JP2007332885A - Nox purification system and nox purification method - Google Patents

Nox purification system and nox purification method Download PDF

Info

Publication number
JP2007332885A
JP2007332885A JP2006166723A JP2006166723A JP2007332885A JP 2007332885 A JP2007332885 A JP 2007332885A JP 2006166723 A JP2006166723 A JP 2006166723A JP 2006166723 A JP2006166723 A JP 2006166723A JP 2007332885 A JP2007332885 A JP 2007332885A
Authority
JP
Japan
Prior art keywords
nox
selective reduction
reduction catalyst
hydrogen
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006166723A
Other languages
Japanese (ja)
Other versions
JP4704964B2 (en
Inventor
Hitoshi Mikami
仁志 三上
Takeshi Motohashi
剛 本橋
Atsushi Satsuma
篤 薩摩
Kenichi Shimizu
研一 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Nagoya University NUC
Original Assignee
Honda Motor Co Ltd
Nagoya University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Nagoya University NUC filed Critical Honda Motor Co Ltd
Priority to JP2006166723A priority Critical patent/JP4704964B2/en
Publication of JP2007332885A publication Critical patent/JP2007332885A/en
Application granted granted Critical
Publication of JP4704964B2 publication Critical patent/JP4704964B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an NOx purification system having a purification temperature area wider than a conventional area, in an NOx selective reduction technology of using hydrogen as a reducing agent. <P>SOLUTION: This NOx purification system 1 uses the hydrogen as the reducing agent, and can reduce and purify NOx by using the hydrogen included in exhaust gas as the reducing agent, by contacting oxygen excessive exhaust gas exhausted from a combustion engine 2 with a second NOx selective reduction catalyst in a second NOx purification part 12 having the highest purification ratio temperature lower than a first NOx selective reduction catalyst, after being contacted with the first NOx selective reduction catalyst in a first NOx purification part 11. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、燃焼機関から排出されるNOxを選択的に還元して浄化するNOx浄化システム、及びNOx浄化方法に関する。   The present invention relates to a NOx purification system that selectively reduces and purifies NOx discharged from a combustion engine, and a NOx purification method.

近年、化石燃料の枯渇による燃料価格の高騰や地球環境悪化の観点から、燃費の向上、即ちCOの削減が求められている。このため、自動車エンジンにおいても、CO排出量の低減策の一環として、ガソリンエンジンのリーン雰囲気での燃焼が積極的に行われている。一方、ディーゼルエンジンもリーン雰囲気で燃焼されるものであるため、CO排出量低減の点において好ましい内燃機関である。また、CO排出の無い水素内燃機関や、化石燃料と水素とのバイフューエル内燃機関も注目を集めている。 In recent years, improvement in fuel consumption, that is, reduction of CO 2 has been demanded from the viewpoint of soaring fuel prices due to depletion of fossil fuels and deterioration of the global environment. For this reason, combustion in a lean atmosphere of a gasoline engine is also actively performed in an automobile engine as part of a measure for reducing CO 2 emissions. On the other hand, since a diesel engine is also burned in a lean atmosphere, it is a preferred internal combustion engine in terms of reducing CO 2 emissions. In addition, hydrogen internal combustion engines that do not emit CO 2 and bi-fuel internal combustion engines that use fossil fuel and hydrogen are attracting attention.

しかしながら、水素内燃機関やリーン雰囲気での燃焼による排気ガス中には酸素が過剰に含まれるため、同時に排出されるNOxを還元浄化することが困難となっている。こうした中、過剰に存在する酸素と反応せず、窒素酸化物と選択的に反応する触媒及びシステムの研究開発が盛んに行われている。   However, the exhaust gas produced by combustion in a hydrogen internal combustion engine or lean atmosphere contains excessive oxygen, making it difficult to reduce and purify NOx discharged at the same time. Under these circumstances, research and development of catalysts and systems that do not react with excess oxygen but selectively react with nitrogen oxides are actively conducted.

このようなNOx選択還元技術として、アルミナ等の耐熱性無機酸化物にイリジウム等の金属を担持した触媒に、還元剤として炭化水素(HC)を用いた技術が開示されている(特許文献1参照)。この技術によれば、酸素過剰雰囲気下であっても、NOxを還元浄化できるとされている。   As such a NOx selective reduction technique, a technique is disclosed in which hydrocarbon (HC) is used as a reducing agent in a catalyst in which a metal such as iridium is supported on a heat-resistant inorganic oxide such as alumina (see Patent Document 1). ). According to this technique, NOx can be reduced and purified even in an oxygen-excess atmosphere.

また、アンモニア(NH)を還元剤として用いたNOx選択還元技術が検討されている。この技術では、TiO−V触媒を用いることにより、高い浄化性能を有することが知られている。しかしながら、安全性や搭載性の観点から、現状では工場等の大規模なプラントでのみ実用化されているにすぎない。これに関して、近年、無害な尿素水等のNH由来の還元剤を用いた技術や(特許文献2参照)、オンボードで水素と窒素からNHを合成し、このNHを還元剤として供給する技術も報告されている(特許文献3参照)。 Further, a NOx selective reduction technique using ammonia (NH 3 ) as a reducing agent has been studied. This technique is known to have high purification performance by using a TiO 2 —V 2 O 5 catalyst. However, from the viewpoint of safety and mountability, at present, it is only put into practical use only in large-scale plants such as factories. In this regard, in recent years, technology using a reducing agent derived from NH 3 such as harmless urea water (see Patent Document 2), NH 3 is synthesized from hydrogen and nitrogen on board, and this NH 3 is supplied as a reducing agent. The technique to do is also reported (refer patent document 3).

また、水素(H)を還元剤として用いたNOx選択還元技術も検討されている。Hは、HCやCOに比して還元活性が高いため、NOxを効率良く還元浄化でき、さらに他の還元剤では浄化できない低温下であってもNOxを浄化できるとされている。例えば、改質反応触媒の利用により、排ガス中のHCとHOとからHを生成、供給してNOxを選択還元する技術や(特許文献4参照)、水素貯蔵合金よりHを供給してNOxを選択還元する技術が開示されている(特許文献5参照)。
特開2003−328813号公報 特開2002−161732号公報 特開平01−280617号公報 特開2000−170523号公報 特開平6−126174号公報 The Journal of Physical Chemistry B,2004,vol,108,No,47,18327−18335
In addition, a NOx selective reduction technique using hydrogen (H 2 ) as a reducing agent has been studied. Since H 2 has a higher reducing activity than HC and CO, NOx can be efficiently reduced and purified, and NOx can be purified even at low temperatures that cannot be purified by other reducing agents. For example, by using a reforming reaction catalyst, H 2 is generated from HC and H 2 O in exhaust gas and supplied to selectively reduce NOx (see Patent Document 4), or H 2 is supplied from a hydrogen storage alloy. Thus, a technique for selectively reducing NOx has been disclosed (see Patent Document 5).
JP 2003-328813 A JP 2002-161732 A Japanese Patent Laid-Open No. 01-280617 JP 2000-170523 A JP-A-6-126174 The Journal of Physical Chemistry B, 2004, vol, 108, No, 47, 18327-18335

しかしながら、HCを還元剤として用いたNOx選択還元技術では、浄化性能が低い故に大量の触媒を導入する必要がある。また、高温下では高い浄化性能を示すものの、低温下での浄化性能が低い。このため、低温域から高温域までの全運転領域下での使用には不向きである。   However, in the NOx selective reduction technique using HC as a reducing agent, it is necessary to introduce a large amount of catalyst because the purification performance is low. Moreover, although high purification performance is exhibited at high temperatures, purification performance at low temperatures is low. For this reason, it is not suitable for use under the entire operation range from the low temperature range to the high temperature range.

また、NHを還元剤として用いたNOx選択還元技術では、上述したようにTiO−V触媒を用いた場合に高い浄化性能を示すものの、NHの供給方法等におけるシステム及び制御の複雑さの問題の他、有毒な未反応NHの処理といった問題を抱えている。 In addition, the NOx selective reduction technique using NH 3 as a reducing agent shows high purification performance when the TiO 2 —V 2 O 5 catalyst is used as described above, but the system and control in the NH 3 supply method and the like In addition to the problem of complexity, there are problems such as the treatment of toxic unreacted NH 3 .

さらには、Hを還元剤として用いたNOx選択還元技術では、アルミナ、シリカ、又はゼオライト等の酸化物担体にPtを担持した触媒を用いた場合に、高い浄化性能を示すことが知られているものの、この触媒ではNOxを効率良く浄化できる温度領域が100℃〜150℃と極端に狭い。 Furthermore, NOx selective reduction technology using H 2 as a reducing agent is known to exhibit high purification performance when a catalyst having Pt supported on an oxide carrier such as alumina, silica, or zeolite is used. However, this catalyst has an extremely narrow temperature range of 100 ° C. to 150 ° C. where NOx can be efficiently purified.

このPt系触媒は、70℃程度の低温から浄化性能を発揮するものの、100℃付近で浄化性能のピークを迎える。そして、それ以上の高温においては急激な浄化性能の低下が生じ、200℃以上ではほとんど浄化性能を示さなくなる(非特許文献1参照)。これに対して、添加剤の使用により高温浄化性能が向上する触媒も報告されてはいるが、現状として車両における実使用温度範囲での使用は困難である。   Although this Pt-based catalyst exhibits purification performance from a low temperature of about 70 ° C., the purification performance reaches a peak at around 100 ° C. And at the high temperature beyond that, the purification performance is suddenly lowered, and at 200 ° C. or more, the purification performance is hardly exhibited (see Non-Patent Document 1). On the other hand, although a catalyst whose high-temperature purification performance is improved by using an additive has been reported, it is difficult to use it in an actual operating temperature range in a vehicle at present.

ところで、Hを還元剤とするNOx選択還元触媒としては、Pt系触媒以外にもPd、Rh、Ir系触媒について研究が行われている。これらの各種触媒の浄化温度領域は異なり、350℃程度の高温であっても良好な浄化性能を示す触媒も報告されている。しかしながら、金属種、触媒毎に最高浄化温度は異なり、活性温度領域はPt系触媒と同様に50℃程度の温度帯しか有しておらず、Pt系触媒と同様に浄化温度領域(NOx浄化が可能な温度領域)が狭いという問題を抱えている。 By the way, as a NOx selective reduction catalyst using H 2 as a reducing agent, research is being conducted on Pd, Rh, and Ir catalysts in addition to Pt catalysts. The purification temperature ranges of these various catalysts are different, and catalysts that exhibit good purification performance even at a high temperature of about 350 ° C. have been reported. However, the maximum purification temperature differs for each metal species and catalyst, and the active temperature region has only a temperature range of about 50 ° C. as in the case of the Pt-based catalyst. There is a problem that the possible temperature range is narrow.

本発明は以上のような現状に鑑みてなされたものであり、その目的は、Hを還元剤として用いるNOx選択還元技術において、従来よりも広い浄化温度領域を有するNOx浄化システムを提供することにある。 The present invention has been made in view of the current situation as described above, and an object of the present invention is to provide a NOx purification system having a wider purification temperature range than in the conventional NOx selective reduction technology using H 2 as a reducing agent. It is in.

本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、Hを還元剤として用いたNOx選択還元技術において、酸素過剰な排気ガスを、第一NOx選択還元触媒に接触させた後、この第一NOx選択還元触媒よりも低い最高浄化率温度を有する第二NOx選択還元触媒に接触させることにより、排気ガス中に含まれるHを還元剤としてNOxを還元浄化できることを見出し、本発明を完成するに至った。より具体的には、本発明は以下のようなものを提供する。 The inventors of the present invention have made extensive studies to solve the above problems. As a result, in the NOx selective reduction technique using H 2 as a reducing agent, after the exhaust gas having excess oxygen is brought into contact with the first NOx selective reduction catalyst, the highest purification rate temperature lower than that of the first NOx selective reduction catalyst It has been found that NOx can be reduced and purified using H 2 contained in the exhaust gas as a reducing agent by contacting with a second NOx selective reduction catalyst having NO, and the present invention has been completed. More specifically, the present invention provides the following.

(1) 燃焼機関の排気通路に設けられ、前記燃焼機関から排出される酸素過剰の排気ガス中に含まれるNOxを浄化するNOx浄化システムであって、前記排気ガス中に含まれる水素を還元剤として前記NOxを選択的に還元するNOx浄化装置を備え、前記NOx浄化装置は、上流側に設けられた第一NOx選択還元触媒と、下流側に設けられ、前記第一NOx選択還元触媒よりも低い最高浄化率温度を有する第二NOx選択還元触媒と、を備えるNOx浄化システム。   (1) A NOx purification system that is provided in an exhaust passage of a combustion engine and purifies NOx contained in an oxygen-excess exhaust gas discharged from the combustion engine, wherein the hydrogen contained in the exhaust gas is reduced by a reducing agent. As a NOx purification device that selectively reduces the NOx, the NOx purification device being provided on the upstream side, and a first NOx selective reduction catalyst provided on the downstream side, than the first NOx selective reduction catalyst. A NOx purification system comprising: a second NOx selective reduction catalyst having a low maximum purification rate temperature.

(1)のNOx浄化システムは、酸素過剰の排気ガス中に含まれるNOxを、排気ガス中に共存する水素を還元剤として選択的に還元するものである。具体的には、上流側に第一NOx選択還元触媒が配置され、下流側には、第一NOx選択還元触媒よりも低い最高浄化率温度を有する第二NOx選択還元触媒が配置されている。即ち、排気ガスを順次、これら直列に配置された第一NOx選択還元触媒、第二NOx選択還元触媒に連続的に接触させることを特徴とする。このように、最高浄化率温度の異なる2種類のNOx選択還元触媒を併用したうえで、より最高浄化率温度の高いNOx選択還元触媒を上流側に配置することにより、従来公知のNOx選択還元触媒単独では得られなかった広い浄化温度領域でNOxを浄化できる。即ち、(1)の発明によれば、単一触媒の狭い浄化温度領域の問題を解決でき、広い温度領域において効率良くNOxを浄化するシステムを提供できる。   The NOx purification system (1) selectively reduces NOx contained in exhaust gas containing excess oxygen using hydrogen coexisting in the exhaust gas as a reducing agent. Specifically, the first NOx selective reduction catalyst is disposed on the upstream side, and the second NOx selective reduction catalyst having the highest purification rate temperature lower than that of the first NOx selective reduction catalyst is disposed on the downstream side. That is, the exhaust gas is successively brought into contact with the first NOx selective reduction catalyst and the second NOx selective reduction catalyst arranged in series. In this way, by using two types of NOx selective reduction catalysts having different maximum purification rate temperatures in combination, and arranging the NOx selective reduction catalyst having a higher maximum purification rate temperature on the upstream side, a conventionally known NOx selective reduction catalyst NOx can be purified in a wide purification temperature range that could not be obtained by itself. That is, according to the invention of (1), the problem of a narrow purification temperature region of a single catalyst can be solved, and a system for efficiently purifying NOx in a wide temperature region can be provided.

(2) 前記第一NOx選択還元触媒はPd/TiOであり、前記第二NOx選択還元触媒はPt/MFIである(1)記載のNOx浄化システム。 (2) the first NOx selective reduction catalyst is Pd / TiO 2, wherein the second NOx selective reduction catalyst is Pt / MFI (1) NOx purification system according.

(2)のNOx浄化システムは、(1)のNOx浄化システムにおいて、第一NOx選択還元触媒としてPd/TiOが用いられ、第二NOx選択還元触媒としてPt/MFIが用いられたものである。即ち、Pd/TiOとPt/MFIとの最高浄化率温度の関係は、Pd/TiO>Pt/MFIであることから、上流側にPd/TiO、その下流側にPt/MFIが配置されたものである。従って、(2)の発明によれば、従来よりも広い浄化温度領域を有するNOx浄化システムを提供できる。 In the NOx purification system of (2), Pd / TiO 2 is used as the first NOx selective reduction catalyst and Pt / MFI is used as the second NOx selective reduction catalyst in the NOx purification system of (1). . That is, since the relationship between the maximum purification rate temperatures of Pd / TiO 2 and Pt / MFI is Pd / TiO 2 > Pt / MFI, Pd / TiO 2 is disposed upstream and Pt / MFI is disposed downstream thereof. It has been done. Therefore, according to the invention of (2), it is possible to provide a NOx purification system having a purification temperature region wider than the conventional one.

また、Pd/TiOやPt/MFIは一般的に高い耐熱性を有し、900℃の高温下においても耐久性が実証されている。このため、内燃機関における排気ガスに対しても十分な耐熱性を有し、高温による触媒配置箇所の制約が無い。従って、(2)のNOx浄化システムは、自動車エンジンの直下や床下での配置が可能となり、触媒配置レイアウトの自由度が広がる。 Further, Pd / TiO 2 and Pt / MFI generally have high heat resistance, and durability has been demonstrated even at a high temperature of 900 ° C. For this reason, it has sufficient heat resistance to the exhaust gas in the internal combustion engine, and there is no restriction on the location of the catalyst due to high temperature. Therefore, the NOx purification system (2) can be arranged directly under the automobile engine or under the floor, and the degree of freedom in catalyst arrangement layout is increased.

(3) 前記排気ガス中に水素を供給する水素供給装置をさらに備える(1)又は(2)記載のNOx浄化システム。   (3) The NOx purification system according to (1) or (2), further comprising a hydrogen supply device that supplies hydrogen into the exhaust gas.

(3)のNOx浄化システムは、上記のNOx浄化システムにおいて、排気ガス中に還元剤の水素を供給する水素供給装置をさらに備えたものである。(3)の発明によれば、NOxの選択還元に必要な水素量を十分に確保することができ、NOxの選択還元浄化をより効率良く行うことができる。特に、後述するようなディーゼルエンジン、水素エンジン、又は、化石燃料と水素とのバイフューエルエンジンに対して、好適に採用される。   The NOx purification system of (3) further includes a hydrogen supply device that supplies hydrogen as a reducing agent into the exhaust gas in the NOx purification system described above. According to the invention of (3), a sufficient amount of hydrogen necessary for selective reduction of NOx can be secured, and selective reduction and purification of NOx can be performed more efficiently. In particular, it is preferably used for a diesel engine, a hydrogen engine, or a bi-fuel engine of fossil fuel and hydrogen as will be described later.

(4) 前記燃焼機関は、ガソリンエンジン、ディーゼルエンジン、水素エンジン、又は、化石燃料と水素とのバイフューエルエンジンである(1)から(3)いずれか記載のNOx浄化システム。   (4) The NOx purification system according to any one of (1) to (3), wherein the combustion engine is a gasoline engine, a diesel engine, a hydrogen engine, or a bi-fuel engine of fossil fuel and hydrogen.

(4)のNOx浄化システムは、ガソリンエンジン、ディーゼルエンジン、水素エンジン、又は、化石燃料と水素とのバイフューエルエンジンに適用されたものである。例えば、リーン運転時のガソリンエンジンやディーゼルエンジンから排出される排気ガス中にはNOxや酸素が多量に含まれているため、この排気ガス中に含まれるNOxの選択還元浄化に上記NOx浄化システムを適用することにより、上述の効果がより発揮される。   The NOx purification system (4) is applied to a gasoline engine, a diesel engine, a hydrogen engine, or a bi-fuel engine of fossil fuel and hydrogen. For example, since exhaust gas discharged from gasoline engines and diesel engines during lean operation contains a large amount of NOx and oxygen, the NOx purification system is used for selective reduction purification of NOx contained in the exhaust gas. By applying, the above-described effects are more exhibited.

例えばディーゼルエンジンにおいては、燃料である炭化水素を改質(その他の技術)して水素を製造し、この水素を排気ガス中に還元剤として供給(導入)することができる。また、水素エンジンや化石燃料と水素のバイフューエルエンジンにおいては、燃料である水素を排気ガス中に直接、還元剤として供給(導入)することができる。これら水素の供給には、上述の水素供給装置が利用される。従って、従来検討されているNOx吸蔵触媒システムやリッチスパイクといった複雑な制御が不要である。さらには、全運転領域をリーン領域で運転することができ、燃費の向上を図ることができる。   For example, in a diesel engine, hydrogen as a fuel can be reformed (other techniques) to produce hydrogen, and this hydrogen can be supplied (introduced) into the exhaust gas as a reducing agent. Further, in a hydrogen engine or a fossil fuel and hydrogen bi-fuel engine, hydrogen as a fuel can be supplied (introduced) directly into the exhaust gas as a reducing agent. The hydrogen supply apparatus described above is used for supplying these hydrogens. Therefore, complicated control such as a NOx occlusion catalyst system and a rich spike which have been conventionally studied is unnecessary. Furthermore, the entire driving region can be operated in the lean region, and fuel efficiency can be improved.

(5) 燃焼機関から排出される酸素過剰の排気ガス中に含まれるNOxを浄化するNOx浄化方法であって、前記排気ガスを第一NOx選択還元触媒に接触させた後、この第一NOx選択還元触媒よりも低い最高浄化率温度を有する第二NOx選択還元触媒に接触させることにより、前記排気ガス中に含まれる水素を還元剤として前記NOxを還元させるNOx浄化方法。   (5) A NOx purification method for purifying NOx contained in exhaust gas with excess oxygen discharged from a combustion engine, wherein the exhaust gas is brought into contact with a first NOx selective reduction catalyst, and then this first NOx selection is performed. A NOx purification method for reducing the NOx using hydrogen contained in the exhaust gas as a reducing agent by contacting a second NOx selective reduction catalyst having a maximum purification rate temperature lower than that of the reduction catalyst.

(6) 前記第一NOx選択還元触媒をPd/TiOとし、前記第二NOx選択還元触媒をPt/MFIとする(5)記載のNOx浄化方法。 (6) The NOx purification method according to (5), wherein the first NOx selective reduction catalyst is Pd / TiO 2 and the second NOx selective reduction catalyst is Pt / MFI.

本発明によれば、Hを還元剤として用いるNOx選択還元技術において、従来よりも広い浄化温度領域を有するNOx浄化システムを提供できる。 According to the present invention, in the NOx selective reduction technique H 2 is used as the reducing agent, it is possible to provide a NOx purification system having a wide purification temperature region than before.

以下、本発明の実施形態について図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

<NOx浄化システム>
本実施形態に係るNOx浄化システムの概略構成図を図1に示す。図1に示されるように、本実施形態に係るNOx浄化システム1は、燃焼機関2の排気通路(排気管3の後段)に設けられる。また、燃焼機関2から排出される酸素過剰の排気ガス中に含まれるNOxを、水素を還元剤として選択的に還元するNOx浄化装置10を備える。このNOx浄化装置10により浄化された排気ガスは、排出系14により排出され、適宜設けられる分析系15により排気ガス組成の分析が行われる。本実施形態に係るNOx浄化システム1は、バッチ式、連続式のいずれで行うことも可能であるが、燃焼機関2として自動車エンジンを想定した場合には、連続式であることが好ましい。なお、NOx浄化装置10に水素を供給する水素供給装置(図示せず)をさらに備えてもよい。
<NOx purification system>
FIG. 1 shows a schematic configuration diagram of the NOx purification system according to the present embodiment. As shown in FIG. 1, the NOx purification system 1 according to this embodiment is provided in an exhaust passage (a rear stage of the exhaust pipe 3) of the combustion engine 2. In addition, a NOx purification device 10 is provided that selectively reduces NOx contained in the oxygen-excess exhaust gas discharged from the combustion engine 2 using hydrogen as a reducing agent. The exhaust gas purified by the NOx purification device 10 is exhausted by the exhaust system 14, and the exhaust gas composition is analyzed by the analysis system 15 provided as appropriate. The NOx purification system 1 according to the present embodiment can be performed in either a batch type or a continuous type, but when an automobile engine is assumed as the combustion engine 2, it is preferably a continuous type. In addition, you may further provide the hydrogen supply apparatus (not shown) which supplies hydrogen to the NOx purification apparatus 10. FIG.

燃焼機関2は、燃焼により発生する熱エネルギーを機械的エネルギーに変換するものであり、外燃機関と内燃機関との2つに大きく分類される。外燃機関は、燃料を外部機関で燃焼させる装置システムであり、内燃機関は、燃料を機関内部で燃焼させる装置システムである。本実施形態に適用される燃焼機関2としてはこれらのうちいずれでもよく、特に限定はされないが、内燃機関、特に、ガソリンエンジン、ディーゼルエンジン、水素エンジン、化石燃料と水素のバイフューエルエンジン等に好ましく適用される。   The combustion engine 2 converts thermal energy generated by combustion into mechanical energy, and is roughly classified into two types: an external combustion engine and an internal combustion engine. The external combustion engine is a device system that burns fuel in an external engine, and the internal combustion engine is a device system that burns fuel inside the engine. Any of these may be used as the combustion engine 2 applied to the present embodiment, and the combustion engine 2 is not particularly limited, but is preferable for an internal combustion engine, particularly a gasoline engine, a diesel engine, a hydrogen engine, a fossil fuel and hydrogen bi-fuel engine, and the like. Applied.

これらの燃焼機関2から排出される排気ガスの成分は、窒素、酸素、一酸化炭素、二酸化炭素、水素、水、一酸化窒素、二酸化窒素、一酸化二窒素、及び、炭化水素類である。炭化水素類には、アルカン類、アルケン類、アルキン類、芳香族類、多環芳香族類等が含まれる。近年、ガソリンエンジンにおいては、二酸化炭素排出量の削減や燃費向上の観点から、リーンバーンエンジン等によるリーン雰囲気での燃焼が検討されており、リーン運転時に排出される排気ガスは、特にNOx濃度、酸素濃度が高い。また、ディーゼルエンジンもリーン雰囲気で燃焼が行われるため、同様にNOx濃度、酸素濃度が高い。このため、本実施形態に係るNOx浄化システム1は、リーン運転時のガソリンエンジンやディーゼルエンジンに好適に採用される。   The components of the exhaust gas discharged from these combustion engines 2 are nitrogen, oxygen, carbon monoxide, carbon dioxide, hydrogen, water, nitrogen monoxide, nitrogen dioxide, dinitrogen monoxide, and hydrocarbons. Hydrocarbons include alkanes, alkenes, alkynes, aromatics, polycyclic aromatics and the like. In recent years, in a gasoline engine, combustion in a lean atmosphere by a lean burn engine or the like has been studied from the viewpoint of reducing carbon dioxide emissions and improving fuel efficiency. Exhaust gas discharged during lean operation particularly has a NOx concentration, High oxygen concentration. Further, since the diesel engine is also burned in a lean atmosphere, the NOx concentration and the oxygen concentration are similarly high. For this reason, the NOx purification system 1 according to the present embodiment is suitably employed for a gasoline engine or a diesel engine during lean operation.

また、ディーゼルエンジンにおいては、燃料である炭化水素を改質(その他の技術)して水素を製造し、この水素を水素供給装置により排気ガス中に還元剤として供給(導入)することができる。また、水素エンジンや化石燃料と水素のバイフューエルエンジンにおいては、燃料である水素を排気ガス中に直接、水素供給装置により還元剤として供給(導入)することができる。なお、水素供給装置としては、排気ガス中に水素を供給し得るものであれば特に限定されない。   Further, in a diesel engine, hydrogen as a fuel can be reformed (other techniques) to produce hydrogen, and this hydrogen can be supplied (introduced) as a reducing agent into exhaust gas by a hydrogen supply device. Further, in a hydrogen engine or a fossil fuel and hydrogen bi-fuel engine, hydrogen as a fuel can be supplied (introduced) as a reducing agent directly into exhaust gas by a hydrogen supply device. The hydrogen supply device is not particularly limited as long as it can supply hydrogen into the exhaust gas.

<NOx浄化装置>
本実施形態のNOx浄化装置10は、上流側に設けられた第一NOx浄化部11と、下流側に設けられた第二NOx浄化部12とを備え、これら第一NOx浄化部11と第二NOx浄化部12とが、燃焼機関2の排気系において直列に配置されている。また、第一NOx浄化部11は、第一NOx選択還元触媒を備え、第二NOx浄化部12は、第一NOx選択還元触媒よりも低い最高浄化率温度を有する第二NOx選択還元触媒を備える。
<NOx purification device>
The NOx purification device 10 of the present embodiment includes a first NOx purification unit 11 provided on the upstream side and a second NOx purification unit 12 provided on the downstream side, and these first NOx purification unit 11 and the second NOx purification unit 11 are provided. The NOx purification unit 12 is arranged in series in the exhaust system of the combustion engine 2. The first NOx purification unit 11 includes a first NOx selective reduction catalyst, and the second NOx purification unit 12 includes a second NOx selective reduction catalyst having a maximum purification rate temperature lower than that of the first NOx selective reduction catalyst. .

[第一NOx選択還元触媒]
第一NOx浄化部に備えられる第一NOx選択還元触媒としては、水素を還元剤とするNOx選択還元触媒であれば特に限定されず、従来公知のものが用いられる。例えば、Pd、Rh、Ir等を任意の担体に担持させたものが挙げられる。但し、後述する第二NOx選択還元触媒よりも高い最高浄化率温度を有するものでなければならない。このため、従来公知のNOx選択還元触媒の中から、第二NOx選択還元触媒との関係で相対的に選択される。第二NOx選択還元触媒としてPt/MFIを選択した場合にあっては、Pd/TiOが好ましく用いられる。
[First NOx selective reduction catalyst]
The first NOx selective reduction catalyst provided in the first NOx purification unit is not particularly limited as long as it is a NOx selective reduction catalyst using hydrogen as a reducing agent, and conventionally known ones are used. For example, those in which Pd, Rh, Ir, etc. are supported on an arbitrary carrier can be mentioned. However, it must have a higher maximum purification rate temperature than a second NOx selective reduction catalyst described later. For this reason, it selects relatively in relation to a 2nd NOx selective reduction catalyst from a conventionally well-known NOx selective reduction catalyst. When Pt / MFI is selected as the second NOx selective reduction catalyst, Pd / TiO 2 is preferably used.

なお、本発明における「最高浄化率温度」とは、NOx選択還元触媒が最高浄化率を示す時の温度を意味する。具体的には、NOx浄化率と温度の関係をプロットしたときのピークトップの温度である。   The “maximum purification rate temperature” in the present invention means the temperature at which the NOx selective reduction catalyst exhibits the maximum purification rate. Specifically, it is the temperature at the peak top when the relationship between the NOx purification rate and temperature is plotted.

[第二NOx選択還元触媒]
第二NOx浄化部に備えられる第二NOx選択還元触媒としては、水素を還元剤とするNOx選択還元触媒であれば特に限定されず、従来公知のものが用いられる。例えば、アルミナ、シリカ、ゼオライト等の酸化物担体にPtを担持したものが挙げられる。但し、上述の第一NOx選択還元触媒よりも低い最高浄化率温度を有するものでなければならない。このため、従来公知のNOx選択還元触媒の中から、第一NOx選択還元触媒との関係で相対的に選択される。例えば、第一NOx選択還元触媒としてPd/TiOを選択した場合にあっては、Pt/MFIが好ましく用いられる。
[Second NOx selective reduction catalyst]
The second NOx selective reduction catalyst provided in the second NOx purification unit is not particularly limited as long as it is a NOx selective reduction catalyst using hydrogen as a reducing agent, and a conventionally known one is used. Examples thereof include those in which Pt is supported on an oxide carrier such as alumina, silica, or zeolite. However, it must have a maximum purification rate temperature lower than that of the first NOx selective reduction catalyst described above. For this reason, it selects relatively from the conventionally well-known NOx selective reduction catalyst in relation to the first NOx selective reduction catalyst. For example, when Pd / TiO 2 is selected as the first NOx selective reduction catalyst, Pt / MFI is preferably used.

上記第一NOx選択還元触媒及び第二NOx選択還元触媒の使用量は、特に限定されず、処理すべき排気ガスの組成、量に応じて適宜選択される。両触媒の量比も特に限定されず、処理すべき排気ガスの組成、量に応じて適宜選択される。   The usage amounts of the first NOx selective reduction catalyst and the second NOx selective reduction catalyst are not particularly limited, and are appropriately selected according to the composition and amount of the exhaust gas to be treated. The amount ratio of the two catalysts is not particularly limited, and is appropriately selected according to the composition and amount of the exhaust gas to be treated.

また、上記第一NOx選択還元触媒及び第二NOx選択還元触媒は、前者が上流側に、後者が下流側に配置されていればよく、その担持方法等は特に限定されない。例えば、これらの触媒のスラリーに、排気ガスが流通可能な複数の細孔を有する支持体を含浸させることにより、支持体の細孔の内壁面に、上記触媒が層状に吸着、担持されたもの等が挙げられる。支持体の形状としては、排気ガスが流通し得る空間を有していれば特に限定されないが、排気ガスとの接触面積や機械的強度を考慮すると、複数の細孔が形成されたハニカム状のものが好ましく用いられる。また、支持体の材質としては、例えば、コージェライト、ムライト、シリコンカーバイド(SiC)等の多孔質担体やステンレス等の金属が挙げられる。そして、支持体等に第一NOx選択還元触媒が担持されて形成された第一NOx浄化部11と、支持体等に第二NOx選択還元触媒が担持されて形成された第二NOx浄化部12とを、上流側から順次、直列に配置させることにより、本実施形態のNOx浄化装置が構成される。   Further, the first NOx selective reduction catalyst and the second NOx selective reduction catalyst are not particularly limited as long as the former is disposed on the upstream side and the latter is disposed on the downstream side. For example, the catalyst is adsorbed and supported in layers on the inner wall surface of the pores of the support by impregnating the catalyst slurry with a support having a plurality of pores through which exhaust gas can flow. Etc. The shape of the support is not particularly limited as long as it has a space through which exhaust gas can flow, but considering the contact area with the exhaust gas and the mechanical strength, the shape of the honeycomb formed with a plurality of pores Those are preferably used. Examples of the material for the support include porous carriers such as cordierite, mullite, and silicon carbide (SiC), and metals such as stainless steel. The first NOx purification unit 11 formed by supporting the first NOx selective reduction catalyst on the support or the like, and the second NOx purification unit 12 formed by supporting the second NOx selective reduction catalyst on the support or the like. Are sequentially arranged in series from the upstream side to constitute the NOx purification device of the present embodiment.

以下、本発明の実施例について詳細に説明するが、本発明は以下の実施例に限定されるものではない。   Examples of the present invention will be described in detail below, but the present invention is not limited to the following examples.

<実施例1>
[触媒調製]
〔第一NOx選択還元触媒〕
第一NOx選択還元触媒として、Pd/TiO触媒を調製した。具体的には、TiOにPd(NO前駆体をPdが1質量%となるように含浸担持させた。乾燥後、Air雰囲気下、500℃で5時間焼成し、触媒粉末とした。この触媒粉末をスラリーとし、コージェライトハニカム(直径25mm、長さ30mm)に触媒が100g/L(1.5g)となるように担持した。乾燥後、Air雰囲気下、500℃で5時間焼成し、第一ハニカム触媒とした。
<Example 1>
[Catalyst preparation]
[First NOx selective reduction catalyst]
A Pd / TiO 2 catalyst was prepared as the first NOx selective reduction catalyst. Specifically, Pd (NO 3 ) 3 precursor was impregnated and supported on TiO 2 so that Pd was 1% by mass. After drying, it was calcined at 500 ° C. for 5 hours in an Air atmosphere to obtain a catalyst powder. This catalyst powder was used as a slurry and supported on a cordierite honeycomb (diameter 25 mm, length 30 mm) so that the catalyst was 100 g / L (1.5 g). After drying, it was fired at 500 ° C. for 5 hours in an Air atmosphere to obtain a first honeycomb catalyst.

〔第二NOx選択還元触媒〕
第二NOx選択還元触媒として、Pt/MFI触媒を調製した。具体的には、NH型MFIゼオライトに〔Pt(NH〕(OH)前駆体をPtが1質量%となるようイオン交換し、洗浄、乾燥した。次いで、Air雰囲気下、500℃で3時間焼成し、触媒粉末とした。この触媒粉末をスラリーとし、コージェライトハニカム(直径25mm、長さ30mm)に触媒が100g/L(1.5g)となるように担持した。乾燥後、Air雰囲気下、500℃で5時間焼成し、第二ハニカム触媒とした。
[Second NOx selective reduction catalyst]
A Pt / MFI catalyst was prepared as a second NOx selective reduction catalyst. Specifically, [Pt (NH 3 ) 4 ] (OH) 2 precursor was ion-exchanged into NH 3 type MFI zeolite so that Pt was 1% by mass, washed and dried. Next, it was calcined at 500 ° C. for 3 hours in an Air atmosphere to obtain a catalyst powder. This catalyst powder was used as a slurry and supported on a cordierite honeycomb (diameter 25 mm, length 30 mm) so that the catalyst was 100 g / L (1.5 g). After drying, it was fired at 500 ° C. for 5 hours in an Air atmosphere to obtain a second honeycomb catalyst.

〔反応管の作製〕
所定量の上記第一ハニカム触媒を、内径30mm、長さ70mmの管の一方側に充填した。次いで、他方側に上記第二ハニカム触媒を、第一ハニカム触媒と同量充填し、第二ハニカム触媒(Pd/TiO)と第二ハニカム触媒(Pt/MFI)とが直列に配置された反応管を作製した。
(Production of reaction tube)
A predetermined amount of the first honeycomb catalyst was filled on one side of a tube having an inner diameter of 30 mm and a length of 70 mm. Next, the second honeycomb catalyst is filled on the other side in the same amount as the first honeycomb catalyst, and the second honeycomb catalyst (Pd / TiO 2 ) and the second honeycomb catalyst (Pt / MFI) are arranged in series. A tube was made.

[NOx浄化性能試験]
第一ハニカム触媒及び第二ハニカム触媒が充填された反応管に、表1に示すガス組成の排気モデルガス(NO:500ppm、H:6400ppm、O:10%、バランスガス:N)を、第一ハニカム触媒側から流速25L/minで流通させた(図2参照)。このときの各温度における触媒活性(NO浄化率)を、排ガス分析計(堀場製作所製「MEXA−9100D」)により測定した。なお、測定温度は50℃〜450℃とした。
[NOx purification performance test]
An exhaust model gas (NO: 500 ppm, H 2 : 6400 ppm, O 2 : 10%, balance gas: N 2 ) having the gas composition shown in Table 1 is charged into the reaction tube filled with the first honeycomb catalyst and the second honeycomb catalyst. Then, it was circulated at a flow rate of 25 L / min from the first honeycomb catalyst side (see FIG. 2). The catalyst activity (NO purification rate) at each temperature at this time was measured with an exhaust gas analyzer (“MEXA-9100D” manufactured by Horiba, Ltd.). In addition, measurement temperature was 50 to 450 degreeC.

Figure 2007332885
Figure 2007332885

<比較例1>
上記第二ハニカム触媒のみを、実施例1で用いたものと同様の管内全体に充填した以外は、実施例1と同様にしてNOx浄化性能試験を実施した。
<Comparative Example 1>
A NOx purification performance test was carried out in the same manner as in Example 1 except that only the second honeycomb catalyst was filled in the entire pipe similar to that used in Example 1.

<比較例2>
上記第一ハニカム触媒のみを、実施例1で用いたものと同様の管内全体に充填した以外は、実施例1と同様にしてNOx浄化性能試験を実施した。
<Comparative example 2>
A NOx purification performance test was carried out in the same manner as in Example 1 except that only the first honeycomb catalyst was filled in the entire tube similar to that used in Example 1.

<比較例3>
実施例1で作製した反応管の第二ハニカム触媒側から排気モデルガスを流通させた以外は、実施例1と同様にしてNOx浄化性能試験を実施した(図3参照)。
<Comparative Example 3>
A NOx purification performance test was carried out in the same manner as in Example 1 except that the exhaust model gas was circulated from the second honeycomb catalyst side of the reaction tube produced in Example 1 (see FIG. 3).

<NOx浄化性能試験結果>
図4〜図7に、本実施例及び比較例のNO浄化率と温度との関係を示す。横軸は触媒入口における排気ガス温度、縦軸はNOx(NO)浄化率をそれぞれ示す。図5は、比較例1のNOx浄化率と温度との関係を示したものである。図5に示されるように、効率良くNOxを浄化できる温度領域は100℃〜200℃であり、最高浄化率温度はおよそ140℃であった。また、図6は、比較例2のNOx浄化率と温度との関係を示したものである。図6に示されるように、効率良くNOxを浄化できる温度領域は230℃〜320℃であり、最高浄化率温度はおよそ260℃であった。これに対して、図4は、実施例1のNOx浄化率と温度との関係を示したものである。図4に示されるように、効率良くNOxを浄化できる温度領域は100℃〜320℃であり、実施例1は、比較例1及び2に比して浄化可能な温度領域が大きく拡大(向上)していることが確認された。
<NOx purification performance test results>
4 to 7 show the relationship between the NO purification rate and the temperature of this example and the comparative example. The horizontal axis represents the exhaust gas temperature at the catalyst inlet, and the vertical axis represents the NOx (NO) purification rate. FIG. 5 shows the relationship between the NOx purification rate of Comparative Example 1 and the temperature. As shown in FIG. 5, the temperature range in which NOx can be efficiently purified is 100 ° C. to 200 ° C., and the maximum purification rate temperature is about 140 ° C. FIG. 6 shows the relationship between the NOx purification rate of Comparative Example 2 and the temperature. As shown in FIG. 6, the temperature range in which NOx can be efficiently purified was 230 ° C. to 320 ° C., and the maximum purification rate temperature was about 260 ° C. On the other hand, FIG. 4 shows the relationship between the NOx purification rate and temperature in Example 1. As shown in FIG. 4, the temperature range in which NOx can be efficiently purified is 100 ° C. to 320 ° C., and in Example 1, the temperature range that can be purified is greatly expanded (improved) compared to Comparative Examples 1 and 2. It was confirmed that

また、図7は、比較例3のNOx浄化率と温度との関係を示したものである。図7に示されるように、効率良くNOxを浄化できる温度領域は100℃〜200℃であり、実施例1に比して温度領域が狭く、比較例1と同レベルの温度領域しか有していなかった。この結果から、2種類のNOx選択還元触媒を組み合わせて併用する場合には、それらの配置順序が大きくNOx浄化性能に影響を与えることが分かった。以上の本実施例と比較例との比較結果より、本発明の妥当性が実証された。   FIG. 7 shows the relationship between the NOx purification rate of Comparative Example 3 and the temperature. As shown in FIG. 7, the temperature range in which NOx can be efficiently purified is 100 ° C. to 200 ° C., the temperature range is narrower than that of Example 1, and has only the same temperature range as that of Comparative Example 1. There wasn't. From this result, it was found that when two types of NOx selective reduction catalysts are used in combination, their arrangement order greatly affects the NOx purification performance. The validity of the present invention was proved from the comparison results of the present example and the comparative example.

本実施形態に係るNOx浄化システムの概略構成図である。It is a schematic block diagram of the NOx purification system which concerns on this embodiment. 実施例1の触媒の配置を示す図である。FIG. 3 is a diagram showing the arrangement of the catalyst of Example 1. 比較例3の触媒の配置を示す図である。FIG. 4 is a diagram showing the arrangement of a catalyst of Comparative Example 3. 実施例1のNO浄化率と温度の関係を示す図である。It is a figure which shows the NO purification rate of Example 1, and the relationship of temperature. 比較例1のNO浄化率と温度の関係を示す図である。It is a figure which shows the relationship between NO purification rate and temperature of the comparative example 1. 比較例2のNO浄化率と温度の関係を示す図である。It is a figure which shows the NO purification rate of the comparative example 2, and the relationship of temperature. 比較例3のNO浄化率と温度の関係を示す図である。It is a figure which shows the relationship between the NO purification rate of Comparative Example 3, and temperature.

符号の説明Explanation of symbols

1 NOx浄化システム
2 燃焼機関
3 排気管
10 NOx浄化装置
11 第一NOx浄化部
12 第二NOx浄化部
14 排出系
15 分析系
DESCRIPTION OF SYMBOLS 1 NOx purification system 2 Combustion engine 3 Exhaust pipe 10 NOx purification apparatus 11 1st NOx purification part 12 2nd NOx purification part 14 Exhaust system 15 Analysis system

Claims (6)

燃焼機関の排気通路に設けられ、前記燃焼機関から排出される酸素過剰の排気ガス中に含まれるNOxを浄化するNOx浄化システムであって、
前記排気ガス中に含まれる水素を還元剤として前記NOxを選択的に還元するNOx浄化装置を備え、
前記NOx浄化装置は、上流側に設けられた第一NOx選択還元触媒と、下流側に設けられ、前記第一NOx選択還元触媒よりも低い最高浄化率温度を有する第二NOx選択還元触媒と、を備えるNOx浄化システム。
A NOx purification system that is provided in an exhaust passage of a combustion engine and purifies NOx contained in exhaust gas having excess oxygen exhausted from the combustion engine,
A NOx purification device that selectively reduces the NOx using hydrogen contained in the exhaust gas as a reducing agent;
The NOx purification device includes a first NOx selective reduction catalyst provided on the upstream side, a second NOx selective reduction catalyst provided on the downstream side and having a maximum purification rate temperature lower than that of the first NOx selective reduction catalyst; NOx purification system.
前記第一NOx選択還元触媒はPd/TiOであり、前記第二NOx選択還元触媒はPt/MFIである請求項1記載のNOx浄化システム。 2. The NOx purification system according to claim 1, wherein the first NOx selective reduction catalyst is Pd / TiO 2 , and the second NOx selective reduction catalyst is Pt / MFI. 前記排気ガス中に水素を供給する水素供給装置をさらに備える請求項1又は2記載のNOx浄化システム。   The NOx purification system according to claim 1, further comprising a hydrogen supply device that supplies hydrogen into the exhaust gas. 前記燃焼機関は、ガソリンエンジン、ディーゼルエンジン、水素エンジン、又は、化石燃料と水素とのバイフューエルエンジンである請求項1から3いずれか記載のNOx浄化システム。   The NOx purification system according to any one of claims 1 to 3, wherein the combustion engine is a gasoline engine, a diesel engine, a hydrogen engine, or a bi-fuel engine of fossil fuel and hydrogen. 燃焼機関から排出される酸素過剰の排気ガス中に含まれるNOxを浄化するNOx浄化方法であって、
前記排気ガスを第一NOx選択還元触媒に接触させた後、この第一NOx選択還元触媒よりも低い最高浄化率温度を有する第二NOx選択還元触媒に接触させることにより、前記排気ガス中に含まれる水素を還元剤として前記NOxを還元させるNOx浄化方法。
A NOx purification method for purifying NOx contained in exhaust gas having excess oxygen discharged from a combustion engine,
After the exhaust gas is brought into contact with the first NOx selective reduction catalyst, the exhaust gas is contained in the exhaust gas by being brought into contact with a second NOx selective reduction catalyst having a highest purification rate temperature lower than that of the first NOx selective reduction catalyst. NOx purification method of reducing the NOx using hydrogen as a reducing agent.
前記第一NOx選択還元触媒をPd/TiOとし、前記第二NOx選択還元触媒をPt/MFIとする請求項5記載のNOx浄化方法。 Wherein the first NOx selective reduction catalyst and Pd / TiO 2, NOx purification method according to claim 5, wherein the second NOx selective reduction catalyst and Pt / MFI.
JP2006166723A 2006-06-15 2006-06-15 NOx purification system and NOx purification method Expired - Fee Related JP4704964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006166723A JP4704964B2 (en) 2006-06-15 2006-06-15 NOx purification system and NOx purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006166723A JP4704964B2 (en) 2006-06-15 2006-06-15 NOx purification system and NOx purification method

Publications (2)

Publication Number Publication Date
JP2007332885A true JP2007332885A (en) 2007-12-27
JP4704964B2 JP4704964B2 (en) 2011-06-22

Family

ID=38932587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006166723A Expired - Fee Related JP4704964B2 (en) 2006-06-15 2006-06-15 NOx purification system and NOx purification method

Country Status (1)

Country Link
JP (1) JP4704964B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012082727A (en) * 2010-10-08 2012-04-26 Hino Motors Ltd Exhaust gas postprocessing device
JP2012097724A (en) * 2010-10-08 2012-05-24 Hino Motors Ltd Exhaust gas cleaning device
JP2013543947A (en) * 2010-11-11 2013-12-09 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Exhaust gas NOx treatment using 3 continuous SCR catalyst compartments
JP2019190423A (en) * 2018-04-27 2019-10-31 いすゞ自動車株式会社 Exhaust emission control device and vehicle

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05168856A (en) * 1991-05-24 1993-07-02 Toyota Central Res & Dev Lab Inc Method for decreasing nitrogen oxide in internal combustion engine and equipment therefor
JPH07102948A (en) * 1993-10-04 1995-04-18 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JPH09150036A (en) * 1995-11-29 1997-06-10 Hino Motors Ltd Exhaust gas purifying apparatus
JPH11336530A (en) * 1998-05-21 1999-12-07 Nissan Motor Co Ltd Exhaust emission control device for diesel engine
JP2000027695A (en) * 1998-07-09 2000-01-25 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2000220437A (en) * 1999-02-02 2000-08-08 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2000312827A (en) * 1999-04-28 2000-11-14 Toyota Central Res & Dev Lab Inc Exhaust gas cleaning catalyst
JP2001003794A (en) * 1999-06-17 2001-01-09 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2001170446A (en) * 1999-11-10 2001-06-26 Inst Fr Petrole Nitrogen oxide removing method using ilmenite material
JP2001198440A (en) * 1999-11-10 2001-07-24 Inst Fr Petrole Nitrogen oxide removal method
JP2002013412A (en) * 2000-06-29 2002-01-18 Nissan Motor Co Ltd Exhaust emission control system
JP2002054427A (en) * 2000-08-11 2002-02-20 Toyota Central Res & Dev Lab Inc Reformed gas addition control device, and method of controlling addition of reformed gas
JP2002301364A (en) * 2000-11-10 2002-10-15 Inst Fr Petrole Material with channel structure for eliminating nitrogen oxides
WO2005005027A1 (en) * 2003-07-14 2005-01-20 Alpps Fuel Cell Systems Gmbh METHOD FOR THE CATALYTIC REDUCTION OF NOx IN EXHAUST GASES OF A THERMAL ENGINE AND A DEVICE FOR CARRYING OUT SAID METHOD
JP2006057578A (en) * 2004-08-23 2006-03-02 Hino Motors Ltd Exhaust emission control device

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05168856A (en) * 1991-05-24 1993-07-02 Toyota Central Res & Dev Lab Inc Method for decreasing nitrogen oxide in internal combustion engine and equipment therefor
JPH07102948A (en) * 1993-10-04 1995-04-18 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JPH09150036A (en) * 1995-11-29 1997-06-10 Hino Motors Ltd Exhaust gas purifying apparatus
JPH11336530A (en) * 1998-05-21 1999-12-07 Nissan Motor Co Ltd Exhaust emission control device for diesel engine
JP2000027695A (en) * 1998-07-09 2000-01-25 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2000220437A (en) * 1999-02-02 2000-08-08 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2000312827A (en) * 1999-04-28 2000-11-14 Toyota Central Res & Dev Lab Inc Exhaust gas cleaning catalyst
JP2001003794A (en) * 1999-06-17 2001-01-09 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2001170446A (en) * 1999-11-10 2001-06-26 Inst Fr Petrole Nitrogen oxide removing method using ilmenite material
JP2001198440A (en) * 1999-11-10 2001-07-24 Inst Fr Petrole Nitrogen oxide removal method
JP2002013412A (en) * 2000-06-29 2002-01-18 Nissan Motor Co Ltd Exhaust emission control system
JP2002054427A (en) * 2000-08-11 2002-02-20 Toyota Central Res & Dev Lab Inc Reformed gas addition control device, and method of controlling addition of reformed gas
JP2002301364A (en) * 2000-11-10 2002-10-15 Inst Fr Petrole Material with channel structure for eliminating nitrogen oxides
WO2005005027A1 (en) * 2003-07-14 2005-01-20 Alpps Fuel Cell Systems Gmbh METHOD FOR THE CATALYTIC REDUCTION OF NOx IN EXHAUST GASES OF A THERMAL ENGINE AND A DEVICE FOR CARRYING OUT SAID METHOD
JP2006057578A (en) * 2004-08-23 2006-03-02 Hino Motors Ltd Exhaust emission control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012082727A (en) * 2010-10-08 2012-04-26 Hino Motors Ltd Exhaust gas postprocessing device
JP2012097724A (en) * 2010-10-08 2012-05-24 Hino Motors Ltd Exhaust gas cleaning device
JP2013543947A (en) * 2010-11-11 2013-12-09 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Exhaust gas NOx treatment using 3 continuous SCR catalyst compartments
JP2019190423A (en) * 2018-04-27 2019-10-31 いすゞ自動車株式会社 Exhaust emission control device and vehicle

Also Published As

Publication number Publication date
JP4704964B2 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
US8105559B2 (en) Thermally regenerable nitric oxide adsorbent
US8062601B2 (en) Emission SCR NOX aftertreatment system having reduced SO3 generation and improved durability
BR112013005816B1 (en) CATALYST, METHOD FOR GENERATING HEAT FOR SOOT REMOVAL AND REDUCING NH3 EXHAUST IN AN EXHAUST SYSTEM, AND EXHAUST TREATMENT SYSTEM
JP2009165904A (en) Exhaust gas purifier
JP2001170454A (en) Exhaust gas cleaning system and exhaust gas cleaning catalyst
JP2004351243A (en) System for purifying exhaust gas
JP4704964B2 (en) NOx purification system and NOx purification method
JP6107487B2 (en) N2O decomposition catalyst and N2O-containing gas decomposition method using the same
JP2008238069A (en) Purification device for exhaust gas, purification method for exhaust gas, and purification catalyst
JP5094199B2 (en) Exhaust gas purification device
JP2007239616A (en) Exhaust emission control device, exhaust emission control method, and purification catalyst
JP2003290629A (en) Cleaning system for exhaust gas
WO2014125934A1 (en) Exhaust gas purifying apparatus, exhaust gas purifying method and exhaust gas purifying catalyst for internal combustion engines
JP2005081250A (en) Exhaust emission control device
JP2002168117A (en) Exhaust emission control system
JP4290391B2 (en) Method and apparatus for catalytic removal of nitrogen oxides
JPH09103651A (en) Method and apparatus for purifying exhaust gas
JP6325042B2 (en) Exhaust gas purification device for heat engine
KR100622027B1 (en) Mixed-Metal Oxide de-NOx Catalyst Containing Highly Dispersed Noble Metals and Preparation thereof
JP2004211566A (en) Emission control system and emission control method
JP2010240533A (en) Method of cleaning nitrogen oxide
JP2013244483A (en) Exhaust gas purifying apparatus of thermal engine and exhaust gas purifying method
JP2004211565A (en) Emission control system and emission control method
JPH11294150A (en) Exhaust emission control device and its use
JP2000312827A (en) Exhaust gas cleaning catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110310

LAPS Cancellation because of no payment of annual fees