JP2008003016A - Sampling probe for microsample - Google Patents

Sampling probe for microsample Download PDF

Info

Publication number
JP2008003016A
JP2008003016A JP2006174726A JP2006174726A JP2008003016A JP 2008003016 A JP2008003016 A JP 2008003016A JP 2006174726 A JP2006174726 A JP 2006174726A JP 2006174726 A JP2006174726 A JP 2006174726A JP 2008003016 A JP2008003016 A JP 2008003016A
Authority
JP
Japan
Prior art keywords
sample
probe
tip
micro
mass spectrometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006174726A
Other languages
Japanese (ja)
Inventor
Kazuhiko Horikoshi
和彦 堀越
Naotoshi Akamatsu
直俊 赤松
Toshiaki Otani
俊明 大谷
Ken Hashimoto
謙 橋本
Noboru Oki
昇 大木
Hidenori Seki
英憲 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Display Inc
Original Assignee
Hitachi Displays Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Displays Ltd filed Critical Hitachi Displays Ltd
Priority to JP2006174726A priority Critical patent/JP2008003016A/en
Publication of JP2008003016A publication Critical patent/JP2008003016A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform contamination-free mass analysis by sampling micro-foreign matters of several μm that become cause of device faults or the like. <P>SOLUTION: The sampling and heating of micro-foreign matters can be performed by the same probe by providing a local heating mechanism to the leading end part of the probe for sampling the micro-foreign matters of several μm. Since the probe can be mounted directly on a mass spectrometer, contamination-free analysis can be performed. Furthermore, by heating only the foreign matter of the leading end part of the probe, the part other than the leading end part of the probe will not be heated, even if a contaminants adhere to parts, other than the leading end part of the probe, and a mass spectrum that is satisfactory in S/N ratio can be obtained. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は微小な分析試料に対しコンタミ(汚染)を抑制し、高感度な分析を可能とするための質量分析技術に関する。更に詳しくは、電子デバイス等の試料中に存在する1〜数十μm程度の微小異物を採取、分析、同定するための分析技術に関する。   The present invention relates to a mass spectrometric technique for suppressing contamination (contamination) on a minute analysis sample and enabling a highly sensitive analysis. More specifically, the present invention relates to an analysis technique for collecting, analyzing, and identifying a minute foreign substance having a size of about 1 to several tens of μm present in a sample such as an electronic device.

精密な電子デバイスの製造工程で発生する数μm程度の微小異物は製品不良の原因となり大きな問題となる。特に有機材料を多用する液晶ディスプレイの製造工程では高分子有機物の微小異物が歩留り低下の原因となることがある。有機微小異物の分析/同定には、通常、顕微ラマンや顕微FT−IRといった分光手法が用いられる。これら分光法を用いると有機物の分子構造に関する多くの情報が得られ、未知の有機物の同定には非常に有用なツールとなる。しかしFT−IRは赤外光を用いるため空間分解能が10μm程度と大きく、数μmの微小異物には適用できない場合が多い。また、製造工程で200℃以上の熱履歴を経た高分子有機異物はレーザ照射により蛍光を発することが多く顕微ラマン分光法でも同定できない場合が多い。このような場合、質量分析法が未知の有機化合物の同定に有効である。質量分析法では試料を気化させてイオン化する必要があるが、高分子有機物のような難揮発性の試料は、通常、急速加熱により熱分解させる必要がある。こうして元の分子のフラグメントイオンのマススペクトルが得られ、未知試料の同定が可能となる。   A minute foreign matter of about several μm generated in a manufacturing process of a precise electronic device causes a product defect and becomes a big problem. In particular, in the manufacturing process of a liquid crystal display that uses a lot of organic materials, minute foreign matter of a polymer organic substance may cause a decrease in yield. For analysis / identification of organic fine foreign substances, a spectroscopic technique such as microscopic Raman or microscopic FT-IR is usually used. By using these spectroscopic methods, a lot of information about the molecular structure of organic matter can be obtained, and it becomes a very useful tool for identification of unknown organic matter. However, since FT-IR uses infrared light, the spatial resolution is as large as about 10 μm, and it is often not applicable to minute foreign matters of several μm. In addition, the organic polymer foreign matter that has undergone a thermal history of 200 ° C. or more in the manufacturing process often emits fluorescence by laser irradiation, and often cannot be identified by microscopic Raman spectroscopy. In such a case, mass spectrometry is effective for identifying an unknown organic compound. In mass spectrometry, a sample needs to be vaporized and ionized, but a hardly volatile sample such as a high molecular weight organic substance usually needs to be thermally decomposed by rapid heating. Thus, the mass spectrum of the fragment ion of the original molecule is obtained, and the unknown sample can be identified.

上記の顕微FT−IRや顕微ラマン法では、微小異物の付着した基板をそのまま分析装置にセットして分析が可能である。しかし、通常市販されている質量分析装置では、微小異物試料を採取、単離する必要がある。質量分析では、採取した試料全てが分析対象となるため、異物採取の際に目的以外の周辺部分が混入してしまうと周辺部からの情報のために目的異物のS/N(信号/ノイズ比)が低下してしまう。また、採取時または採取してから分析するまでに外部からのハイドロカーボン等のコンタミ(汚染)がS/N低下の原因となる場合がある。   In the above-described microscopic FT-IR or microscopic Raman method, the analysis can be performed by directly setting the substrate on which the minute foreign matter is adhered to the analyzer. However, it is necessary to collect and isolate a minute foreign material sample in a mass spectrometer that is usually commercially available. In mass spectrometry, since all collected samples are analyzed, if a peripheral part other than the target is mixed when collecting the foreign substance, the S / N (signal / noise ratio) of the target foreign substance is used for information from the peripheral part. ) Will decrease. In addition, contamination (contamination) such as hydrocarbons from the outside at the time of collection or before analysis after collection may cause a decrease in S / N.

従来の質量分析におけるサンプリング(質量分析装置への分析試料のセット)は、通常、針状のプローブ等を用いて固体微小異物を一旦針先に採取した後、分析用のサンプルホルダへ装着セットする。例えば、市販のガスクロマトグラフ質量分析装置に通常オプションとして用意されている直接導入プローブを用いる場合、φ1mm×深さ数mm程度の石英ガラスの容器内に微小サンプルを挿入することになる。微小異物の入った石英ガラス容器をヒータで加熱し、試料を熱分解・気化させて分析を行う。またガスクロマトグラフのキャピラリカラムの前段階に装着された熱分解装置に微小異物試料を導入する際にも専用の試料容器等へのセットが必要となる。例えば熱分解装置としてキューリポイントパイロライザを使用する際には数mm角程度の強磁性体の薄片(パイロホイル)に試料を包み、これに高周波を印加してパイロホイルのキューリ点まで瞬時のうちに加熱して試料の熱分解・気化を行う。また、試料をPt容器にセットして、加熱されている炉内に落下させ急速加熱を行う機構の装置もある。   Sampling in conventional mass spectrometry (a set of analysis samples to a mass spectrometer) is usually performed by first collecting a solid micro foreign matter at the tip of a needle using a needle-like probe or the like and then mounting it on a sample holder for analysis. . For example, when using a direct introduction probe which is usually prepared as an option in a commercially available gas chromatograph mass spectrometer, a micro sample is inserted into a quartz glass container of about φ1 mm × depth of several mm. A quartz glass container containing minute foreign substances is heated with a heater, and the sample is pyrolyzed and vaporized for analysis. In addition, when a micro foreign material sample is introduced into a thermal decomposition apparatus installed in the previous stage of a capillary column of a gas chromatograph, it must be set in a dedicated sample container or the like. For example, when a curie point pyrolyzer is used as a pyrolyzer, a sample is wrapped in a thin piece of ferromagnetic material (pyrofoil) of about several mm square, and a high frequency is applied to the sample to instantly heat to the pyrofoil curie point. The sample is then pyrolyzed and vaporized. There is also a mechanism device that performs rapid heating by setting a sample in a Pt container and dropping it into a heated furnace.

高分子有機物などの難揮発性物質の質量分析法として、特開2003−107061号公報に熱分解ガスクロマトグラフ質量分析法が開示されている。この中で、熱分解質量分析法として、Ptカップ中に試料をセットし加熱室に導入することにより、難揮発性有機化合物試料を質量分析する方法を開示している。しかし前記開示例では難揮発性材料を分析する方法についての記載はあるが、数μmといった微小物の分析法に関しての言及はない。   As a mass spectrometry method for hardly volatile substances such as high molecular organic substances, Japanese Patent Application Laid-Open No. 2003-107061 discloses a pyrolysis gas chromatograph mass spectrometry method. Among these, as a thermal decomposition mass spectrometry method, a method is disclosed in which a sample is set in a Pt cup and introduced into a heating chamber, whereby a hardly volatile organic compound sample is mass analyzed. However, in the above disclosed example, there is a description about a method for analyzing a hardly volatile material, but there is no mention about a method for analyzing a minute object of several μm.

また特開平8−148116号公報には微小異物の質量分析法として顕微レーザ飛行時間型質量分析の方法が開示されている。ここでは微小異物の分析法として、集光されたレーザ光を数μmの対象物に照射しながら質量分析を行う方法が開示されている。しかしながら集光された大きなエネルギ密度を持つレーザ光によるイオン化で、有機高分子化合物は結合がバラバラに切断されたフラグメントイオンとなる。このフラグメントイオン化は、レーザの安定性や照射条件等に大きく依存するため、毎回安定したスペクトルを得ることが非常に難しく、測定するたびに異なるマススペクトルが得られる場合がある。このため未知試料を同定する手段として上記方法はふさわしくない。このように従来の質量分析では、未知の難揮発性高分子有機微小異物の同定手段としての工夫がなされていなかった。   Japanese Laid-Open Patent Publication No. 8-148116 discloses a microscopic laser time-of-flight mass spectrometry method as a mass analysis method for minute foreign matter. Here, as a method for analyzing minute foreign matter, a method is disclosed in which mass analysis is performed while irradiating an object of several μm with focused laser light. However, ionization by the focused laser beam having a large energy density causes the organic polymer compound to become fragment ions whose bonds are broken apart. Since this fragment ionization largely depends on the stability of the laser, irradiation conditions, etc., it is very difficult to obtain a stable spectrum every time, and a different mass spectrum may be obtained each time measurement is performed. For this reason, the above method is not suitable as a means for identifying an unknown sample. Thus, the conventional mass spectrometry has not been devised as a means for identifying an unknown hardly volatile polymer organic fine foreign material.

かかる課題を考慮してなされた本発明の第一の目的は、数μmの未知難揮発性高分子有機微小異物の同定を行うことにある。前記目的を達成するために本発明では、先端の鋭いプローブで採取した微小試料をコンタミレスで質量分析装置に導入し、なおかつ試料部分のみを加熱し気化・熱分解させることにより、難揮発性高分子有機微小異物に対して良好なS/Nを持つマススペクトルデータを与える質量分析装置を提供するものである。   The first object of the present invention, which has been made in consideration of such problems, is to identify an unknown hardly volatile polymer organic fine foreign substance of several μm. In order to achieve the above object, the present invention introduces a micro sample collected with a probe having a sharp tip into a mass spectrometer without contamination, and heats only the sample portion to vaporize and thermally decompose it, thereby reducing the high volatility. It is an object of the present invention to provide a mass spectrometer that provides mass spectral data having a good S / N ratio to molecular organic fine foreign substances.

上記の課題を解決するため、本発明の微小異物採取用プローブは先端が鋭く、かつ先端部のみを加熱できる構成となっている。   In order to solve the above-mentioned problems, the probe for collecting minute foreign matter according to the present invention has a sharp tip and can heat only the tip.

すなわち本発明に備えられる微小異物採取用プローブは数μmの微小異物の採取と、採取した異物のみを加熱する局所加熱機構の両方の機能を備えている。プローブ先端部は微小異物の採取が容易なように先端が鋭い針状、ヘラ状、または極細のワイヤをループ状にした形に形成され、また局所加熱機構は有機高分子試料の気化・熱分解が可能なように500℃以上に加熱できる構造となっている。この局所加熱機構を有するプローブは、分析の用途に応じて、瞬間的に目的温度まで昇温したり、ある昇温速度で目的温度まで昇温できることが望ましい。また本発明の局所加熱機構を有する微小異物採取用プローブは、異物採取後に目的試料以外のコンタミを極力抑制するために、再度分析用の試料ホルダ等への転写を必要としないよう直接質量分析装置に取付けられる構造となっている。   That is, the probe for collecting minute foreign matter provided in the present invention has both functions of collecting a minute foreign matter of several μm and a local heating mechanism for heating only the collected foreign matter. The tip of the probe is formed into a needle-like, spatula-like, or ultra-fine wire loop shape that makes it easy to collect minute foreign matter, and the local heating mechanism vaporizes and pyrolyzes organic polymer samples. It has a structure that can be heated to 500 ° C. or higher. The probe having this local heating mechanism is desirably capable of instantaneously raising the temperature to the target temperature or raising the temperature to the target temperature at a certain temperature increase rate in accordance with the analysis application. In addition, the probe for collecting a foreign substance having a local heating mechanism according to the present invention is a direct mass spectrometer that does not require transfer to a sample holder for analysis again in order to suppress contamination other than the target sample as much as possible after collecting the foreign substance. It has a structure that can be attached to.

また本発明の質量分析用直接導入ロッドは、ロッド先端に上記の微小異物採取プローブを容易に装着可能であり、かつプローブ先端を加熱することにより気化・熱分解された試料を、質量分析装置のイオン源へと速やかに導入させることが可能である。   Further, the direct introduction rod for mass spectrometry of the present invention can easily mount the above-mentioned minute foreign substance collecting probe on the rod tip, and the sample vaporized and pyrolyzed by heating the tip of the probe is used for the mass spectrometer. It can be quickly introduced into the ion source.

また本発明のガスクロマトグラフ質量分析装置は、キャピラリカラムに試料気体を導入する前段に微小異物採取プローブを容易に装着可能であり、かつプローブ先端を加熱することにより気化・熱分解された試料を、ヘリウム等のキャリアガスとともにキャピラリカラムへ導入できる構造となっている。   Further, the gas chromatograph mass spectrometer of the present invention can easily attach a minute foreign substance collecting probe to the stage before introducing the sample gas into the capillary column, and the sample vaporized and pyrolyzed by heating the probe tip, It has a structure that can be introduced into a capillary column together with a carrier gas such as helium.

本発明はデバイスの不良原因となる数μmの異物の質量分析を用いた分析法において、微小異物の採取を行うためのプローブに局所加熱機構を持たせることにより、異物の採取と異物の気化・熱分解とを同一のプローブを用いて行うことを可能とした。これにより、微小(微量)のサンプルに対し、コンタミレスでS/Nの良いマススペクトルデータを与えることが可能となった。   The present invention is an analysis method using mass spectrometry of a foreign substance of several μm that causes a device defect. By providing a local heating mechanism to a probe for collecting a fine foreign substance, the collection of the foreign substance and the vaporization / contamination of the foreign substance are performed. Thermal decomposition can be performed using the same probe. As a result, it is possible to give mass spectrum data having a good S / N with no contamination to a minute (trace amount) sample.

本発明の実施形態を図にしたがって説明する。
(実施例1)
図1aに本発明の局所加熱機構を有する、微小異物採取用プローブを示す。プローブ1の先端は太さ約5μmのPt線2で構成されている。プローブ全体を絶縁体3で覆い剛性を持たせている。プローブのPt線2とは逆側に電気的接続のためのリード線4を取付けた構造となっている。プローブ先端部のPt線2の抵抗値は室温で約2.5Ωである。プローブ先端部Pt線2のみを加熱するため絶縁体3中を通る配線も含めリード線4はPt線2よりも低抵抗であることが望ましい。プローブ先端のPt線2部で直径約3μmのポリスチレンビーズの採取を試みた。強度的に何の問題も無くポリスチレンビーズは採取できた。次にそのままポリスチレンビーズをプローブ先端に付着させたまま、大気中で顕微鏡観察しながらPt線に電圧を印加した。その結果電圧を0.3V印加し、電流0.08A程度のときに徐々にビーズは変形し、それ以上電圧を上げると急速に小さくなり、ついに消失した。室温のときよりも抵抗値が増大しており高温になっていることが分かる。同様に、0Vから一気に0.35Vの電圧を印加するとポリスチレンビーズは瞬間的に消失した。このことより、本発明のプローブは数μmの有機微小異物を採取し、それを加熱し気化・熱分解するのに好適であることが確認された。
Embodiments of the present invention will be described with reference to the drawings.
(Example 1)
FIG. 1a shows a probe for collecting minute foreign matter having the local heating mechanism of the present invention. The tip of the probe 1 is composed of a Pt line 2 having a thickness of about 5 μm. The entire probe is covered with an insulator 3 to give rigidity. The lead wire 4 for electrical connection is attached to the side opposite to the Pt wire 2 of the probe. The resistance value of the Pt line 2 at the probe tip is about 2.5Ω at room temperature. In order to heat only the probe tip portion Pt wire 2, it is desirable that the lead wire 4 including the wire passing through the insulator 3 has a lower resistance than the Pt wire 2. Attempts were made to collect polystyrene beads having a diameter of about 3 μm at 2 parts of the Pt line at the probe tip. Polystyrene beads could be collected without any problems in strength. Next, a voltage was applied to the Pt line while the polystyrene beads were directly attached to the probe tip while observing under a microscope in the atmosphere. As a result, when a voltage of 0.3 V was applied and the current was about 0.08 A, the beads gradually deformed, and when the voltage was further increased, the beads rapidly decreased and finally disappeared. It can be seen that the resistance value is higher than that at room temperature and the temperature is high. Similarly, when a voltage of 0.35 V was applied at a stretch from 0 V, the polystyrene beads disappeared instantaneously. From this, it was confirmed that the probe of the present invention is suitable for collecting organic fine foreign matters of several μm, heating them, and vaporizing / pyrolyzing them.

本実施例では、Pt線を用いたプローブを示したが、Pt−Rh線、ニクロム線等、汎用的なヒータ線材料を用いても良い。また上記実施例では図1aに示す先端部を鋭く加工したが、図1bのようにPt線2をループ状に加工するだけでも良い。5μmのワイヤをループ状に加工した場合でも3μmのポリスチレンは容易に採取できる。
(実施例2)
次に強磁性体材料で作製したプローブの例を示す。図2に強磁性体材料で作製したプローブ5を示す。本実施例では、先端から約0.5mmのところに溝6を形成し、後で折ることが容易な構造としている。この強磁性体プローブ5を用いて直径約3μmのポリスチレンビーズ数個を採取し、通常の質量分析装置のオプションとして広く用いられている直接導入プローブ用石英ガラスカップにプローブ先端を差し込み、溝6からプローブを折りポリスチレンビーズ数個を付着させたプローブ先端部5aのみを石英ガラスカップに入れた。この後、通常のキューリポイント直接導入プローブで分析するときと同様に質量分析装置に挿入した。質量分析を行いながら、高周波(1MHz)を3秒間印加すると、ポリスチレンのマススペクトルが得られ、強磁性体プローブで採取したポリスチレンの分析が可能であることを確認した。なお、プローブ先端部に溝6を形成し、プローブを折ってから分析したのは、高周波によりプローブ5全体が加熱され、異物の付着していない部分5bからの脱ガス等の影響を避けるためである。
In the present embodiment, a probe using a Pt line is shown, but a general heater wire material such as a Pt-Rh line or a nichrome line may be used. In the above embodiment, the tip shown in FIG. 1a is sharply processed, but the Pt line 2 may be processed into a loop shape as shown in FIG. 1b. Even when a 5 μm wire is processed into a loop shape, 3 μm polystyrene can be easily collected.
(Example 2)
Next, an example of a probe made of a ferromagnetic material is shown. FIG. 2 shows a probe 5 made of a ferromagnetic material. In this embodiment, the groove 6 is formed at a position about 0.5 mm from the tip, and the structure can be easily folded later. Using this ferromagnetic probe 5, several polystyrene beads having a diameter of about 3 μm are collected, and the tip of the probe is inserted into a quartz glass cup for a direct introduction probe widely used as an option of a normal mass spectrometer. The probe was folded and only the probe tip 5a to which several polystyrene beads were attached was placed in a quartz glass cup. Thereafter, the sample was inserted into the mass spectrometer in the same manner as in the case of analyzing with a normal curie point direct introduction probe. When high frequency (1 MHz) was applied for 3 seconds while performing mass spectrometry, a polystyrene mass spectrum was obtained, and it was confirmed that polystyrene collected with a ferromagnetic probe could be analyzed. The reason why the groove 6 was formed at the probe tip and the probe was folded was analyzed in order to avoid the influence of degassing or the like from the portion 5b where the entire probe 5 was heated by the high frequency and no foreign matter was attached. is there.

本実施例では、プローブ全体が強磁性体材料である例を示したが、全体が強磁性体である必要は無く、先端のみが強磁性体であれば良い。高周波の印加により加熱されるのは異物が付着している強磁性体の先端のみが加熱されるため、この場合は先端を折らなくてもコンタミ等による悪影響は少ない。   In this embodiment, an example in which the entire probe is made of a ferromagnetic material has been shown, but the entire probe need not be a ferromagnetic material, and only the tip may be a ferromagnetic material. Since only the tip of the ferromagnetic material to which foreign matter is attached is heated by the application of the high frequency, in this case, there is little adverse effect due to contamination or the like even if the tip is not broken.

また、全体が強磁性体であるプローブを用いる場合、高周波印加用のコイルがプローブ先端のみを加熱するような構成となっていれば先端を折らなくてもコンタミ等による悪影響は少ない。
(実施例3)
次に図3を用いて局所加熱機構を有する微小異物採取用のプローブを装着可能な質量分析用直接導入ロッドについて説明する。図3に示すように電流を導入するために内部に配線12を施したロッド11の先端部には、微小異物採取用のプローブ1を装着できるような構造となっている。この際プローブ1の着脱が容易なようにロッド11の先端部の電極13は板バネを用いプローブ1の2本の電極14を挟みこめるような構造とした。この構造により異物採取用プローブ1は質量分析用直接導入ロッド11にワンタッチで装着できるようになりコンタミを極力抑制することが可能となった。直接導入ロッド11の後ろ側には電流導入のための配線15が出されておりこれらは電源兼温度コントローラ16に接続される。電極13に電極14を挟み込んでロッド11の先端にプローブ1を取付けた状態を図3(b)に示す。本発明の試料直接導入ロッドはプローブ1とロッド11とを合わせた構成となっている。異物採取プローブ1でφ3μmのポリスチレンビーズ数個を採取し、直接導入ロッド11の先端部に装着して質量分析装置に挿入、分析した結果スチレンモノマーのマススペクトルを確認した。
Further, when a probe having a ferromagnetic material as a whole is used, if the high-frequency applying coil is configured to heat only the probe tip, there is little adverse effect due to contamination or the like without breaking the tip.
(Example 3)
Next, a direct introduction rod for mass spectrometry that can be equipped with a probe for collecting minute foreign matter having a local heating mechanism will be described with reference to FIG. As shown in FIG. 3, the structure is such that the probe 1 for collecting minute foreign matter can be attached to the distal end portion of the rod 11 provided with the wiring 12 in order to introduce current. At this time, the electrode 13 at the tip of the rod 11 is structured so as to sandwich the two electrodes 14 of the probe 1 using a leaf spring so that the probe 1 can be easily attached and detached. With this structure, the foreign substance sampling probe 1 can be attached to the mass spectrometry direct introduction rod 11 with one touch, and contamination can be suppressed as much as possible. A wire 15 for current introduction is provided behind the direct introduction rod 11 and is connected to a power source / temperature controller 16. FIG. 3B shows a state in which the electrode 14 is sandwiched between the electrodes 13 and the probe 1 is attached to the tip of the rod 11. The sample direct introduction rod of the present invention has a configuration in which the probe 1 and the rod 11 are combined. Several polystyrene beads having a diameter of 3 μm were collected by the foreign substance collecting probe 1, directly attached to the tip of the introduction rod 11, inserted into a mass spectrometer, and analyzed. As a result, a mass spectrum of styrene monomer was confirmed.

本実施例では、異物採取プローブの局所加熱用にφ5μmという非常に細いPt線2を用いた。このため加熱時に市販の熱電対での温度計測を試みたが、熱電対の熱容量に比べPt線2自体の熱容量が非常に小さいため、正確な温度測定ができなかった。このため、予め非接触の顕微放射温度計を用いて投入電力と到達温度との校正曲線を作成し、これを元に温度制御を行った。本実施例よりも熱容量が大きい加熱機構を用い、熱電対での正確な温度計測が可能な場合は、リアルタイムでのフィードバックによる電力制御を行っても良い。   In this example, a very thin Pt line 2 of φ5 μm was used for local heating of the foreign substance sampling probe. For this reason, an attempt was made to measure the temperature with a commercially available thermocouple during heating, but since the heat capacity of the Pt wire 2 itself was very small compared to the heat capacity of the thermocouple, accurate temperature measurement could not be performed. For this reason, a calibration curve of input electric power and ultimate temperature was created in advance using a non-contact microscopic radiation thermometer, and temperature control was performed based on this. When a heating mechanism having a larger heat capacity than that of the present embodiment is used and accurate temperature measurement with a thermocouple is possible, power control by feedback in real time may be performed.

また本実施例では、直接導入ロッドの先端に極細Ptワイヤによる局所加熱機構をもつプローブを装着する例を示したが、図4に示すように高周波印加による強磁性体の加熱方式を用いても良い。ここでは異物が付着している強磁性体プローブの先端部5aを石英ガラス製の容器17中に挿入し、直接導入ロッド11の先端部に備えられている高周波印加用コイル18中に石英ガラス製容器17を設置した。高周波発生装置19により1MHzの高周波を印加し質量分析を行った結果スチレンモノマーのマススペクトルが得られた。
(実施例4)
次に図5を用いて、局所加熱機構を有する微小異物採取用のプローブを装着可能なガスクロマトグラフ質量分析計について説明する。ガスクロマトグラフ21に設けられた試料室22はセプタム23に突き刺したニードル24を介してスプリッタ25、キャピラリカラム26と接続されている。試料室22に試料採取用プローブ1を装着し電源兼温度コントローラ16に接続した構成となっている。プローブ1の先端にφ3μmのポリスチレンビーズ数個を付着させ、約600℃まで加熱してキャリアガス28としてHeを用いて分析を行いスチレンモノマーのマススペクトルを得た。
Further, in this embodiment, an example is shown in which a probe having a local heating mechanism using an ultra fine Pt wire is attached to the tip of a direct introduction rod. However, as shown in FIG. good. Here, the distal end portion 5a of the ferromagnetic probe to which foreign matter is attached is inserted into a quartz glass container 17, and the quartz glass glass 18 is directly placed in the high frequency application coil 18 provided at the distal end portion of the introduction rod 11. A container 17 was installed. As a result of applying a high frequency of 1 MHz by the high frequency generator 19 and performing mass spectrometry, a mass spectrum of styrene monomer was obtained.
Example 4
Next, a gas chromatograph mass spectrometer to which a probe for collecting minute foreign matter having a local heating mechanism can be attached will be described with reference to FIG. A sample chamber 22 provided in the gas chromatograph 21 is connected to a splitter 25 and a capillary column 26 via a needle 24 that pierces a septum 23. The sample collecting probe 1 is mounted in the sample chamber 22 and connected to the power source / temperature controller 16. Several polystyrene beads having a diameter of 3 μm were attached to the tip of the probe 1, heated to about 600 ° C., and analyzed using He as the carrier gas 28 to obtain a mass spectrum of styrene monomer.

なおガスクロマトグラフの測定条件は、以下の通りである。   Gas chromatograph measurement conditions are as follows.

・使用カラム:微極性、内径0.25mm、長さ30m
・カラム入口圧力:100kPa
・スプリット比:20
・カラムの昇温条件:10℃/分(Max270℃)
本実施例ではPtワイヤによる加熱方式を示したが、高周波を用いた強磁性体の加熱方式を用いても良い。この場合には図6に示すように試料室に高周波印加用のコイルを設け、試料室に挿入した強磁性体プローブ5の先端部に高周波を印加できるような構造であればよい。
-Column used: Slight polarity, inner diameter 0.25mm, length 30m
Column inlet pressure: 100 kPa
-Split ratio: 20
Column heating conditions: 10 ° C / min (Max 270 ° C)
In this embodiment, a heating method using a Pt wire is shown, but a ferromagnetic heating method using a high frequency may be used. In this case, as shown in FIG. 6, a structure for providing a high frequency application coil in the sample chamber and applying a high frequency to the tip of the ferromagnetic probe 5 inserted in the sample chamber may be used.

本発明の加熱機構を有する異物採取用プローブを説明した図。The figure explaining the foreign material collection | recovery probe which has a heating mechanism of this invention. 本発明のキューリポイント高周波加熱用の異物採取プローブを説明した図。The figure explaining the foreign material extraction probe for curie point high frequency heating of the present invention. 本発明の質量分析用試料直接導入ロッドを説明した図。The figure explaining the sample direct introduction rod for mass spectrometry of the present invention. 本発明の質量分析用試料直接導入ロッドを説明した図。The figure explaining the sample direct introduction rod for mass spectrometry of the present invention. 本発明のガスクロマトグラフ質量分析装置を説明した図。The figure explaining the gas chromatograph mass spectrometer of this invention. 本発明のガスクロマトグラフ質量分析装置を説明した図。The figure explaining the gas chromatograph mass spectrometer of this invention.

符号の説明Explanation of symbols

1…異物採取プローブ、2…Pt極細ワイヤ、3…絶縁体、4…リード線、5…強磁性体異物採取プローブ、5a…強磁性体異物採取プローブ先端部、5b…強磁性体異物採取プローブ軸部、6…溝部、11…試料直接導入ロッド、12…ロッド内内部配線、13…ロッド側電極、14…プローブ側電極、15…配線、16…電源兼温度コントローラ、17…石英ガラスカップ、18…高周波印加用コイル、19…高周波印加用電源兼温度コントローラ、21…ガスクロマトグラフ部、22…試料室、23…セプタム、24…ニードル、25…スプリッタ、26…キャピラリカラム、27…質量分析部、28…キャリアガスの流れ。
DESCRIPTION OF SYMBOLS 1 ... Foreign material collection probe, 2 ... Pt extra fine wire, 3 ... Insulator, 4 ... Lead wire, 5 ... Ferromagnetic foreign material collection probe, 5a ... Ferromagnetic foreign material collection probe front-end | tip part, 5b ... Ferromagnetic foreign material collection probe Shaft portion, 6 ... groove portion, 11 ... direct sample introduction rod, 12 ... internal wiring in rod, 13 ... rod side electrode, 14 ... probe side electrode, 15 ... wiring, 16 ... power source and temperature controller, 17 ... quartz glass cup, DESCRIPTION OF SYMBOLS 18 ... High frequency application coil, 19 ... High frequency application power supply and temperature controller, 21 ... Gas chromatograph part, 22 ... Sample chamber, 23 ... Septum, 24 ... Needle, 25 ... Splitter, 26 ... Capillary column, 27 ... Mass spectrometry part 28 ... Flow of carrier gas.

Claims (8)

微小な分析試料を採取するためのプローブであって、プローブ先端のみを加熱することのできる局所加熱機構を備えることを特徴とする微小試料採取プローブ。   A probe for collecting a minute analysis sample, comprising a local heating mechanism capable of heating only the tip of the probe. 前記局所加熱機構が金属ワイヤに電流を流すことにより加熱されることを特徴とする請求項1に記載の微小試料採取プローブ。   2. The micro sampling probe according to claim 1, wherein the local heating mechanism is heated by passing an electric current through the metal wire. 前記局所加熱機構の金属ワイヤの太さが5〜20μmであることを特徴とする請求項2に記載の微小試料採取プローブ。   The micro sample collection probe according to claim 2, wherein the thickness of the metal wire of the local heating mechanism is 5 to 20 µm. 請求項1に記載の微小試料採取プローブにおいて、先鋭化された針状の先端を有し、かつ少なくとも先端部の材質が強磁性体材料であり、針先に高周波を印加することにより強磁性体のキューリ点まで加熱可能であることを特徴とする微小試料採取プローブ。   2. The micro sampling probe according to claim 1, wherein the probe has a sharpened needle-like tip, and the material of at least the tip is a ferromagnetic material, and a ferromagnetic material is applied by applying a high frequency to the needle tip. A micro sampling probe characterized in that it can be heated to the Curie point. 質量分析装置にサンプルをイオン源近傍まで直接導入できる直接導入ロッドにおいて、ロッド内部に電流を導入するための機構を備え、ロッド先端に請求項1〜3に記載の微小試料採取プローブが装着ならびに電気的に接続され、かつ質量分析装置に挿入した状態で前記プローブ先端に付着させた試料を加熱し、気化または熱分解させた試料の分析を可能とすることを特徴とする質量分析用の試料直接導入ロッド。   A direct introduction rod capable of directly introducing a sample to the vicinity of an ion source in a mass spectrometer, comprising a mechanism for introducing an electric current into the rod. A sample directly for mass spectrometry, characterized in that the sample attached to the probe tip in a state where it is connected to the probe and heated in the mass spectrometer is heated, and analysis of the vaporized or pyrolyzed sample is possible Introducing rod. 質量分析装置にサンプルをイオン源近傍まで直接導入できる直接導入ロッドにおいて、ロッド先端部に高周波発生用のコイルを備え、コイル内部に請求項4に記載の微小試料採取プローブの少なくとも先端部分の装着が可能で、かつ質量分析装置に挿入した状態で前記コイルに高周波を発生させることにより、該微小異物採取プローブの先端に付着させた試料を加熱し、気化または熱分解させた試料の分析を可能とすることを特徴とする質量分析用の試料直接導入ロッド。   A direct introduction rod capable of directly introducing a sample to the vicinity of an ion source in a mass spectrometer, wherein a rod for generating a high frequency is provided at the tip of the rod, and at least the tip of the micro sampling probe according to claim 4 is mounted inside the coil. It is possible to generate a high frequency in the coil while being inserted into a mass spectrometer, thereby heating the sample attached to the tip of the minute foreign matter sampling probe and analyzing the vaporized or pyrolyzed sample. A sample direct introduction rod for mass spectrometry. 気体試料の質量分析を行うためのガスクロマトグラフ質量分析装置において、キャピラリカラムの前段の試料導入部分に、前記請求項1〜3に記載の微小試料採取プローブを装着可能で、かつ該微小試料採取プローブを装着した状態で前記プローブ先端に付着させた試料を加熱し、気化、または熱分解させた試料の分析を可能とすることを特徴とするガスクロマトグラフ質量分析装置。   A gas chromatograph mass spectrometer for performing a mass analysis of a gas sample, wherein the micro sample collection probe according to any one of claims 1 to 3 can be attached to a sample introduction part in a preceding stage of a capillary column, and the micro sample collection probe A gas chromatograph mass spectrometer capable of analyzing a sample that is heated, vaporized, or pyrolyzed while the sample attached to the probe tip is attached. 気体試料の質量分析を行うためのガスクロマトグラフ質量分析装置において、キャピラリカラムの前段の試料導入部分に、前記請求項4に記載の微小試料採取プローブを装着可能で、かつ該微小試料採取プローブを装着した状態で前記プローブ先端に高周波を印加することにより、前記プローブ先端に付着させた試料を加熱し、気化、または熱分解させた試料の分析を可能とすることを特徴とするガスクロマトグラフ質量分析装置。
In a gas chromatograph mass spectrometer for performing a mass analysis of a gas sample, the micro sample collection probe according to claim 4 can be attached to the sample introduction part at the front stage of the capillary column, and the micro sample collection probe is attached. A gas chromatograph mass spectrometer capable of analyzing a sample that has been heated, vaporized, or pyrolyzed by applying a high frequency to the probe tip in a heated state .
JP2006174726A 2006-06-26 2006-06-26 Sampling probe for microsample Pending JP2008003016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006174726A JP2008003016A (en) 2006-06-26 2006-06-26 Sampling probe for microsample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006174726A JP2008003016A (en) 2006-06-26 2006-06-26 Sampling probe for microsample

Publications (1)

Publication Number Publication Date
JP2008003016A true JP2008003016A (en) 2008-01-10

Family

ID=39007519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006174726A Pending JP2008003016A (en) 2006-06-26 2006-06-26 Sampling probe for microsample

Country Status (1)

Country Link
JP (1) JP2008003016A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100806413B1 (en) * 2004-03-29 2008-02-21 인텔 코오퍼레이션 A method of creating solder bar connections on electronic packages
JP2008304340A (en) * 2007-06-08 2008-12-18 Hitachi Ltd Sample analyzing method and sample analyzer
JP2009092649A (en) * 2007-09-19 2009-04-30 Hitachi Ltd Trace sample heating probe, method for manufacturing the same, analyzer using the trace sample heating probe, and analysis method
US7772568B2 (en) 2007-09-19 2010-08-10 Hitachi, Ltd. Micro sample heating probe and method of producing the same, and analyzer using the micro sample heating probe
WO2011075940A1 (en) * 2009-12-24 2011-06-30 同方威视技术股份有限公司 Sampling component, sample feeding device and ion mobility spectrometer
WO2012008089A1 (en) * 2010-07-12 2012-01-19 株式会社日立製作所 Apparatus and method for analyzing minute sample
CN102332387A (en) * 2011-08-29 2012-01-25 东华理工大学 Biological tissue direct-spray mass spectrum device and analysis method
US8742332B2 (en) 2009-11-27 2014-06-03 Hitachi, Ltd. Mass spectrometer and mass spectrometry method
JP2016536570A (en) * 2013-09-19 2016-11-24 スミスズ ディテクション−ワトフォード リミテッド Sample collection wand with inductively coupled heater

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100806413B1 (en) * 2004-03-29 2008-02-21 인텔 코오퍼레이션 A method of creating solder bar connections on electronic packages
JP2008304340A (en) * 2007-06-08 2008-12-18 Hitachi Ltd Sample analyzing method and sample analyzer
JP2009092649A (en) * 2007-09-19 2009-04-30 Hitachi Ltd Trace sample heating probe, method for manufacturing the same, analyzer using the trace sample heating probe, and analysis method
US7772568B2 (en) 2007-09-19 2010-08-10 Hitachi, Ltd. Micro sample heating probe and method of producing the same, and analyzer using the micro sample heating probe
US8742332B2 (en) 2009-11-27 2014-06-03 Hitachi, Ltd. Mass spectrometer and mass spectrometry method
US8528425B2 (en) 2009-12-24 2013-09-10 Nuctech Company Limited Sampling component, sampling device and ion mobility spectrometer
CN102109434B (en) * 2009-12-24 2013-02-20 同方威视技术股份有限公司 Sampling part, sample introduction device and ion mobility spectrometer
GB2478378A (en) * 2009-12-24 2011-09-07 Nuctech Co Ltd Sampling component, sample feeding device and ion mobility spectrometer
WO2011075940A1 (en) * 2009-12-24 2011-06-30 同方威视技术股份有限公司 Sampling component, sample feeding device and ion mobility spectrometer
GB2478378B (en) * 2009-12-24 2014-09-17 Nuctech Co Ltd Sampling component, sampling device and ion mobility spectrometer
WO2012008089A1 (en) * 2010-07-12 2012-01-19 株式会社日立製作所 Apparatus and method for analyzing minute sample
CN102332387A (en) * 2011-08-29 2012-01-25 东华理工大学 Biological tissue direct-spray mass spectrum device and analysis method
JP2016536570A (en) * 2013-09-19 2016-11-24 スミスズ ディテクション−ワトフォード リミテッド Sample collection wand with inductively coupled heater

Similar Documents

Publication Publication Date Title
JP2008003016A (en) Sampling probe for microsample
Nudnova et al. Active capillary plasma source for ambient mass spectrometry
US8536523B2 (en) Desorption and ionization method and device
JP5034092B2 (en) Ionization method and apparatus using probe, and analysis method and apparatus
JP6182705B2 (en) Ion source for direct sample analysis
EP2391877B1 (en) Soft ablative desorption method and system
US8384020B2 (en) Spatially resolved thermal desorption/ionization coupled with mass spectrometry
US20130299688A1 (en) Techniques for analyzing mass spectra from thermal desorption response
WO2008148557A2 (en) Sample holder device for ionization chambers for mass spectometry
CN105845540A (en) Desolvation and ionizationoun method through heating and apparatus
WO2012008089A1 (en) Apparatus and method for analyzing minute sample
JP6168571B2 (en) Sample analysis method and apparatus
Teschmit et al. Characterizing and optimizing a laser-desorption molecular beam source
JP4378649B2 (en) Method and apparatus for selectively cleaving and analyzing non-covalent bond of biopolymer
US7772568B2 (en) Micro sample heating probe and method of producing the same, and analyzer using the micro sample heating probe
JP2016173332A (en) Drug detector
Vanraes et al. Laser-induced excitation mechanisms and phase transitions in spectrochemical analysis–Review of the fundamentals
JP4967830B2 (en) Sample analysis method and apparatus
JP5422350B2 (en) Mass spectrometer and analysis method
Musapelo et al. Particle formation by infrared laser ablation of MALDI matrix compounds
Luo et al. A novel DC microplasma sensor constructed in a cavity PDMS chamber with needle electrodes for fast detection of methanol-containing spirit
US20120286151A1 (en) Devices and Methods for Analyzing Surfaces
JP5085444B2 (en) Micro sample heating probe and analyzer using micro sample heating probe
JP2006059809A (en) Ion source having adjustable ion source pressure for connecting esi-, fi-, fd-, lifdi- and maldi-elements and hybrid means between ionization techniques for mass spectrometry and/or electron paramagnetic resonance spectroscopy
McEnnis et al. Substrate-related effects on molecular and atomic emission in LIBS of explosives