JP2007336624A - Multi-phase claw tooth type permanent magnet motor - Google Patents

Multi-phase claw tooth type permanent magnet motor Download PDF

Info

Publication number
JP2007336624A
JP2007336624A JP2006162365A JP2006162365A JP2007336624A JP 2007336624 A JP2007336624 A JP 2007336624A JP 2006162365 A JP2006162365 A JP 2006162365A JP 2006162365 A JP2006162365 A JP 2006162365A JP 2007336624 A JP2007336624 A JP 2007336624A
Authority
JP
Japan
Prior art keywords
permanent magnet
stator
claw
rotor
magnet motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006162365A
Other languages
Japanese (ja)
Inventor
Takayuki Koyama
貴之 小山
Kenya Takarai
健彌 宝井
Hiroyuki Kanazawa
宏至 金澤
Masaji Kitamura
正司 北村
Shoichi Kawamata
昭一 川又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006162365A priority Critical patent/JP2007336624A/en
Publication of JP2007336624A publication Critical patent/JP2007336624A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multi-phase claw tooth type permanent magnet motor provided with a consequent-pole type rotator, capable of reducing cogging torque without impairing cost efficiency. <P>SOLUTION: This multi-phase claw tooth type permanent magnet motor is provided with a rotator 3 constituted by mounting permanent magnets 8, 17 with same poles at regular intervals in the circumferential direction on the outer circumferential portion of a rotator core 7. Magnet pole surfaces 14F of claw magnet poles 14 facing the rotator 3 composing a stator 4 are formed in trapezoidal shapes of which top ends in the axial direction becomes narrower. Forming the magnet pole surfaces 14F of the stator into trapezoidal shapes can alleviate an abrupt of magnetic energy toward the circumferential direction, thereby reducing cogging torque. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば産業精密機器,家電,自動車等の分野で用いられる多相クローティース型永久磁石モータに係り、特に、回転子鉄心の外周部に同極の永久磁石を周方向に等間隔に設置して構成した回転子を備えた多相クローティース型永久磁石モータに関する。   The present invention relates to a multiphase claw teeth type permanent magnet motor used in the fields of industrial precision equipment, home appliances, automobiles, etc., and in particular, a permanent magnet of the same polarity on the outer periphery of a rotor core at equal intervals in the circumferential direction. The present invention relates to a multiphase crotice type permanent magnet motor having a rotor that is installed and configured.

回転子鉄心の外周部に同極の永久磁石を周方向に等間隔に設置して構成した回転子、所謂コンシクエントポール式回転子を備えた多相クローティース型永久磁石モータは、例えば特許文献1などで、既に知られている。   For example, a multiphase claw teeth type permanent magnet motor including a so-called contiguous pole type rotor, which is configured by arranging permanent magnets of the same polarity on the outer periphery of the rotor core at equal intervals in the circumferential direction, is disclosed in, for example, Patent Literature 1 is already known.

特開2004−357489号公報Japanese Patent Laid-Open No. 2004-357489

コンシクエントポール式回転子を備えた多相クローティース型永久磁石モータは、永久磁石の使用数が回転子磁極数の半分となることから、経済的な効果があるが、反面、コギングトルクが増大する問題がある。コギングトルクは、モータ回転時のトルクリップルや回転の滑らかさに影響を与えるものであり、振動や騒音の原因となっていた。したがって、コギングトルクは、適用される製品の全ての分野において重要視されており、その低減が最重要課題となっている。   A multi-phase claw teeth type permanent magnet motor with a consequent pole type rotor has an economic effect because the number of permanent magnets used is half the number of rotor magnetic poles, but the cogging torque increases. There is a problem to do. The cogging torque affects the torque ripple and smoothness of the rotation of the motor, and causes vibration and noise. Therefore, cogging torque is regarded as important in all fields of applied products, and its reduction is the most important issue.

本発明の目的は、経済性を損なうことなくコギングトルクの低減が行えるコンシクエントポール式回転子を備えた多相クローティース型永久磁石モータを提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a multiphase claw teeth type permanent magnet motor having a continuous pole type rotor capable of reducing cogging torque without impairing economy.

回転子鉄心の外周部に同極の永久磁石を周方向に等間隔に設置して構成した回転子とを備えた多相クローティース型永久磁石モータにおいて、固定子を構成する爪磁極の回転子と対向する磁極面を、軸方向先端部が幅狭となる台形状に形成したのである。   A rotor of a claw magnetic pole constituting a stator in a multiphase claw teeth type permanent magnet motor having a rotor formed by arranging permanent magnets of the same polarity on the outer periphery of the rotor core at equal intervals in the circumferential direction. Is formed in a trapezoidal shape with a narrow tip in the axial direction.

このように固定子の磁極面を台形状に形成することで、周方向への磁気エネルギーの急変を緩和することができ、その結果、コギングトルクを低減できるのである。   Thus, by forming the magnetic pole face of the stator in a trapezoidal shape, a sudden change in magnetic energy in the circumferential direction can be mitigated, and as a result, the cogging torque can be reduced.

したがって、経済性を損なうことなくコギングトルクの低減が行えるコンシクエントポール式回転子を備えた多相クローティース型永久磁石モータを得ることができるのである。   Therefore, it is possible to obtain a multi-phase crotice type permanent magnet motor having a continuous pole type rotor that can reduce cogging torque without impairing economy.

以下、本発明による多相クローティース型永久磁石モータの第1の実施の形態を図1〜図5に基づいて説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of a multiphase claw teeth type permanent magnet motor according to the present invention will be described below with reference to FIGS.

図1に示すように、多相クローティース型永久磁石モータ1は、大きくは、回転軸2に構成した回転子3と、この回転子3に対し周方向の微小隙間Gを介して同心状に配置された固定子4と、この固定子4を支持する固定子枠5と、この固定子枠5の両端側で前記回転軸2を回転自在に支持する軸受6a,6bとで構成されている。   As shown in FIG. 1, the multi-phase clotice type permanent magnet motor 1 is roughly concentrically arranged with a rotor 3 formed on a rotating shaft 2 and a minute gap G in the circumferential direction with respect to the rotor 3. The stator 4 is arranged, a stator frame 5 that supports the stator 4, and bearings 6 a and 6 b that rotatably support the rotary shaft 2 at both ends of the stator frame 5. .

前記回転子3は、図1,図2及び図5に示すように、回転軸2に装着された回転子鉄心7と、この回転子鉄心7の外周部に周方向に等間隔で形成した複数の磁石保持穴7Hに夫々装着され直方体をなす複数の永久磁石8とで構成されている。そして、これら永久磁石8は外周側が全てS極あるいはN極のように同極となるように装着されており、このように装着することで、永久磁石8間の回転子鉄心部7Pに永久磁石が作る極とは反対の極が形成されるコンシクエントポール式回転子を構成している。さらに、磁石保持穴7H内に装着された永久磁石8の幅方向両側には、空間7Gを形成している。   As shown in FIGS. 1, 2, and 5, the rotor 3 includes a rotor core 7 attached to the rotary shaft 2 and a plurality of rotor cores formed at equal intervals in the circumferential direction on the outer periphery of the rotor core 7. And a plurality of permanent magnets 8 each having a rectangular parallelepiped shape. These permanent magnets 8 are all mounted so that their outer peripheral sides are all the same polarity, such as S poles or N poles. By mounting in this way, permanent magnets are disposed on the rotor core 7P between the permanent magnets 8. This constitutes a continuum pole rotor in which a pole opposite to the pole made by is formed. Furthermore, spaces 7G are formed on both sides in the width direction of the permanent magnet 8 mounted in the magnet holding hole 7H.

前記固定子5は、図1〜図4に示すように、1相分が独立して存在する構造であり、軸方向にU相固定子9,V相固定子10,W相固定子11が並設されている。各固定子9〜11は、夫々同じ形状をなしており、第1固定子鉄心9a,10a,11aと第2固定子鉄心9b,10b,11bを有し、これら第1固定子鉄心9a,10a,11aと第2固定子鉄心9b,10b,11bに挟まれて夫々環状コイル9a,9b,9cが位置している。   As shown in FIGS. 1 to 4, the stator 5 has a structure in which one phase exists independently, and a U-phase stator 9, a V-phase stator 10, and a W-phase stator 11 are arranged in the axial direction. It is installed side by side. Each of the stators 9 to 11 has the same shape, and includes first stator cores 9a, 10a, and 11a and second stator cores 9b, 10b, and 11b, and these first stator cores 9a and 10a. , 11a and the second stator cores 9b, 10b, 11b, the annular coils 9a, 9b, 9c are located respectively.

また、第1固定子鉄心9a,10a,11aと第2固定子鉄心9b,10b,11bの形状は同じであるので、第1固定子鉄心9aと第2固定子鉄心9bを一例として図3に基づいて具体的構造を説明する。   Further, since the first stator cores 9a, 10a, 11a and the second stator cores 9b, 10b, 11b have the same shape, the first stator core 9a and the second stator core 9b are shown in FIG. 3 as an example. Based on this, the specific structure will be described.

各固定子鉄心9a,9bは、軸方向に延在して固定子枠5に支持される外周鉄心部12と、この外周鉄心部12から内径側に延在する径方向鉄心部13と、この径方向鉄心部13から前記外周鉄心部12と同方向に延在する爪磁極14とを有し、前記爪磁極14は前記回転子3と微小隙間Gを介して対向する磁極面14Fを有している。このように構成された固定子鉄心9a,9bを、前記環状コイル9cを挟み込むようにして互いの爪磁極14が噛み合うように接近させることで、U相固定子9を構成している。ここで、噛み合う爪磁極14は、電気角で180度となるように設定されている。そして、他のV相固定子10,W相固定子11も同様に構成され、これら各相の固定子を軸方向に並べ、各固定子間の磁気的干渉を最小限にするために非磁性材NMを介在させ、これらを絶縁樹脂でモールドして一体することで固定子4を構成している。   Each of the stator cores 9a and 9b includes an outer peripheral core portion 12 that extends in the axial direction and is supported by the stator frame 5, a radial core portion 13 that extends from the outer peripheral core portion 12 toward the inner diameter side, The claw magnetic pole 14 extends from the radial core portion 13 in the same direction as the outer peripheral core portion 12, and the claw magnetic pole 14 has a magnetic pole surface 14 </ b> F facing the rotor 3 through a minute gap G. ing. The U-phase stator 9 is configured by bringing the stator cores 9a and 9b thus configured to approach each other so that the claw magnetic poles 14 mesh with each other so as to sandwich the annular coil 9c. Here, the engaging claw magnetic poles 14 are set to have an electrical angle of 180 degrees. The other V-phase stator 10 and W-phase stator 11 are also configured in the same manner, and the stators of these phases are arranged in the axial direction, and non-magnetic to minimize magnetic interference between the stators. The stator 4 is configured by interposing the material NM, molding them with insulating resin, and integrating them.

このほか、固定子4は、図4に示すように、軸方向に配置されるU相固定子9,V相固定子10,W相固定子11が、夫々電気角で120度、即ち機械角で120/4(極対数)=30度づつ周方向にずらして配置されている。具体的には、U相固定子9の第1固定子鉄心9aの爪磁極14とV相固定子10の第1固定子鉄心10aの爪磁極14とは、電気角で120度周方向にずれており、V相固定子10の第1固定子鉄心10aの爪磁極14とW相固定子11の第1固定子鉄心11aの爪磁極14との関係及びW相固定子11の第1固定子鉄心11aの爪磁極14とU相固定子9の第1固定子鉄心9aの爪磁極14との関係も同様になっている。   In addition, as shown in FIG. 4, the stator 4 includes a U-phase stator 9, a V-phase stator 10, and a W-phase stator 11 arranged in the axial direction, each having an electrical angle of 120 degrees, that is, a mechanical angle. 120/4 (number of pole pairs) = 30 degrees shifted in the circumferential direction. Specifically, the claw magnetic pole 14 of the first stator core 9a of the U-phase stator 9 and the claw magnetic pole 14 of the first stator core 10a of the V-phase stator 10 are shifted by 120 degrees in the circumferential direction in terms of electrical angle. The relationship between the claw magnetic pole 14 of the first stator core 10a of the V-phase stator 10 and the claw magnetic pole 14 of the first stator core 11a of the W-phase stator 11 and the first stator of the W-phase stator 11 The relationship between the claw magnetic pole 14 of the iron core 11a and the claw magnetic pole 14 of the first stator iron core 9a of the U-phase stator 9 is the same.

さらに、固定子4は、U相固定子9,V相固定子10,W相固定子11の各爪磁極14の磁極面14Fを、径方向鉄心部13から延在する先端側が幅狭となるように、等脚台形状に形成することで、周方向に隣接する爪磁極14間に軸方向に対してねじれる螺旋状隙間15を形成している。   Further, the stator 4 has a narrower tip end side extending from the radial core portion 13 of the magnetic pole surface 14F of each claw magnetic pole 14 of the U-phase stator 9, the V-phase stator 10, and the W-phase stator 11. In this way, by forming an isosceles trapezoidal shape, a spiral gap 15 that twists in the axial direction is formed between the claw magnetic poles 14 adjacent in the circumferential direction.

次に、上記構成の多相クローティース型永久磁石モータ1のコギングトルクについて説明する。   Next, the cogging torque of the multiphase claw tooth type permanent magnet motor 1 configured as described above will be described.

多相クローティース型永久磁石モータ1のコギングトルクは、爪磁極14の形状と回転子3の形状によって決まる。具体的には、コギングトルクは、永久磁石8による磁束が磁路のパーミアンスの変化によって増減し、その結果、磁気エネルギーが変化することで発生する。磁路のパーミアンスの変化は、爪磁極14と永久磁石8の位置関係により生じるので、爪磁極14と永久磁石8の位置関係を改善して磁路のパーミアンスの変化を縮小することでコギングトルクは低減される。   The cogging torque of the multiphase claw teeth type permanent magnet motor 1 is determined by the shape of the claw magnetic pole 14 and the shape of the rotor 3. Specifically, the cogging torque is generated when the magnetic flux generated by the permanent magnet 8 increases / decreases due to a change in permeance of the magnetic path, and as a result, the magnetic energy changes. Since the change in the magnetic path permeance is caused by the positional relationship between the claw magnetic pole 14 and the permanent magnet 8, the cogging torque is reduced by reducing the change in the magnetic path permeance by improving the positional relationship between the claw magnetic pole 14 and the permanent magnet 8. Reduced.

本実施の形態では、磁路のパーミアンスの変化を縮小するために、回転子3と対向する磁極面14Fを等脚台形状に形成して隣接爪磁極14間に螺旋状隙間15を形成しているので、周方向への磁路のパーミアンスの変化を縮小して磁気エネルギーの急変を無くすことができ、その結果、磁気エネルギーの急変により生じていたコギングトルクを低減できるのである。そして、U相固定子9,V相固定子10,W相固定子11において、夫々電気角で120度ずれたコギングトルクが発生し、それらの合成として三相コギングトルクが発生していたが、各固定子9〜11と回転子3との間で上述のように、周方向への磁路のパーミアンスの変化を縮小して磁気エネルギーの急変を無くすことができるので、コギングトルクを大幅に低減することができる。   In the present embodiment, in order to reduce the change in the magnetic path permeance, the magnetic pole surface 14F facing the rotor 3 is formed in an isosceles trapezoidal shape, and the spiral gap 15 is formed between the adjacent claw magnetic poles 14. Therefore, the change in the permeance of the magnetic path in the circumferential direction can be reduced to eliminate a sudden change in magnetic energy, and as a result, the cogging torque generated by the sudden change in magnetic energy can be reduced. In the U-phase stator 9, the V-phase stator 10, and the W-phase stator 11, a cogging torque shifted by 120 degrees in electrical angle was generated, and a three-phase cogging torque was generated as a combination thereof. As described above, the change in the permeance of the magnetic path in the circumferential direction can be reduced between the stators 9 to 11 and the rotor 3 to eliminate a sudden change in magnetic energy, thereby greatly reducing the cogging torque. can do.

因みに、電磁場解析を用いて、コンシクエントポール式回転子に対する固定子3の磁極面14Fを等脚台形状にした場合としない場合におけるコギングトルクの発生状況を計算した結果を図6に示す。   Incidentally, FIG. 6 shows the result of calculating the cogging torque generation state in the case where the magnetic pole surface 14F of the stator 3 with respect to the consequent pole type rotor is made to be an isosceles trapezoid or not using electromagnetic field analysis.

図6(a)は、磁極面14Fを等脚台形状に形成した場合であり、コギングトルクは±0.002の範囲で発生するが、磁極面14Fを等脚台形状に形成しない場合には、図6(b)に示すように、±0.006の範囲で発生し、本実施の形態によれば約1/3に低減することができる。   FIG. 6A shows the case where the magnetic pole surface 14F is formed in an isosceles trapezoidal shape, and the cogging torque is generated in the range of ± 0.002, but in the case where the magnetic pole surface 14F is not formed in an isosceles trapezoidal shape. As shown in FIG. 6B, it occurs in the range of ± 0.006, and can be reduced to about 3 according to the present embodiment.

ところで、磁極面14Fを等脚台形状に形成しない場合には、周方向に隣接する磁極面間の隙間の間隔を狭めることで、磁路のパーミアンスの変化を縮小できてコギングトルクを低減できる。通常、爪部で挟まれた環状コイルを励磁した場合、発生した磁束の殆どは隣接する磁極面の一方側から回転子に流れ込み磁極面の他方側に戻る磁路を形成することで、回転子にトルクを発生させている。しかしながら、隣接する磁極面間の隙間の間隔を狭めると、隣接磁極面間を短絡して流れる磁束が発生し、出力トルクを低減させる問題がある。そのために、隣接磁極面間の隙間の間隔を最適な値に設定することは極めて困難であった。これに対し、本実施の形態は、図7の内径側から見た展開図に示すように、隣接磁極面14Fを等脚台形状に形成して隣接爪磁極14間に螺旋状隙間15を形成することで、螺旋状隙間15の間隔dを調整せずともコギングトルクを低減できると共に、出力トルクの低下を防止することができる。   By the way, when the magnetic pole surface 14F is not formed in an isosceles trapezoidal shape, by reducing the gap between the magnetic pole surfaces adjacent in the circumferential direction, the change in the magnetic path permeance can be reduced and the cogging torque can be reduced. Normally, when an annular coil sandwiched between claws is excited, most of the generated magnetic flux flows into the rotor from one side of the adjacent magnetic pole surface and forms a magnetic path that returns to the other side of the magnetic pole surface, thereby forming the rotor. Torque is generated. However, if the gap between the adjacent magnetic pole surfaces is narrowed, a magnetic flux that flows by short-circuiting between adjacent magnetic pole surfaces is generated, and there is a problem in that the output torque is reduced. For this reason, it has been extremely difficult to set the gap interval between adjacent magnetic pole surfaces to an optimum value. On the other hand, in the present embodiment, as shown in the development view seen from the inner diameter side in FIG. 7, the adjacent magnetic pole surface 14F is formed in an isosceles trapezoidal shape, and the spiral gap 15 is formed between the adjacent claw magnetic poles 14. As a result, the cogging torque can be reduced without adjusting the distance d of the spiral gap 15, and the output torque can be prevented from lowering.

さらに、磁極面14Fの形状とコギングトルクとの関係について説明する。   Further, the relationship between the shape of the magnetic pole surface 14F and the cogging torque will be described.

まず、磁極面14Fの等脚台形の傾斜角θ1と図5に示す回転子3の永久磁石8の極弧度θMは、コギングトルクと密接な関係にある。即ち、磁極面14Fの傾斜角θ1によってコギングトルクは敏感に変化するために、傾斜角θ1は永久磁石8の極弧度θMに対して最適に設定する必要がある。   First, the tilt angle θ1 of the isosceles trapezoid of the magnetic pole surface 14F and the polar arc degree θM of the permanent magnet 8 of the rotor 3 shown in FIG. 5 are closely related to the cogging torque. That is, since the cogging torque changes sensitively depending on the inclination angle θ1 of the magnetic pole surface 14F, the inclination angle θ1 needs to be optimally set with respect to the polar arc degree θM of the permanent magnet 8.

そこで、電磁場解析によって磁極面14Fの傾斜角θ1と永久磁石8の極弧度θMとの関係を計算した結果を図8に示す。この計算例は、隣接磁極面14Fの間隔dを一定にした場合のものであり、横軸に永久磁石8の極弧度θM(rad)を、縦軸に磁極面14Fの傾斜角θ1(度)をとって、コギングトルクの振幅値(N・m)を等高線で示した。極弧度θMが大きくなると、回転子3の起磁力が大きくなるので、コギングトルクの振幅値も増大するが、傾斜角θ1を60度≦θ1≦67.5度に設定することで、コギングトルクの振幅値の増大を最小限に抑えることができることがわかる。したがって、コギングトルクを低減するためには、傾斜角θ1を60度≦θ1≦67.5度に設定することが望ましい。   FIG. 8 shows the result of calculating the relationship between the inclination angle θ1 of the magnetic pole surface 14F and the polar arc degree θM of the permanent magnet 8 by electromagnetic field analysis. In this calculation example, the distance d between adjacent magnetic pole faces 14F is constant, the polar arc degree θM (rad) of the permanent magnet 8 is plotted on the horizontal axis, and the inclination angle θ1 (degrees) of the magnetic pole face 14F is plotted on the vertical axis. The amplitude value (N · m) of the cogging torque is indicated by contour lines. When the polar arc degree θM increases, the magnetomotive force of the rotor 3 increases, so the amplitude value of the cogging torque also increases. However, by setting the tilt angle θ1 to 60 degrees ≦ θ1 ≦ 67.5 degrees, the cogging torque is increased. It can be seen that the increase in amplitude value can be minimized. Therefore, in order to reduce the cogging torque, it is desirable to set the inclination angle θ1 to 60 degrees ≦ θ1 ≦ 67.5 degrees.

さらに、本実施の形態によれば、磁石保持穴7H内に装着された永久磁石8の幅方向両側に空間7Gを形成しているので、回転子3と固定子4との微小隙間Gにおける周方向の磁束密度の変化を緩やかにできるので、コギングトルクやトルク脈動を低減することができる。   Furthermore, according to the present embodiment, since the space 7G is formed on both sides in the width direction of the permanent magnet 8 mounted in the magnet holding hole 7H, the circumference in the minute gap G between the rotor 3 and the stator 4 is formed. Since the change in the magnetic flux density in the direction can be moderated, cogging torque and torque pulsation can be reduced.

次に、本発明による多相クローティース型永久磁石モータの第2の実施の形態を図9及び図10に基づいて説明する。   Next, a second embodiment of the multiphase claw teeth type permanent magnet motor according to the present invention will be described with reference to FIGS.

固定子4は、第1の実施の形態と同じ構成をしているので再度の説明は省略する。   Since the stator 4 has the same configuration as that of the first embodiment, the description thereof will be omitted.

第1の実施の形態と異なるのは、回転子3の形状である。即ち、直方体の永久磁石8Aは、第1の実施の形態に比べて幅方向の寸法が大きく、その結果、直方体の永久磁石8Aの極弧度θMは第1に実施の形態に較べて大きく、π(rad)以上になっている。そのために、隣接する永久磁石8A間の回転子鉄心部7Pは狭くなるが、磁気飽和しない限り回転子鉄心部7Pを狭くして極弧度θMを大きくすることで、永久磁石8Aから発生する磁束を増加させることができ、モータ出力を増加させることができる。   The difference from the first embodiment is the shape of the rotor 3. That is, the rectangular parallelepiped permanent magnet 8A has a larger dimension in the width direction than the first embodiment. As a result, the polar arc degree θM of the rectangular parallelepiped permanent magnet 8A is first larger than that of the embodiment, and π (Rad) or more. Therefore, the rotor core portion 7P between the adjacent permanent magnets 8A is narrowed, but unless the magnetic saturation occurs, the rotor core portion 7P is narrowed to increase the polar arc degree θM, thereby generating magnetic flux generated from the permanent magnet 8A. The motor output can be increased.

図11は、電磁場解析によって永久磁石8Aの極弧度θMと環状コイルへの通電時における平均トルクの関係を計算した結果を示す。この計算結果から、永久磁石8Aの極弧度θMが3.6rad近傍で出力トルクが最大となることが分かった。ただ、永久磁石8Aの製作誤差を考慮すれば、極弧度θMは、3.5rad≦θM≦3.7radに設定することが望ましい。   FIG. 11 shows the calculation result of the relationship between the polar arc degree θM of the permanent magnet 8A and the average torque when the annular coil is energized by the electromagnetic field analysis. From this calculation result, it has been found that the output torque becomes maximum when the polar arc degree θM of the permanent magnet 8A is in the vicinity of 3.6 rad. However, in consideration of manufacturing errors of the permanent magnet 8A, it is desirable to set the polar arc degree θM to 3.5 rad ≦ θM ≦ 3.7 rad.

ところで、以上説明した各実施の形態において、固定子4を構成する第1固定子鉄心9a,10a,11a及び第2固定子鉄心9b,10b,11bについての材質は、磁気特性に優れた積層珪素鋼板によって形成することが望ましいが、爪磁極14等の形成が難しい場合には、SPCC等の圧延鋼板を折り曲げ成形して形成することができる。ただ、圧延鋼板を用いた場合、磁気特性が劣るため鉄心内に発生する鉄損が大きくなる問題と、折り曲げ成形の際に発生する残留応力によって磁気特性の更なる低下と折り曲げ部に集中する磁束のために大きな鉄損が発生し、効率の悪いモータとなる問題と、折り曲げ加工によって爪磁極14を形成した場合、回転子3に対する心円度にバラツキのある磁極面14Fとなり易く、コギングトルクが大きくなる問題があるので、磁性粉末を成形金型の成形パンチによって圧縮成形することで、圧延鋼板による問題を一掃できる設計通りの第1固定子鉄心9a,10a,11a及び第2固定子鉄心9b,10b,11bを得ることができる。   By the way, in each embodiment described above, the material for the first stator cores 9a, 10a, 11a and the second stator cores 9b, 10b, 11b constituting the stator 4 is laminated silicon having excellent magnetic properties. Although it is desirable to form with a steel plate, when it is difficult to form the claw poles 14 and the like, a rolled steel plate such as SPCC can be formed by bending. However, when using a rolled steel sheet, the magnetic properties are inferior and the iron loss generated in the iron core is increased, and the magnetic stress is further reduced due to the residual stress generated during bending and the magnetic flux concentrated on the bent part. Therefore, when the claw magnetic pole 14 is formed by bending and a problem that a large iron loss occurs and the motor becomes inefficient, the magnetic pole surface 14F having a variation in the circularity with respect to the rotor 3 is likely to be generated, and the cogging torque is increased. Since there is a problem of increasing the size, the first stator cores 9a, 10a, 11a and the second stator core 9b as designed so that the problem caused by the rolled steel sheet can be eliminated by compressing the magnetic powder with the molding punch of the molding die. , 10b, 11b can be obtained.

さらに、以上説明した各実施の形態においては、直方体の永久磁石8,8Aを用いた例を説明したが、他の形状の永久磁石を用いることも可能である。例えば、図12に示すように、回転子鉄心7Bの外周に周方向に等間隔で円弧状の磁石保持溝16を形成し、この磁石保持溝16内に磁石保持溝16と同じ断面の永久磁石17を装着してもよい。磁石保持溝16内に装着された永久磁石17は、接着剤によって固定したり、表面を回転子鉄心7Bと共に熱硬化性樹脂を含侵させた繊維等で緊縛して固めたりすることで、十分に高速回転に耐えることができる。このように永久磁石の断面形状は用途に応じて任意に変更することができる。   Furthermore, in each embodiment described above, the example using the rectangular parallelepiped permanent magnets 8 and 8A has been described, but other shapes of permanent magnets may be used. For example, as shown in FIG. 12, arc-shaped magnet holding grooves 16 are formed at equal intervals in the circumferential direction on the outer periphery of the rotor core 7 </ b> B, and permanent magnets having the same cross section as the magnet holding grooves 16 are formed in the magnet holding grooves 16. 17 may be mounted. The permanent magnet 17 mounted in the magnet holding groove 16 can be sufficiently fixed by fixing with an adhesive or by tightening and solidifying the surface with a fiber impregnated with a thermosetting resin together with the rotor core 7B. Can withstand high-speed rotation. Thus, the cross-sectional shape of the permanent magnet can be arbitrarily changed according to the application.

また、これまで説明した実施の形態において、回転子3の極数は8極であったが、任意の偶数の極数にしてもよい。回転子3の極数を多くすることで、永久磁石1極当りの磁束数が少なくなるので、固定子4の半径方向の厚みを薄くすることができ、モータを小型化することができる。特に、回転子としてコンシクエントポール式回転子を用いた場合、永久磁石の数が磁極数の1/2のため、永久磁石数と極数とが同じ回転子に較べて多極化を容易に行うことができる。   In the embodiment described so far, the number of poles of the rotor 3 is eight, but any number of poles may be used. Increasing the number of poles of the rotor 3 reduces the number of magnetic fluxes per pole of the permanent magnet, so that the thickness of the stator 4 in the radial direction can be reduced and the motor can be downsized. In particular, when a continuous pole type rotor is used as the rotor, the number of permanent magnets is ½ of the number of magnetic poles, so that the number of permanent magnets and the number of poles can be easily increased compared to a rotor with the same number of permanent magnets. Can do.

本発明による多相クローティース型永久磁石モータの第1の実施の形態を示す概略断面図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic cross-sectional view showing a first embodiment of a multiphase claw teeth type permanent magnet motor according to the present invention. 図1の回転子と固定子を示す拡大斜視図。The expansion perspective view which shows the rotor and stator of FIG. 図1の固定子のU相固定子の構成を示す分解斜視図。The disassembled perspective view which shows the structure of the U-phase stator of the stator of FIG. 図1の固定子の構成を示す部分断面斜視図。The fragmentary sectional perspective view which shows the structure of the stator of FIG. 図1の回転子の断面図。Sectional drawing of the rotor of FIG. 図4の固定子の磁極面を等脚台形にした場合のコギングトルクの発生状況を示す線図。FIG. 5 is a diagram showing a cogging torque generation state when the magnetic pole surface of the stator of FIG. 4 is an isosceles trapezoid. 図4の固定子の磁極面を等脚台形にしない場合のコギングトルクの発生状況を示す線図。FIG. 5 is a diagram showing a state of generation of cogging torque when the magnetic pole surface of the stator of FIG. 4 is not an isosceles trapezoid. 図1の固定子のU相固定子を内径側から見た展開図。The expanded view which looked at the U-phase stator of the stator of FIG. 1 from the inner diameter side. 図1の固定子の磁極面の傾斜角と回転子の永久磁石の極弧度との関係を示す線図。The diagram which shows the relationship between the inclination angle of the magnetic pole surface of the stator of FIG. 1, and the polar arc degree of the permanent magnet of a rotor. 本発明による多相クローティース型永久磁石モータの第2の実施の形態を示す図2相当図。FIG. 2 is a view corresponding to FIG. 2 showing a second embodiment of a multi-phase claw tooth type permanent magnet motor according to the present invention. 図9の回転子の断面図。Sectional drawing of the rotor of FIG. 図9の永久磁石の極弧度と環状コイルへの通電時における平均トルクの関係を示す線図。FIG. 10 is a diagram illustrating a relationship between a degree of polar arc of the permanent magnet of FIG. 9 and an average torque when energizing the annular coil. 図5及び図10の回転子の変形例を示す断面図。Sectional drawing which shows the modification of the rotor of FIG.5 and FIG.10.

符号の説明Explanation of symbols

1…多相クローティース型永久磁石モータ、2…回転軸、3…回転子、4…固定子、5…固定子枠、6a,6b…軸受、7,7A,7B…回転子鉄心、7G…空間、7H…磁石保持穴、7P…回転子鉄心部、8,8A,17…永久磁石、9…U相固定子、10…V相固定子、11…W相固定子、9a,10a,11a…第1固定子鉄心、9b,10b,11b…第2固定子鉄心、12…外周鉄心部、13…径方向鉄心部、14…爪磁極、14F…磁極面、15…螺旋状隙間、16…磁石保持溝、d…間隔、G…微小隙間。   DESCRIPTION OF SYMBOLS 1 ... Multiphase claw teeth type permanent magnet motor, 2 ... Rotary shaft, 3 ... Rotor, 4 ... Stator, 5 ... Stator frame, 6a, 6b ... Bearing, 7, 7A, 7B ... Rotor core, 7G ... Space, 7H ... Magnet holding hole, 7P ... Rotor core, 8, 8A, 17 ... Permanent magnet, 9 ... U-phase stator, 10 ... V-phase stator, 11 ... W-phase stator, 9a, 10a, 11a ... 1st stator core, 9b, 10b, 11b ... 2nd stator core, 12 ... Outer peripheral core part, 13 ... Radial core part, 14 ... Claw magnetic pole, 14F ... Magnetic pole surface, 15 ... Spiral gap, 16 ... Magnet holding groove, d ... interval, G ... micro gap.

Claims (9)

環状コイルを挟み込む爪磁極を有する固定子鉄心を軸方向に複数配列して構成した固定子と、この固定子と微小隙間を介して対向する回転子鉄心の外周部に同極の永久磁石を周方向に等間隔に設置して構成した回転子とを備えた多相クローティース型永久磁石モータにおいて、前記爪磁極の前記回転子と対向する磁極面を軸方向先端部が幅狭となる台形状に形成したことを特徴とする多相クローティース型永久磁石モータ。   A stator composed of a plurality of stator cores having claw magnetic poles sandwiching an annular coil in the axial direction, and a permanent magnet of the same polarity is wound around the outer periphery of the rotor core facing this stator with a minute gap. In a multiphase claw teeth type permanent magnet motor provided with rotors installed at equal intervals in the direction, the pole face of the claw magnetic pole facing the rotor is trapezoidal with a narrow tip in the axial direction A multi-phase claw-type permanent magnet motor, characterized in that it is formed. 環状コイルを挟み込む爪磁極を有する固定子鉄心を軸方向に複数配列して構成した固定子と、この固定子と微小隙間を介して対向する回転子鉄心の外周部に同極の永久磁石を周方向に等間隔に設置して構成した回転子とを備えた多相クローティース型永久磁石モータにおいて、前記固定子鉄心を積層珪素鋼板で形成すると共に、前記爪磁極の前記回転子と対向する磁極面を軸方向先端部が幅狭となる台形状に形成したことを特徴とする多相クローティース型永久磁石モータ。   A stator composed of a plurality of stator cores having claw magnetic poles sandwiching an annular coil arranged in the axial direction, and a permanent magnet of the same polarity is wound around the outer periphery of the rotor core facing the stator via a minute gap. In a multiphase claw teeth type permanent magnet motor provided with rotors installed at equal intervals in the direction, the stator iron core is formed of a laminated silicon steel plate, and the magnetic poles of the claw magnetic poles facing the rotor A multiphase claw teeth type permanent magnet motor characterized in that the surface is formed in a trapezoidal shape having a narrow tip in the axial direction. 環状コイルを挟み込む爪磁極を有する固定子鉄心を軸方向に複数配列して構成した固定子と、この固定子と微小隙間を介して対向する回転子鉄心の外周部に同極の永久磁石を周方向に等間隔に設置して構成した回転子とを備えた多相クローティース型永久磁石モータにおいて、前記固定子鉄心を圧延鋼板で形成すると共に、前記爪磁極の前記回転子と対向する磁極面を軸方向先端部が幅狭となる台形状に形成したことを特徴とする多相クローティース型永久磁石モータ。   A stator composed of a plurality of stator cores having claw magnetic poles sandwiching an annular coil in the axial direction, and a permanent magnet of the same polarity is wound around the outer periphery of the rotor core facing this stator with a minute gap. In a multi-phase claw teeth type permanent magnet motor provided with a rotor that is installed at equal intervals in the direction, the stator core is formed of a rolled steel plate, and the magnetic pole surface of the claw magnetic pole that faces the rotor Is formed in a trapezoidal shape having a narrow tip in the axial direction. 環状コイルを挟み込む爪磁極を有する固定子鉄心を軸方向に複数配列して構成した固定子と、この固定子と微小隙間を介して対向する回転子鉄心の外周部に同極の永久磁石を周方向に等間隔に設置して構成した回転子とを備えた多相クローティース型永久磁石モータにおいて、前記固定子鉄心を磁性粉を圧縮成形して形成すると共に、前記爪磁極の前記回転子と対向する磁極面を軸方向先端部が幅狭となる台形状に形成したことを特徴とする多相クローティース型永久磁石モータ。   A stator composed of a plurality of stator cores having claw magnetic poles sandwiching an annular coil in the axial direction, and a permanent magnet of the same polarity is wound around the outer periphery of the rotor core facing this stator with a minute gap. In a multiphase claw teeth type permanent magnet motor provided with a rotor that is installed at equal intervals in the direction, the stator iron core is formed by compression molding magnetic powder, and the claw magnetic pole with the rotor A multiphase claw teeth type permanent magnet motor characterized in that opposing magnetic pole surfaces are formed in a trapezoidal shape with a narrow tip in the axial direction. 前記磁極面の台形状の傾斜角θ1が、60°≦θ1≦67.5°に設定されていることを特徴とする請求項1,2,3又は4記載の多相クローティース型永久磁石モータ。   5. The multiphase claw teeth permanent magnet motor according to claim 1, wherein a trapezoidal inclination angle θ <b> 1 of the magnetic pole surface is set to 60 ° ≦ θ1 ≦ 67.5 °. . 前記永久磁石の微小隙間側の極弧度θMが、3,5rad≦θM≦3.7radに設定されていることを特徴とする請求項1,2,3又は4記載の多相クローティース型永久磁石モータ。   5. The multiphase clotice type permanent magnet according to claim 1, wherein a pole arc degree θM on the minute gap side of the permanent magnet is set to 3, 5 rad ≦ θM ≦ 3.7 rad. motor. 前記永久磁石は、回転子鉄心の外周部に形成した磁石保持穴に挿入されていることを特徴とする請求項1,2,3,4又は5記載の多相クローティース型永久磁石モータ。   6. The multiphase claw teeth type permanent magnet motor according to claim 1, wherein the permanent magnet is inserted into a magnet holding hole formed in an outer peripheral portion of a rotor core. 前記磁石保持穴は、挿入された永久磁石の両側に空間を有するように形成されていることを特徴とする請求項7記載の多相クローティース型永久磁石モータ。   8. The multiphase claw teeth type permanent magnet motor according to claim 7, wherein the magnet holding holes are formed so as to have spaces on both sides of the inserted permanent magnet. 前記永久磁石は、回転子鉄心の外周面に周方向面に等間隔に形成した磁石保持溝に挿入されて保持されていることを特徴とする請求項1,2,3,4又は5記載の多相クローティース型永久磁石モータ。   The said permanent magnet is inserted and hold | maintained in the magnet holding groove formed in the circumferential direction surface at equal intervals on the outer peripheral surface of the rotor core, The 1, 2, 3, 4 or 5 characterized by the above-mentioned. Multiphase claw teeth type permanent magnet motor.
JP2006162365A 2006-06-12 2006-06-12 Multi-phase claw tooth type permanent magnet motor Pending JP2007336624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006162365A JP2007336624A (en) 2006-06-12 2006-06-12 Multi-phase claw tooth type permanent magnet motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006162365A JP2007336624A (en) 2006-06-12 2006-06-12 Multi-phase claw tooth type permanent magnet motor

Publications (1)

Publication Number Publication Date
JP2007336624A true JP2007336624A (en) 2007-12-27

Family

ID=38935559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006162365A Pending JP2007336624A (en) 2006-06-12 2006-06-12 Multi-phase claw tooth type permanent magnet motor

Country Status (1)

Country Link
JP (1) JP2007336624A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009087835A1 (en) * 2008-01-07 2009-07-16 Hitachi, Ltd. Stator iron-core structure for rotating electric machine, and method for manufacturing the same
JP2014124092A (en) * 2009-04-10 2014-07-03 Asmo Co Ltd Motor
JPWO2013054439A1 (en) * 2011-10-14 2015-03-30 三菱電機株式会社 Permanent magnet type motor
US9564779B2 (en) 2011-10-14 2017-02-07 Mitsubishi Electric Corporation Permanent magnet motor
US9653952B2 (en) 2009-04-03 2017-05-16 Amso Co., Ltd. Half permanent magnet motor
US11031831B2 (en) 2016-04-21 2021-06-08 Mitsubishi Electric Corporation Electric motor and air conditioner
WO2021235376A1 (en) * 2020-05-21 2021-11-25 ダイキン工業株式会社 Rotary electric machine

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009087835A1 (en) * 2008-01-07 2009-07-16 Hitachi, Ltd. Stator iron-core structure for rotating electric machine, and method for manufacturing the same
US9653952B2 (en) 2009-04-03 2017-05-16 Amso Co., Ltd. Half permanent magnet motor
JP2014124092A (en) * 2009-04-10 2014-07-03 Asmo Co Ltd Motor
JPWO2013054439A1 (en) * 2011-10-14 2015-03-30 三菱電機株式会社 Permanent magnet type motor
US9564779B2 (en) 2011-10-14 2017-02-07 Mitsubishi Electric Corporation Permanent magnet motor
US11031831B2 (en) 2016-04-21 2021-06-08 Mitsubishi Electric Corporation Electric motor and air conditioner
WO2021235376A1 (en) * 2020-05-21 2021-11-25 ダイキン工業株式会社 Rotary electric machine
JP2021184660A (en) * 2020-05-21 2021-12-02 ダイキン工業株式会社 Rotary electric machine
TWI793608B (en) * 2020-05-21 2023-02-21 日商大金工業股份有限公司 rotating electrical machine
JP7258824B2 (en) 2020-05-21 2023-04-17 ダイキン工業株式会社 Rotating electric machine

Similar Documents

Publication Publication Date Title
JP5096705B2 (en) Crotice type synchronous machine
JP4723118B2 (en) Rotating electric machine and pulley drive device using the rotating electric machine
JP5210150B2 (en) Permanent magnet type rotating electrical machine, elevator apparatus, and manufacturing method of permanent magnet type rotating electrical machine
JP5394756B2 (en) Permanent magnet type rotating electrical machine rotor
JP5120687B2 (en) Stator structure of permanent magnet type rotating machine
JPWO2007043506A1 (en) Motor with two rotors
JP2007336624A (en) Multi-phase claw tooth type permanent magnet motor
WO2016060232A1 (en) Double stator-type rotary machine
JP6113049B2 (en) Rotating electric machine stator
JP5067365B2 (en) motor
JP2008148447A (en) Motor for electric power steering device
JP4687687B2 (en) Axial gap type rotating electric machine and field element
JP4894273B2 (en) Rotating electric machine
JP2018082600A (en) Double-rotor dynamoelectric machine
JP2013123327A (en) Rotary electric machine
JP2021029067A (en) Axial gap motor
WO2021131575A1 (en) Coil, stator comprising same, and motor
JP2004015998A (en) Permanent magnet version rotating machine with three-phase stator winding divided in axial direction
JP2005045881A (en) Rotary electric machine
WO2017212575A1 (en) Permanent magnet motor
JP2009077491A (en) Stator core laminated body and electric motor
JP2009027849A (en) Permanent magnet type rotary electric machine
JP6857514B2 (en) Rotating machine stator
JP5354930B2 (en) Rotating electric machine
JP2006254621A (en) Permanent magnet type motor