JP2008008584A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2008008584A
JP2008008584A JP2006181622A JP2006181622A JP2008008584A JP 2008008584 A JP2008008584 A JP 2008008584A JP 2006181622 A JP2006181622 A JP 2006181622A JP 2006181622 A JP2006181622 A JP 2006181622A JP 2008008584 A JP2008008584 A JP 2008008584A
Authority
JP
Japan
Prior art keywords
refrigerant
pipe
tube
heat transfer
header
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006181622A
Other languages
Japanese (ja)
Other versions
JP2008008584A5 (en
Inventor
Seiji Okazaki
誠二 岡崎
Takahiro Hashimoto
隆弘 橋本
Kazuhisa Mishiro
一寿 三代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2006181622A priority Critical patent/JP2008008584A/en
Publication of JP2008008584A publication Critical patent/JP2008008584A/en
Publication of JP2008008584A5 publication Critical patent/JP2008008584A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger improving heat exchange efficiency by equally distributing refrigerants of liquid and gaseous phases passing through a refrigerant inflow side header tube. <P>SOLUTION: The heat exchanger is provided with: the refrigerant inflow side header tub and a refrigerant outflow side header tube arranged with tube axes in a horizontal direction; and a plurality of heat transfer tubes passing a refrigerant through interiors, and arranged in parallel with each other in a vertical direction between both header tubes, with both ends inserted and connected in one row in a tube axis direction of both header tubes. The heat exchange efficiency is improved by arranging a partition plate 5 perpendicular to the heat transfer tube inserted and connected to the refrigerant inflow side header tube, by reducing a refrigerant passage cross-sectional area of the refrigerant inflow side header tube 1, by increasing a flow velocity of the refrigerant flowing in from a refrigerant inflow tube 4 for that portion, by delaying gasification of the refrigerant in a refrigerant flow direction downstream side, contacting an end of a downstream side heat transfer tube 3 with the liquid refrigerant, sending the liquid refrigerant into the heat transfer tube 3, and by equally distributing the liquid refrigerant between the heat transfer tubes in a tube direction. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、冷媒流入側ヘッダ管と冷媒流出側ヘッダ管の間に冷媒を平行に流通させる複数の伝熱管を備えた熱交換器に関するものである。   The present invention relates to a heat exchanger provided with a plurality of heat transfer tubes that circulate refrigerant in parallel between a refrigerant inflow side header tube and a refrigerant outflow side header tube.

従来、空気調和機等の冷凍サイクルを構成する熱交換器(蒸発器)として、管軸方向を水平にして円筒状の冷媒流入側ヘッダ管及び冷媒流出側ヘッダ管を上下に配設し、上下の冷媒流入側ヘッダ管と冷媒流出側ヘッダ管との間に垂直方向に内部を冷媒が通過する複数の伝熱管を平行に並べ、その両端部を夫々ヘッダ管の管軸方向に一列に挿入接続し、伝熱管は内部を細かく区切り複数の冷媒流路が形成されたものが知られている(特許文献1参照)。   Conventionally, as a heat exchanger (evaporator) constituting a refrigeration cycle of an air conditioner or the like, a cylindrical refrigerant inflow side header pipe and a refrigerant outflow side header pipe are arranged vertically with the pipe axis direction horizontal, A plurality of heat transfer tubes through which the refrigerant passes vertically are arranged in parallel between the refrigerant inflow side header tube and the refrigerant outflow side header tube, and both ends thereof are inserted and connected in a row in the tube axis direction of the header tube. A heat transfer tube is known in which the inside is finely divided and a plurality of refrigerant flow paths are formed (see Patent Document 1).

この特許文献1の熱交換器では、冷媒流入側ヘッダ管の端部に形成された冷媒流入管から気液二相状態の冷媒がヘッダ管内に流入し、冷媒流入側ヘッダ管内で分流されて伝熱管を通り、この伝熱管内で液冷媒が蒸発を行い気液が分離しながら冷媒流出側ヘッダ管へ流れ、冷媒流出側ヘッダ管内で分流された冷媒が合流し、冷媒流出側ヘッダ管の冷媒流出管から冷媒を流出するようになっている。   In the heat exchanger of Patent Document 1, the gas-liquid two-phase refrigerant flows into the header pipe from the refrigerant inflow pipe formed at the end of the refrigerant inflow side header pipe, and is divided and transmitted in the refrigerant inflow side header pipe. The refrigerant passes through the heat pipe, the liquid refrigerant evaporates in the heat transfer pipe and flows into the refrigerant outflow side header pipe while the gas and liquid are separated, and the refrigerant divided in the refrigerant outflow side header pipe joins to form the refrigerant in the refrigerant outflow side header pipe The refrigerant flows out from the outflow pipe.

また、特許文献1の熱交換器では、伝熱管の端部に傾斜部を設けることにより、流通する気液二相の冷媒のうち伝熱管と液冷媒との接触を確実にし、伝熱管の挿入誤差による悪影響をなくして液冷媒を均等に分流可能とし、液冷媒の蒸発を効率よく行わせて熱交換効率を向上させるようにしている。
特許第3133897号公報
Moreover, in the heat exchanger of patent document 1, by providing an inclination part in the edge part of a heat exchanger tube, contact with a heat exchanger tube and a liquid refrigerant is ensured among the circulating gas-liquid refrigerant, and insertion of a heat exchanger tube is carried out. The liquid refrigerant can be evenly divided without adverse effects due to errors, and the liquid refrigerant is efficiently evaporated to improve the heat exchange efficiency.
Japanese Patent No. 3133897

ところで、特許文献1に示すように、冷媒流入管から冷媒流入側ヘッダ管内に流入する冷媒は気液二相状態であり、この気液二相の冷媒は、図6(a)に示すように、冷媒流入側ヘッダ管内を流れる冷媒の流れ方向で下流側に向かうほど冷媒がガス化していくため、下流側端部付近の伝熱管ではガス化された冷媒ばかりが存在し、ガス冷媒ばかりが伝熱管を流通すると、当該伝熱管における熱交換効率が悪くなる。   By the way, as shown in Patent Document 1, the refrigerant flowing from the refrigerant inflow pipe into the refrigerant inflow side header pipe is in a gas-liquid two-phase state, and this gas-liquid two-phase refrigerant is as shown in FIG. Since the refrigerant gasifies toward the downstream side in the flow direction of the refrigerant flowing through the refrigerant inflow side header pipe, only the gasified refrigerant exists in the heat transfer pipe near the downstream end, and only the gas refrigerant is transmitted. When the heat pipe is circulated, the heat exchange efficiency in the heat transfer pipe is deteriorated.

特に、伝熱管として、内部を細かく区切り複数の冷媒流路が形成された扁平な伝熱管を使用した場合、伝熱管の幅に合わせて、これを挿入接続するヘッダ管も必然的に管径の大きなものを使用しなければならない。そのため、冷媒流入側ヘッダ管の内径も大きくなり、内部を流通する冷媒も気液二相に分離しやすくなり、上記不具合がより発生しやすくなるといった問題があった。   In particular, when a flat heat transfer tube with a plurality of refrigerant flow paths divided into the inside is used as the heat transfer tube, the header tube inserted and connected to the width of the heat transfer tube inevitably has a pipe diameter. Big ones must be used. For this reason, the inner diameter of the refrigerant inflow side header pipe is increased, and the refrigerant flowing through the refrigerant is easily separated into two phases, and the above-described problem is more likely to occur.

本発明は、上記に課題に鑑み、冷媒流入側ヘッダ管を流通する気液二相の冷媒を均等に分配して熱交換効率を向上させることができる熱交換器の提供を目的とする。   In view of the above-described problems, an object of the present invention is to provide a heat exchanger that can evenly distribute the gas-liquid two-phase refrigerant flowing through the refrigerant inflow side header pipe and improve the heat exchange efficiency.

上記の目的を達成するために、本発明では、冷媒流入側ヘッダ管の管軸方向でほぼ均一に伝熱管に液冷媒を接触させるための手段を設けている。その一つは、冷媒流路断面積を減少させる手法である。すなわち、本発明では、管軸方向を水平にして配設された冷媒流入側ヘッダ管及び冷媒流出側ヘッダ管と、該両ヘッダ管の間で垂直方向に平行に並べられ、かつ両端部が前記両ヘッダ管の管軸方向に一列に挿入接続された内部を冷媒が通過する複数の伝熱管とを備えた熱交換器であって、冷媒流入側ヘッダ管に挿入接続される伝熱管と垂直に仕切板が配置されたことを特徴とする。   In order to achieve the above object, in the present invention, means for bringing the liquid refrigerant into contact with the heat transfer tube substantially uniformly in the tube axis direction of the refrigerant inflow side header tube is provided. One of them is a method of reducing the refrigerant flow path cross-sectional area. That is, in the present invention, the refrigerant inflow side header pipe and the refrigerant outflow side header pipe arranged with the pipe axis direction being horizontal, the two header pipes are arranged in parallel in the vertical direction, and both ends are the above-mentioned A heat exchanger comprising a plurality of heat transfer tubes through which the refrigerant passes through the inside of the header pipes that are inserted and connected in a row in the tube axis direction, and perpendicular to the heat transfer tubes that are inserted and connected to the refrigerant inflow header pipe A partition plate is arranged.

上記構成によると、冷媒流入側ヘッダ管に挿入接続される伝熱管と垂直に仕切板を配置したので、冷媒流入側ヘッダ管の冷媒流路断面積が小さくなり、冷媒流入側ヘッダ管の内圧が高くなる。その分、冷媒流入管から流入する冷媒の流速が速くなり、冷媒の流通方向で下流側での冷媒のガス化が遅れ、下流側の伝熱管の端部でも液冷媒と接触し、伝熱管内に液冷媒を流入させることができる。さらに、冷媒流入側ヘッダ管の内圧が高くなる分、冷媒流出側ヘッダ管との差圧が大きくなるため、伝熱管内への液冷媒の流入が容易になる。つまり、冷媒流入側ヘッダ管の管軸方向でほぼ均一に伝熱管に液冷媒を流通させることができ、熱交換効率を向上させることができる。   According to the above configuration, since the partition plate is arranged perpendicular to the heat transfer pipe inserted and connected to the refrigerant inflow side header pipe, the refrigerant flow path cross-sectional area of the refrigerant inflow side header pipe is reduced, and the internal pressure of the refrigerant inflow side header pipe is reduced. Get higher. Accordingly, the flow velocity of the refrigerant flowing from the refrigerant inflow pipe is increased, the gasification of the refrigerant on the downstream side is delayed in the flow direction of the refrigerant, and the liquid refrigerant is also contacted at the end of the heat transfer pipe on the downstream side. A liquid refrigerant can be caused to flow. Furthermore, since the pressure difference between the refrigerant inflow side header pipe and the refrigerant outflow side header pipe increases, the inflow of the liquid refrigerant into the heat transfer pipe is facilitated. That is, the liquid refrigerant can be circulated through the heat transfer pipe almost uniformly in the pipe axis direction of the refrigerant inflow header pipe, and the heat exchange efficiency can be improved.

この場合、仕切板は冷媒流入側ヘッダ管の管方向に平行に配置してもよいが、冷媒流入側ヘッダ管内を流れる冷媒の流れ方向で下流側に向かうほど伝熱管に近付くように傾斜して配置してもよい。この構成によると、冷媒流入側ヘッダ管において、冷媒の流れ方向で下流側の伝熱管の端部でも、液冷媒と接触しやすくなり、伝熱管内に液冷媒を流入させることができるので、熱交換効率を向上させることができる。   In this case, the partition plate may be arranged in parallel with the pipe direction of the refrigerant inflow side header pipe, but is inclined so as to approach the heat transfer pipe toward the downstream side in the flow direction of the refrigerant flowing in the refrigerant inflow side header pipe. You may arrange. According to this configuration, in the refrigerant inflow side header pipe, the end of the heat transfer pipe on the downstream side in the refrigerant flow direction can easily come into contact with the liquid refrigerant, and the liquid refrigerant can flow into the heat transfer pipe. Exchange efficiency can be improved.

また、仕切板は、平坦な形状であってもよいが、冷媒流通側中心部を凹ませた凹状断面とすることもできる。この構成によると、仕切板により冷媒流路面積が減少して気液二相の冷媒の流速が速くなると、冷媒流通側の凹部には液冷媒に比べて比重の軽いガス冷媒が集束し、その周囲には液冷媒が流れるようになる。そのため、冷媒流入側のヘッダ管に挿入される伝熱管の端部にはヘッダ管の管壁側を流れる液冷媒が流入しやすくなる。   In addition, the partition plate may have a flat shape, but can also have a concave cross section with a concave center portion on the refrigerant flow side. According to this configuration, when the flow path area of the refrigerant is reduced by the partition plate and the flow velocity of the gas-liquid two-phase refrigerant is increased, the gas refrigerant having a lighter specific gravity than the liquid refrigerant is concentrated in the recess on the refrigerant circulation side. Liquid refrigerant flows around. Therefore, the liquid refrigerant flowing on the tube wall side of the header pipe easily flows into the end portion of the heat transfer pipe inserted into the header pipe on the refrigerant inflow side.

仕切板による仕切り位置は、ヘッダ管を上下に仕切るならば、その位置は限定されないが、仕切板の幅が冷媒流入側ヘッダ管の内径(最大寸法)に設定されて管内面に接合されるのが好ましい。これは、ヘッダ管は板状部材に仕切板を挟み込みながらシーム溶接などにより接合して管形成するが、その際、仕切板の幅をヘッダ管の最大寸法に合わせれば、仕切板の位置決めが行い易くなるためである。   The partition position by the partition plate is not limited as long as the header pipe is divided up and down, but the width of the partition plate is set to the inner diameter (maximum dimension) of the refrigerant inflow side header pipe and joined to the inner surface of the pipe. Is preferred. This is because the header pipe is formed by joining the plate with a plate-like member by seam welding or the like, but at this time, if the width of the divider plate is adjusted to the maximum dimension of the header pipe, the partition plate is positioned. This is because it becomes easier.

さらに、冷媒流入側ヘッダ管の始端側に冷媒流入管が接続される。この冷媒流入管は、仕切板により仕切られたヘッダ管内の空間のうち伝熱管側に接続される。これにより、気液二相の冷媒は確実に伝熱管側の流路を流通することになる。   Further, the refrigerant inflow pipe is connected to the start end side of the refrigerant inflow side header pipe. This refrigerant inflow pipe is connected to the heat transfer pipe side in the space in the header pipe partitioned by the partition plate. This ensures that the gas-liquid two-phase refrigerant flows through the flow channel on the heat transfer tube side.

また、上記仕切板と併用または単独で、冷媒流入側ヘッダ管を、その内部を流れる冷媒の流れ方向で下流側に向かうほど冷媒の流路断面積を小さく設定し、液冷媒と伝熱管の端部とを接触しやすくこともできる。   Further, in combination with or alone with the partition plate, the refrigerant inflow side header pipe is set to have a smaller flow passage cross-sectional area toward the downstream side in the flow direction of the refrigerant flowing through the inside, and the ends of the liquid refrigerant and the heat transfer pipe are set. It can also be easy to contact the part.

さらに、冷媒流入側ヘッダ管の管軸方向でほぼ均一に伝熱管に液冷媒を接触させるための本発明の別の手法として、冷媒流入側ヘッダ管内を流れる冷媒の流れ方向で下流側に向かうほど伝熱管の挿入代を大きく設定し、比重の重い液冷媒と伝熱管の端部とを接触しやすくする構成を採用することもできる。   Furthermore, as another method of the present invention for bringing the liquid refrigerant into contact with the heat transfer pipe almost uniformly in the pipe axis direction of the refrigerant inflow side header pipe, the downstream direction in the flow direction of the refrigerant flowing in the refrigerant inflow side header pipe It is also possible to employ a configuration in which the insertion allowance of the heat transfer tube is set large so that the liquid refrigerant having a high specific gravity and the end of the heat transfer tube can be easily brought into contact with each other.

以上のとおり、本発明によると、冷媒流入側ヘッダ管に挿入接続される伝熱管と垂直に配置した仕切板により、冷媒流入側ヘッダ管の冷媒流路断面積が小さくなり、その分、冷媒の流速が速くなる。また、冷媒流入側ヘッダ管の内圧が高くなり、伝熱管内への液冷媒の流入が容易になる。これらにより、液冷媒をヘッダ管の管方向でほぼ均一に伝熱管に流通させることができ、熱交換効率を向上させることができる。   As described above, according to the present invention, the partition plate arranged perpendicular to the heat transfer pipe inserted and connected to the refrigerant inflow side header pipe reduces the refrigerant flow path cross-sectional area of the refrigerant inflow side header pipe. The flow rate becomes faster. Further, the internal pressure of the refrigerant inflow side header pipe becomes high, and the liquid refrigerant can easily flow into the heat transfer pipe. By these, a liquid refrigerant can be distribute | circulated to a heat exchanger tube substantially uniformly by the pipe direction of a header pipe | tube, and heat exchange efficiency can be improved.

以下、本発明の実施形態を図面に基づいて説明する。図1は本発明の第1の実施形態を示す熱交換器の正面図、図2は図1の要部断面図、図3は図2の右側面断面図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a front view of a heat exchanger showing a first embodiment of the present invention, FIG. 2 is a cross-sectional view of an essential part of FIG. 1, and FIG. 3 is a right-side cross-sectional view of FIG.

本実施形態の熱交換器は、空気調和機などの冷凍サイクルを構成する熱交換器、例えば、蒸発器として使用されるものであって、管軸方向を水平にして円筒状の中空体で形成された冷媒流入側ヘッダ管1及び冷媒流出側ヘッダ管2を配設し、冷媒流入側ヘッダ管1と冷媒流出側ヘッダ管2との間に垂直方向に内部を冷媒が通過する複数の扁平な伝熱管3を平行に並べ、その両端部を夫々当該両ヘッダ管1、2の管軸方向に一列に挿入接続したものである。   The heat exchanger of the present embodiment is used as a heat exchanger constituting a refrigeration cycle such as an air conditioner, for example, an evaporator, and is formed of a cylindrical hollow body with the tube axis direction horizontal. The refrigerant inflow side header pipe 1 and the refrigerant outflow side header pipe 2 are disposed, and a plurality of flat plates through which the refrigerant passes vertically between the refrigerant inflow side header pipe 1 and the refrigerant outflow side header pipe 2. The heat transfer tubes 3 are arranged in parallel, and both end portions thereof are inserted and connected in a line in the tube axis direction of the header tubes 1 and 2.

冷媒流入側ヘッダ管1は、円筒状のアルミパイプ製のものであって、その両端が閉塞され、一側管端部に管周壁から冷媒流入管4がろう付けなどにより接続される。冷媒流入側ヘッダ管1の内径は、扁平な伝熱管3の端部を挿入してヘッダ管1と伝熱管3の内部流通路6との間で冷媒が流通できる大きさに設定される。したがって、冷媒流入側のヘッダ管1では、冷媒流入管4から流入した気液二相の冷媒が冷媒の流れ方向で下流側においてガス冷媒と液冷媒に分離しやすくなり、すべての伝熱管3への分流性能が悪化する(図6(a)参照)。   The refrigerant inflow side header pipe 1 is made of a cylindrical aluminum pipe, both ends thereof are closed, and the refrigerant inflow pipe 4 is connected to one end of the pipe from the pipe peripheral wall by brazing or the like. The inner diameter of the refrigerant inflow header pipe 1 is set to a size that allows the refrigerant to flow between the header pipe 1 and the internal flow passage 6 of the heat transfer pipe 3 by inserting the end of the flat heat transfer pipe 3. Therefore, in the header pipe 1 on the refrigerant inflow side, the gas-liquid two-phase refrigerant flowing in from the refrigerant inflow pipe 4 is easily separated into the gas refrigerant and the liquid refrigerant on the downstream side in the refrigerant flow direction. The shunting performance of is deteriorated (see FIG. 6A).

そこで、本実施形態では、冷媒流入側ヘッダ管1に挿入接続される伝熱管3とは垂直に仕切板5を配置し、この仕切板5により冷媒流路10の断面積を減少させ、冷媒の流通方向で下流側においても上流側と変わらない液冷媒量を確保しつつ、下流側の伝熱管3の端部においても液冷媒と伝熱管3とを接触させやすくしている。   Therefore, in this embodiment, the partition plate 5 is arranged perpendicular to the heat transfer tube 3 inserted and connected to the refrigerant inflow header tube 1, and the partition plate 5 reduces the cross-sectional area of the refrigerant flow path 10 so that the refrigerant flow is reduced. The liquid refrigerant and the heat transfer tube 3 are easily brought into contact with each other at the end portion of the heat transfer tube 3 on the downstream side while securing the amount of liquid refrigerant that is the same as that on the upstream side in the flow direction.

仕切板5は、アルミニウム製の板状部材であって、その幅が冷媒流入側ヘッダ管1の内径(最大寸法)に設定され、管内壁にろう付けなどにより接合され、ヘッダ管1を上下に仕切っている。したがって、仕切板5は、ヘッダ管1の管軸方向と平行に配置された状態となっている。   The partition plate 5 is a plate-shaped member made of aluminum, and the width thereof is set to the inner diameter (maximum dimension) of the refrigerant inflow side header tube 1 and is joined to the inner wall of the tube by brazing or the like so that the header tube 1 is moved up and down. Partitioning. Therefore, the partition plate 5 is in a state of being arranged in parallel with the pipe axis direction of the header pipe 1.

そして、冷媒流入側のヘッダ管1では、仕切板5よりも上側の通路が冷媒流路10として機能し、下側の通路10aは冷媒が流通しない単なる空間として存在する。そのため、冷媒流入側ヘッダ管1は、断面半円状、あるいは横長矩形断面形状であってもよいが、ヘッダ管1の強度を考えると断面円形が好ましい。   In the header pipe 1 on the refrigerant inflow side, the passage on the upper side of the partition plate 5 functions as the refrigerant flow path 10, and the lower passage 10a exists as a mere space in which no refrigerant flows. Therefore, the refrigerant inflow header pipe 1 may have a semicircular cross section or a horizontally long rectangular cross section, but considering the strength of the header pipe 1, a circular cross section is preferable.

したがって、本実施形態では、冷媒流入側のヘッダ管1として円筒状のものを採用することとし、扁平な伝熱管3を挿入して冷媒を流通させることから、ヘッダ管1の断面積が大きくなり、流通する気液二相の冷媒が分離しやすくなるので、これを解消するためにヘッダ管1の内部を仕切板5で仕切る構成とした。   Therefore, in the present embodiment, a cylindrical pipe is adopted as the header pipe 1 on the refrigerant inflow side, and the flat heat transfer pipe 3 is inserted to circulate the refrigerant. Therefore, the cross-sectional area of the header pipe 1 is increased. Since the gas-liquid two-phase refrigerant that circulates is easily separated, the inside of the header pipe 1 is partitioned by the partition plate 5 in order to solve this problem.

なお、冷媒流入側ヘッダ管1は、板状部材をロール成形により管状に成形してシーム溶接したものであり、その成形途中に仕切板5を挿入しつつ、ろう付け接合している。   In addition, the refrigerant | coolant inflow side header pipe | tube 1 shape | molds a plate-shaped member in the shape of a pipe by roll forming, and is seam-welded, and is joining by brazing, inserting the partition plate 5 in the middle of the shaping | molding.

伝熱管3は、図3に示すように、内部に複数の流路が平行に形成された管状で、かつ扁平なアルミ管であって、押し出し成形により形成される。その厚みは1mm程度、幅は6mm〜16mm程度に設定される。この伝熱管3はその厚みとほぼ同程度の間隔をおいてヘッダ管1,2の管方向に沿って平行に配置される。   As shown in FIG. 3, the heat transfer tube 3 is a tubular and flat aluminum tube having a plurality of flow paths formed in parallel therein, and is formed by extrusion molding. The thickness is set to about 1 mm, and the width is set to about 6 mm to 16 mm. The heat transfer tubes 3 are arranged in parallel along the tube direction of the header tubes 1 and 2 with an interval substantially equal to the thickness thereof.

そして、伝熱管3の下方には冷媒流入側ヘッダ管1を水平にして下側に配置し、伝熱管3の上側には冷媒流出側ヘッダ管2を配置し、冷媒流入管4から流入した冷媒を冷媒流入側ヘッダ管1から伝熱管3を通して下側から上側に流通させ、冷媒流出側のヘッダ管2で合流させて、その端部にある冷媒流出管7から排出する。その間に伝熱管3において外部の空気と熱交換し、外気を冷やして冷風として送り出す。   A refrigerant inflow header pipe 1 is placed below and horizontally below the heat transfer pipe 3, and a refrigerant outflow side header pipe 2 is arranged above the heat transfer pipe 3. Are circulated from the refrigerant inflow side header pipe 1 through the heat transfer pipe 3 from the lower side to the upper side, merged in the refrigerant outflow side header pipe 2 and discharged from the refrigerant outflow pipe 7 at the end thereof. In the meantime, heat is exchanged with the outside air in the heat transfer tube 3, and the outside air is cooled and sent out as cold air.

冷媒流出側ヘッダ管2は、円筒状のアルミパイプ製のものであって、板状部材をロール成形により管状に成形してシーム溶接したものである。冷媒流出側ヘッダ管2の一側は閉塞され、他側の管端には冷媒流出管7がろう付けなどにより接合される。冷媒流出側ヘッダ管2の内径は、扁平な伝熱管3の端部を挿入して伝熱管3の内部流通路6との間で冷媒を合流させることができる大きさに設定される。   The refrigerant outflow side header pipe 2 is made of a cylindrical aluminum pipe, and a plate-like member is formed into a tubular shape by roll forming and seam-welded. One side of the refrigerant outflow side header pipe 2 is closed, and the refrigerant outflow pipe 7 is joined to the other end of the pipe by brazing or the like. The inner diameter of the refrigerant outflow side header pipe 2 is set to a size that allows the refrigerant to merge with the internal flow passage 6 of the heat transfer pipe 3 by inserting the end of the flat heat transfer pipe 3.

これらの冷媒流入側ヘッダ管1、冷媒流出側ヘッダ管2および伝熱管3は、すべてアルミニウム製のものであって、これにより軽量化と共に生産コストの低減が図られている。   The refrigerant inflow side header pipe 1, the refrigerant outflow side header pipe 2 and the heat transfer pipe 3 are all made of aluminum, thereby reducing the weight and reducing the production cost.

なお、図示の熱交換器では、多数の伝熱管3を配置して冷媒流通量を多くし、かつ熱交換効率を良好なものにしているが、これとは別に、伝熱管3にそれぞれ熱交換を効率よく行うためのフィン(図示略)を固着する構成を採用してもよい。   In addition, in the illustrated heat exchanger, a large number of heat transfer tubes 3 are arranged to increase the refrigerant flow rate and to improve the heat exchange efficiency. A structure in which fins (not shown) for efficiently performing the above operation are fixed may be employed.

上記構成の熱交換器においては、冷媒流入管4から気液二相の冷媒が冷媒流入側ヘッダ管1内に流入すると、仕切板5よりも上側の通路を流れ、気液混合した冷媒が管方向に配列された各伝熱管3の端部と接触し、伝熱管3の内部流通路6を通って伝熱管3内を上昇し、冷媒流出側ヘッダ管2に送られ、ここで合流して冷媒流出管7から排出される。この間、主に液冷媒は伝熱管部において外気と熱交換し、外気を冷やして冷風として送り出す一方、冷媒自体は熱交換されてガス化し、冷媒流出側ヘッダ管2に送られる。   In the heat exchanger configured as described above, when the gas-liquid two-phase refrigerant flows from the refrigerant inflow pipe 4 into the refrigerant inflow side header pipe 1, the refrigerant flows through the passage above the partition plate 5 and the gas-liquid mixed refrigerant flows through the pipe. In contact with the end of each heat transfer tube 3 arranged in the direction, through the internal flow passage 6 of the heat transfer tube 3, rise in the heat transfer tube 3, is sent to the refrigerant outflow side header tube 2, where it merges It is discharged from the refrigerant outflow pipe 7. During this time, mainly the liquid refrigerant exchanges heat with the outside air in the heat transfer pipe section, cools the outside air and sends it out as cold air, while the refrigerant itself is heat exchanged and gasified and sent to the refrigerant outflow side header pipe 2.

この際、冷媒流入側ヘッダ管1を上下に仕切る仕切板5により、ヘッダ管1の冷媒流路断面積が減少し、その分、冷媒流入管から流入する冷媒の流速が速くなる。そのため、冷媒の流通方向で下流側での冷媒のガス化も遅れ、下流側の伝熱管3の端部は液冷媒と接触して、伝熱管内に液冷媒を流入させることができる。さらに、冷媒流入側ヘッダ管1の内圧が高くなる分、冷媒流出側ヘッダ管2との差圧が大きくなるため、伝熱管3内への液冷媒の流入が容易になる。つまり、冷媒流入側ヘッダ管1の管軸方向でほぼ均一に伝熱管3に液冷媒を流通させることができ、熱交換効率を向上させることができる。   At this time, the partition plate 5 that divides the refrigerant inflow header pipe 1 up and down reduces the refrigerant flow path cross-sectional area of the header pipe 1 and increases the flow rate of the refrigerant flowing in from the refrigerant inflow pipe. Therefore, the gasification of the refrigerant on the downstream side in the refrigerant flow direction is also delayed, and the end of the downstream heat transfer tube 3 comes into contact with the liquid refrigerant, so that the liquid refrigerant can flow into the heat transfer tube. Furthermore, since the pressure difference between the refrigerant inflow side header pipe 1 and the refrigerant outflow side header pipe 2 increases, the inflow of liquid refrigerant into the heat transfer pipe 3 is facilitated. That is, the liquid refrigerant can be circulated through the heat transfer tube 3 almost uniformly in the tube axis direction of the refrigerant inflow side header tube 1, and the heat exchange efficiency can be improved.

図4は本発明の第2実施形態である熱交換器の要部断面図である。図に示すように、本実施形態では、仕切板5が冷媒流入側ヘッダ管1内を流れる冷媒の流れ方向で下流側に向かうほど伝熱管3に近付くように下流側が上側に傾斜して配置される。   FIG. 4 is a cross-sectional view of a main part of a heat exchanger according to the second embodiment of the present invention. As shown in the drawing, in the present embodiment, the partition plate 5 is disposed so that the downstream side is inclined upward so as to approach the heat transfer tube 3 toward the downstream side in the flow direction of the refrigerant flowing in the refrigerant inflow side header pipe 1. The

仕切板5は第1実施形態のように冷媒流入側ヘッダ管1の管方向に平行に配置してもよいが、冷媒流入側ヘッダ管1内を流れる冷媒の流れ方向で下流側に向かうほど伝熱管3に近付くように上側に傾斜して配置すると、下流側の伝熱管3の端部でも、より液冷媒と接触し、伝熱管3内に液冷媒を流入させることができ、熱交換効率を向上させることができる。   The partition plate 5 may be arranged in parallel with the pipe direction of the refrigerant inflow side header pipe 1 as in the first embodiment, but it is transmitted toward the downstream side in the flow direction of the refrigerant flowing in the refrigerant inflow side header pipe 1. If it is inclined to the upper side so as to approach the heat pipe 3, the end of the heat transfer pipe 3 on the downstream side can be further in contact with the liquid refrigerant, and the liquid refrigerant can flow into the heat transfer pipe 3, thereby improving the heat exchange efficiency. Can be improved.

図5は本発明の第3の実施形態を示す冷媒流入側ヘッダ部の右側面断面図である。図に示すように、本実施形態では、仕切板5は、その冷媒流通側中心部が凹んだ凹状断面とされる。   FIG. 5 is a right side cross-sectional view of the refrigerant inflow side header portion showing the third embodiment of the present invention. As shown in the figure, in the present embodiment, the partition plate 5 has a concave cross section in which the central portion of the refrigerant flow side is recessed.

この構成によると、仕切板5により冷媒流路面積が減少して気液二相の冷媒の流速が速くなると、冷媒流通側の凹部9には液冷媒に比べて比重の軽いガス冷媒8bが集束し、その周囲には液冷媒8aが流れるようになる。そのため、冷媒流入側ヘッダ管1に挿入される伝熱管3の端部には、ヘッダ管1の管壁側を流れる液冷媒8aが流入しやすくなり、熱交換効率を向上させることができる。   According to this configuration, when the flow path area of the refrigerant is reduced by the partition plate 5 and the flow rate of the gas-liquid two-phase refrigerant is increased, the gas refrigerant 8b having a lighter specific gravity than the liquid refrigerant is concentrated in the concave portion 9 on the refrigerant flow side. However, the liquid refrigerant 8a flows around it. Therefore, the liquid refrigerant 8a flowing on the tube wall side of the header pipe 1 can easily flow into the end portion of the heat transfer pipe 3 inserted into the refrigerant inflow side header pipe 1, and the heat exchange efficiency can be improved.

図6は本発明の第4の実施形態を示すヘッダ部の断面図であって、同図(a)は冷媒のガス化によりヘッダの端部で伝熱管の下端が液面に未到達であることを示し、同図(b)は同図(a)の熱交換器を改善してヘッダ1の冷媒の流れ方向で下流側の端部に向かうほど伝熱管3の挿入代Aを大きくした断面図である。   FIG. 6 is a cross-sectional view of a header portion showing a fourth embodiment of the present invention. FIG. 6 (a) shows that the lower end of the heat transfer tube does not reach the liquid level at the end of the header due to gasification of the refrigerant. (B) is a cross section in which the heat exchanger tube of FIG. (A) is improved and the insertion allowance A of the heat transfer tube 3 is increased toward the downstream end in the refrigerant flow direction of the header 1. FIG.

図に示すように、本実施形態では、冷媒流入側ヘッダ管1を流通する気液二相の冷媒を均等に分配して熱交換効率を向上させるために、冷媒流入側ヘッダ管1の内部を流れる冷媒の流れ方向で下流側に向かうほど、伝熱管3の挿入代Aを大きく設定したものである。   As shown in the drawing, in the present embodiment, in order to evenly distribute the gas-liquid two-phase refrigerant flowing through the refrigerant inflow side header pipe 1 and improve the heat exchange efficiency, the inside of the refrigerant inflow side header pipe 1 is arranged. The insertion allowance A of the heat transfer tube 3 is set larger as it goes downstream in the flow direction of the flowing refrigerant.

この構成においては、比重の重い液冷媒8aが冷媒の流れ方向で下流側において下位部分にしか存在していなくても、伝熱管3の端部入口と接触することになり、これにより液冷媒を伝熱管3に送ることができ、熱交換効率を向上させることができる。   In this configuration, even if the liquid refrigerant 8a having a high specific gravity is present only in the lower part on the downstream side in the flow direction of the refrigerant, the liquid refrigerant 8a comes into contact with the end inlet of the heat transfer tube 3. It can send to the heat exchanger tube 3, and can improve heat exchange efficiency.

なお、本発明は、上記実施形態に限定されるものではなく、本発明の範囲内で多くの修正・変更を加えることができるのは勿論である。例えば、仕切板5と併用または単独で、冷媒流入側ヘッダ管1を、その内部を流れる冷媒の流れ方向で下流側に向かうほど冷媒の流路断面積を小さく設定する。具体的には下流側に向かうほど小径に形成されたヘッダ管であってもよい。また、上記実施形態では、ヘッダ管はアルミニウム製のもので説明したが、例えば、銅製などの熱伝導性のよい材質で形成されていてもよいことは勿論である。   Note that the present invention is not limited to the above-described embodiment, and it is needless to say that many modifications and changes can be made within the scope of the present invention. For example, the refrigerant inflow side header pipe 1 is used in combination with or alone with the partition plate 5, and the flow path cross-sectional area of the refrigerant is set to be smaller toward the downstream side in the flow direction of the refrigerant flowing through the inside. Specifically, it may be a header pipe formed with a smaller diameter toward the downstream side. In the above embodiment, the header pipe is made of aluminum. However, for example, the header pipe may be made of a material having good thermal conductivity such as copper.

本発明の実施形態を示す熱交換器の正面図The front view of the heat exchanger which shows embodiment of this invention 図1の要部断面図Cross-sectional view of the main part of FIG. 図2の右側面断面図2 is a right side sectional view. 本発明の第2実施形態である熱交換器の要部断面図Sectional drawing of the principal part of the heat exchanger which is 2nd Embodiment of this invention. 本発明の第3の実施形態を示すヘッダ部の右側面断面図Sectional view on the right side of the header section showing the third embodiment of the present invention 本発明の第4の実施形態を示すヘッダ部の断面図であって、同図(a)は冷媒のガス化によりヘッダの端部で伝熱管の下端が液面に未到達であることを示し、同図(b)は(a)の熱交換器を改善してヘッダの端部に向かうほど伝熱管の挿入代を大きくした断面図It is sectional drawing of the header part which shows the 4th Embodiment of this invention, Comprising: The same figure (a) shows that the lower end of a heat exchanger tube has not reached | attained the liquid level at the edge part of a header by gasification of a refrigerant | coolant. (B) is a cross-sectional view in which the heat exchanger tube of (a) is improved to increase the insertion allowance of the heat transfer tube toward the end of the header.

符号の説明Explanation of symbols

1 冷媒流入側ヘッダ管
2 冷媒流出側ヘッダ管
3 伝熱管
4 冷媒流入管
5 仕切板
6 内部流通路
7 冷媒流出管
8a 液冷媒
8b ガス冷媒
9 凹部
DESCRIPTION OF SYMBOLS 1 Refrigerant inflow side header pipe 2 Refrigerant outflow side header pipe 3 Heat transfer pipe 4 Refrigerant inflow pipe 5 Partition plate 6 Internal flow path 7 Refrigerant outflow pipe 8a Liquid refrigerant 8b Gas refrigerant 9 Recess

Claims (9)

管軸方向を水平にして配設された冷媒流入側ヘッダ管及び冷媒流出側ヘッダ管と、該両ヘッダ管の間で垂直方向に平行に並べられ、かつ両端部が前記両ヘッダ管の管軸方向に一列に挿入接続され内部を冷媒が通過する複数の伝熱管とを備えた熱交換器であって、前記冷媒流入側ヘッダ管に挿入接続される伝熱管と垂直に仕切板が配置されたことを特徴とする熱交換器。 A refrigerant inflow side header pipe and a refrigerant outflow side header pipe arranged with the pipe axis direction horizontal, and are arranged in parallel in the vertical direction between the two header pipes, and both ends are pipe axes of the two header pipes A heat exchanger having a plurality of heat transfer tubes inserted and connected in a row in a direction through which a refrigerant passes, wherein a partition plate is arranged perpendicular to the heat transfer tubes inserted and connected to the refrigerant inflow side header tube A heat exchanger characterized by that. 仕切板が冷媒流入側ヘッダ管内を流れる冷媒の流れ方向で下流側に向かうほど伝熱管に近付くように傾斜して配置されたことを特徴とする請求項1に記載の熱交換器。 2. The heat exchanger according to claim 1, wherein the partition plate is disposed so as to be inclined closer to the heat transfer tube toward the downstream side in a flow direction of the refrigerant flowing in the refrigerant inflow side header pipe. 前記仕切板は、その冷媒流通側中心部が凹んだ凹状断面であることを特徴とする請求項1または2に記載の熱交換器。 The heat exchanger according to claim 1 or 2, wherein the partition plate has a concave cross section in which a central portion of the refrigerant flow side is recessed. 前記仕切板は、その幅が冷媒流入側ヘッダ管の内径に設定されて管内面に接合されたことを特徴とする請求項1〜3のいずれかに記載の熱交換器。 The heat exchanger according to any one of claims 1 to 3, wherein a width of the partition plate is set to an inner diameter of the refrigerant inflow header pipe and is joined to an inner surface of the pipe. 冷媒流入側ヘッダ管の始端側に冷媒流入管が接続され、該冷媒流入管は、仕切板により仕切られたヘッダ管内の空間のうち伝熱管側に接続されることを特徴とする請求項1〜4のいずれかに記載の熱交換器。 The refrigerant inflow pipe is connected to the start end side of the refrigerant inflow side header pipe, and the refrigerant inflow pipe is connected to the heat transfer pipe side in the space in the header pipe partitioned by the partition plate. The heat exchanger according to any one of 4. 管軸方向を水平にして配設された冷媒流入側ヘッダ管及び冷媒流出側ヘッダ管と、該両ヘッダ管の間で垂直方向に平行に並べられ、かつ両端部が前記両ヘッダ管の管軸方向に一列に挿入接続された内部を冷媒が通過する複数の伝熱管とを備えた熱交換器であって、冷媒流入側ヘッダ管は、その内部を流れる冷媒の流れ方向で下流側に向かうほど冷媒の流路断面積が小さく設定されたことを特徴とする熱交換器。 A refrigerant inflow side header pipe and a refrigerant outflow side header pipe arranged with the pipe axis direction horizontal, and are arranged in parallel in the vertical direction between the two header pipes, and both ends are pipe axes of the two header pipes The heat exchanger includes a plurality of heat transfer tubes through which the refrigerant is inserted and connected in a row in the direction, and the refrigerant inflow header tube is closer to the downstream side in the flow direction of the refrigerant flowing through the heat exchanger tube. A heat exchanger characterized in that the flow passage cross-sectional area of the refrigerant is set small. 管軸方向を水平にして配設された冷媒流入側ヘッダ管及び冷媒流出側ヘッダ管と、該両ヘッダ管の間で垂直方向に平行に並べられ、かつ両端部が前記両ヘッダ管の管軸方向に一列に挿入接続された内部を冷媒が通過する複数の伝熱管とを備えた熱交換器であって、冷媒流入側ヘッダ管内を流れる冷媒の流れ方向で下流側に向かうほど伝熱管の挿入代が大きく設定されたことを特徴とする熱交換器。 A refrigerant inflow side header pipe and a refrigerant outflow side header pipe arranged with the pipe axis direction horizontal, and are arranged in parallel in the vertical direction between the two header pipes, and both ends are pipe axes of the two header pipes A heat exchanger having a plurality of heat transfer tubes through which refrigerant passes through and connected in a row in the direction, and the heat transfer tubes are inserted toward the downstream side in the flow direction of the refrigerant flowing in the header tube on the refrigerant inflow side A heat exchanger characterized by large bills. 前記冷媒流入側ヘッダ管は円筒状に形成されていることを特徴とする請求項1、6または7に記載の熱交換器。 The heat exchanger according to claim 1, 6 or 7, wherein the refrigerant inflow side header pipe is formed in a cylindrical shape. 前記伝熱管が扁平に形成されていることを特徴とする請求項1、6または7に記載の熱交換器。 The heat exchanger according to claim 1, 6 or 7, wherein the heat transfer tube is formed flat.
JP2006181622A 2006-06-30 2006-06-30 Heat exchanger Pending JP2008008584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006181622A JP2008008584A (en) 2006-06-30 2006-06-30 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006181622A JP2008008584A (en) 2006-06-30 2006-06-30 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2008008584A true JP2008008584A (en) 2008-01-17
JP2008008584A5 JP2008008584A5 (en) 2008-10-16

Family

ID=39066955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006181622A Pending JP2008008584A (en) 2006-06-30 2006-06-30 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2008008584A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013002688A (en) * 2011-06-14 2013-01-07 Sharp Corp Parallel flow type heat exchanger and air conditioner with the same
JP2014037898A (en) * 2012-08-10 2014-02-27 Daikin Ind Ltd Heat exchanger
CN108286823A (en) * 2018-01-31 2018-07-17 李春花 A kind of evenly distributed solar water heater
WO2019207806A1 (en) * 2018-04-27 2019-10-31 日立ジョンソンコントロールズ空調株式会社 Refrigerant distributor, heat exchanger, and air conditioner
JP2019219079A (en) * 2018-06-15 2019-12-26 三菱重工サーマルシステムズ株式会社 Water heat exchanger and gas cooler
CN113366279A (en) * 2019-01-29 2021-09-07 法雷奥热***公司 Heat exchanger, shell and air conditioning circuit comprising such exchanger
US11698234B2 (en) 2019-03-06 2023-07-11 Samsung Electronics Co.. Ltd. Distributor, heat exchanger unit and air conditioner

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54181047U (en) * 1978-06-13 1979-12-21
JPH08233409A (en) * 1996-03-13 1996-09-13 Matsushita Refrig Co Ltd Distributor
JP2000346568A (en) * 1999-05-31 2000-12-15 Mitsubishi Heavy Ind Ltd Heat exchanger
JP2004177041A (en) * 2002-11-28 2004-06-24 Matsushita Electric Ind Co Ltd Heat exchanger
JP2004226030A (en) * 2003-01-24 2004-08-12 Calsonic Kansei Corp Heat exchanger for vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54181047U (en) * 1978-06-13 1979-12-21
JPH08233409A (en) * 1996-03-13 1996-09-13 Matsushita Refrig Co Ltd Distributor
JP2000346568A (en) * 1999-05-31 2000-12-15 Mitsubishi Heavy Ind Ltd Heat exchanger
JP2004177041A (en) * 2002-11-28 2004-06-24 Matsushita Electric Ind Co Ltd Heat exchanger
JP2004226030A (en) * 2003-01-24 2004-08-12 Calsonic Kansei Corp Heat exchanger for vehicle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013002688A (en) * 2011-06-14 2013-01-07 Sharp Corp Parallel flow type heat exchanger and air conditioner with the same
JP2014037898A (en) * 2012-08-10 2014-02-27 Daikin Ind Ltd Heat exchanger
CN108286823A (en) * 2018-01-31 2018-07-17 李春花 A kind of evenly distributed solar water heater
WO2019207806A1 (en) * 2018-04-27 2019-10-31 日立ジョンソンコントロールズ空調株式会社 Refrigerant distributor, heat exchanger, and air conditioner
JP2019219079A (en) * 2018-06-15 2019-12-26 三菱重工サーマルシステムズ株式会社 Water heat exchanger and gas cooler
JP7199842B2 (en) 2018-06-15 2023-01-06 三菱重工サーマルシステムズ株式会社 water heat exchanger, gas cooler
CN113366279A (en) * 2019-01-29 2021-09-07 法雷奥热***公司 Heat exchanger, shell and air conditioning circuit comprising such exchanger
US11698234B2 (en) 2019-03-06 2023-07-11 Samsung Electronics Co.. Ltd. Distributor, heat exchanger unit and air conditioner

Similar Documents

Publication Publication Date Title
EP2784428B1 (en) Heat exchanger
US9557121B2 (en) Heat exchanger
JP2008008584A (en) Heat exchanger
JP2009030882A (en) Refrigerant evaporator
JP2013002688A (en) Parallel flow type heat exchanger and air conditioner with the same
JP2016095094A (en) Heat exchanger and refrigeration cycle device
JPH08233408A (en) Shell and tube type condenser
JP6639690B2 (en) Heat exchanger and refrigeration cycle device
JP6678235B2 (en) Heat exchanger
JP6569814B2 (en) Air conditioning unit
JP2015092120A (en) Condenser
JP2021188795A (en) Heat exchanger
JP2008039304A (en) Heat exchanger
JP2005201491A (en) Heat exchanger
JP4039141B2 (en) Heat exchanger
JP2010065880A (en) Condenser
JP7210744B2 (en) Heat exchanger and refrigeration cycle equipment
JP5238408B2 (en) Heat exchanger
US11280528B2 (en) Heat exchanger, and refrigeration cycle apparatus
JP2016186398A (en) Tube for heat exchanger and heat exchanger using the same
JP2011158130A (en) Heat exchanger
JP7132138B2 (en) Heat exchanger and refrigeration cycle equipment
JP2017125635A (en) Heat exchanger and evaporator
JP2016031203A (en) Condenser
JP2020143835A (en) Heat exchanger and refrigeration cycle device

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20080903

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110628