JP2005045881A - Rotary electric machine - Google Patents

Rotary electric machine Download PDF

Info

Publication number
JP2005045881A
JP2005045881A JP2003200966A JP2003200966A JP2005045881A JP 2005045881 A JP2005045881 A JP 2005045881A JP 2003200966 A JP2003200966 A JP 2003200966A JP 2003200966 A JP2003200966 A JP 2003200966A JP 2005045881 A JP2005045881 A JP 2005045881A
Authority
JP
Japan
Prior art keywords
magnetic
core
magnetic pole
stator
electrical machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003200966A
Other languages
Japanese (ja)
Inventor
Kazuo Nishihama
和雄 西濱
Kazumasa Ide
一正 井出
Mamoru Kimura
守 木村
Takashi Ishigami
孝 石上
Akiyoshi Komura
昭義 小村
Tetsuro Fujigaki
哲朗 藤垣
Masanori Matsumoto
正徳 松本
Hiroki Nagai
宏樹 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003200966A priority Critical patent/JP2005045881A/en
Publication of JP2005045881A publication Critical patent/JP2005045881A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotary electric machine wherein magnetic pole cores that are attached with stator winding concentratedly wound can be firmly fixed. <P>SOLUTION: A stator core 9 is composed of a plurality of the magnetic pole cores 16 and yokes 17 that magnetically connect the magnetic pole cores 16 together and are separated from the magnetic pole cores 16. The peripheral portions of the magnetic pole cores 16 and the yokes 17 are separately fixed on fixing members (20). With this constitution, the magnetic pole cores 16 and the yokes 17 are separately fixed on the fixing members (20). Therefore, they can be fixed with stability, and the production of vibration or noise can be suppressed during operation. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、固定子鉄心の内径方向に突出した磁極鉄心に固定子巻線を集中巻した回転電機に係り、特に、磁極鉄心の固定を改善した回転電機に関する。
【0002】
【従来の技術】
固定子鉄心の内径方向に突出した磁極鉄心に固定子巻線を集中巻した回転電機は、例えば特許文献1に記載のように、既に提案されている。
【0003】
【特許文献1】
特開2000−341889号公報(図1〜図6)
【0004】
【発明が解決しようとする課題】
上記従来の技術によれば、複数の磁極鉄心とこれら磁極鉄心を磁気的に接続する継鉄が分割できる構造となっているので、固定子巻線の磁極鉄心への装着は容易になる。
【0005】
しかしながら、磁極鉄心が継鉄に対して鳩尾状結合によって固定される構造のために、磁極鉄心の固定が安定せず、運転時に振動や騒音を生じる恐れがある。
【0006】
本発明の目的は、固定子巻線を集中巻きして装着する磁極鉄心の固定が強固に行い得る回転電機を提供することにある。
【0007】
【課題を解決するための手段】
本発明は上記目的を達成するために、固定子鉄心を、複数の磁極鉄心と、これら磁極鉄心間を磁気的に接続し前記磁極鉄心とは分割された継鉄とで構成すると共に、前記磁極鉄心と前記継鉄とを夫々別個に固定部材に固定したのである。
【0008】
上記構成によれば、磁極鉄心と継鉄とが固定部材に対して夫々別個に固定されるので、安定した固定を行うことができ、運転時の振動や騒音の発生を抑えることができるのである。
【0009】
【発明の実施の形態】
以下本発明による回転電機の第1の実施の形態を、図1〜図6に示す可変速発電設備である例えば風力発電設備に基づいて説明する。
【0010】
風力発電設備は、固定子2と回転子3を備えた交流励磁式発電機(以下、発電機と称する)1と、発電機1の回転子3を駆動する風車4と、発電された電力を端子5から供給する電力系6と、発電された電力又は電力系6からの電力を前記回転子3の励磁端子8に供給する可変周波数交流励磁装置7とを備えている。
【0011】
前記発電機1の固定子2は、固定子鉄心9と、この固定子鉄心9に集中巻きされた固定子巻線(電機子巻線)10と、これら固定子2を被って支持するケーシング11とを有している。
【0012】
前記回転子3は、前記ケーシング11に軸支された回転軸12と、この回転軸12に固定された回転子鉄心13と、この回転子鉄心13に分布巻きされた回転子巻線(励磁巻線)14とを有している。
【0013】
尚、前記固定子鉄心9及び回転子鉄心13は、夫々磁性薄鋼板を積層して形成されており、積層方向の複数箇所に半径方向に延在する間隔片15S,15Rを介在させ、冷却風が流通する通風ダクトを形成している。
【0014】
前記固定子鉄心9は、内径方向に突出する複数の磁極鉄心16と、これら磁極鉄心16を外径側で磁気的に接続する継鉄17とで構成されている。そして、磁極鉄心16は、固定子巻線10を装着する巻線装着部16aと、後述する固定部材に固定される固定部16bと、前記回転子3に対向する位置に周方向に形成された磁極頭部16cとを有する。磁極鉄心16の外周部に位置する固定部16bは鳩尾状に形成されており、その外周面の磁性薄鋼板積層方向に凹溝が形成され、この凹溝内に締結具18が挿入されて溶接されている。また、固定子巻線10の装着前において、磁極鉄心16の磁極頭部16cの内周面側には、仮締結具19が装着されている。
【0015】
前記継鉄17は、磁極鉄心16の固定部16bを周方向の両側から挟み込むように配置され、固定部16bの外周面と一致する外周面を有している。
【0016】
上記構成の固定子鉄心6の外周部に、複数の固定桁20が磁性薄鋼板の積層方向に長く配置されており、この固定桁20に磁極鉄心16と継鉄17とが夫々溶接等周知の手段で固定されている。この固定桁20が磁極鉄心16の固定部16bを固定する固定部材となる。これら固定桁20で固定された固定子鉄心9は、固定桁20と直交する固定環21を介して前記ケーシング11の内周に装着されて固定される。
【0017】
上記のように構成された発電機1の組立てに際しては、先ず、磁極鉄心16を図3に示すように、仮締結具19を装着した状態にしておき、この状態で、図示しないボビン等を介して巻線装着部16aに固定子巻線10を装着する。この固定子巻線10は、予め、巻線装着部16aに集中巻き状態で装着できるように、成形され絶縁樹脂で固められているものである。
【0018】
次に、磁極鉄心16に固定子巻線10が装着されたなら、仮締結具19を撤去し、図4及び図5に示すように、回転子3と同心の周面を有する円筒状雇22の周面に磁極鉄心16の磁極頭部16cをあてがい、その後、各磁極鉄心16の固定部16bを両側から挟むように継鉄17を順次嵌め込んで行く。
【0019】
その後、磁極鉄心16及び継鉄17の外周に固定桁20を固定し、固定環21を介してケーシング11を装着する。尚、固定桁20は、円筒状雇22に磁極鉄心16をあてがう前に、予め、磁極鉄心16及び継鉄17に固定しておいてもよい。
【0020】
ケーシング11が装着されたのち、円筒状雇22を撤去し、ケーシング11内に、別工程で組立てられた回転子3に組み込んで発電機1の組立てを完成させる。
【0021】
以上説明したように、磁極鉄心16が固定桁20によって強固に固定されるので、間接的に固定される従来に比べて、安定した固定が行われ、運転時の振動や騒音の発生を抑えることができる。
【0022】
尚、本実施の形態においては4極機を示しているので、磁極鉄心16の間隔は、図4に示すように、60°となるが、6極機では、磁極鉄心16の間隔が40°となる。ここで、4極機及び6極機共に、固定桁20の数を同一にするために、固定桁20の間隔を20°として全周で18本設置している。
【0023】
さらに、上記実施の形態においては、隣接する固定子巻線10と継鉄17の内周側との間に、ほぼ三角形状の空間23が形成されるが、この空間23に冷却風を流通させることにより固定子巻線10を直接冷却することができる。このような空間23は、図7の変形例に示すように、隣接する固定子巻線10の対向部10A,10Bを平行になるように形成することにより、断面積を増加させて冷却風の流通量を増加させることができる。
【0024】
この外、上記実施の形態においては、磁極鉄心16の固定部16bが鳩尾状に形成されているので、図4に示す組立て時には、継鉄17を軸方向に移動させながら隣接磁極鉄心16の固定部16b間に装着しなければならない。しかし、図8の変形例に示すように、継鉄17が周方向の両側から接する磁極鉄心16の固定部16bの2面24A,24Bを、平行又は外周側が狭くなるように、云い代えれば継鉄17の内径側の角度αを90°以上に設定し、これと接するように固定部16bの形状を形成することにより、継鉄17の隣接磁極鉄心16間への装着工程において、継鉄17を軸方向のみならず外径側から内径側に嵌め込むことが可能となり、組立て作業を容易にすることができる。
【0025】
さらにまた、上記実施の形態においては、固定子鉄心9に間隔片15Sを設けて磁極鉄心16の巻線装着部16a,固定部16b,磁極頭部16cを半径方向に貫通する通風ダクトを形成しているが、磁極鉄心16の固定部16bには設けず、巻線装着部16aと磁極頭部16cのみに設けるようにしてもよい。
【0026】
ところで、組立てに用いる円筒状雇22を、図9に示すように、複数の雇片22A,22Bに分割し、さらに各雇片22A,22Bにテーパを設けて組合わせるようにすれば、固定子2の組立て終了後の円筒状雇22の撤去が容易になる。
【0027】
次に本発明による回転電機の第2に実施の形態について図10に基づいて説明する。交流励磁式発電機1において、回転子巻線14で発生する界磁は、正弦波でなく階段状の矩形波形となるため、固定子巻線10に誘導される電圧波形に歪が生じる。そこで本実施の形態では、隣接する磁極鉄心16の磁極頭部16c間の隙間25を周方向に次第にずらしてゆき、結果的に隙間25を回転軸線方向に対してスキューさせ、固定子巻線10の電圧波形の歪を低減している。
【0028】
この電圧波形の歪の低減は、図11よりは図12と云うように、磁極頭部16cの一方側16dを隣接磁極側に突出させる量を大きくすることにより、適用される発電機1に適したスキュー角を得ることができる。
【0029】
また本実施の形態によれば、磁極頭部16cのみスキュー形状としたので、磁極鉄心16の巻線装着部16aへの固定子巻線10の装着は第1の実施の形態と変ることはない。
【0030】
本実施の形態によれば、第1の実施の形態と同じ効果を奏することができると共に、固定子巻線10の電圧波形の歪を低減することができる。
【0031】
さらに、本実施の形態の変形として、図10〜図12に2点鎖線で示したように、磁極頭部16cから巻線装着部16aにかけてスリット26を設けることにより、磁束の流れを変化させることができ、磁極頭部16cのスキュー角の最適化が図り易くなり、固定子巻線10の電圧波形の歪を低減し易くすることができる。
【0032】
この変形例においては、スリット26が磁極鉄心16内に形成されたものであるが、図13〜図15に示すように、磁極鉄心16の巻線装着部16aから磁極頭部16cを通って図示しない回転子側に開口するスリット27を形成してもよい。
【0033】
次に、本発明による回転電機の第3の実施の形態を図16及び図17に基づいて説明する。
【0034】
本実施の形態が第2の実施の形態と異なるのは、固定子鉄心9、特に、磁極鉄心16の積層方法である。即ち、第2の実施の形態においては、隣接する磁極鉄心16の磁極頭部16cの隙間25をスキューさせるには、磁極頭部16cの形状が異なる複数種の磁性薄鋼板を用意し、これらを積層して磁極鉄心16とすることにより、連続したスキュー形状を得ている。しかし、磁極頭部形状の異なる複数種の磁性薄鋼板を用意しなければならない点で、製造費用が増大する。
【0035】
そこで、本実施の形態においては、磁極鉄心16の中心に対して周方向に非対称となるように、磁極頭部16cの一方側16dを隣接磁極側に突出させた一種類の磁性薄鋼板を形成し、これを積層して第1の磁極鉄心群16Aと第2鉄心群16Bとを構成し、次に、第1の鉄心群16Aあるいは第1の鉄心群16Bのいずれか一方側を裏返しにして他方側に積み重ねるのである。即ち、第1の磁極鉄心群16Aと第2に磁極鉄心群16Bとを、非対称の磁極頭部16cが逆向きとなるように積層したのである。
【0036】
このように第1の鉄心群16Aと第1の鉄心群16Bとを非対称の磁極頭部16cが逆向きとなるように積み重ねることにより、隣接磁極鉄心16の磁極頭部16c間の隙間25A,25Bは、磁極鉄心16の積層方向の中間部から周方向にL寸法ずれることになり、このずれが磁極鉄心16の磁極頭部16cのみをスキューさせたと同じ機能を有し、図示しない固定子巻線に誘起される電圧波形の歪を低減させることができるのである。
【0037】
このように本実施の形態によれば、一種類の磁性薄鋼板の積層法を変えることでスキュー効果を奏することができ、その結果、固定子鉄心9の製造費の上昇を抑えることができる。
【0038】
以上説明した各実施の形態において、回転電機の一例として風力発電設備に用いる交流励磁式発電機を説明したが、集中巻きした固定子巻線を備えた回転電機であれば、発電機か電動機かに特定されず、本発明を適用することができる。
【0039】
【発明の効果】
以上説明したように本発明によれば、固定子巻線を集中巻きして装着する磁極鉄心の固定が強固にできる回転電機を得ることができる。
【図面の簡単な説明】
【図1】本発明による回転電機の第1の実施の形態を示す要部縦断正面図。
【図2】図1のA−A線に沿う縦断側面図。
【図3】図1及び図2に示す磁極鉄心の斜視図。
【図4】回転電機の組立て状態を説明する図1相当図。
【図5】回転電機の組立て状態を説明する図2相当図。
【図6】回転電機としての適用例を示す模式図。
【図7】第1の実施の形態の変形例を示す図1相当図。
【図8】第1の実施の形態のさらなる変形例を示す図1相当図。
【図9】回転電機の組立て状態を説明する図5相当図。
【図10】本発明による回転電機の第2の実施の形態を示す固定子鉄心の正面図。
【図11】図10の変形例を示す図10相当図。
【図12】図11の変形例を示す図11相当図。
【図13】図10のさらなる変形例を示す図10相当図。
【図14】図11のさらなる変形例を示す図11相当図。
【図15】図12のさらなる変形例を示す図12相当図。
【図16】本発明による回転電機の第3の実施の形態を示す固定子鉄心の積層方法の説明図。
【図17】図16の固定子鉄心の展開図。
【符号の説明】
2…固定子、3…回転子、9…固定子鉄心、10…固定子巻線、11…ケーシング、12…回転軸、13…回転子鉄心、14…回転子巻線、16…磁極鉄心、16a…巻線装着部、16b…固定部、16c…磁極頭部、16A…第1の磁極鉄心群、16B…第2の磁極鉄心群、17…継鉄、18…締結具、19…仮締結具、20…固定桁、21…固定環、22…円筒状雇、24A,24B…継鉄17と接する2面、25,25A,25B…隙間、26,27…スリット。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rotating electrical machine in which stator windings are concentratedly wound around a magnetic core that protrudes in the inner diameter direction of the stator core, and more particularly, to a rotating electrical machine that improves the fixing of the magnetic core.
[0002]
[Prior art]
A rotating electrical machine in which a stator winding is concentratedly wound on a magnetic core that protrudes in the inner diameter direction of the stator core has already been proposed as described in Patent Document 1, for example.
[0003]
[Patent Document 1]
Japanese Unexamined Patent Publication No. 2000-341889 (FIGS. 1 to 6)
[0004]
[Problems to be solved by the invention]
According to the above-described conventional technology, the structure is such that the plurality of magnetic pole cores and the yoke that magnetically connects these magnetic pole cores can be divided, so that the stator winding can be easily attached to the magnetic pole core.
[0005]
However, due to the structure in which the magnetic pole core is fixed to the yoke by pigeon-tail connection, the fixation of the magnetic core is not stable, and vibration and noise may occur during operation.
[0006]
It is an object of the present invention to provide a rotating electrical machine that can firmly fix a magnetic core that is mounted with concentrated winding of stator windings.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention comprises a stator iron core comprising a plurality of magnetic pole cores and a yoke that is magnetically connected between the magnetic pole cores and divided from the magnetic pole core. The iron core and the yoke were separately fixed to the fixing member.
[0008]
According to the above configuration, since the magnetic core and the yoke are separately fixed to the fixing member, stable fixing can be performed, and generation of vibration and noise during operation can be suppressed. .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a first embodiment of a rotating electrical machine according to the present invention will be described based on, for example, a wind power generation facility which is a variable speed power generation facility shown in FIGS.
[0010]
The wind power generation facility includes an AC excitation generator (hereinafter referred to as “generator”) 1 including a stator 2 and a rotor 3, a windmill 4 that drives the rotor 3 of the generator 1, and generated electric power. A power system 6 supplied from the terminal 5 and a variable frequency AC excitation device 7 for supplying generated power or power from the power system 6 to the excitation terminal 8 of the rotor 3 are provided.
[0011]
The stator 2 of the generator 1 includes a stator core 9, a stator winding (armature winding) 10 concentratedly wound around the stator core 9, and a casing 11 that covers and supports the stator 2. And have.
[0012]
The rotor 3 includes a rotating shaft 12 pivotally supported on the casing 11, a rotor core 13 fixed to the rotating shaft 12, and rotor windings (excitation windings) distributed around the rotor core 13. Line) 14.
[0013]
The stator iron core 9 and the rotor iron core 13 are each formed by laminating magnetic thin steel plates, and are provided with spacing pieces 15S and 15R extending in the radial direction at a plurality of locations in the laminating direction, thereby cooling air. It forms a ventilation duct that circulates.
[0014]
The stator core 9 is composed of a plurality of magnetic pole cores 16 protruding in the inner diameter direction, and a yoke 17 that magnetically connects the magnetic pole cores 16 on the outer diameter side. The magnetic core 16 is formed in a circumferential direction at a position facing the rotor 3, a winding mounting portion 16 a for mounting the stator winding 10, a fixing portion 16 b fixed to a fixing member to be described later. And a magnetic pole head 16c. The fixing portion 16b located on the outer peripheral portion of the magnetic core 16 is formed in a dovetail shape, and a concave groove is formed in the magnetic thin steel plate lamination direction on the outer peripheral surface, and a fastener 18 is inserted into the concave groove and welded. Has been. In addition, a temporary fastener 19 is attached to the inner peripheral surface side of the magnetic pole head 16c of the magnetic core 16 before the stator winding 10 is attached.
[0015]
The yoke 17 is disposed so as to sandwich the fixed portion 16b of the magnetic core 16 from both sides in the circumferential direction, and has an outer peripheral surface that coincides with the outer peripheral surface of the fixed portion 16b.
[0016]
A plurality of fixed girders 20 are arranged long in the laminating direction of the magnetic thin steel plates on the outer peripheral portion of the stator core 6 having the above-described configuration. It is fixed by means. This fixed girder 20 serves as a fixing member that fixes the fixing portion 16b of the magnetic core 16. The stator core 9 fixed by the fixed girder 20 is mounted and fixed to the inner periphery of the casing 11 via a fixed ring 21 orthogonal to the fixed girder 20.
[0017]
When assembling the generator 1 configured as described above, first, the magnetic core 16 is set in a state in which a temporary fastener 19 is mounted as shown in FIG. 3, and in this state, a bobbin (not shown) is used. Then, the stator winding 10 is mounted on the winding mounting portion 16a. This stator winding 10 is molded and hardened in advance with an insulating resin so that it can be mounted on the winding mounting portion 16a in a concentrated winding state.
[0018]
Next, when the stator winding 10 is mounted on the magnetic pole core 16, the temporary fastener 19 is removed, and a cylindrical employment 22 having a peripheral surface concentric with the rotor 3 is removed as shown in FIGS. The magnetic pole head 16c of the magnetic pole core 16 is applied to the peripheral surface of the magnetic core 16, and then the yoke 17 is sequentially fitted so as to sandwich the fixing portion 16b of each magnetic core 16 from both sides.
[0019]
Thereafter, the fixed girder 20 is fixed to the outer periphery of the magnetic core 16 and the yoke 17, and the casing 11 is mounted via the fixed ring 21. The fixed girder 20 may be fixed to the magnetic pole core 16 and the yoke 17 in advance before the magnetic pole core 16 is assigned to the cylindrical member 22.
[0020]
After the casing 11 is mounted, the cylindrical work 22 is removed, and the assembly is assembled into the rotor 3 assembled in a separate process in the casing 11 to complete the assembly of the generator 1.
[0021]
As described above, since the magnetic core 16 is firmly fixed by the fixed girder 20, it is more stably fixed compared to the case where it is indirectly fixed, and the generation of vibration and noise during operation is suppressed. Can do.
[0022]
In this embodiment, since a 4-pole machine is shown, the interval between the magnetic pole cores 16 is 60 ° as shown in FIG. 4, but in the 6-pole machine, the interval between the magnetic pole cores 16 is 40 °. It becomes. Here, in order to make the number of the fixed girders 20 the same in both the 4-pole machine and the 6-pole machine, 18 pieces are installed on the entire circumference with the interval of the fixed girders 20 being 20 °.
[0023]
Further, in the above embodiment, a substantially triangular space 23 is formed between the adjacent stator winding 10 and the inner peripheral side of the yoke 17, and the cooling air is circulated through the space 23. As a result, the stator winding 10 can be directly cooled. As shown in the modified example of FIG. 7, such a space 23 is formed so that the opposed portions 10A and 10B of the adjacent stator windings 10 are parallel to each other, thereby increasing the cross-sectional area and generating cooling air. The distribution amount can be increased.
[0024]
In addition, in the embodiment described above, the fixing portion 16b of the magnetic pole core 16 is formed in a dovetail shape. Therefore, at the time of assembly shown in FIG. 4, the adjacent magnetic core 16 is fixed while moving the yoke 17 in the axial direction. It must be mounted between the parts 16b. However, as shown in the modification of FIG. 8, the two surfaces 24A and 24B of the fixed portion 16b of the magnetic pole core 16 with which the yoke 17 contacts from both sides in the circumferential direction are, in other words, connected so that the parallel or outer circumferential side becomes narrower. By setting the angle α on the inner diameter side of the iron 17 to 90 ° or more and forming the shape of the fixed portion 16b so as to be in contact therewith, in the mounting step of the yoke 17 between the adjacent magnetic pole cores 16, the yoke 17 Can be fitted not only in the axial direction but also from the outer diameter side to the inner diameter side, and the assembling work can be facilitated.
[0025]
Furthermore, in the above embodiment, the stator core 9 is provided with the spacing piece 15S to form a ventilation duct that penetrates the winding mounting portion 16a, the fixing portion 16b, and the magnetic pole head 16c of the magnetic core 16 in the radial direction. However, it may be provided only on the winding mounting portion 16a and the magnetic pole head portion 16c, without being provided on the fixed portion 16b of the magnetic core 16.
[0026]
By the way, as shown in FIG. 9, the cylindrical employment 22 used for the assembly is divided into a plurality of employment pieces 22A and 22B, and each of the employment pieces 22A and 22B is provided with a taper to combine them. The removal of the cylindrical worker 22 after the assembly of 2 is completed becomes easy.
[0027]
Next, a second embodiment of the rotating electrical machine according to the present invention will be described with reference to FIG. In the AC excitation generator 1, the field generated in the rotor winding 14 is not a sine wave but a stepped rectangular waveform, so that the voltage waveform induced in the stator winding 10 is distorted. Therefore, in the present embodiment, the gap 25 between the magnetic pole heads 16c of the adjacent magnetic cores 16 is gradually shifted in the circumferential direction, and as a result, the gap 25 is skewed with respect to the rotation axis direction, and the stator winding 10 The distortion of the voltage waveform is reduced.
[0028]
This voltage waveform distortion reduction is suitable for the generator 1 to be applied by increasing the amount by which one side 16d of the magnetic pole head portion 16c protrudes to the adjacent magnetic pole side as shown in FIG. 12 rather than FIG. A skew angle can be obtained.
[0029]
Further, according to the present embodiment, since only the magnetic pole head portion 16c has a skew shape, the mounting of the stator winding 10 to the winding mounting portion 16a of the magnetic core 16 is not different from the first embodiment. .
[0030]
According to the present embodiment, the same effect as that of the first embodiment can be obtained, and the distortion of the voltage waveform of the stator winding 10 can be reduced.
[0031]
Further, as a modification of the present embodiment, as shown by a two-dot chain line in FIGS. 10 to 12, the flow of magnetic flux is changed by providing a slit 26 from the magnetic pole head portion 16c to the winding mounting portion 16a. Therefore, it is easy to optimize the skew angle of the magnetic pole head 16c, and the distortion of the voltage waveform of the stator winding 10 can be easily reduced.
[0032]
In this modified example, the slit 26 is formed in the magnetic pole core 16, but as shown in FIGS. 13 to 15, the slit 26 is illustrated from the winding mounting portion 16 a of the magnetic core 16 through the magnetic pole head 16 c. You may form the slit 27 opened to the rotor side which does not carry out.
[0033]
Next, a third embodiment of the rotating electrical machine according to the present invention will be described with reference to FIGS.
[0034]
This embodiment differs from the second embodiment in the method of laminating the stator core 9, in particular, the magnetic pole core 16. That is, in the second embodiment, in order to skew the gap 25 between the magnetic pole heads 16c of the adjacent magnetic cores 16, a plurality of types of magnetic thin steel sheets having different shapes of the magnetic pole heads 16c are prepared. By stacking the magnetic pole cores 16, a continuous skew shape is obtained. However, the manufacturing cost increases in that a plurality of types of magnetic thin steel sheets having different magnetic pole head shapes must be prepared.
[0035]
Therefore, in the present embodiment, one type of magnetic thin steel sheet is formed in which one side 16d of the magnetic pole head portion 16c protrudes toward the adjacent magnetic pole side so as to be asymmetric in the circumferential direction with respect to the center of the magnetic pole core 16. These are stacked to form the first magnetic core group 16A and the second iron core group 16B, and then either the first iron core group 16A or the first iron core group 16B is turned over. They are stacked on the other side. That is, the first magnetic pole core group 16A and the second magnetic pole core group 16B are laminated so that the asymmetrical magnetic pole heads 16c are opposite to each other.
[0036]
Thus, by stacking the first iron core group 16A and the first iron core group 16B so that the asymmetrical magnetic pole heads 16c are opposite to each other, gaps 25A and 25B between the magnetic pole heads 16c of the adjacent magnetic pole iron cores 16 are obtained. Is shifted in the circumferential direction from the intermediate portion of the magnetic core 16 in the stacking direction, and this shift has the same function as skewing only the magnetic head 16c of the magnetic core 16, and a stator winding (not shown) This can reduce the distortion of the voltage waveform induced by the.
[0037]
Thus, according to the present embodiment, a skew effect can be achieved by changing the laminating method of one kind of magnetic thin steel sheet, and as a result, an increase in manufacturing cost of the stator core 9 can be suppressed.
[0038]
In each of the embodiments described above, the AC excitation generator used in the wind power generation facility has been described as an example of the rotating electrical machine. However, if the rotating electrical machine has a concentrated winding, the generator or the motor The present invention can be applied without being specified.
[0039]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain a rotating electrical machine that can firmly fix a magnetic core that is mounted by concentrating the stator winding.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional front view showing a main part of a first embodiment of a rotating electrical machine according to the present invention.
FIG. 2 is a longitudinal side view taken along line AA in FIG.
3 is a perspective view of the magnetic pole core shown in FIGS. 1 and 2. FIG.
4 is a view corresponding to FIG. 1 for explaining an assembled state of the rotating electrical machine.
5 is a view corresponding to FIG. 2 for explaining the assembled state of the rotating electrical machine.
FIG. 6 is a schematic diagram showing an application example as a rotating electrical machine.
FIG. 7 is a view corresponding to FIG. 1 showing a modification of the first embodiment.
FIG. 8 is a view corresponding to FIG. 1, showing a further modification of the first embodiment.
9 is a view corresponding to FIG. 5 for explaining the assembled state of the rotating electrical machine.
FIG. 10 is a front view of a stator core showing a second embodiment of the rotating electrical machine according to the present invention.
FIG. 11 is a view corresponding to FIG. 10 showing a modification of FIG. 10;
12 is a view corresponding to FIG. 11, showing a modification of FIG.
13 is a view corresponding to FIG. 10, showing a further modification of FIG.
14 is a view corresponding to FIG. 11, showing a further modification of FIG.
15 is a view corresponding to FIG. 12, showing a further modification of FIG.
FIG. 16 is an explanatory diagram of a method for laminating a stator core showing a third embodiment of the rotating electrical machine according to the present invention.
17 is a development view of the stator core shown in FIG. 16. FIG.
[Explanation of symbols]
2 ... Stator, 3 ... Rotor, 9 ... Stator core, 10 ... Stator winding, 11 ... Casing, 12 ... Rotating shaft, 13 ... Rotor core, 14 ... Rotor winding, 16 ... Magnetic pole core, 16a ... Winding mounting part, 16b ... Fixed part, 16c ... Magnetic pole head, 16A ... First magnetic pole core group, 16B ... Second magnetic pole core group, 17 ... Relay, 18 ... Fastener, 19 ... Temporary fastening 20 ... fixed girder, 21 ... fixed ring, 22 ... cylindrical employment, 24A, 24B ... two surfaces in contact with the yoke 17, 25, 25A, 25B ... clearance, 26, 27 ... slit.

Claims (6)

回転子と対向して設けられた固定子鉄心の内径方向に突出した磁極鉄心に固定子巻線を集中巻した回転電機において、前記固定子鉄心は、複数の磁極鉄心とこれら磁極鉄心間を磁気的に接続する継鉄とを有し、この継鉄と前記磁極鉄心とは分割されており、かつ前記磁極鉄心と前記継鉄とは夫々固定部材に固定されていることを特徴とする回転電機。In a rotating electrical machine in which a stator winding is concentratedly wound on a magnetic core that protrudes in the inner diameter direction of a stator core that is provided opposite to the rotor, the stator core includes a plurality of magnetic cores and a magnetic core between the magnetic cores. A rotating electrical machine characterized in that the yoke and the magnetic pole core are divided, and the magnetic pole core and the yoke are each fixed to a fixing member. . 前記磁極鉄心の外周部は、前記継鉄の外周部と連続した周面に形成されていることを特徴とする請求項1記載の回転電機。The rotating electrical machine according to claim 1, wherein an outer peripheral portion of the magnetic core is formed on a peripheral surface continuous with the outer peripheral portion of the yoke. 前記磁極鉄心は、固定子巻線を装着する巻線装着部と、前記固定部材に固定される固定部とを有し、この固定部を挟むように前記継鉄が両側から接するように構成され、かつ前記固定部の前記継鉄が接する2面が平行又は外周側が狭くなるように形成されていることを特徴とする請求項1記載の回転電機。The magnetic pole core has a winding mounting portion for mounting a stator winding and a fixing portion fixed to the fixing member, and the yoke is configured to contact from both sides so as to sandwich the fixing portion. 2. The rotating electrical machine according to claim 1, wherein two surfaces of the fixed portion that contact the yoke are parallel or narrow on the outer peripheral side. 固定子巻線を集中巻きした固定子鉄心を備えた回転電機において、前記固定子鉄心は、内径方向に突出した複数の磁極鉄心と、これら磁極鉄心に当接して磁極鉄心間を磁気的に接続する継鉄とを有し、前記磁極鉄心の外周部と前記継鉄とは夫々固定部材に固定されており、かつ前記磁極鉄心は回転子と対向する磁極頭部を有し、この磁極頭部の周方向端部を周方向にスキューさせたことを特徴とする回転電機。In a rotating electrical machine having a stator core in which a stator winding is wound in a concentrated manner, the stator core is in contact with a plurality of magnetic pole cores projecting in the inner diameter direction and magnetically connects between the magnetic pole cores. The outer periphery of the magnetic pole core and the yoke are each fixed to a fixing member, and the magnetic core has a magnetic pole head that faces the rotor. A rotating electrical machine characterized by skewing the circumferential end of the circumferential direction in the circumferential direction. 回転子と対向して設けられた固定子鉄心の内径方向に突出した磁極鉄心に固定子巻線を集中巻きした回転電機において、前記固定子鉄心は、内径方向に突出した複数の磁極鉄心とこれら磁極鉄心に当接して磁極鉄心間を磁気的に接続する継鉄とを有し、前記磁極鉄心は、固定子巻線を装着する巻線装着部と、固定部材に固定される固定部と、前記回転子に対向する位置に形成された周方向に非対称の磁極頭部とを有する磁性薄鋼板を複数積層して構成されており、かつ前記磁極鉄心は、第1の磁極鉄心群と第2の磁極鉄心群とを積層して構成されており、この第1の磁極鉄心群と第2の磁極鉄心群とを前記非対称の磁極頭部が互いに逆向きとなるように積層したことを特徴とする回転電機。In a rotating electrical machine in which a stator winding is concentratedly wound on a magnetic core that protrudes in the inner diameter direction of a stator core provided to face the rotor, the stator core includes a plurality of magnetic pole cores that protrude in the inner diameter direction and these A yoke that contacts the magnetic core and magnetically connects between the magnetic cores, the magnetic core includes a winding mounting portion for mounting the stator winding, a fixing portion fixed to the fixing member, The magnetic iron core is formed by laminating a plurality of magnetic thin steel plates each having a circumferentially asymmetric magnetic pole head formed at a position facing the rotor, and the magnetic iron core includes a first magnetic iron core group and a second magnetic iron core group. The first magnetic core group and the second magnetic core group are stacked so that the asymmetrical magnetic heads are opposite to each other. Rotating electric machine. 前記磁極鉄心の磁極頭部には、スリットが設けられていることを特徴とする請求項5記載の回転電機。6. The rotating electrical machine according to claim 5, wherein a slit is provided in a magnetic pole head of the magnetic core.
JP2003200966A 2003-07-24 2003-07-24 Rotary electric machine Pending JP2005045881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003200966A JP2005045881A (en) 2003-07-24 2003-07-24 Rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003200966A JP2005045881A (en) 2003-07-24 2003-07-24 Rotary electric machine

Publications (1)

Publication Number Publication Date
JP2005045881A true JP2005045881A (en) 2005-02-17

Family

ID=34261183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003200966A Pending JP2005045881A (en) 2003-07-24 2003-07-24 Rotary electric machine

Country Status (1)

Country Link
JP (1) JP2005045881A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010032764A1 (en) * 2010-07-29 2012-02-02 Feaam Gmbh Electric machine and stator for the same
WO2012026158A1 (en) * 2010-08-26 2012-03-01 三菱電機株式会社 Rotary electric machine and stator core manufacturing device for manufacturing stator core thereof
JP2012050223A (en) * 2010-08-26 2012-03-08 Mitsubishi Electric Corp Apparatus for manufacturing core member of stator
JP2012080729A (en) * 2010-10-05 2012-04-19 Mitsubishi Electric Corp Rotary electric machine
JP2012120298A (en) * 2010-11-30 2012-06-21 Mitsubishi Electric Corp Apparatus for manufacturing rotary electric machine and stator core therefor
JP2013138586A (en) * 2011-12-28 2013-07-11 Daikin Ind Ltd Armature and manufacturing method thereof
CN103427508A (en) * 2012-05-17 2013-12-04 深圳市配天电机技术有限公司 Segmental skew notch concentrated winding motor, electric generator and electric motor
JP2017135766A (en) * 2016-01-25 2017-08-03 三菱電機株式会社 Single-phase brushless motor and manufacturing method of single-phase brushless motor
JP2019208360A (en) * 2019-09-03 2019-12-05 三菱電機株式会社 Motor, method of manufacturing the same, vacuum cleaner including the same, and method of manufacturing the same
WO2020126564A1 (en) * 2018-12-19 2020-06-25 Rolls-Royce Deutschland Ltd & Co Kg Stator tooth for a stator of an electric machine
CN112510858A (en) * 2020-11-12 2021-03-16 珠海格力电器股份有限公司 Motor and air conditioner
WO2023162257A1 (en) * 2022-02-28 2023-08-31 株式会社Ihi Stator

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012013783A3 (en) * 2010-07-29 2013-04-11 Feaam Gmbh Electric machine and stator for same
CN103250326A (en) * 2010-07-29 2013-08-14 菲艾姆股份有限公司 Electric machine and stator for same
DE102010032764A1 (en) * 2010-07-29 2012-02-02 Feaam Gmbh Electric machine and stator for the same
TWI556548B (en) * 2010-08-26 2016-11-01 三菱電機股份有限公司 Rotary electric machine and stator core manufacturing apparatus for manufacturing a stator core therefor
WO2012026158A1 (en) * 2010-08-26 2012-03-01 三菱電機株式会社 Rotary electric machine and stator core manufacturing device for manufacturing stator core thereof
JP2012050223A (en) * 2010-08-26 2012-03-08 Mitsubishi Electric Corp Apparatus for manufacturing core member of stator
JP2012080729A (en) * 2010-10-05 2012-04-19 Mitsubishi Electric Corp Rotary electric machine
JP2012120298A (en) * 2010-11-30 2012-06-21 Mitsubishi Electric Corp Apparatus for manufacturing rotary electric machine and stator core therefor
JP2013138586A (en) * 2011-12-28 2013-07-11 Daikin Ind Ltd Armature and manufacturing method thereof
CN103427508A (en) * 2012-05-17 2013-12-04 深圳市配天电机技术有限公司 Segmental skew notch concentrated winding motor, electric generator and electric motor
JP2017135766A (en) * 2016-01-25 2017-08-03 三菱電機株式会社 Single-phase brushless motor and manufacturing method of single-phase brushless motor
WO2020126564A1 (en) * 2018-12-19 2020-06-25 Rolls-Royce Deutschland Ltd & Co Kg Stator tooth for a stator of an electric machine
JP2019208360A (en) * 2019-09-03 2019-12-05 三菱電機株式会社 Motor, method of manufacturing the same, vacuum cleaner including the same, and method of manufacturing the same
CN112510858A (en) * 2020-11-12 2021-03-16 珠海格力电器股份有限公司 Motor and air conditioner
CN112510858B (en) * 2020-11-12 2021-10-22 珠海格力电器股份有限公司 Motor and air conditioner
WO2023162257A1 (en) * 2022-02-28 2023-08-31 株式会社Ihi Stator

Similar Documents

Publication Publication Date Title
JP4723118B2 (en) Rotating electric machine and pulley drive device using the rotating electric machine
US20110018384A1 (en) Motor
WO2017094271A1 (en) Axial-gap dynamo-electric machine and method for manufacturing same
JP2012120326A (en) Interior magnet rotor, motor, and method for assembling motor
JP5347588B2 (en) Embedded magnet motor
CN111884456B (en) Rotor assembly and axial magnetic field motor
JP2007159170A5 (en)
JP2001119872A (en) Synchronous rotating electric machine, wind turbine power generator, and manufacturing methods for them
JP2005045881A (en) Rotary electric machine
JPH0767272A (en) Stator structure for synchronous machine, manufacture thereof and its tooth piece
JP3928297B2 (en) Electric motor and manufacturing method thereof
JPWO2018037529A1 (en) Rotating electric machine
TW201828573A (en) Axial gap-type rotary electric machine
JP2007336624A (en) Multi-phase claw tooth type permanent magnet motor
JP2009261162A (en) Split stator core
JP4568639B2 (en) Stator
JP2000209793A (en) Stator for rotary electric machine
JP4771010B1 (en) Rotating electric machine and wind power generation system
JP5376262B2 (en) Stator for rotating electric machine and method for manufacturing the same
JP2015154555A (en) motor
JP3671929B2 (en) Rotating electric machine
JP2010115095A (en) Stator core and rotary electric machine
JP4771011B1 (en) Rotating electric machine and wind power generation system
JP2007259514A (en) Rotating electric machine for employing divided stator iron core
JP2001136687A (en) Permanent magnet rotary electric machine