JP2008001857A - Aminimide compound activated by active energy ray irradiation, composition using the same and method for curing the same - Google Patents

Aminimide compound activated by active energy ray irradiation, composition using the same and method for curing the same Download PDF

Info

Publication number
JP2008001857A
JP2008001857A JP2006175008A JP2006175008A JP2008001857A JP 2008001857 A JP2008001857 A JP 2008001857A JP 2006175008 A JP2006175008 A JP 2006175008A JP 2006175008 A JP2006175008 A JP 2006175008A JP 2008001857 A JP2008001857 A JP 2008001857A
Authority
JP
Japan
Prior art keywords
composition
active energy
molecule
compounds
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006175008A
Other languages
Japanese (ja)
Other versions
JP5057016B2 (en
Inventor
Katsuhiko Kishi
克彦 岸
Manabu Kirino
学 桐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThreeBond Co Ltd
Original Assignee
ThreeBond Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThreeBond Co Ltd filed Critical ThreeBond Co Ltd
Priority to JP2006175008A priority Critical patent/JP5057016B2/en
Priority to PCT/JP2007/062226 priority patent/WO2008001637A1/en
Priority to CN2007800240836A priority patent/CN101479310B/en
Priority to KR1020087031629A priority patent/KR101286414B1/en
Priority to TW96122337A priority patent/TWI412513B/en
Publication of JP2008001857A publication Critical patent/JP2008001857A/en
Application granted granted Critical
Publication of JP5057016B2 publication Critical patent/JP5057016B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C243/00Compounds containing chains of nitrogen atoms singly-bound to each other, e.g. hydrazines, triazanes
    • C07C243/24Hydrazines having nitrogen atoms of hydrazine groups acylated by carboxylic acids
    • C07C243/26Hydrazines having nitrogen atoms of hydrazine groups acylated by carboxylic acids with acylating carboxyl groups bound to hydrogen atoms or to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/686Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing nitrogen

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new aminimide-based photobase generator better in solubility in resins and low temperature-curable property than conventional aromatic aminimide photobase generators and having sufficient photoactive property, to provide a reaction system using the generator, to provide a new curable composition usable for several applications such as adhesion, sealing, casting, molding, painting and coating and quickly curable at lower temperatures by active energy ray irradiation, and to provide a curing method and cured products thereof. <P>SOLUTION: An amidimide compound (A) having at least one specific structure is useful as a photobase generator having sufficient energy ray (photo) base activity and excellent in solubility in resins and low-temperature curability. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、活性エネルギー線の照射によって塩基を発生する新規なアミンイミド化合物および光照射により従来より低い温度で速やかに重合硬化可能な新規な組成物およびその硬化方法に関するものである。   The present invention relates to a novel amine imide compound that generates a base by irradiation with active energy rays, a novel composition that can be rapidly polymerized and cured at a lower temperature than conventional by irradiation with light, and a curing method thereof.

光硬化技術は、従来の熱硬化技術と比較して低温硬化、プロセスの短縮化、短時間硬化、微細加工等の特徴を活かし、接着剤、シール剤、コーティング剤、レジスト剤等に広く用いられている。光硬化で主に用いられている硬化システムとしては、ラジカル硬化とカチオン硬化に大別される。ラジカル硬化の場合、光ラジカル発生剤と(メタ)アクリレート樹脂が主成分であり、光照射後直ちに硬化することが特徴であるが、一般に接着力が低い、硬化収縮が大きい、耐熱性が悪い等の問題がある。カチオン硬化はジアリールヨードニウム塩やトリアリールスルホニウム塩等の光酸発生剤とカチオン重合性を有するエポキシ樹脂、オキセタン樹脂、ビニルエーテル樹脂等からなり、光照射の際に光酸発生剤が酸を発生してカチオン重合性樹脂を硬化させる。カチオン硬化の場合、速硬化性、高い接着力、低い硬化収縮等の特徴を有するが、被着体表面の湿気や僅かな塩基性汚れによる硬化不良の発生や、強酸が系内に残存するため金属や無機材質の被着体を使用すると腐食を引き起こすという問題がある。   Photo-curing technology is widely used for adhesives, sealants, coating agents, resist agents, etc., taking advantage of features such as low-temperature curing, process shortening, short-time curing, and microfabrication compared to conventional thermosetting technologies. ing. Curing systems mainly used in photocuring are roughly classified into radical curing and cationic curing. In the case of radical curing, the photo radical generator and (meth) acrylate resin are the main components and are characterized by curing immediately after light irradiation, but generally have low adhesive strength, large curing shrinkage, poor heat resistance, etc. There is a problem. Cationic curing consists of a photoacid generator such as diaryliodonium salt or triarylsulfonium salt and an epoxy resin, oxetane resin, vinyl ether resin, etc. that have cationic polymerizability. The photoacid generator generates an acid during light irradiation. The cationic polymerizable resin is cured. In the case of cationic curing, it has characteristics such as fast curing, high adhesive strength, and low curing shrinkage, but because of the occurrence of poor curing due to moisture or slight basic contamination on the surface of the adherend, and strong acid remains in the system When using an adherend made of a metal or an inorganic material, there is a problem of causing corrosion.

このようなカチオン系硬化の問題を解決する一つの手段として、光照射によって塩基性化合物を発生する光塩基発生剤によるアニオン硬化の研究が近年行われている。このような光塩基発生剤としては、例えば、カルバメート誘導体やオキシムエステル誘導体が一般的に知られており、これらの化合物は光照射によって1級または2級アミン類を発生し、エポキシ樹脂の重合硬化に利用されている(非特許文献1)。光により塩基触媒を発生させる技術は既に技術的によく知られており、フォトレジスト技術に多く利用されている。狭線幅レジストにおいては現像されたエッジの寸法安定性を求めるために、停止反応が少ないアニオン重合型の硬化形態が多く利用される(非特許文献2、特許文献1〜3)。光発生された塩基性物質によりエポキシ樹脂を硬化させる手法において、その代表的な塩基性化合物にアミン類が挙げられるが、これらのアミン類は今日まで最も有用な光発生される塩基である。例えば、置換されたベンジルカルバメート誘導体は光照射により1級および2級アミンを発生する。(非特許文献3〜5)。   As one means for solving such a problem of cationic curing, research on anion curing using a photobase generator that generates a basic compound by light irradiation has been recently conducted. As such photobase generators, for example, carbamate derivatives and oxime ester derivatives are generally known, and these compounds generate primary or secondary amines upon irradiation with light, and polymerization curing of epoxy resin. (Non-Patent Document 1). The technology for generating a base catalyst by light is already well known in the art, and is widely used in photoresist technology. In narrow line width resists, in order to obtain the dimensional stability of the developed edge, an anionic polymerization type curing form with little termination reaction is often used (Non-patent Document 2, Patent Documents 1 to 3). In the method of curing an epoxy resin with a photogenerated basic substance, amines are listed as typical basic compounds, and these amines are the most useful photogenerated bases to date. For example, substituted benzyl carbamate derivatives generate primary and secondary amines upon light irradiation. (Non-patent documents 3 to 5).

しかしながら、これらのほとんどの化合物は発生効率が低く、また光照射によって発生する塩基性化合物が1級または2級アミンであるため塩基性が低く、エポキシ樹脂を十分に硬化するための触媒活性を持たないという問題がある。
より塩基性の大きい、第三アミン類を光化学的に発生させ得る光塩基発生剤として、芳香族系アミンイミド化合物が報告されており(特許文献4、5)、エポキシ樹脂と多価チオール化合物類等との付加硬化反応において光照射後に加熱硬化開始温度が低くなる事例が報告されている。また、芳香族系アミンイミド化合物と一重項・三重項増感剤、すなわち水素引き抜き型ラジカル発生剤との組み合わせ(特許文献5)についても報告がある。
However, most of these compounds have low generation efficiency, and since the basic compound generated by light irradiation is a primary or secondary amine, it is low in basicity and has a catalytic activity for sufficiently curing an epoxy resin. There is no problem.
Aromatic amine imide compounds have been reported as photobase generators capable of photochemically generating tertiary amines with higher basicity (Patent Documents 4 and 5), epoxy resins and polyvalent thiol compounds, etc. A case has been reported in which the heat curing start temperature is lowered after light irradiation in the addition curing reaction. There is also a report on a combination of an aromatic amine imide compound and a singlet / triplet sensitizer, that is, a hydrogen abstraction type radical generator (Patent Document 5).

しかしながらこれら芳香族系アミンイミド化合物は結晶性が高く、樹脂への溶解性が限られていたり、光照射後の加熱硬化温度も充分に低いものではなかった。従来よりアミンイミド化合物が加熱により分解しクルチウス転移を経て3級アミンを発生することはよく知られており、低い温度の加熱により分解し3級アミンを発生するアミンイミド化合物として、カルボニル炭素に結合する炭素に水酸基が結合している構造を持つアミンイミド化合物が知られている(特許文献6)。しかしながらこれらの加熱分解温度が低いアミンイミド化合物の光活性については知られていない。
:Chemistry & Technology of UV & EB Formulation for Coatings,Inks & Paints,Ed.by G.Bradley,John Wiley and Sons Ltd.(1998、p479〜p545) Pure and Appl.Chem.,64,1239 (1992) J.Org.Chem.,55,5919 (1990) Polym.Mat.Sci.Eng.,64,55 (1991) Macromol.,28,365 (1995) 欧州特許第599571号公報 欧州特許第555749号公報 特開平4―330444号公報 国際公開特許WO2002/051905号公報 特開2003−26772号公報 特開2000−229927号公報
However, these aromatic amine imide compounds have high crystallinity, limited solubility in resins, and heat curing temperatures after light irradiation are not sufficiently low. It is well known that amine imide compounds are decomposed by heating and generate a tertiary amine through the Curtius transition, and carbon bonded to carbonyl carbon as an amine imide compound that decomposes by heating at a low temperature to generate a tertiary amine. An amine imide compound having a structure in which a hydroxyl group is bonded to is known (Patent Document 6). However, the photoactivity of these amine imide compounds having a low heat decomposition temperature is not known.
: Chemistry & Technology of UV & EB Formulation for Coatings, Inks & Paints, Ed. by G. Bradley, John Wiley and Sons Ltd. (1998, p479-p545) Pure and Appl. Chem. , 64, 1239 (1992) J. et al. Org. Chem. , 55, 5919 (1990) Polym. Mat. Sci. Eng. , 64, 55 (1991) Macromol. , 28, 365 (1995) European Patent No. 599571 European Patent No. 555749 JP-A-4-330444 International Patent Publication WO2002 / 051905 JP 2003-26772 A JP 2000-229927 A

本発明の目的は、従来の芳香族系アミンイミド光塩基発生剤よりも樹脂への溶解性と低温硬化性に優れ、かつ充分な光活性を有する新規なアミンイミド系の光塩基発生剤、それを用いた反応系、および接着、封止、注型、成型、塗装、コーティング等様々な用途に使用が可能であり、活性エネルギー線の照射により、より低い温度で速やかに硬化可能な新規な硬化性組成物、その硬化方法物および硬化物を提供することにある。   An object of the present invention is to provide a novel amine imide photobase generator which is superior in solubility to resins and low temperature curability than conventional aromatic amine imide photobase generators and has sufficient photoactivity. New curable composition that can be used for various applications such as bonding, sealing, casting, molding, painting, coating, etc., and can be cured quickly at lower temperatures by irradiation with active energy rays It is to provide a cured product, a cured product thereof, and a cured product.

上記問題を解決するために鋭意検討を行った結果、主にエポキシ樹脂の熱硬化触媒として有用とされているアミンイミド化合物のうち、特定構造を有するアミンイミド化合物が、紫外線などのエネルギー線による活性能が高いことを見出し本発明を完成するに至った。
すなわち、請求項1では、下記一般式(I)で示される構造を分子中に1つ以上有するアミンイミド化合物(A)が充分なエネルギー線(光)塩基活性を有する光塩基発生剤として有用であり、かつ樹脂への溶解性と低温硬化性に優れることを見出した。
As a result of diligent studies to solve the above problems, among amine imide compounds that are mainly useful as thermosetting catalysts for epoxy resins, amine imide compounds having a specific structure have an activity ability by energy rays such as ultraviolet rays. As a result, the present invention was completed.
That is, in claim 1, the amine imide compound (A) having one or more structures represented by the following general formula (I) in the molecule is useful as a photobase generator having sufficient energy ray (photo) base activity. And it discovered that it was excellent in the solubility to a resin, and low-temperature curability.

Figure 2008001857
Figure 2008001857

請求項2では、(A)アミンイミド化合物と、(B)塩基性触媒により重合反応または別の形態に転換される1種以上の化合物とを必須成分とする組成物が、光照射することによりその反応性(重合性)が変化(向上)することを見出した。また、請求項3では、分子内に2個以上のエポキシ基を有する化合物を(B)成分とし、(A)アミンイミド化合物と組合せることした。この系では活性エネルギー線を照射すると、低温でより硬化性(低温硬化性)に優れることを見出した。さらに、請求項4では本発明の(A)アミンイミド化合物と(B)成分として分子内に2個以上のエポキシ基を有する化合物および分子内に2個以上のチオール基を有する化合物の混合物を含有する組成物とした。この組成物では活性エネルギー線の照射後の低温硬化性がさらに優れることを見出した。   In claim 2, a composition comprising (A) an amine imide compound and (B) one or more compounds that are converted into another form by a basic catalyst by a basic catalyst is irradiated with light. It has been found that the reactivity (polymerizability) changes (improves). Moreover, in Claim 3, the compound which has a 2 or more epoxy group in a molecule | numerator was made into (B) component, and it combined with (A) amine imide compound. It was found that when this system was irradiated with active energy rays, it was more excellent in curability (low temperature curability) at a low temperature. Furthermore, claim 4 contains a mixture of (A) the amine imide compound of the present invention and (B) a compound having two or more epoxy groups in the molecule and a compound having two or more thiol groups in the molecule. It was set as the composition. It has been found that this composition is further excellent in low-temperature curability after irradiation with active energy rays.

また、請求項6〜10では、活性エネルギー線ラジカル発生剤をさらに添加した組成物とした。これによりさらに組成物の活性エネルギー線硬化性に優れる組成物が得られることを見出した。請求項11〜19では、活性エネルギー線の照射と加熱を同時に、または光照射後に加熱を行うことを特徴としている。   Moreover, in Claims 6-10, it was set as the composition which added the active energy ray radical generator further. As a result, it was found that a composition having excellent active energy ray curability of the composition can be obtained. Claims 11 to 19 are characterized in that the active energy ray is irradiated and heated simultaneously or after the light irradiation.

以下本発明を詳細に説明する。本発明の一つの形態は、活性エネルギー線照射により塩基を発生する光塩基発生剤であって、下記一般式(I)で示される構造を分子中に1つ以上有するアミンイミド化合物である。   The present invention will be described in detail below. One form of the present invention is a photobase generator that generates a base by irradiation with active energy rays, and is an amine imide compound having one or more structures represented by the following general formula (I) in the molecule.

Figure 2008001857
Figure 2008001857

上記アミンイミド構造を有する化合物の合成には、公知の方法を用いることができる。例えば、Encyclopedia of Polymer Science and Engineering、John Wiley & Sons Ltd.、(1985年)、第1巻、p740に記載されているように、対応するカルボン酸エステルとハロゲン化ヒドラジン及びナトリウムアルコキサイドとの反応やカルボン酸エステルとヒドラジン及びエポキシ化合物との反応から得ることができる。
本発明に用いられる(A)光塩基発生剤としてのアミンイミド化合物の合成方法は特に限定されるものではないが、合成の簡便性、安全性を考慮すると、カルボン酸エステルとヒドラジン及びエポキシ化合物からの合成法が好ましい。その場合の合成温度と時間に関しては特に制限を受けないが、一般的には0〜100℃の温度で30分〜7日間攪拌することによって目的のアミンイミド構造を有する化合物を得ることができる。好ましくは本発明のアミンイミド化合物は従来光塩基発生剤として知られている芳香族アミンイミド等に較べ熱分解温度が低いという特徴を有するため、副反応の抑制と生成するアミンイミドの熱分解の抑制の為、合成反応初期の温度を0〜25℃の範囲内に、最終段階における温度を60℃以下に調節することが好ましい。
A well-known method can be used for the synthesis | combination of the compound which has the said amine imide structure. See, for example, Encyclopedia of Polymer Science and Engineering, John Wiley & Sons Ltd. (1985), Volume 1, p. 740, obtained from the reaction of the corresponding carboxylic acid ester with a halogenated hydrazine and sodium alkoxide or the reaction of a carboxylic acid ester with hydrazine and an epoxy compound. be able to.
The method for synthesizing the amine imide compound as the photobase generator (A) used in the present invention is not particularly limited. However, in view of the simplicity and safety of synthesis, the synthesis from carboxylic acid ester, hydrazine and epoxy compound. A synthetic method is preferred. In this case, the synthesis temperature and time are not particularly limited, but in general, the compound having the target amine imide structure can be obtained by stirring at a temperature of 0 to 100 ° C. for 30 minutes to 7 days. Preferably, the amine imide compound of the present invention has a characteristic that the thermal decomposition temperature is lower than that of an aromatic amine imide or the like conventionally known as a photobase generator, so that side reactions and thermal decomposition of the generated amine imide are suppressed. It is preferable to adjust the temperature at the initial stage of the synthesis reaction within the range of 0 to 25 ° C. and the temperature at the final stage to 60 ° C. or less.

この合成法の場合に用いられる本発明のアミンイミド化合物の原料としてのカルボン酸エステルは、分子内に −CH(OH)COO− 構造を有する単官能または多官能のカルボン酸エステル化合物であれば良い。例えば乳酸メチル、乳酸エチル、乳酸ブチル、2−ヒドロキシ−n−酪酸エチル、2−ヒドロキシ−n−カプロン酸エチル、マンデル酸エチル、グリコール酸エチル、グリコール酸メチル、ロイシン酸イソプロピル、酒石酸ジメチル等が挙げられるがこの限りではない。多官能カルボン酸エステル化合物を用いると、分子内に複数のアミンイミド構造を有するアミンイミド化合物を得ることができる。ヒドラジン化合物については特に限定されるものではないが、原料の入手のしやすさや発生する光塩基性物質の塩基性の高さ等から1,1−ジメチルヒドラジンが好ましい。またもう一つの原料であるエポキシ化合物は分子中に1つ以上のエポキシ基を有する化合物であればよい。例えばプロピレンオキシド、グリシロール、アリルグリシジルエーテル、2−エチルヘキシルグリシジルエーテル、フェニルグリシジルエーテル、ターシャリーブチルフェノールグリシジルエーテル等の単官能エポキシ化合物の他、レゾルシノールジグリシジルエーテル、ネオペンチルジグリシジルエーテル、グリセロールポリグリシジルエーテル、ビスフェノールAとエピクロルヒドリンから誘導されるジグリシジルエーテル等の所謂エピ−ビス型液状エポキシ樹脂、脂肪族・芳香族アルコールとエピクロルヒドリンから誘導されるポリグリシジルエーテル、多塩基酸とエピクロルヒドリンから誘導されるポリグリシジルエステル、水添ビスフェノールAとエピクロルヒドリンから誘導されるポリグリシジルエーテル等の多官能エポキシ化合物も用いることができる。多官能エポキシ樹脂を用いると、分子内に複数のアミンイミド構造を有するアミンイミド化合物を得ることができる。   The carboxylic acid ester as a raw material of the amine imide compound of the present invention used in this synthesis method may be a monofunctional or polyfunctional carboxylic acid ester compound having a —CH (OH) COO— structure in the molecule. Examples include methyl lactate, ethyl lactate, butyl lactate, 2-hydroxy-n-ethyl butyrate, 2-hydroxy-n-ethyl caproate, ethyl mandelate, ethyl glycolate, methyl glycolate, isopropyl leucine, dimethyl tartrate, and the like. This is not the case. When a polyfunctional carboxylic acid ester compound is used, an amine imide compound having a plurality of amine imide structures in the molecule can be obtained. The hydrazine compound is not particularly limited, but 1,1-dimethylhydrazine is preferable from the viewpoint of easy availability of raw materials and the high basicity of the generated photobasic substance. Moreover, the epoxy compound which is another raw material should just be a compound which has one or more epoxy groups in a molecule | numerator. For example, in addition to monofunctional epoxy compounds such as propylene oxide, glycylol, allyl glycidyl ether, 2-ethylhexyl glycidyl ether, phenyl glycidyl ether, tertiary butylphenol glycidyl ether, resorcinol diglycidyl ether, neopentyl diglycidyl ether, glycerol polyglycidyl ether, So-called epi-bis type liquid epoxy resin such as diglycidyl ether derived from bisphenol A and epichlorohydrin, polyglycidyl ether derived from aliphatic / aromatic alcohol and epichlorohydrin, polyglycidyl ester derived from polybasic acid and epichlorohydrin , Polyfunctional epoxidation such as polyglycidyl ether derived from hydrogenated bisphenol A and epichlorohydrin Things can also be used. When a polyfunctional epoxy resin is used, an amine imide compound having a plurality of amine imide structures in the molecule can be obtained.

本発明の(A)アミンイミド化合物は、エネルギー線の照射によって塩基を発生するため、塩基性触媒により反応速度が変化する反応系の光活性触媒または遅延剤として有効である。また、本発明の一つの態様では、前記(A)アミンイミド化合物を(B)塩基性触媒により重合反応または別の形態に転換される1種以上の化合物と混合することで、重合反応性(硬化性)の組成物としている。
前記(B)塩基性触媒により重合反応または別の形態に転換される1種以上の化合物としては、既知の塩基性触媒により重合する反応系(樹脂、組成物)が利用できる。例えば、マイケル付加反応、エポキシ化合物の塩基性触媒による単独重合、エポキシ化合物および/または(メタ)アクリレート化合物および/またはエピスルフィド化合物と、チオール、アミノ、フェノール、イソシアネート、カルボキシルおよび/または酸無水物基を含む化合物との重合、ヒドロキシおよび/またはチオール基含有化合物とイソシアネート含有化合物の重合、シアノアクリレート化合物の重合等があるがこの限りではない。
本発明のアミンイミド化合物を用いて活性エネルギー線(光)硬化(重合)性の組成物を得る場合、硬化性(重合性)樹脂や組成物として、エポキシ樹脂やそれを主成分とする組成物、またはエポキシ樹脂とポリチオール化合物を主成分とする組成物を用いることが好適であるが、これらに限定されない。
また、本発明の組成物における(A)アミンイミド化合物の配合量は、(B)塩基性触媒により重合反応または別の形態に転換される1種以上の化合物の種類により変化するがね、例えば成分(B)としてエポキシ樹脂を選択した場合は、エポキシ樹脂100重量部に対して、0.1〜50重量部であることが望ましく、さらに好ましくは0.5〜30重量部である。0.1重量部未満であると硬化性が不足し、50重量部を超えると耐熱性や強度などの硬化物の特性が悪くなる。
Since the (A) amine imide compound of the present invention generates a base by irradiation with energy rays, it is effective as a photoactive catalyst or retarder for a reaction system in which the reaction rate is changed by a basic catalyst. In one embodiment of the present invention, the (A) amine imide compound is mixed with (B) one or more compounds that are converted into another form by a polymerization reaction or a basic catalyst. Composition).
As the (B) one or more compounds converted to a polymerization reaction or another form by a basic catalyst, a reaction system (resin, composition) that is polymerized by a known basic catalyst can be used. For example, Michael addition reaction, homopolymerization of epoxy compound with basic catalyst, epoxy compound and / or (meth) acrylate compound and / or episulfide compound, and thiol, amino, phenol, isocyanate, carboxyl and / or acid anhydride group Polymerization with a compound containing it, polymerization of a hydroxy and / or thiol group-containing compound with an isocyanate-containing compound, polymerization of a cyanoacrylate compound, etc. are not limited thereto.
When obtaining an active energy ray (light) curable (polymerizable) composition using the amine imide compound of the present invention, as a curable (polymerizable) resin or composition, an epoxy resin or a composition containing it as a main component, Alternatively, it is preferable to use a composition mainly composed of an epoxy resin and a polythiol compound, but the present invention is not limited thereto.
In addition, the blending amount of the (A) amine imide compound in the composition of the present invention varies depending on the type of one or more compounds converted to a polymerization reaction or another form by (B) a basic catalyst. When an epoxy resin is selected as (B), the amount is desirably 0.1 to 50 parts by weight, more preferably 0.5 to 30 parts by weight with respect to 100 parts by weight of the epoxy resin. If it is less than 0.1 part by weight, the curability is insufficient, and if it exceeds 50 parts by weight, the properties of the cured product such as heat resistance and strength are deteriorated.

成分(B)として好ましく用いられるエポキシ樹脂とは、分子内にエポキシ基を2つ以上有する化合物であり、具体例としてはビスフェノールAとエピクロルヒドリンから誘導されるジグリシジルエーテル、及びその誘導体、ビスフェノールFとエピクロルヒドリンから誘導されるジグリシジルエーテル、及びその誘導体等の所謂エピ−ビス型液状エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ヒダントイン型エポキシ樹脂、イソシアヌレート型エポキシ樹脂、脂肪族・芳香族アルコールとエピクロルヒドリンから誘導されるグリシジルエーテル、多塩基酸とエピクロルヒドリンから誘導されるグリシジルエステル、及びその誘導体、水添(水素添加)ビスフェノールAとエピクロルヒドリンから誘導されるグリシジルエーテル、3,4−エポキシ−6−メチルシクロヘキシルメチル−3,4−エポキシ−6−メチルシクロヘキサンカルボキシレート、ビス(3,4−エポキシ−6−メチルシクロヘキシルメチル)アジペート等の脂肪族環状エポキシ、及びその誘導体、5,5’−ジメチルヒダントイン型エポキシ樹脂、トリグリシジルイソシアネート、イソブチレンから誘導される置換型エポキシ等が挙げられるがこれらに限定されるものではない。市販されているエポキシ樹脂製品としては、例えばジャパンエポキシレジン株式会社製のJERコート828、1001、801、806、807、152、604、630、871、YX8000、YX8034、YX4000、大日本インキ工業株式会社製のエピクロン830、835LV、HP4032D、703、720、726、HP820、旭電化工業株式会社製のEP4100、EP4000、EP4080、EP4085、EP4088、EPU6、EPR4023、EPR1309、EP49−20、ナガセケムテックス株式会社製デナコールEX411、EX314、EX201、EX212、EX252、等が挙げられるがこれらに限定されるものではない。これらの化合物は、それぞれ単独で用いることも、また二種以上を混合して用いても良い。これらのうち、エピ−ビス型エポキシ樹脂を用いると価格および硬化性、硬化物の接着性、物理強度等にバランスの良い組成物が得られる。また脂肪族、環状脂肪族エポキシ化合物を用いると硬化物の柔軟性、透明性、耐候性に優れた組成物が得られる。   The epoxy resin preferably used as the component (B) is a compound having two or more epoxy groups in the molecule. Specific examples thereof include diglycidyl ether derived from bisphenol A and epichlorohydrin, and derivatives thereof, bisphenol F and So-called epi-bis type liquid epoxy resin such as diglycidyl ether derived from epichlorohydrin and its derivatives, phenol novolac type epoxy resin, cresol novolac type epoxy resin, hydantoin type epoxy resin, isocyanurate type epoxy resin, aliphatic / aromatic Glycidyl ether derived from aromatic alcohol and epichlorohydrin, glycidyl ester derived from polybasic acid and epichlorohydrin, and derivatives thereof, hydrogenated (hydrogenated) bisphenol A and epichlorohydrin Fats such as glycidyl ether, 3,4-epoxy-6-methylcyclohexylmethyl-3,4-epoxy-6-methylcyclohexanecarboxylate, bis (3,4-epoxy-6-methylcyclohexylmethyl) adipate Group epoxy, derivatives thereof, 5,5′-dimethylhydantoin type epoxy resin, triglycidyl isocyanate, substituted epoxy derived from isobutylene, and the like, but are not limited thereto. Examples of commercially available epoxy resin products include JER Coat 828, 1001, 801, 806, 807, 152, 604, 630, 871, YX8000, YX8034, YX4000, Dainippon Ink Industries, Ltd., manufactured by Japan Epoxy Resin Co., Ltd. Epicron 830, 835LV, HP4032D, 703, 720, 726, HP820, manufactured by Asahi Denka Kogyo Co., Ltd., EP4100, EP4000, EP4080, EP4085, EP4088, EPU6, EPR4023, EPR1309, EP49-20, manufactured by Nagase ChemteX Corporation Denacol EX411, EX314, EX201, EX212, EX252, etc. are mentioned, but it is not limited to these. These compounds may be used alone or in combination of two or more. Among these, when an epi-bis type epoxy resin is used, a composition having a good balance in price and curability, adhesiveness of a cured product, physical strength and the like can be obtained. Moreover, when an aliphatic or cycloaliphatic epoxy compound is used, a composition excellent in flexibility, transparency and weather resistance of the cured product can be obtained.

前記エポキシ樹脂と併用して使用されるポリチオール化合物とは、分子内にチオール基を2つ以上有する化合物であれば良い。具体例としては、トリメチロールプロパントリスチオプロピオネート、ペンタエリストールテトラキスチオプロピオネート、エチレングリコールビスチオグリコレート、1,4−ブタンジオールビスチオグリコレート、トリメチロールプロパントリスチオグリコレート、ペンタエリストールテトラキスチオグリコレート、ジ(2−メルカプトエチル)エーテル、1,4−ブタンジチオール、1,3,5−トリメルカプトメチルベンゼン、4,4’−チオジベンゼンチオール、1,3,5−トリメルカプトメチル−2,4,6−トリメチルベンゼン、2,4,6−トリメルカプト−s−トリアジン、2−ジブチルアミノ−4,6−ジメルカプト−s−トリアジン、末端チオール基含有ポリエーテル、末端チオール基含有ポリチオエーテル、エポキシ化合物と硫化水素との反応によって得られるチオール化合物、ポリチオール化合物とエポキシ化合物との反応によって得られる末端チオール基を有するチオール化合物等が挙げられるがこれらに限定されるものではない。市販されているチオール化合物の製品としては、例えばジャパンエポキシレジン株式会社製のJERメートQX11、QX12、JERキュアQX30、QX40、QX60、QX900、カプキュアCP3−800、淀化学株式会社製のOTG、EGTG、TMTG、PETG、3−MPA、TMTP、PETP、東レファインケミカル株式会社製チオコールLP−2、LP−3、ポリチオールQE−340M等が挙げられるがこれらに限定されるものではない。これらの化合物は、それぞれ単独で用いることも、また二種以上を混合して用いても良い。より好ましいチオール化合物は、貯蔵安定性の面からは塩基性不純物の極力少ないものである。また硬化物の耐熱性の面からは分子内に芳香環を含むチオール化合物がより好ましい。本発明の組成物におけるチオール化合物の配合量については特に範囲を限定するものではないが、好ましくは組成物中のエポキシ化合物のエポキシ当量に対し、チオール当量比で0.5〜2.0の範囲内、より好ましくは0.8〜1.3の範囲内で加えることができる。上記の範囲内でチオール化合物を加えると、より硬化速度および硬化物の強度や耐熱性のバランスに優れた組成物を得ることができる。   The polythiol compound used in combination with the epoxy resin may be a compound having two or more thiol groups in the molecule. Specific examples include trimethylolpropane tristhiopropionate, pentaerythritol tetrakisthiopropionate, ethylene glycol bisthioglycolate, 1,4-butanediol bisthioglycolate, trimethylolpropane tristhioglycolate, penta Erystole tetrakisthioglycolate, di (2-mercaptoethyl) ether, 1,4-butanedithiol, 1,3,5-trimercaptomethylbenzene, 4,4′-thiodibenzenethiol, 1,3,5- Trimercaptomethyl-2,4,6-trimethylbenzene, 2,4,6-trimercapto-s-triazine, 2-dibutylamino-4,6-dimercapto-s-triazine, terminal thiol group-containing polyether, terminal thiol Group-containing polythioether, EPO Shi compound with a thiol compound obtained by the reaction of hydrogen sulfide, but a thiol compound having a terminal thiol group obtained by reaction of a polythiol compound and an epoxy compounds are not limited thereto. As products of commercially available thiol compounds, for example, JER Mate QX11, QX12, JER Cure QX30, QX40, QX60, QX900, Capcure CP3-800 manufactured by Japan Epoxy Resin Co., Ltd., OTG, EGTG manufactured by Sakai Chemical Co., Ltd., Examples include, but are not limited to, TMTG, PETG, 3-MPA, TMTP, PETP, Toyo Fine Chemical Co., Ltd. Thiocol LP-2, LP-3, and Polythiol QE-340M. These compounds may be used alone or in combination of two or more. More preferable thiol compounds are those having as few basic impurities as possible from the viewpoint of storage stability. In view of the heat resistance of the cured product, a thiol compound containing an aromatic ring in the molecule is more preferable. The range of the amount of the thiol compound in the composition of the present invention is not particularly limited, but is preferably in the range of 0.5 to 2.0 in terms of the thiol equivalent ratio with respect to the epoxy equivalent of the epoxy compound in the composition. Of these, more preferably, it can be added within the range of 0.8 to 1.3. When a thiol compound is added within the above range, a composition having a more excellent balance between the curing speed, the strength of the cured product and the heat resistance can be obtained.

本発明では、前記成分(A)及び(B)を主成分とする組成物に、さらに(C)活性エネルギー線ラジカル発生剤を添加すると、より組成物の光活性を高めることができる。活性エネルギー線ラジカル発生剤には公知の水素引き抜き型ラジカル発生剤および/または開裂型ラジカル発生剤を用いることができる。水素引き抜き型ラジカル発生剤の例としては、1−メチルナフタレン、2−メチルナフタレン、1−フルオロナフタレン、1−クロロナフタレン、2−クロロナフタレン、1−ブロモナフタレン、2−ブロモナフタレン、1−ヨードナフタレン、2−ヨードナフタレン、1−ナフトール、2−ナフトール、1−メトキシナフタレン、2−メトキシナフタレン、1,4−ジシアノナフタレン等のナフタレン誘導体、アントラセン、1,2−ベンズアントラセン、9,10−ジクロロアントラセン、9,10−ジブロモアントラセン、9,10−ジフェニルアントラセン、9−シアノアントラセン、9,10−ジシアノアントラセン、2,6,9,10−テトラシアノアントラセン等のアントラセン誘導体、ピレン誘導体、カルバゾール、9−メチルカルバゾール、9−フェニルカルバゾール、9−プロペ−2−イニル−9H−カルバゾール、9−プロピル−9H−カルバゾール、9−ビニルカルバゾール、9H−カルバゾール−9−エタノール、9−メチル−3−ニトロ−9H−カルバゾール、9−メチル−3,6−ジニトロ−9H−カルバゾール、9−オクタノイルカルバゾール、9−カルバゾールメタノール、9−カルバゾールプロピオン酸、9−カルバゾールプロピオニトリル、9−エチル−3,6−ジニトロ−9H−カルバゾール、9−エチル−3−ニトロカルバゾール、9−エチルカルバゾール、9−イソプロピルカルバゾール、9−(エトキシカルボニルメチル)カルバゾール、9−(モルホリノメチル)カルバゾール、9−アセチルカルバゾール、9−アリルカルバゾール、9−ベンジル−9H−カルバゾール、9−カルバゾール酢酸、9−(2−ニトロフェニル)カルバゾール、9−(4−メトキシフェニル)カルバゾール、9−(1−エトキシ−2−メチル−プロピル)−9H−カルバゾール、3−ニトロカルバゾール、4−ヒドロキシカルバゾール、3,6−ジニトロ−9H−カルバゾール、3,6−ジフェニル−9H−カルバゾール、2−ヒドロキシカルバゾール、3,6−ジアセチル−9−エチルカルバゾール等のカルバゾール誘導体、ベンゾフェノン、4−フェニルベンゾフェノン、4,4’−ビス(ジメトキシ)ベンゾフェノン、4,4’−ビス(ジメチルアミノ)ベンゾフェノン、4,4’−ビス(ジエチルアミノ)ベンゾフェノン、2−ベンゾイル安息香酸メチルエステル、2−メチルベンゾフェノン、3−メチルベンゾフェノン、4−メチルベンゾフェノン、3,3’−ジメチル−4−メトキシベンゾフェノン、2,4,6−トリメチルベンゾフェノン等のベンゾフェノン誘導体、芳香族カルボニル化合物、[4−(4−メチルフェニルチオ)フェニル]−フェニルメタノン、キサントン、チオキサントン、2−クロロチオキサントン、4−クロロチオキサントン、2−イソプロピルチオキサントン、4−イソプロピルチオキサントン、2,4−ジメチルチオキサントン、2,4−ジエチルチオキサントン、1−クロロ−4−プロポキシチオキサントン等のチオキサントン誘導体やクマリン誘導体が挙げられる。   In the present invention, when (C) an active energy ray radical generator is further added to the composition containing the components (A) and (B) as main components, the photoactivity of the composition can be further enhanced. As the active energy ray radical generator, a known hydrogen abstraction type radical generator and / or cleavage type radical generator can be used. Examples of hydrogen abstraction type radical generators include 1-methylnaphthalene, 2-methylnaphthalene, 1-fluoronaphthalene, 1-chloronaphthalene, 2-chloronaphthalene, 1-bromonaphthalene, 2-bromonaphthalene, 1-iodonaphthalene. , 2-iodonaphthalene, 1-naphthol, 2-naphthol, 1-methoxynaphthalene, 2-methoxynaphthalene, naphthalene derivatives such as 1,4-dicyanonaphthalene, anthracene, 1,2-benzanthracene, 9,10-dichloroanthracene , 9,10-dibromoanthracene, 9,10-diphenylanthracene, 9-cyanoanthracene, 9,10-dicyanoanthracene, 2,6,9,10-tetracyanoanthracene, anthracene derivatives, pyrene derivatives, carbazole, 9- Me Rucarbazole, 9-phenylcarbazole, 9-prop-2-ynyl-9H-carbazole, 9-propyl-9H-carbazole, 9-vinylcarbazole, 9H-carbazole-9-ethanol, 9-methyl-3-nitro-9H -Carbazole, 9-methyl-3,6-dinitro-9H-carbazole, 9-octanoylcarbazole, 9-carbazolemethanol, 9-carbazolepropionic acid, 9-carbazolepropionitrile, 9-ethyl-3,6-dinitro -9H-carbazole, 9-ethyl-3-nitrocarbazole, 9-ethylcarbazole, 9-isopropylcarbazole, 9- (ethoxycarbonylmethyl) carbazole, 9- (morpholinomethyl) carbazole, 9-acetylcarbazole, 9-allylcarbazo 9-benzyl-9H-carbazole, 9-carbazoleacetic acid, 9- (2-nitrophenyl) carbazole, 9- (4-methoxyphenyl) carbazole, 9- (1-ethoxy-2-methyl-propyl) -9H -Carbazole, 3-nitrocarbazole, 4-hydroxycarbazole, 3,6-dinitro-9H-carbazole, 3,6-diphenyl-9H-carbazole, 2-hydroxycarbazole, 3,6-diacetyl-9-ethylcarbazole, etc. Carbazole derivatives, benzophenone, 4-phenylbenzophenone, 4,4'-bis (dimethoxy) benzophenone, 4,4'-bis (dimethylamino) benzophenone, 4,4'-bis (diethylamino) benzophenone, methyl 2-benzoylbenzoate Ester, 2-methylben Benzophenone derivatives such as zophenone, 3-methylbenzophenone, 4-methylbenzophenone, 3,3′-dimethyl-4-methoxybenzophenone, 2,4,6-trimethylbenzophenone, aromatic carbonyl compounds, [4- (4-methylphenyl Thio) phenyl] -phenylmethanone, xanthone, thioxanthone, 2-chlorothioxanthone, 4-chlorothioxanthone, 2-isopropylthioxanthone, 4-isopropylthioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 1-chloro Examples thereof include thioxanthone derivatives such as -4-propoxythioxanthone and coumarin derivatives.

また開裂型ラジカル発生剤は活性エネルギー線を照射することにより当該化合物が開裂してラジカルを発生するタイプのラジカル発生剤であり、その具体例として、ベンゾインエーテル誘導体、アセトフェノン誘導体等のアリールアルキルケトン類、オキシムケトン類、アシルホスフィンオキシド類、チオ安息香酸S−フェニル類、チタノセン類、およびそれらを高分子量化した誘導体が挙げられるがこれに限定されるものではない。市販されている開裂型ラジカル発生剤としては、1−(4−ドデシルベンゾイル)−1−ヒドロキシ−1−メチルエタン、1−(4−イソプロピルベンゾイル)−1−ヒドロキシ−1−メチルエタン、1−ベンゾイル−1−ヒドロキシ−1−メチルエタン、1−[4−(2−ヒドロキシエトキシ)−ベンゾイル]−1−ヒドロキシ−1−メチルエタン、1−[4−(アクリロイルオキシエトキシ)−ベンゾイル]−1−ヒドロキシ−1−メチルエタン、ジフェニルケトン、フェニル−1−ヒドロキシ−シクロヘキシルケトン、ベンジルジメチルケタール、ビス(シクロペンタジエニル)−ビス(2,6−ジフルオロ−3−ピリル−フェニル)チタン、(η−イソプロピルベンゼン)−(η−シクロペンタジエニル)−鉄(II)ヘキサフルオロホスフェート、トリメチルベンゾイルジフェニルホスフィンオキシド、ビス(2,6−ジメトキシ−ベンゾイル)−(2,4,4−トリメチル−ペンチル)−ホスフィンオキシド、ビス(2,4,6−トリメチルベンゾイル)−2,4−ジペントキシフェニルホスフィンオキシドまたはビス(2,4,6−トリメチルベンゾイル)フェニル−ホスフィンオキシド、(4−モルホリノベンゾイル)−1−ベンジル−1−ジメチルアミノプロパン、4−(メチルチオベンゾイル)−1−メチル−1−モルホリノエタン等が挙げられるがこれに限定されるものではない。 The cleavage type radical generator is a type of radical generator that generates radicals by irradiating active energy rays. Specific examples thereof include arylalkyl ketones such as benzoin ether derivatives and acetophenone derivatives. Oxime ketones, acylphosphine oxides, thiobenzoic acid S-phenyls, titanocenes, and derivatives obtained by increasing the molecular weight thereof, but are not limited thereto. Commercially available cleavage type radical generators include 1- (4-dodecylbenzoyl) -1-hydroxy-1-methylethane, 1- (4-isopropylbenzoyl) -1-hydroxy-1-methylethane, 1-benzoyl- 1-hydroxy-1-methylethane, 1- [4- (2-hydroxyethoxy) -benzoyl] -1-hydroxy-1-methylethane, 1- [4- (acryloyloxyethoxy) -benzoyl] -1-hydroxy-1 -Methylethane, diphenylketone, phenyl-1-hydroxy-cyclohexylketone, benzyldimethyl ketal, bis (cyclopentadienyl) -bis (2,6-difluoro-3-pyryl-phenyl) titanium, (η 6 -isopropylbenzene) -(Η 5 -cyclopentadienyl) -iron (II) hexafur Orophosphate, trimethylbenzoyldiphenylphosphine oxide, bis (2,6-dimethoxy-benzoyl)-(2,4,4-trimethyl-pentyl) -phosphine oxide, bis (2,4,6-trimethylbenzoyl) -2,4 -Dipentoxyphenylphosphine oxide or bis (2,4,6-trimethylbenzoyl) phenyl-phosphine oxide, (4-morpholinobenzoyl) -1-benzyl-1-dimethylaminopropane, 4- (methylthiobenzoyl) -1- Examples thereof include, but are not limited to, methyl-1-morpholinoethane.

本発明の組成物において、これら(C)活性エネルギー線ラジカル発生剤、すなわち水素引き抜き型または開裂型ラジカル発生剤はいずれもそれぞれ単独で用いることができる他、複数を組み合わせて用いても良いが、ラジカル発生剤単体の安定性や、本発明における組成物の硬化性の面でより好ましいものは開裂型ラジカル発生剤の1種以上の組み合わせである。また高分子オリゴマー/ポリマー中に開裂型ラジカル発生剤の構造を導入した高分子量タイプのものは、硬化時及び硬化後のアウトガスが少ないため好ましい。
また、ラジカル発生剤の種類によっては、組み合わせる(A)アミンイミド化合物の構造により、その効果に差が現れる可能性がある。これはアミンイミド化合物とラジカル発生剤の吸収エネルギー線の波長の組み合わせに影響されると考えられるため、(A)アミンイミド化合物と(C)ラジカル発生剤の最適な組み合わせは任意に選択してもよい。本発明の組成物におけるラジカル発生剤の添加量は、ラジカル発生剤の吸収波長及びモル吸光係数を参考にする必要があるが、一般的に(A)アミンイミド化合物1重量部に対して0.01〜10重量部であり、好ましくは0.05〜5重量部である。少なすぎると充分な光活性向上効果が得られず、多すぎると塩基性触媒作用を阻害する。
In the composition of the present invention, these (C) active energy ray radical generators, that is, hydrogen abstraction type or cleavage type radical generators can be used alone or in combination. The combination of one or more cleavage type radical generators is more preferable in terms of the stability of the radical generator alone and the curability of the composition in the present invention. A high molecular weight type in which a structure of a cleavage type radical generator is introduced into a polymer oligomer / polymer is preferable because the outgas after curing and after curing is small.
In addition, depending on the type of radical generator, there may be a difference in the effect depending on the structure of the (A) amine imide compound to be combined. Since this is considered to be influenced by the combination of the absorption energy lines of the amine imide compound and the radical generator, the optimal combination of (A) the amine imide compound and (C) the radical generator may be arbitrarily selected. The addition amount of the radical generator in the composition of the present invention needs to refer to the absorption wavelength and molar extinction coefficient of the radical generator, but is generally 0.01% with respect to 1 part by weight of the (A) amine imide compound. -10 parts by weight, preferably 0.05-5 parts by weight. If the amount is too small, a sufficient photoactivity improving effect cannot be obtained. If the amount is too large, the basic catalytic action is inhibited.

本発明の組成物には、本発明の特性を損なわない範囲において分子内に1つのエポキシ基を含む化合物、および/または分子内に1つのチオール基を有する化合物を添加しても良い。これらは組成物全体の低粘度化や作業性の向上、反応性の調整等に用いられる。これらエポキシ化合物、チオール化合物を添加した場合はそれぞれのエポキシ当量、チオール当量を考慮して組成物全体のエポキシ化合物とチオール化合物の配合比を調節することが望ましい。   You may add to the composition of this invention the compound which has one epoxy group in a molecule | numerator, and / or the compound which has one thiol group in a molecule | numerator in the range which does not impair the characteristic of this invention. These are used for reducing the viscosity of the entire composition, improving workability, adjusting reactivity, and the like. When these epoxy compounds and thiol compounds are added, it is desirable to adjust the compounding ratio of the epoxy compound and thiol compound in the whole composition in consideration of the epoxy equivalent and thiol equivalent.

さらに本発明の組成物には、本発明の特性を損なわない範囲において顔料、染料などの着色剤、炭酸カルシウム、タルク、シリカ、アルミナ、水酸化アルミニウム等の無機充填剤、銀等の導電性粒子、難燃剤、ホウ酸エステルやリン酸エステル、無機酸、有機酸などの保存性向上剤、アクリルゴムやシリコンゴム等の有機充填剤、ポリイミド樹脂、ポリアミド樹脂、ビスフェノールA型フェノキシ樹脂やビスフェノールF型フェノキシ樹脂、ビスフェノールA・ビスフェノールF共重合型フェノキシ樹脂等の汎用フェノキシ樹脂類、ポリメタクリレート樹脂類、ポリアクリレート樹脂類、ポリイミド樹脂類、ポリウレタン樹脂類、ポリエステル樹脂類、ポリビニルブチラール樹脂、SBS樹脂及びそのエポキシ樹脂変性体、SEBS樹脂及びその変性体などのポリマーや熱可塑性エラストマー、可塑剤、有機溶剤、酸化防止剤、消泡剤、カップリング剤、レベリング剤、レオロジーコントロール剤等の添加剤を適量配合しても良い。これらの添加により、より樹脂強度・接着強さ・難燃性・熱伝導性、保存安定性、作業性等に優れた組成物およびその硬化物が得られる。   Furthermore, the composition of the present invention includes colorants such as pigments and dyes, inorganic fillers such as calcium carbonate, talc, silica, alumina and aluminum hydroxide, and conductive particles such as silver as long as the characteristics of the present invention are not impaired. , Flame retardants, preservatives such as boric acid esters and phosphoric acid esters, inorganic acids and organic acids, organic fillers such as acrylic rubber and silicon rubber, polyimide resins, polyamide resins, bisphenol A type phenoxy resins and bisphenol F types General-purpose phenoxy resins such as phenoxy resin, bisphenol A / bisphenol F copolymer type phenoxy resin, polymethacrylate resins, polyacrylate resins, polyimide resins, polyurethane resins, polyester resins, polyvinyl butyral resin, SBS resin and the like Modified epoxy resin, SEBS resin and Modified products such as polymers or thermoplastic elastomers, plasticizers, organic solvents, antioxidants, antifoaming agents, coupling agents, leveling agents, may be appropriate amount of additives such as rheology control agents. By these additions, a composition excellent in resin strength, adhesive strength, flame retardancy, thermal conductivity, storage stability, workability, and the like, and a cured product thereof can be obtained.

本発明の(A)アミンイミド化合物は、紫外線などの活性エネルギー線の照射により活性化して塩基を発生する光塩基発生剤であるが、ここで用いられる活性エネルギー線とは、電子線、紫外線、可視光線などである。またその照射量は(A)アミンイミド化合物を活性化するのに充分な量であればよく、特に制限されない。一例を挙げると、成分(B)としてエポキシ樹脂とポリチオール化合物の混合物を使用した場合の紫外線の照射量は、0.1J/cm以上であればよい。また、本発明の組成物は、活性エネルギー線の照射に加えて加熱を同時に行うことにより、さらに少ないエネルギー照射量、および短い時間で硬化物を得ることができる。
なお、本発明の(A)アミンイミド化合物は、活性エネルギー線以外の例えば加熱によっても活性化するが、加熱のみによる活性化に比較して活性エネルギー線照射を併用することでその重合硬化性を大幅に向上させることができる。一般的な紫外線照射装置は紫外線と同時に熱線が放射されるため、本発明の組成物を重合硬化には極めて有用である。
The (A) amine imide compound of the present invention is a photobase generator that generates a base upon activation with irradiation of active energy rays such as ultraviolet rays. The active energy rays used here are electron beams, ultraviolet rays, visible rays. Light rays. The irradiation amount is not particularly limited as long as it is an amount sufficient to activate the (A) amine imide compound. If an example is given, the irradiation amount of an ultraviolet-ray at the time of using the mixture of an epoxy resin and a polythiol compound as a component (B) should just be 0.1 J / cm < 2 > or more. Moreover, the composition of this invention can obtain hardened | cured material with a still smaller energy irradiation amount and short time by simultaneously performing heating in addition to irradiation of an active energy ray.
The (A) amine imide compound of the present invention is also activated by heating other than active energy rays, for example, but its polymerization curability is greatly increased by using active energy ray irradiation in combination with activation only by heating. Can be improved. Since a general ultraviolet irradiation device emits heat rays simultaneously with ultraviolet rays, the composition of the present invention is extremely useful for polymerization and curing.

本発明の組成物を硬化処理して得られる樹脂硬化物は強靱かつ透明性があるなどの優れた特性を有しており、また所定量の活性エネルギー線を照射した本発明の組成物は、常温で放置するだけでその後特別な処置(加熱など)を行わなくても重合反応が進行して硬化物を得ることが可能である。この特性を利用して、光学部品の成形や、接着、封止、注型、塗装、コーティング材等様々な用途に使用が可能である。また本組成物は本発明内の組成において、エネルギー照射後直ちに硬化することも、エネルギー照射後直後は硬化せず、その後短時間の室温または加熱化での放置により硬化することも可能であり、後者のような性質は、また、DVDの接着剤に代表されるように、接着部材が光等のエネルギーを透過しない場合でも、組成物にエネルギーを照射した後塗布貼り合わせすることにより接着が可能である。   The cured resin obtained by curing the composition of the present invention has excellent properties such as toughness and transparency, and the composition of the present invention irradiated with a predetermined amount of active energy rays It is possible to obtain a cured product by allowing the polymerization reaction to proceed by simply leaving it at room temperature without performing any special treatment (such as heating). Utilizing this characteristic, it can be used for various applications such as molding of optical parts, adhesion, sealing, casting, painting, coating materials and the like. Further, in the composition of the present invention, the present composition can be cured immediately after energy irradiation or not immediately after energy irradiation, and can be cured by standing at room temperature or heating for a short time. Even if the adhesive member does not transmit light or other energy as represented by the adhesive of DVD, the latter property is possible by applying and bonding the composition after irradiating it with energy. It is.

本発明は、従来の芳香族アミンイミド系光塩基発生剤よりも樹脂への溶解性・低温活性に優れる光塩基発生剤として新規なアミンイミド化合物であり、光照射により、より低い温度で速やかに硬化可能な新規なエネルギー線活性(重合、硬化)性の組成物、その硬化方法と硬化物を提供するものであり、接着、封止、注型、成型、塗装、コーティング等様々な用途に使用が可能である。
また、前記新規なアミンイミド化合物を硬化触媒として、例えばエポキシ樹脂等と併用することにより、加熱硬化性に加え、エネルギー線(光)照射による硬化性を付与することができる。
The present invention is a novel amine imide compound as a photo base generator that is more soluble in resins and has low temperature activity than conventional aromatic amine imide photo base generators, and can be cured quickly at lower temperatures by light irradiation. Provides new energy ray active (polymerization, curing) composition, curing method and cured product, and can be used for various applications such as adhesion, sealing, casting, molding, painting, coating, etc. It is.
Further, by using the novel amine imide compound as a curing catalyst together with, for example, an epoxy resin, it is possible to impart curability by irradiation with energy rays (light) in addition to heat curability.

以下に実施例によって本発明について具体的に説明するが、本発明は以下の実施例により制約されるものではない。また、下記の表中の配合割合は特に断りのない限り重量基準である。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited by the following examples. Further, the blending ratios in the following table are based on weight unless otherwise specified.

実施例および比較例に使用したアミンイミド化合物は表1で示す構造式で表される化合物であり、それぞれ下記の方法によって合成したものを用いた。   The amine imide compounds used in Examples and Comparative Examples are compounds represented by the structural formulas shown in Table 1, and those synthesized by the following methods were used.

Figure 2008001857
Figure 2008001857

(アミンイミド化合物A〜Iの合成)
J.Polym.Sci.Part A,38,18,3428(2000)および特開2000−229927公報に開示された方法に従い、対応するカルボン酸メチルエステルまたはカルボン酸エチルエステルと、ジメチルヒドラジンとエポキシ化合物からそれぞれのアミンイミド化合物(本発明のアミンイミド化合物A〜D、本発明に含まれない脂肪族アミンイミド化合物E〜H、本発明に含まれない芳香族アミンイミド化合物I)を得た。
(Synthesis of amine imide compounds A to I)
J. et al. Polym. Sci. According to the methods disclosed in Part A, 38, 18, 3428 (2000) and Japanese Patent Application Laid-Open No. 2000-229927, each amine imide compound (present carboxylic acid methyl ester or carboxylic acid ethyl ester, dimethylhydrazine and epoxy compound) Inventive amine imide compounds A to D, aliphatic amine imide compounds E to H not included in the present invention, and aromatic amine imide compounds I) not included in the present invention were obtained.

(アミンイミド化合物Jの合成)
国際公開特許WO2002/051905に開示された方法に従い芳香族系アミンイミド化合物である1,1−ジメチル−1−(2−ヒドロキシ−3−フェノキシプロピル)アミンパラニトロベンジイミド(本発明に含まれない芳香族アミンイミド化合物J)を得た。
(Synthesis of amine imide compound J)
1,1-dimethyl-1- (2-hydroxy-3-phenoxypropyl) amine paranitrobenzimide which is an aromatic amine imide compound according to the method disclosed in International Publication No. WO2002 / 051905 (fragrance not included in the present invention) Group amine imide compound J) was obtained.

アミンイミド化合物の他に本発明の実施例および比較例に使用した材料は下記に示す市販の製品または試薬である。
・メチルアルコール:東京化成工業株式会社試薬
・フェニルグリシジルエーテル:和光純薬工業株式会社製試薬
・URIC H30:伊藤製油株式会社製 ポリオール
・ISONATE 143LP:ダウケミカル日本株式会社製 変性ジフェニルメタンジイソシアネート
・エピクロン835LV:大日本インキ工業株式会社製 ビスフェノール型エポキシ樹脂
・デナコールEX−911:ナガセケムテックス株式会社製 脂肪族エポキシ樹脂
・JERキュアQX30:ジャパンエポキシレジン株式会社製 3官能脂肪族ポリチオール
・JERキュアQX40:ジャパンエポキシレジン株式会社製 4官能脂肪族ポリチオール
・イルガキュア184:チバスペシャリティーケミカル株式会社製 開裂型光ラジカル発生剤
・イルガキュア651:チバスペシャリティーケミカル株式会社製 開裂型光ラジカル発生剤
・ダロキュア1173:チバスペシャリティーケミカル株式会社製 開裂型光ラジカル発生剤
・ルシリンTPO:BASFジャパン株式会社製 開裂型光ラジカル発生剤
・ベンゾフェノン:東京化成工業株式会社試薬 水素引き抜き型光ラジカル発生剤
In addition to the amine imide compound, the materials used in the examples and comparative examples of the present invention are commercially available products or reagents shown below.
・ Methyl alcohol: Tokyo Chemical Industry Co., Ltd. Reagent ・ Phenylglycidyl ether: Wako Pure Chemical Industries, Ltd. Reagent ・ URIC H30: Ito Oil Co., Ltd. polyol ・ ISONATE 143LP: Dow Chemical Japan Co., Ltd. Modified diphenylmethane diisocyanate ・ Epicron 835LV: Dainippon Ink & Chemicals Co., Ltd. Bisphenol type epoxy resin / Denacol EX-911: Nagase ChemteX Corporation aliphatic epoxy resin / JER Cure QX30: Japan Epoxy Resin Co., Ltd. trifunctional aliphatic polythiol / JER Cure QX40: Japan Epoxy Resin Co., Ltd. Tetrafunctional Aliphatic Polythiol / Irgacure 184: Ciba Specialty Chemicals Co., Ltd. Cleavage Type Photo Radical Generator Irgacure 651: Ciba Pesci Cleavage type photo radical generator, Darocur 1173 manufactured by Riti Chemical Co., Ltd .: Ciba Specialty Chemicals Co., Ltd. Cleavage type photo radical generator, Lucirin TPO: manufactured by BASF Japan Co., Ltd. Cleavage type photo radical generator, benzophenone: Tokyo Chemical Industry Co., Ltd. Company reagent Hydrogen abstraction type photo radical generator

[実施例1]
内径33mm高さ55mmの透明サンプル瓶に1.5gのアミンイミド化合物Aと55gのメチルアルコールと3.0gの精製水を加え、アミンイミド化合物Aを溶解する。窒素雰囲気下でスターラーで攪拌しながらこのサンプル瓶の側面より、浜松ホトニクス社製スポット紫外線照射装置において、365nm照度:100mW/cmの活性エネルギー線を照射し、指定秒照射後、堀場製作所社製pHメーターD22にて、pHを測定した。活性エネルギー線照射前のpHは8.50であり、活性エネルギー線を10秒間照射後のpHは8.53、20秒間照射後のpHは8.54、30秒間照射後のpHは8.55、50秒照射後のpHは8.56と、活性エネルギー線照射により塩基性が増大し、アミンイミド化合物Aが光塩基発生剤であることが示された。
[Example 1]
To a transparent sample bottle having an inner diameter of 33 mm and a height of 55 mm, 1.5 g of amine imide compound A, 55 g of methyl alcohol and 3.0 g of purified water are added to dissolve amine imide compound A. While agitating with a stirrer in a nitrogen atmosphere, from a side surface of this sample bottle, an active energy ray of 365 nm illuminance: 100 mW / cm 2 was irradiated with a spot ultraviolet irradiation device manufactured by Hamamatsu Photonics, and after irradiation for a specified time, manufactured by Horiba, Ltd. The pH was measured with a pH meter D22. The pH before irradiation with active energy rays is 8.50, the pH after irradiation with active energy rays for 10 seconds is 8.53, the pH after irradiation for 20 seconds is 8.54, and the pH after irradiation for 30 seconds is 8.55. The pH after irradiation for 50 seconds was 8.56, and the basicity increased by irradiation with active energy rays, indicating that the amine imide compound A is a photobase generator.

[実施例2]
フェニルグリシジルエーテル:0.1mol(15.017g)とアミンイミド化合物A:0.003mol(0.739g)とダロキュア1173:0.001mol(0.164g)を室温で混合し均一な溶液を得た。この溶液を示差走査熱量計(DSC)のサンプル容器に7.5mg秤量し、浜松ホトニクス社製スポット紫外線照射装置(365nm照度:100mW/cm)を用いて活性エネルギー線を照射し、照射前と、9J/cm照射後の反応開始温度をDSC測定により求めた。DSC測定にはセイコーインスツルメント社製DSC(DSC110)を用い、密閉容器、窒素雰囲気下昇温速度10℃/min.で25〜280℃まで昇温測定した。得られたDSCチャートから硬化発熱の立ち上がり温度(DSC Onset)を求め、これを反応開始温度とした。
活性エネルギー線照射前の反応開始温度は153.7℃であるのに対し、活性エネルギー線照射後の反応開始温度は115.1℃となり、エポキシ化合物の重合において、本発明のアミンイミド化合物が、活性エネルギー線照射によってより高い触媒作用を示す、光塩基発生剤として有効であることが示された。
[Example 2]
Phenyl glycidyl ether: 0.1 mol (15.017 g), amine imide compound A: 0.003 mol (0.739 g) and Darocur 1173: 0.001 mol (0.164 g) were mixed at room temperature to obtain a uniform solution. 7.5 mg of this solution was weighed into a differential scanning calorimeter (DSC) sample container, irradiated with active energy rays using a spot ultraviolet irradiation device (365 nm illuminance: 100 mW / cm 2 ) manufactured by Hamamatsu Photonics, and before irradiation. The reaction starting temperature after 9 J / cm 2 irradiation was determined by DSC measurement. For DSC measurement, a DSC (DSC110) manufactured by Seiko Instruments Inc. was used, and the heating rate was 10 ° C./min. The temperature was measured up to 25 to 280 ° C. From the obtained DSC chart, the rising temperature (DSC Onset) of the curing exotherm was determined and used as the reaction start temperature.
The reaction start temperature before irradiation with active energy rays is 153.7 ° C., whereas the reaction start temperature after irradiation with active energy rays is 115.1 ° C., and the amine imide compound of the present invention is active in the polymerization of epoxy compounds. It was shown to be effective as a photobase generator that exhibits higher catalytic action when irradiated with energy rays.

[実施例3]
URIC H30:10gにアミンイミド化合物A:0.5gとイルガキュア651:0.2gを混合し室温で攪拌して均一な溶液とした。この溶液にISONATE 143LP:4.5gを混合し室温で攪拌し均一な溶液とした後、直ちにガラス板状に100μmの厚みで塗布し、浜松ホトニクス社製スポット紫外線照射装置(365nm照度:100mW/cm)を用いて活性エネルギー線を照射し、照射前と、6J/cm照射後の塗膜の25℃での硬化性を比較した。活性エネルギー線照射前の塗膜がタックのない弾性体に硬化するまでの時間は40分であったのに対し、活性エネルギー線照射後の塗膜がタックのない弾性体に硬化するまでの時間は30分となり、ポリオールとポリイソシアネートの重合反応においても、本発明のアミンイミド化合物Aが、活性エネルギー線照射によってより高い触媒作用を示す光塩基発生剤として有効であることが示された。
[Example 3]
30 g of URIC H was mixed with 0.5 g of amine imide compound A and 651: 0.2 g of Irgacure and stirred at room temperature to obtain a uniform solution. This solution was mixed with ISONATE 143LP: 4.5 g and stirred at room temperature to obtain a uniform solution, which was immediately applied to a glass plate with a thickness of 100 μm, and a spot ultraviolet irradiation device (365 nm illuminance: 100 mW / cm) manufactured by Hamamatsu Photonics. 2 ) was irradiated with active energy rays, and the curability at 25 ° C. of the coating film before irradiation and after irradiation with 6 J / cm 2 was compared. The time until the coated film before irradiation with active energy rays was cured to an elastic body without tack was 40 minutes, whereas the time after the coated film after irradiation with active energy rays was cured to an elastic body without tack was 30 minutes, and it was shown that the amine imide compound A of the present invention is effective as a photobase generator exhibiting higher catalytic action by irradiation with active energy rays even in the polymerization reaction of polyol and polyisocyanate.

[実施例4〜9および比較例1]
表2に示す通りの重量比で材料を遮光容器中室温(25℃)で混合攪拌し、実施例4〜9および比較例1のエポキシ樹脂系組成物を調製した。なおアミンイミド化合物Aは通常室温で液状であるが、結晶化している場合は55℃にて溶解してから攪拌混合した。得られた各組成物を下記項目について評価試験を行いその結果を併せて各表に示した。各評価試験の方法は以下の通りである。
[Examples 4 to 9 and Comparative Example 1]
The materials were mixed and stirred at room temperature (25 ° C.) in a light-shielding container at a weight ratio as shown in Table 2 to prepare the epoxy resin compositions of Examples 4 to 9 and Comparative Example 1. The amine imide compound A is usually in a liquid state at room temperature, but when crystallized, it was dissolved at 55 ° C. and then stirred and mixed. Each composition obtained was subjected to an evaluation test for the following items, and the results are also shown in each table. The method of each evaluation test is as follows.

・アミンイミド化合物の溶解性試験
表2に示す通りの重量比で材料を室温(25℃)で混合攪拌し、アミンイミド化合物が全て溶解するかを目視で観察した
・反応開始温度および反応ピーク温度の測定
各組成物を示差走査熱量計(DSC)のサンプル容器に7.5mg秤量し、浜松ホトニクス社製スポット紫外線照射装置(365nm照度:100mW/cm)を用いて活性エネルギー線を指定量照射した。照射前と、指定積算光量照射後の組成物の反応開始温度をDSC測定により求めた。DSC測定にはセイコーインスツルメント社製DSC(DSC110)を用い、窒素雰囲気下昇温速度10℃/min.で25〜280℃まで昇温測定した。得られたDSCチャートから硬化発熱の立ち上がり温度(DSC Onset)を求め、これを反応開始温度とした。またDSCカーブの最大値の温度を反応ピーク温度とした。
・硬化時間の測定
各組成物0.1gをスライドガラスに滴下し、浜松ホトニクス社製スポット紫外線照射装置(365nm照度:100mW/cm)を用いて活性エネルギー線を指定量照射した。照射前と、指定積算光量照射後の試験片を指定温度に設定した恒温炉に放置し、組成物の表面がべたつきがなく全体が硬化するまでの時間を測定した。
・保存安定性試験
組成物を10mlの遮光瓶に密閉し25℃恒温室の暗所に保管し、組成物がゲル化し流動性がなくなるまでの時間
・ Solubility test of amine imide compound The materials were mixed and stirred at a room temperature ratio (25 ° C.) as shown in Table 2 to visually observe whether the amine imide compound was completely dissolved. ・ Measurement of reaction start temperature and reaction peak temperature 7.5 mg of each composition was weighed into a differential scanning calorimeter (DSC) sample container and irradiated with a specified amount of active energy rays using a spot ultraviolet irradiation device (365 nm illuminance: 100 mW / cm 2 ) manufactured by Hamamatsu Photonics. The reaction start temperature of the composition before irradiation and after irradiation of the designated integrated light amount was determined by DSC measurement. For DSC measurement, a DSC (DSC110) manufactured by Seiko Instruments Inc. was used, and the heating rate was 10 ° C./min. The temperature was measured up to 25 to 280 ° C. From the obtained DSC chart, the rising temperature (DSC Onset) of the curing exotherm was determined and used as the reaction start temperature. The maximum temperature of the DSC curve was taken as the reaction peak temperature.
-Measurement of curing time 0.1 g of each composition was dropped on a slide glass and irradiated with a specified amount of active energy rays using a spot ultraviolet irradiation device (365 nm illuminance: 100 mW / cm 2 ) manufactured by Hamamatsu Photonics. The specimens before irradiation and after irradiation with the specified accumulated light amount were left in a constant temperature oven set to a specified temperature, and the time until the entire surface of the composition was cured without stickiness was measured.
Storage stability test The composition is sealed in a 10 ml light-shielding bottle and stored in a dark room at 25 ° C., until the composition gels and loses its fluidity.

Figure 2008001857
Figure 2008001857

実施例4〜9から、エポキシ樹脂と本発明のアミンイミド化合物とラジカル発生剤からなる組成物が、光照射をすることにより、より低温短時間で硬化することがわかる。一方比較例1からは、本発明のアミンイミド化合物でない芳香族系アミンイミド化合物は樹脂への溶解性が悪く、均一な組成物が得られないことがわかる。   From Examples 4 to 9, it can be seen that the composition comprising the epoxy resin, the amine imide compound of the present invention, and the radical generator is cured at a lower temperature in a shorter time by light irradiation. On the other hand, it can be seen from Comparative Example 1 that the aromatic amine imide compound which is not the amine imide compound of the present invention has poor solubility in the resin and a uniform composition cannot be obtained.

[実施例10〜13および比較例2〜4]
表3に示す通りの重量比で材料を遮光容器中室温(25℃)で混合攪拌し、実施例10〜13および比較例2〜4のエポキシ/チオール樹脂系組成物を調製した。室温で溶解しないものは、40℃で攪拌し溶解させた。なおアミンイミド化合物の各重量は、各アミンイミド化合物0.005mol量に、ラジカル発生剤の各重量は、各ラジカル発生剤0.01mol量に相当する重量である。得られた各組成物を下記項目について評価試験を行いその結果を併せて各表に示した。また実施例11と比較例3の組成物のDSCチャートを図1に示した。
各評価試験の方法は以下の通りである。
[Examples 10 to 13 and Comparative Examples 2 to 4]
The materials were mixed and stirred at room temperature (25 ° C.) in a light-shielding container at a weight ratio as shown in Table 3 to prepare the epoxy / thiol resin-based compositions of Examples 10-13 and Comparative Examples 2-4. Those not dissolved at room temperature were dissolved by stirring at 40 ° C. Each weight of the amine imide compound corresponds to 0.005 mol amount of each amine imide compound, and each weight of the radical generator corresponds to 0.01 mol amount of each radical generator. Each composition obtained was subjected to an evaluation test for the following items, and the results are also shown in each table. A DSC chart of the compositions of Example 11 and Comparative Example 3 is shown in FIG.
The method of each evaluation test is as follows.

・アミンイミド化合物の溶解性試験
表2に示す通りの重量比で材料を遮光容器中室温(25℃)で混合攪拌し、アミンイミド化合物が全て溶解するかを目視で観察した。室温(25℃)で溶解性の悪いものは、40℃にて攪拌しアミンイミド化合物が全て溶解するかを目視で観察した。
・反応開始温度および反応ピーク温度測定
各組成物を示差走査熱量計(DSC)のサンプル容器に7.5mg秤量し、浜松ホトニクス社製スポット紫外線照射装置(365nm照度:100mW/cm)を用いて活性エネルギー線を指定量照射した。照射前と、指定積算光量照射後の組成物の反応開始温度をDSC測定により求めた。DSC測定にはセイコーインスツルメント社製DSC(DSC110)を用い、窒素雰囲気下昇温速度10℃/min.で25〜280℃まで昇温測定した。得られたDSCチャートから硬化発熱の立ち上がり温度(DSC Onset)を求め、これを反応開始温度とした。またDSCカーブの最大値の温度を反応ピーク温度とした。
・保存安定性試験
組成物を10mlの遮光瓶に密閉し5℃冷蔵庫内に保管し、組成物がゲル化し流動性がなくなるまでの時間を測定した。
-Solubility test of amine imide compound The materials were mixed and stirred at room temperature (25 ° C) in a light-shielding container at a weight ratio as shown in Table 2, and it was visually observed whether all the amine imide compounds were dissolved. Those having poor solubility at room temperature (25 ° C.) were stirred at 40 ° C. and visually observed whether the amine imide compound was completely dissolved.
-Reaction initiation temperature and reaction peak temperature measurement 7.5 mg of each composition was weighed into a differential scanning calorimeter (DSC) sample container, and using a spot ultraviolet irradiation device (365 nm illuminance: 100 mW / cm 2 ) manufactured by Hamamatsu Photonics. A specified amount of active energy rays was irradiated. The reaction start temperature of the composition before irradiation and after irradiation of the designated integrated light amount was determined by DSC measurement. For DSC measurement, a DSC (DSC110) manufactured by Seiko Instruments Inc. was used, and the heating rate was 10 ° C./min. The temperature was measured up to 25 to 280 ° C. From the obtained DSC chart, the rising temperature (DSC Onset) of the curing exotherm was determined and used as the reaction start temperature. The maximum temperature of the DSC curve was taken as the reaction peak temperature.
Storage stability test The composition was sealed in a 10 ml light-shielding bottle and stored in a refrigerator at 5 ° C., and the time until the composition gelled and lost its fluidity was measured.

Figure 2008001857
Figure 2008001857

実施例10から、エポキシ樹脂とポリチオールと本発明のアミンイミド化合物からなる組成物が、光照射をすることにより、より低温で反応硬化することがわかる。また実施例11〜13から、さらにラジカル発生剤を添加することにより、より低温で反応硬化することがわかる。また実施例10〜13から、本発明のアミンイミド化合物は、樹脂に容易に溶解することがわかる。一方比較例3、4からは、本発明のアミンイミド化合物でない芳香族系アミンイミド化合物は樹脂への溶解性が悪いという問題があり、それを用いた組成物は、光照射後も反応開始温度、反応ピーク温度とも実施例10〜13に比べ高く、低温硬化性に劣るということがわかる。   Example 10 shows that the composition which consists of an epoxy resin, a polythiol, and the amine imide compound of this invention carries out reaction hardening at low temperature by light irradiation. Moreover, it turns out that reaction hardening is carried out at lower temperature by adding a radical generator further from Examples 11-13. Moreover, from Examples 10-13, it turns out that the amine imide compound of this invention melt | dissolves in resin easily. On the other hand, from Comparative Examples 3 and 4, the aromatic amine imide compound which is not the amine imide compound of the present invention has a problem that the solubility in the resin is poor, and the composition using the same has a reaction start temperature and reaction even after light irradiation. It can be seen that the peak temperature is higher than those of Examples 10 to 13 and is inferior in low-temperature curability.

本発明の組成物は従来からの芳香族系アミンイミド化合物を用いた組成物に較べ、低い温度から鋭い発熱ピークを示し、より低温短時間で硬化が完了することがわかる。   It can be seen that the composition of the present invention shows a sharp exothermic peak from a low temperature compared to a composition using a conventional aromatic amine imide compound, and curing is completed at a lower temperature and in a shorter time.

[実施例14〜17および比較例5〜10]
下表4に示す通りの重量比で材料を遮光容器中室温(25℃)で混合攪拌し、実施例14〜17および比較例5〜10のエポキシ/チオール樹脂系組成物を調製した。室温で溶解性の悪いものは、40℃で攪拌し溶解させた。なおアミンイミド化合物の各重量は、各アミンイミド化合物0.005mol量に相当する重量である。得られた各組成物を下記項目について評価試験を行いその結果を併せて表中に示した。各評価試験の方法は実施例10〜13、比較例2〜4における方法と同じである。
[Examples 14 to 17 and Comparative Examples 5 to 10]
The materials were mixed and stirred at room temperature (25 ° C.) in a light-shielding container at a weight ratio as shown in Table 4 below to prepare epoxy / thiol resin-based compositions of Examples 14 to 17 and Comparative Examples 5 to 10. Those having poor solubility at room temperature were dissolved by stirring at 40 ° C. Each weight of the amine imide compound is a weight corresponding to 0.005 mol amount of each amine imide compound. Each composition obtained was subjected to an evaluation test for the following items, and the results are also shown in the table. The method of each evaluation test is the same as the method in Examples 10-13 and Comparative Examples 2-4.

Figure 2008001857
Figure 2008001857

実施例14〜17から、アミンイミド化合物Aおよびそれ以外の構造の本発明のアミンイミド化合物も、樹脂に容易に溶解し、その組成物は光照射をすることにより、より低温で反応硬化することがわかる。比較例5〜8からは、本発明の化学構造でない脂肪族のアミンイミド化合物は、樹脂への溶解性は良好であるが、光照射による効果が無いことがわかる。比較例9、10からは、芳香族系アミンイミド化合物は樹脂への溶解性が悪く、光照射後の硬化温度も充分低いものでないことがわかる。   From Examples 14 to 17, it can be seen that the amine imide compound A and the amine imide compound of the present invention having other structures are also easily dissolved in the resin, and the composition is reactively cured at a lower temperature when irradiated with light. . From Comparative Examples 5 to 8, it can be seen that the aliphatic amine imide compounds not having the chemical structure of the present invention have good solubility in the resin, but have no effect by light irradiation. From Comparative Examples 9 and 10, it can be seen that the aromatic amine imide compound has poor solubility in the resin and the curing temperature after light irradiation is not sufficiently low.

[実施例18〜23および比較例11、12]
表5に示す通りの重量比で材料を遮光容器中室温(25℃)で混合攪拌し室温で混合攪拌し、実施例18〜23および比較例11、12の組成物を調製した。室温で溶解しないものは、40℃で攪拌混合した。得られた各組成物を下記項目について評価試験を行いその結果を併せて各表に示した。各評価試験の方法は以下の通りである。
[Examples 18 to 23 and Comparative Examples 11 and 12]
The materials were mixed and stirred at room temperature (25 ° C.) in a light-shielding container at a weight ratio shown in Table 5, and mixed and stirred at room temperature to prepare compositions of Examples 18 to 23 and Comparative Examples 11 and 12. Those not dissolved at room temperature were stirred and mixed at 40 ° C. Each composition obtained was subjected to an evaluation test for the following items, and the results are also shown in each table. The method of each evaluation test is as follows.

・アミンイミド化合物の溶解性試験
表5に示す通りの重量比で材料を室温(25℃)で混合攪拌し、アミンイミド化合物が全て溶解するかを目視で観察した。室温で溶解しない場合、60℃にて1時間攪拌を行い、アミンイミド化合物が全て溶解するかを目視で観察した。
・硬化時間の測定
各組成物0.1gをスライドガラスに滴下し、ウシオ電機株式会社製紫外線硬化炉UVL−4001−N(365nm照度:200mW/cm)を用いて活性エネルギー線を指定量照射した。照射前と、指定積算光量照射後の試験片を25℃室内および60℃に設定した恒温炉に放置し、組成物の表面がべたつきがなく全体が硬化するまでの時間を測定した。
-Solubility test of amine imide compound The materials were mixed and stirred at a weight ratio as shown in Table 5 at room temperature (25 ° C), and it was visually observed whether all the amine imide compounds were dissolved. When not dissolved at room temperature, stirring was performed at 60 ° C. for 1 hour, and it was visually observed whether all the amine imide compounds were dissolved.
・ Measurement of curing time 0.1 g of each composition was dropped on a slide glass and irradiated with a specified amount of active energy rays using an ultraviolet curing furnace UVL-4001-N (365 nm illuminance: 200 mW / cm 2 ) manufactured by USHIO INC. did. The specimens before irradiation and after irradiation with the specified integrated light amount were left in a constant temperature oven set at 25 ° C. and 60 ° C., and the time until the entire surface of the composition was cured without stickiness was measured.

Figure 2008001857
Figure 2008001857

実施例18〜23から、本発明の組成物は、光照射後室温でも短時間で硬化可能であることがわかる。またエネルギー照射後に加熱することでさらに硬化時間を短くすることができることがわかる。さらに各配合成分の種類と量により硬化時間、硬化物の堅さ等の調節が可能であることがわかる。比較例11、12からは、従来知られている芳香族アミンイミド化合物は樹脂への溶解性が悪く、配合量が多いと樹脂へ溶解せず均一な組成物が得られないことがわかる。また紫外線照射後の低温速硬化性も劣っていることがわかる。   From Examples 18 to 23, it can be seen that the composition of the present invention can be cured in a short time even at room temperature after light irradiation. Moreover, it turns out that hardening time can be shortened further by heating after energy irradiation. Furthermore, it turns out that adjustment of hardening time, hardness of hardened | cured material, etc. is possible with the kind and quantity of each compounding component. From Comparative Examples 11 and 12, it can be seen that conventionally known aromatic amine imide compounds have poor solubility in the resin, and if the blending amount is large, the compound does not dissolve in the resin and a uniform composition cannot be obtained. Moreover, it turns out that the low-temperature rapid-curing property after ultraviolet irradiation is also inferior.

さらに実施例19について引張せん断接着強さ測定を行った。鉄試験片(SPCC−SD、25×50×1.6mm)の端部10mmに樹脂を薄く塗布し、ウシオ電機株式会社製紫外線硬化炉UVL−4001−N(365nm照度:200mW/cm)を用いて活性エネルギー線を指定量照射した後、もう一枚の鉄試験片を貼り合わせてピンチで固定し、25℃室内に24時間放置した後の引張せん断接着強さを、万能引張試験器(インストロン)を用いて引張速度10mm/min.で測定した。活性エネルギー線を3J/cm照射後貼り合わせ、24時間放置したものの引張せん断接着強さは17.0MPa、活性エネルギー線を6J/cm照射後貼り合わせ、24時間放置したものの引張せん断接着強さは17.2MPaであった。接着面の破壊モードはいずれも凝集破壊であった。本発明の組成物は接着部材が鉄のように光等のエネルギーを透過しない場合でも組成物にエネルギーを照射した後貼り合わせることにより低温短時間で強固に接着が可能であることがわかる。 Further, the tensile shear bond strength of Example 19 was measured. A thin resin is applied to the end 10 mm of an iron test piece (SPCC-SD, 25 × 50 × 1.6 mm), and an ultraviolet curing furnace UVL-4001-N (365 nm illuminance: 200 mW / cm 2 ) manufactured by USHIO ELECTRIC CO., LTD. After irradiating a specified amount of active energy rays, another iron test piece is bonded and fixed with a pinch, and the tensile shear bond strength after standing in a room at 25 ° C. for 24 hours is measured with a universal tensile tester ( Instron) using a tensile speed of 10 mm / min. Measured with Tensile shear bond strength after bonding with active energy rays after irradiation at 3 J / cm 2 and leaving for 24 hours was 17.0 MPa, tensile shear bond strength after bonding with active energy rays after irradiation at 6 J / cm 2 and left for 24 hours The thickness was 17.2 MPa. The fracture mode of the bonded surface was all cohesive failure. It can be seen that the composition of the present invention can be firmly bonded at a low temperature in a short time by bonding the composition after irradiating the composition with energy even when the adhesive member does not transmit energy such as light like iron.

以上述べてきた本発明は従来の芳香族系アミンイミド光塩基発生剤よりも樹脂への溶解性と低温硬化性に優れ、かつ充分な光活性を有する新規なアミンイミド系光塩基発生剤、および、それを用いた反応系と硬化物、硬化方法を提供するものであり、活性エネルギー線照射により、より低い温度で速やかに硬化が可能であり、接着、封止、注型、成型、塗装、コーティング等様々な用途に使用が可能である。   The present invention as described above is a novel amine imide photobase generator having excellent resin solubility and low-temperature curability and sufficient photoactivity compared to conventional aromatic amine imide photobase generators, and Provides a reaction system, cured product, and curing method that can be cured quickly at a lower temperature by irradiation with active energy rays. Adhesion, sealing, casting, molding, painting, coating, etc. It can be used for various purposes.

実施例11と比較例3の組成物のそれぞれ光照射前と6J/cmの光照射後のDSCチャートである。Respectively DSC chart after the light irradiation before and 6J / cm 2 of the composition of Comparative Example 3 and Example 11.

Claims (19)

活性エネルギー線照射により塩基を発生する光塩基発生剤であって、下記一般式(I)で示される構造を分子中に1つ以上有するアミンイミド化合物。
Figure 2008001857
An amine imide compound that is a photobase generator that generates a base by irradiation with an active energy ray and has at least one structure represented by the following general formula (I) in the molecule.
Figure 2008001857
(A)活性エネルギー線照射により塩基を発生する光塩基発生剤であって、下記一般式(I)で示される構造を分子中に1つ以上有するアミンイミド化合物と、
Figure 2008001857
(B)塩基性触媒により重合反応または別の形態に転換される1種以上の化合物を必須成分とし、活性エネルギー線の照射により前記(A)アミンイミド化合物から発生した塩基性触媒を重合反応または別の形態に転換されるための触媒として利用することを特徴とする組成物。
(A) a photobase generator that generates a base by irradiation with an active energy ray, an amine imide compound having one or more structures represented by the following general formula (I) in the molecule;
Figure 2008001857
(B) One or more compounds converted into a polymerization reaction or another form by a basic catalyst are essential components, and the basic catalyst generated from the (A) amine imide compound by irradiation with active energy rays is polymerized or separated. A composition characterized by being used as a catalyst to be converted into a form of
前記(B)塩基性触媒により重合反応または別の形態に転換される1種以上の化合物が、分子内に2個以上のエポキシ基を有する化合物である請求項2に記載の組成物。   The composition according to claim 2, wherein the (B) one or more compounds converted into a polymerization reaction or another form by a basic catalyst are compounds having two or more epoxy groups in the molecule. 前記(B)塩基性触媒により重合反応または別の形態に転換される1種以上の化合物が、分子内に2個以上のエポキシ基を有する化合物と分子内に2個以上のチオール基を有する化合物の混合物である請求項2に記載の組成物。   (B) a compound in which one or more compounds converted into a polymerization reaction or another form by a basic catalyst have two or more epoxy groups in the molecule and two or more thiol groups in the molecule The composition of claim 2, which is a mixture of 前記組成物の配合割合が、成分(B)100重量部に対して成分(A)を0.1〜50重量部添加した請求項2〜4に記載の組成物。   The composition according to claim 2, wherein the blending ratio of the composition is 0.1 to 50 parts by weight of the component (A) with respect to 100 parts by weight of the component (B). (A)活性エネルギー線照射により塩基を発生する光塩基発生剤であって、下記一般式(I)で示される構造を分子中に1つ以上有するアミンイミド化合物と、
Figure 2008001857
(B)塩基性触媒により重合反応または別の形態に転換される1種以上の化合物と、
(C)活性エネルギー線ラジカル発生剤の上記(A)〜(C)を主成分とする組成物。
(A) a photobase generator that generates a base by irradiation with an active energy ray, an amine imide compound having one or more structures represented by the following general formula (I) in the molecule;
Figure 2008001857
(B) one or more compounds converted to a polymerization reaction or another form by a basic catalyst;
(C) The composition which has the said (A)-(C) of an active energy ray radical generator as a main component.
前記(B)塩基性触媒により重合反応または別の形態に転換される1種以上の化合物が、分子内に2個以上のエポキシ基を有する化合物である請求項6に記載の組成物。   7. The composition according to claim 6, wherein the (B) one or more compounds converted into a polymerization reaction or another form by a basic catalyst are compounds having two or more epoxy groups in the molecule. 前記(B)塩基性触媒により重合反応または別の形態に転換される1種以上の化合物が、分子内に2個以上のエポキシ基を有する化合物と分子内に2個以上のチオール基を有する化合物の混合物である請求項6に記載の組成物。   (B) a compound in which one or more compounds converted into a polymerization reaction or another form by a basic catalyst have two or more epoxy groups in the molecule and two or more thiol groups in the molecule The composition of claim 6, which is a mixture of 前記(C)活性エネルギー線ラジカル発生剤が、開裂型のラジカル発生剤である請求項6に記載の組成物。   The composition according to claim 6, wherein the (C) active energy ray radical generator is a cleavage type radical generator. 前記組成物の配合割合が、成分(B)100重量部に対して成分(A)を0.1〜50重量部、成分(C)を成分(A)1重量部に対し0.01〜10重量部それぞれ添加した請求項6〜9に記載の組成物。   The blending ratio of the composition is 0.1 to 50 parts by weight of component (A) with respect to 100 parts by weight of component (B), and 0.01 to 10 parts of component (C) with respect to 1 part by weight of component (A). The composition according to claim 6 to 9, wherein each part by weight is added. (A)活性エネルギー線照射により塩基を発生する光塩基発生剤であって、下記一般式(I)で示される構造を分子中に1つ以上有するアミンイミド化合物と、
Figure 2008001857
(B)塩基性触媒により重合反応または別の形態に転換される1種以上の化合物を必須成分とする組成物に、活性エネルギー線の照射と加熱を同時に、または活性エネルギー線の照射後に加熱を行うことよって前記組成物を重合硬化させる方法。
(A) a photobase generator that generates a base by irradiation with an active energy ray, an amine imide compound having one or more structures represented by the following general formula (I) in the molecule;
Figure 2008001857
(B) A composition containing, as an essential component, one or more compounds that are converted into a polymerization reaction or another form by a basic catalyst, is irradiated with active energy rays and heated simultaneously or after irradiation with active energy rays. A method of polymerizing and curing the composition by performing.
前記(B)塩基性触媒により重合反応または別の形態に転換される1種以上の化合物が、分子内に2個以上のエポキシ基を有する化合物である請求項11に記載の方法。   The method according to claim 11, wherein the (B) one or more compounds converted into a polymerization reaction or another form by a basic catalyst are compounds having two or more epoxy groups in the molecule. 前記(B)塩基性触媒により重合反応または別の形態に転換される1種以上の化合物が、分子内に2個以上のエポキシ基を有する化合物と分子内に2個以上のチオール基を有する化合物の混合物である請求項11に記載の方法。   (B) a compound in which one or more compounds converted into a polymerization reaction or another form by a basic catalyst have two or more epoxy groups in the molecule and two or more thiol groups in the molecule The method according to claim 11, which is a mixture of 前記組成物の配合割合が、成分(B)100重量部に対して成分(A)を0.1〜50重量部添加した請求項11〜13に記載の方法。   The method of Claims 11-13 in which the compounding ratio of the said composition added 0.1-50 weight part of components (A) with respect to 100 weight part of components (B). (A)活性エネルギー線照射により塩基を発生する光塩基発生剤であって、下記一般式(I)で示される構造を分子中に1つ以上有するアミンイミド化合物と、
Figure 2008001857
(B)塩基性触媒により重合反応または別の形態に転換される1種以上の化合物と、
(C)活性エネルギー線ラジカル発生剤の上記(A)〜(C)を主成分とする組成物に、活性エネルギー線の照射と加熱を同時に、または活性エネルギー線の照射後に加熱を行うことよって前記組成物を重合硬化させる方法。
(A) a photobase generator that generates a base by irradiation with an active energy ray, an amine imide compound having one or more structures represented by the following general formula (I) in the molecule;
Figure 2008001857
(B) one or more compounds converted to a polymerization reaction or another form by a basic catalyst;
(C) The composition comprising the active energy ray radical generator as a main component (A) to (C) as described above by heating the active energy ray and heating at the same time or after irradiating the active energy ray. A method of polymerizing and curing the composition.
前記(B)塩基性触媒により重合反応または別の形態に転換される1種以上の化合物が、分子内に2個以上のエポキシ基を有する化合物である請求項15に記載の方法。   The method according to claim 15, wherein the (B) one or more compounds converted into a polymerization reaction or another form by a basic catalyst are compounds having two or more epoxy groups in the molecule. 前記(B)塩基性触媒により重合反応または別の形態に転換される1種以上の化合物が、分子内に2個以上のエポキシ基を有する化合物と分子内に2個以上のチオール基を有する化合物の混合物である請求項15に記載の方法。   (B) a compound in which one or more compounds converted into a polymerization reaction or another form by a basic catalyst have two or more epoxy groups in the molecule and two or more thiol groups in the molecule The process according to claim 15, which is a mixture of 前記(C)活性エネルギー線ラジカル発生剤が、開裂型のラジカル発生剤である請求項15に記載の方法。   The method according to claim 15, wherein the (C) active energy ray radical generator is a cleavage type radical generator. 前記組成物の配合割合が、成分(B)100重量部に対して成分(A)を0.1〜50重量部、成分(C)を成分(A)1重量部に対し0.01〜10重量部それぞれ添加した請求項15〜18に記載の方法。   The blending ratio of the composition is 0.1 to 50 parts by weight of component (A) with respect to 100 parts by weight of component (B), and 0.01 to 10 parts of component (C) with respect to 1 part by weight of component (A). The method according to claims 15 to 18, wherein each part by weight is added.
JP2006175008A 2006-06-26 2006-06-26 Amine imide compound activated by irradiation of active energy ray, composition using the same, and curing method thereof Active JP5057016B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006175008A JP5057016B2 (en) 2006-06-26 2006-06-26 Amine imide compound activated by irradiation of active energy ray, composition using the same, and curing method thereof
PCT/JP2007/062226 WO2008001637A1 (en) 2006-06-26 2007-06-18 Amine imide compound to be activated by irradiation of active energy ray, composition using the same, and method for curing the same
CN2007800240836A CN101479310B (en) 2006-06-26 2007-06-18 Amine imide compound to be activated by irradiation of active energy ray, composition using the same, and method for curing the same
KR1020087031629A KR101286414B1 (en) 2006-06-26 2007-06-18 Composition using amine imide compound to be activated by irradiation of active energy ray and method for curing the same
TW96122337A TWI412513B (en) 2006-06-26 2007-06-21 An amine imide compound that is activated by irradiation with an active energy ray, a composition using the same and a hardening method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006175008A JP5057016B2 (en) 2006-06-26 2006-06-26 Amine imide compound activated by irradiation of active energy ray, composition using the same, and curing method thereof

Publications (2)

Publication Number Publication Date
JP2008001857A true JP2008001857A (en) 2008-01-10
JP5057016B2 JP5057016B2 (en) 2012-10-24

Family

ID=38845405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006175008A Active JP5057016B2 (en) 2006-06-26 2006-06-26 Amine imide compound activated by irradiation of active energy ray, composition using the same, and curing method thereof

Country Status (5)

Country Link
JP (1) JP5057016B2 (en)
KR (1) KR101286414B1 (en)
CN (1) CN101479310B (en)
TW (1) TWI412513B (en)
WO (1) WO2008001637A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009019979A1 (en) * 2007-08-09 2009-02-12 Sekisui Chemical Co., Ltd. Photocurable composition
JP2010174210A (en) * 2009-02-02 2010-08-12 Asahi Kasei E-Materials Corp Photocurable type resin composition and cured product thereof
JP2011236416A (en) * 2010-04-14 2011-11-24 Tokyo Univ Of Science Photosensitive resin composition
US20120095124A1 (en) * 2009-06-17 2012-04-19 Three Bond Co., Ltd. Base and radical generator, composition using same and method for curing same
JPWO2015098875A1 (en) * 2013-12-24 2017-03-23 株式会社ブリヂストン Adhesive sheet, method for producing the same, and laminate
WO2022014646A1 (en) * 2020-07-15 2022-01-20 旭化成株式会社 Amineimide compound, amineimide composition, curing agent, epoxy resin composition, method for producing amineimide compound, encapsulant, and adhesive
WO2023127800A1 (en) * 2021-12-28 2023-07-06 旭化成株式会社 Epoxy resin composition, cured product, sealing material, and adhesive

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009126974A (en) * 2007-11-26 2009-06-11 Three Bond Co Ltd Resin composition
CN102338985A (en) * 2011-06-29 2012-02-01 山东大学 Environment-friendly type photosensitive resist for hydroxyl-containing hydrocarbyl bicyclic guanidine senecionine generation agent
CN107340688B (en) * 2016-04-29 2022-05-06 东友精细化工有限公司 Composition for hard mask
KR102257195B1 (en) 2018-11-08 2021-05-26 주식회사 엘지화학 Liquid crystal alignment agent composition, method of preparing liquid crystal alignment film, and liquid crystal alignment film, liquid crystal display using the same
KR102461121B1 (en) 2019-02-21 2022-10-28 주식회사 엘지화학 Liquid crystal alignment agent composition, method of preparing liquid crystal alignment film, and liquid crystal alignment film, liquid crystal display using the same
CN113136022B (en) * 2021-06-01 2022-03-08 海洋化工研究院有限公司 Hyperbranched amine compound and preparation method and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01197553A (en) * 1988-02-02 1989-08-09 Catalysts & Chem Ind Co Ltd Formable epoxy resin composition
JPH0695379A (en) * 1991-09-14 1994-04-08 Sannopuko Kk Photosensitive resin composition
JPH08335510A (en) * 1996-06-28 1996-12-17 Hitachi Ltd Superconductive magnet coil
JP2000229927A (en) * 1999-02-09 2000-08-22 Three Bond Co Ltd Aminimide compound and epoxy resin composition using the same
JP2000309686A (en) * 1999-04-27 2000-11-07 Three Bond Co Ltd Electroconductive resin composition
WO2002051905A1 (en) * 2000-12-27 2002-07-04 Hitachi Chemical Co., Ltd. Photobase generators, curable compositions prepared by using the same and process of curing
JP2003055638A (en) * 2001-08-21 2003-02-26 Three Bond Co Ltd Adhesive in film form

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01197553A (en) * 1988-02-02 1989-08-09 Catalysts & Chem Ind Co Ltd Formable epoxy resin composition
JPH0695379A (en) * 1991-09-14 1994-04-08 Sannopuko Kk Photosensitive resin composition
JPH08335510A (en) * 1996-06-28 1996-12-17 Hitachi Ltd Superconductive magnet coil
JP2000229927A (en) * 1999-02-09 2000-08-22 Three Bond Co Ltd Aminimide compound and epoxy resin composition using the same
JP2000309686A (en) * 1999-04-27 2000-11-07 Three Bond Co Ltd Electroconductive resin composition
WO2002051905A1 (en) * 2000-12-27 2002-07-04 Hitachi Chemical Co., Ltd. Photobase generators, curable compositions prepared by using the same and process of curing
JP2003055638A (en) * 2001-08-21 2003-02-26 Three Bond Co Ltd Adhesive in film form

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009019979A1 (en) * 2007-08-09 2009-02-12 Sekisui Chemical Co., Ltd. Photocurable composition
US8536242B2 (en) 2007-08-09 2013-09-17 Sekisui Chemical Co., Ltd. Photocurable composition
JP2010174210A (en) * 2009-02-02 2010-08-12 Asahi Kasei E-Materials Corp Photocurable type resin composition and cured product thereof
US20120095124A1 (en) * 2009-06-17 2012-04-19 Three Bond Co., Ltd. Base and radical generator, composition using same and method for curing same
US8686059B2 (en) * 2009-06-17 2014-04-01 Three Bond Co., Ltd. Base and radical generator, composition using same and method for curing same
JP5549819B2 (en) * 2009-06-17 2014-07-16 スリーボンドファインケミカル株式会社 Base and radical generator, composition using the same and method of curing the same
JP2011236416A (en) * 2010-04-14 2011-11-24 Tokyo Univ Of Science Photosensitive resin composition
JPWO2015098875A1 (en) * 2013-12-24 2017-03-23 株式会社ブリヂストン Adhesive sheet, method for producing the same, and laminate
US10414131B2 (en) 2013-12-24 2019-09-17 Bridgestone Corporation Adhesive sheet, manufacturing method therefor, and laminate
WO2022014646A1 (en) * 2020-07-15 2022-01-20 旭化成株式会社 Amineimide compound, amineimide composition, curing agent, epoxy resin composition, method for producing amineimide compound, encapsulant, and adhesive
WO2023127800A1 (en) * 2021-12-28 2023-07-06 旭化成株式会社 Epoxy resin composition, cured product, sealing material, and adhesive

Also Published As

Publication number Publication date
KR101286414B1 (en) 2013-07-19
KR20090023642A (en) 2009-03-05
CN101479310B (en) 2011-07-13
JP5057016B2 (en) 2012-10-24
TWI412513B (en) 2013-10-21
WO2008001637A1 (en) 2008-01-03
CN101479310A (en) 2009-07-08
TW200815325A (en) 2008-04-01

Similar Documents

Publication Publication Date Title
JP5057016B2 (en) Amine imide compound activated by irradiation of active energy ray, composition using the same, and curing method thereof
JP4973868B2 (en) Curable resin composition and curing method
KR101716915B1 (en) Base and radical generator, composition using same and method for curing same
TWI525145B (en) Thiol-ene-based curable resin composition and cured material thereof
CN103987754B (en) Hardening resin composition
JP2009126974A (en) Resin composition
US20210363276A1 (en) Uv-curable composition and adhesive film, adhesive tape and bonding member containing the same
TW201925257A (en) Curable resin having excellent post-curing flexibility, methacrylated curable resin, and liquid crystal sealing agent composition
JP2008001867A (en) Curable resin composition
JP7262459B2 (en) sealant sheet
JP5700203B2 (en) Amineimide compound, composition using the same, and curing method thereof
JP5059634B2 (en) Liquid curable composition and cured product thereof
KR101540831B1 (en) Novel epoxy resin, method for producing the same, epoxy resin composition containing the epoxy resin as essential component, and cured product containing the epoxy resin as essential component
JP2003026772A (en) Curable composition and curing method using the same
WO2022210045A1 (en) Sealant sheet
JP2007321120A (en) Curable composition
JP2009120632A (en) Polymerizable composition
JP6710892B2 (en) Curable resin composition
JPH10251378A (en) Curable resin composition
TW201630878A (en) Sulfonium borate salt, acid generating agent and curable composition
JP4481963B2 (en) Active energy ray-curable powder coating composition
WO2008035514A1 (en) Liquid curable composition and cured product thereof
JPH04327574A (en) Novel pyridinium salt compound and polymerization initiator
JP2021172672A (en) Photocurable composition
JP2020164631A (en) Epoxy curing compound and epoxy resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120704

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120717

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5057016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250