10 1985-08-08 古河電気工業株式会社 heat pipe
JPS62252894A (en) * 1986-04-23 1987-11-04 Showa Alum Corp Heat pipe
JPH0195289A (en) * 1987-10-05 1989-04-13 Furukawa Electric Co Ltd:The Heat pipe heat exchanger of separate type
JPH02115015U (en) * 1989-03-02 1990-09-14
JPH0445393A (en) * 1990-06-12 1992-02-14 Aisin Seiki Co Ltd Looped heat pipe heat exchanger

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009025010A1 (en) 2008-06-18 2010-02-18 Denso Corporation, Kariya-City Waste heat recovery device
JP2010024527A (en) * 2008-07-23 2010-02-04 Nisshin Steel Co Ltd Stainless steel for heat pipe, heat pipe and high temperature exhaust heat recovering device
JP2010106786A (en) * 2008-10-31 2010-05-13 Denso Corp Exhaust-heat recovery device
US8333068B2 (en) 2008-12-11 2012-12-18 Denso Corporation Exhaust heat recovery device
KR101219359B1 (en) 2010-11-26 2013-01-21 강희주 heat transfer device
JP2014051966A (en) * 2012-08-07 2014-03-20 Denso Corp Exhaust heat recovery device
JP2018128217A (en) * 2017-02-10 2018-08-16 株式会社デンソー Heat exchanger module

Also Published As

Publication number Publication date
JP5307987B2 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
US8316927B2 (en) Loop heat pipe waste heat recovery device with pressure controlled mode valve
JP5307987B2 (en) Waste heat recovery device
CN101086431B (en) Waste heat recovery device
JP2007333293A (en) Loop type heat pipe
JP2007278623A (en) Exhaust heat recovery system
US20120151938A1 (en) Heat exchanger
JPWO2016121778A1 (en) Heat storage container and heat storage device provided with heat storage container
JP2008280894A (en) Exhaust heat recovery system
JP2008076040A (en) Heat exchanger
JP5817617B2 (en) Chemical heat storage system
JP5010201B2 (en) Drain neutralizer
JP2009074494A (en) Exhaust heat recovery device
EP2220452B1 (en) Heat pipe, exhaust heat recoverer provided therewith
JP2010174791A (en) Exhaust emission control device
JP6493338B2 (en) Chemical heat storage device
JP2008275292A (en) Exhaust heat recovery device
JP2007170299A (en) Exhaust heat recovery system
JP2010116911A (en) Heat accumulator
JP4877284B2 (en) Exhaust heat recovery device
JP4840436B2 (en) Exhaust heat recovery device
JP6044419B2 (en) Waste heat recovery device
JP2007247554A (en) Exhaust heat recovery device
JP2009036103A (en) Exhaust heat recovery device
JP2009058205A (en) Exhaust heat recovery device
JP4682932B2 (en) Loop heat pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120809

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120820

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20121012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees