JP2007327528A - Hydrodynamic bearing device manufacturing method - Google Patents

Hydrodynamic bearing device manufacturing method Download PDF

Info

Publication number
JP2007327528A
JP2007327528A JP2006157878A JP2006157878A JP2007327528A JP 2007327528 A JP2007327528 A JP 2007327528A JP 2006157878 A JP2006157878 A JP 2006157878A JP 2006157878 A JP2006157878 A JP 2006157878A JP 2007327528 A JP2007327528 A JP 2007327528A
Authority
JP
Japan
Prior art keywords
lubricating fluid
seal portion
bearing device
gas
liquid interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006157878A
Other languages
Japanese (ja)
Other versions
JP4811141B2 (en
Inventor
Yoichi Sekii
洋一 関井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Corp
Original Assignee
Nidec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Corp filed Critical Nidec Corp
Priority to JP2006157878A priority Critical patent/JP4811141B2/en
Publication of JP2007327528A publication Critical patent/JP2007327528A/en
Application granted granted Critical
Publication of JP4811141B2 publication Critical patent/JP4811141B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Rotational Drive Of Disk (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for easily and precisely determining the amount of lubricating fluid filled in a hydrodynamic bearing device. <P>SOLUTION: The lubricating fluid filled in the hydrodynamic bearing device is drifted to either an upper side seal portion or an lower side seal portion. At the seal portion where the curvature of an air-liquid interface as a boundary between the lubricating fluid and outside air is smaller, the position of the air-liquid interface is measured to determine the amount of the lubricating fluid supplied to a bearing gap in the hydrodynamic bearing device. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、記録ディスク駆動装置の記録ディスクを回転駆動するスピンドルモータなどに適用可能な、動圧軸受装置の製造方法に関する。   The present invention relates to a method of manufacturing a hydrodynamic bearing device that can be applied to a spindle motor that rotationally drives a recording disk of a recording disk drive device.

近年、ハードディスクドライブなどの記録ディスク駆動装置に搭載される、記録ディスク駆動用のスピンドルモータの軸受として、流体動圧軸受装置が多く用いられている。このような動圧軸受装置においては、軸受空間内に充填された潤滑流体の量が最適に管理される必要がある。例えば、十分な潤滑流体が動圧軸受部に供給されていないと、動圧特性が低下し、軸受寿命が短縮化されてしまう。また、潤滑流体を過剰に供給してしまうと、動圧軸受装置から潤滑流体が漏れ出し、記録ディスク駆動装置の他の部品に悪影響を及ぼす可能性がある。   In recent years, fluid dynamic pressure bearing devices are often used as bearings for spindle motors for driving recording disks mounted on recording disk driving apparatuses such as hard disk drives. In such a hydrodynamic bearing device, it is necessary to optimally manage the amount of lubricating fluid filled in the bearing space. For example, if sufficient lubricating fluid is not supplied to the hydrodynamic bearing portion, the hydrodynamic characteristics are deteriorated and the bearing life is shortened. If the lubricating fluid is excessively supplied, the lubricating fluid leaks from the hydrodynamic bearing device, which may adversely affect other parts of the recording disk drive device.

このようなスピンドルモータの動圧軸受装置において、軸受空間内に充填された潤滑流体の量を管理する方法として、潤滑流体の充填前と充填後の重量の変化を測定する方法がある。しかしながら、この方法では軸受装置に付着した潤滑流体等の重量も加味されてしまう。さらに、個々の軸受装置の製造誤差やばらつきにより、軸受空間内の容積が変化してしまう場合には、この方法を適用することが難しい。   In such a dynamic pressure bearing device for a spindle motor, as a method for managing the amount of lubricating fluid filled in the bearing space, there is a method for measuring a change in weight before and after filling the lubricating fluid. However, this method also takes into account the weight of the lubricating fluid or the like adhering to the bearing device. Furthermore, it is difficult to apply this method when the volume in the bearing space changes due to manufacturing errors and variations of individual bearing devices.

また、動圧軸受装置に充填された潤滑流体と外気との界面の高さを測定し、微小間隙などの軸受空間内に充填された潤滑流体の分量を測定する方法がある(このような方法として、例えば特許文献1参照)。しかしながら、気液界面はメニスカス状となっており、さらに気液界面の面積が非常に小さく、気液界面の高さの変化量はごく微量であるために、非常に正確な測定技術が要求される。   Also, there is a method for measuring the amount of the lubricating fluid filled in the bearing space such as a minute gap by measuring the height of the interface between the lubricating fluid filled in the hydrodynamic bearing device and the outside air (such a method). For example, see Patent Document 1). However, the gas-liquid interface has a meniscus shape, the area of the gas-liquid interface is very small, and the amount of change in the height of the gas-liquid interface is very small, so a very accurate measurement technique is required. The

特開2001−090733号公報JP 2001-090733 A

本発明は、上記のような問題に鑑みて行われるものであり、動圧軸受装置に充填された潤滑流体の分量を容易かつ精密に判定し、信頼性および耐久性の高い動圧軸受装置、さらに、信頼性および耐久性の高いスピンドルモータおよび記録ディスク駆動装置を提供することを目的とする。   The present invention is made in view of the above problems, and determines the amount of the lubricating fluid filled in the hydrodynamic bearing device easily and precisely, and the hydrodynamic bearing device has high reliability and durability. It is another object of the present invention to provide a spindle motor and a recording disk drive device having high reliability and durability.

本発明の請求項1の発明によれば、本発明の動圧軸受装置を製造する方法は、回転部と、前記回転部の周面に対して微小間隙を介して対向する軸受面を有し、前記回転部を中心軸の周囲に回転可能に支持する、固定部と、前記微小間隙の軸方向上側に連通し、その端部に向けて間隙が拡大する形状を有する、上側テーパシール部と、前記微小間隙の軸方向下側に連通し、その端部に向けて間隙が拡大する形状を有する、下側テーパシール部と、前記微小間隙並びに前記上側及び下側テーパシール部の一部を満たす、潤滑流体と、からなる、動圧軸受装置を製造する方法であって、前記上側若しくは下側テーパシール部に前記潤滑流体を供給して、前記微小間隙並びに前記上側及び下側テーパシール部の一部を潤滑流体で満たし、前記上側及び下側テーパシール部に潤滑流体と外気との間に気液界面を形成させる、潤滑流体供給工程と、潤滑流体に外力を作用させて、前記二つの界面のうち、一方側の界面の曲率が他方側の界面の曲率よりも小さな状態とする、潤滑流体の偏移工程と、曲率の小さな側の界面の位置を測定することにより、前記潤滑流体の供給量を判断する、判定工程と、からなることを特徴とする。   According to the invention of claim 1 of the present invention, a method of manufacturing a hydrodynamic bearing device of the present invention includes a rotating portion and a bearing surface that faces the circumferential surface of the rotating portion via a minute gap. A fixed portion that rotatably supports the rotating portion around a central axis, and an upper tapered seal portion that communicates with an axially upper side of the minute gap and has a shape in which the gap expands toward an end portion thereof. A lower taper seal portion that communicates with the axially lower side of the minute gap and has a shape in which the gap expands toward an end thereof, and the minute gap and a part of the upper and lower taper seal portions. A method of manufacturing a hydrodynamic bearing device, comprising: a lubricating fluid that fills the upper or lower tapered seal portion, supplying the lubricating fluid to the upper or lower tapered seal portion, and the upper and lower tapered seal portions Is filled with a lubricating fluid, the upper side and Forming a gas-liquid interface between the lubricating fluid and the outside air in the side taper seal portion, and applying an external force to the lubricating fluid, and the curvature of one of the two interfaces is the other of the two interfaces And a determination step of determining the amount of supply of the lubricating fluid by measuring the position of the interface on the side of the small curvature by making the state smaller than the curvature of the side interface. It is characterized by that.

本発明の請求項2の発明によれば、本発明の動圧軸受装置を製造する方法は、回転部と、前記回転部の周面に対して微小間隙を介して対向する軸受面を有し、前記回転部を中心軸の周囲に回転可能に支持する、固定部と、前記微小間隙の軸方向上側に連通し、その端部に向けて間隙が拡大する形状を有する、上側テーパシール部と、前記微小間隙の軸方向下側に連通し、その端部に向けて間隙が拡大する形状を有する、下側テーパシール部と、前記微小間隙並びに前記上側及び下側テーパシール部の一部を満たす、潤滑流体と、からなり、前記上側シール部または前記下側シール部の一方は、他方よりもテーパ角が小さくなるように形成されている、動圧軸受装置の製造方法であって、前記上側若しくは下側テーパシール部に前記潤滑流体を供給して、前記微小間隙並びに前記上側及び下側テーパシール部の一部を潤滑流体で満たし、前記上側及び下側テーパシール部に潤滑流体と外気との間に気液界面を形成させる、潤滑流体供給工程と、前記上側若しくは下側テーパシール部のうち、前記テーパ角が小さくされた一方側において、気液界面の位置を測定することにより、前記潤滑流体の供給量を判断する、判定工程と、からなることを特徴とする。   According to the invention of claim 2 of the present invention, the method for manufacturing the hydrodynamic bearing device of the present invention has a rotating part and a bearing surface facing the circumferential surface of the rotating part via a minute gap. A fixed portion that rotatably supports the rotating portion around a central axis, and an upper tapered seal portion that communicates with an axially upper side of the minute gap and has a shape in which the gap expands toward an end portion thereof. A lower taper seal portion that communicates with the axially lower side of the minute gap and has a shape in which the gap expands toward an end thereof, and the minute gap and a part of the upper and lower taper seal portions. A fluid dynamic bearing device, wherein one of the upper seal portion and the lower seal portion is formed to have a smaller taper angle than the other, The lubricating fluid is applied to the upper or lower taper seal portion. Lubrication, filling the minute gap and part of the upper and lower taper seal portions with a lubricating fluid, and forming a gas-liquid interface between the lubricating fluid and the outside air in the upper and lower taper seal portions. A fluid supply step and a determination step of determining a supply amount of the lubricating fluid by measuring a position of a gas-liquid interface on one side of the upper or lower tapered seal portion where the taper angle is reduced. It is characterized by comprising.

本発明の請求項3によれば、請求項2に記載の本発明の動圧軸受装置を製造する方法は、さらに前記一方側へと前記潤滑流体を偏移させ、前記潤滑流体と外気との気液界面の位置を判定し、前記潤滑流体の供給量を判断することを特徴とする。   According to claim 3 of the present invention, in the method for manufacturing the hydrodynamic bearing device according to claim 2 of the present invention, the lubricating fluid is further shifted to the one side, and the lubricating fluid and the outside air are The position of the gas-liquid interface is determined, and the supply amount of the lubricating fluid is determined.

本発明の請求項4によれば、本発明の動圧軸受装置を製造する方法は、前記潤滑流体は、重力、圧力、遠心力、または減圧吸引のひとつまたはそれ以上を利用して、前記上側シール部または前記下側シール部に偏移されることを特徴とする。   According to claim 4 of the present invention, there is provided a method of manufacturing a hydrodynamic bearing device according to the present invention, wherein the lubricating fluid uses one or more of gravity, pressure, centrifugal force, and vacuum suction, and It is shifted to the seal part or the lower seal part.

本発明の請求項5によれば、請求項1〜4に記載の動圧軸受装置の製造方法は、前記中心軸の軸方向に沿った上下方向を、重力方向の上下方向と対応するように動圧軸受装置を配置し、前記下側シール部において、前記気液界面の位置を判定することを特徴とする。   According to a fifth aspect of the present invention, in the method for manufacturing a hydrodynamic bearing device according to the first to fourth aspects, the vertical direction along the axial direction of the central axis corresponds to the vertical direction of the gravity direction. A hydrodynamic bearing device is arranged, and the position of the gas-liquid interface is determined in the lower seal portion.

本発明の請求項6によれば、本発明の動圧軸受装置を製造する方法は、前記潤滑流体が偏移された前記上側シール部または前記下側シール部における、前記潤滑流体と前記外気との前記気液界面の位置を判定は、前記回転部または前記固定部の端面と、前記気液界面との軸方向高さの差を、レーザ変位計を用いて測定することにより行われることを特徴とする。   According to claim 6 of the present invention, there is provided a method of manufacturing the hydrodynamic bearing device of the present invention, wherein the lubricating fluid and the outside air in the upper seal portion or the lower seal portion to which the lubricating fluid is shifted are provided. The position of the gas-liquid interface is determined by measuring a difference in axial height between the end surface of the rotating part or the fixed part and the gas-liquid interface using a laser displacement meter. Features.

本発明の請求項7によれば、本発明に記載の方法により製造された動圧軸受装置は、記録ディスク駆動装置に用いられることを特徴とする。   According to claim 7 of the present invention, the hydrodynamic bearing device manufactured by the method according to the present invention is used for a recording disk drive device.

潤滑流体に外力を作用させて、前記二つの界面のうち、一方側の界面の曲率が他方側の界面の曲率よりも小さな状態とする、潤滑流体の偏移工程と、曲率の小さな側の界面の位置を測定することにより、前記潤滑流体の供給量を判断する、判定工程と、
本発明の請求項1によれば、潤滑流体に外力を作用させ、上側シール部または下側シール部の一方に潤滑流体を偏移する。したがって、潤滑流体が偏移される側のシール部において、潤滑流体の供給量あたりの界面の変化量が大きくなり、気液界面の曲率が小さくなる。気液界面の曲率の小さい側において、気液界面の位置を判定し、注入された潤滑流体の分量を管理することにより、容易かつ精密に潤滑流体の注入分量を管理することができる。
An external force is applied to the lubricating fluid so that the curvature of the interface on one side is smaller than the curvature of the interface on the other side of the two interfaces, and the interface on the side of the smaller curvature Determining a supply amount of the lubricating fluid by measuring the position of
According to the first aspect of the present invention, an external force is applied to the lubricating fluid to shift the lubricating fluid to one of the upper seal portion and the lower seal portion. Accordingly, in the seal portion on the side where the lubricating fluid is shifted, the amount of change of the interface per supply amount of the lubricating fluid increases, and the curvature of the gas-liquid interface decreases. By determining the position of the gas-liquid interface on the side where the curvature of the gas-liquid interface is small and managing the amount of the injected lubricating fluid, the injected amount of the lubricating fluid can be managed easily and precisely.

本発明の請求項2によれば、上側シール部または下側シール部のいずれか一方は、他方よりもテーパ角が大きく形成されているため、潤滑流体の気液界面の位置は、容積が小さい側のシール部において、より大きく変化する。このように、潤滑流体の供給量あたりの界面の位置の変化量が大きい側において、気液界面の位置を判定し、注入された潤滑流体の分量を管理することにより、容易かつ精密に潤滑流体の注入分量を管理することができる。   According to claim 2 of the present invention, since either one of the upper seal portion and the lower seal portion is formed with a taper angle larger than the other, the volume of the position of the gas-liquid interface of the lubricating fluid is small. It changes more greatly in the seal part on the side. In this way, on the side where the amount of change in the interface position per supply amount of the lubricating fluid is large, the position of the gas-liquid interface is determined, and the amount of the injected lubricating fluid is managed, so that the lubricating fluid can be easily and accurately The amount of injection can be controlled.

本発明の請求項5によれば、本発明の動圧軸受装置の製造方法において、中心軸の軸方向に沿った上下方向を、重力方向の上下方向と対応するように動圧軸受装置を配置される。このような配置とすることで、潤滑流体が下側シール部に偏移され、下側シール部における気液界面の位置の変化量が大きくなる。従って、下側シール部における気液界面の位置を判定することにより、潤滑流体の供給量を容易かつ精密に管理することができる。また、特別な装置を用いることなく、容易に潤滑流体を下側シール部に偏移させることができる。   According to claim 5 of the present invention, in the method for manufacturing a hydrodynamic bearing device of the present invention, the hydrodynamic bearing device is arranged so that the vertical direction along the axial direction of the central axis corresponds to the vertical direction of the gravity direction. Is done. With such an arrangement, the lubricating fluid is shifted to the lower seal portion, and the amount of change in the position of the gas-liquid interface in the lower seal portion increases. Therefore, the supply amount of the lubricating fluid can be easily and accurately managed by determining the position of the gas-liquid interface in the lower seal portion. Further, the lubricating fluid can be easily shifted to the lower seal portion without using a special device.

本発明の請求項6によれば、潤滑流体と前記外気との前記気液界面の位置を判定は、前記回転部または前記固定部の端面と、前記気液界面との軸方向高さの差を、レーザ変位計を用いて測定することにより行われる。これにより、容易かつ正確に微小間隙に注入された潤滑流体の分量を管理することができる。   According to claim 6 of the present invention, the position of the gas-liquid interface between the lubricating fluid and the outside air is determined by the difference in axial height between the end surface of the rotating part or the fixed part and the gas-liquid interface. Is measured by using a laser displacement meter. Thereby, the quantity of the lubricating fluid injected into the minute gap can be managed easily and accurately.

本発明の請求項7によれば、本発明に記載の方法により製造された動圧軸受装置は、記録ディスク駆動装置に用いられることを特徴とする。これにより、信頼性および耐久性の高い記録ディスク駆動装置を提供することができる。   According to claim 7 of the present invention, the hydrodynamic bearing device manufactured by the method according to the present invention is used for a recording disk drive device. Thereby, it is possible to provide a recording disk drive device having high reliability and durability.

本発明に係る動圧軸受装置の製造方法の一実施形態について図1乃至図8を参照して説明する。なお、本発明の説明において、各部材の位置関係や方向を上下左右で説明するときは、あくまで図面における位置関係や方向を示し、実際の機器に組み込まれたときの位置関係や方向を示すものではない。   An embodiment of a method of manufacturing a hydrodynamic bearing device according to the present invention will be described with reference to FIGS. In the description of the present invention, when the positional relationship and direction of each member are described in the upper, lower, left and right directions, the positional relationship and direction in the drawings are only shown, and the positional relationship and direction when incorporated in an actual device are shown. is not.

図1は、本発明の一例である製造方法にて作製された動圧軸受装置を、スピンドルモータに組み込んだ状態で示した縦断面図である。図1の上下方向が軸方向である。   FIG. 1 is a longitudinal sectional view showing a state in which a hydrodynamic bearing device manufactured by a manufacturing method as an example of the present invention is incorporated in a spindle motor. The vertical direction in FIG. 1 is the axial direction.

図1のスピンドルモータは、回転部5と、回転部5を中心軸の周囲を回転可能に支持する固定部2より構成されている。回転部5は、スリーブ4、スリーブ4に取り付けられたロータハブ3と、ロータハブの上端部および下端部に取り付けられた上側シール部材321および下側シール部材322とを含み、固定部2は、シャフト1と、シャフト1に取り付けられた上側ブッシュ21および下側ブッシュ22とを含む。シャフト1は、その下端部が開口部81に圧入されるなどして、ベースプレート8に固定されている。   The spindle motor shown in FIG. 1 includes a rotating unit 5 and a fixed unit 2 that supports the rotating unit 5 so as to be rotatable around a central axis. The rotating portion 5 includes a sleeve 4, a rotor hub 3 attached to the sleeve 4, and an upper seal member 321 and a lower seal member 322 attached to the upper end portion and the lower end portion of the rotor hub. And an upper bush 21 and a lower bush 22 attached to the shaft 1. The lower end portion of the shaft 1 is fixed to the base plate 8 by being press-fitted into the opening 81.

スリーブ4は、略円筒状の形状をしており、シャフト1の外周面に微小間隙を介して対向する内周面を有している。スリーブ4には、上側凹部210および下側凹部220が形成されている。また、シャフト1の上部および下部には、上側ブッシュ21および下側ブッシュ22が、それぞれスリーブ4の上側凹部210の内周面と下側凹部220の内周面とに微小間隙を介して対向するように固定されている。   The sleeve 4 has a substantially cylindrical shape, and has an inner peripheral surface that faces the outer peripheral surface of the shaft 1 with a minute gap therebetween. The sleeve 4 is formed with an upper recess 210 and a lower recess 220. Further, an upper bush 21 and a lower bush 22 are respectively opposed to the inner peripheral surface of the upper concave portion 210 and the inner peripheral surface of the lower concave portion 220 of the sleeve 4 through a minute gap at the upper and lower portions of the shaft 1. So that it is fixed.

ロータハブ3は、内側円筒部310と外側円筒部320とを有する略円筒状の部材であり、例えば圧入、接着等により、スリーブ4の外周面に固定されている。ロータハブ3の内側円筒部310の上端部には上側凹部311が形成され、内側円筒部310の下端部には下側凹部312が形成される。上側凹部311および下側凹部312には、それぞれ上側シール部材321および下側シール322部材が、上側ブッシュ21および下側ブッシュ22とそれぞれ微少間隙を介して対向するように固定されている。上側シール部材321と上側ブッシュ21との間の微小間隙には、軸方向上側に向かって間隙寸法が大きくなる上側テーパシール部410が、下側シール部材322と下側ブッシュ22との間の微小間隙には、軸方向下側に向かって間隙寸法が大きくなる下側テーパシール部420が形成されている。また外側円筒部320の下部には、半径方向外側に延びるハードディスク等の磁気ディスク(図示せず)が載置されるディスク載置部330が形成されている。また、ディスク載置部330の軸方向下側には、磁性体のヨーク500が固定されており、ヨーク500の内周面には、マグネット600が固定されている。   The rotor hub 3 is a substantially cylindrical member having an inner cylindrical portion 310 and an outer cylindrical portion 320, and is fixed to the outer peripheral surface of the sleeve 4 by, for example, press-fitting or bonding. An upper concave portion 311 is formed at the upper end portion of the inner cylindrical portion 310 of the rotor hub 3, and a lower concave portion 312 is formed at the lower end portion of the inner cylindrical portion 310. An upper seal member 321 and a lower seal 322 member are respectively fixed to the upper recess 311 and the lower recess 312 so as to face the upper bush 21 and the lower bush 22 with a small gap therebetween. In the minute gap between the upper seal member 321 and the upper bush 21, the upper taper seal portion 410 whose gap dimension increases toward the upper side in the axial direction is a minute gap between the lower seal member 322 and the lower bush 22. A lower taper seal portion 420 is formed in the gap so that the gap dimension increases toward the lower side in the axial direction. In addition, a disk mounting portion 330 on which a magnetic disk (not shown) such as a hard disk extending outward in the radial direction is mounted is formed below the outer cylindrical portion 320. A magnetic yoke 500 is fixed to the lower side of the disk mounting portion 330 in the axial direction, and a magnet 600 is fixed to the inner peripheral surface of the yoke 500.

ベースプレート8には、マグネット600と径方向に間隙を介して対向するように、ステータ700が固定される。   A stator 700 is fixed to the base plate 8 so as to face the magnet 600 via a gap in the radial direction.

スリーブ4、上側ブッシュ21、下側ブッシュ22、シャフト1、上側シール部材321、および下側シール部材322との間に形成される微少間隙は、途切れることなく潤滑流体であるオイルによって満たされている(なお、これらの間隙をまとめて軸受間隙と称する)。そして、上側ブッシュ21と上側シール321との間に形成される微少間隙、および、下側ブッシュ22と下側シール322との間に形成される微少間隙、すなわち、上側テーパシール部410および下側テーパシール部420に保持されているオイルは、それぞれ、外気との境界面である気液界面を形成している。   A minute gap formed between the sleeve 4, the upper bush 21, the lower bush 22, the shaft 1, the upper seal member 321, and the lower seal member 322 is filled with oil as a lubricating fluid without interruption. (These gaps are collectively referred to as bearing gaps). A minute gap formed between the upper bush 21 and the upper seal 321 and a minute gap formed between the lower bush 22 and the lower seal 322, that is, the upper taper seal portion 410 and the lower side are formed. The oil held by the taper seal portion 420 forms a gas-liquid interface that is a boundary surface with the outside air.

次に、図2〜6を参考に、図1のスピンドルモータに取り付けられた動圧軸受装置の製造方法について説明を行う。   Next, a method for manufacturing the hydrodynamic bearing device attached to the spindle motor of FIG. 1 will be described with reference to FIGS.

図2に示されているように、本発明の一例である動圧軸受装置の製造方法には、ステップS1〜S6が含まれる。   As shown in FIG. 2, steps S1 to S6 are included in the method for manufacturing a hydrodynamic bearing device which is an example of the present invention.

図3を参考に、図2のステップS1の説明を行う。まずシャフト1の下部に下側ブッシュ22を圧入接着等にて固定する。そして、スリーブ4とその外周面に固定したロータハブ3を含む回転部を、下側ブッシュ22と微少間隙を介して対向するように配置する。そしてスリーブ4と微少間隙を介して対向するように、スリーブ4の上側から上側ブッシュ21をシャフト1に固定する(ステップS1)
次に、図4に示すように、ステップS1にて組み立てた状態で、ロータハブ3の上側凹部311および下側凹部312に、それぞれ上側シール部材321と下側シール部材322とを溶接等により固定する(ステップS2)。
With reference to FIG. 3, step S1 of FIG. 2 will be described. First, the lower bush 22 is fixed to the lower portion of the shaft 1 by press-fitting or the like. Then, the rotating portion including the sleeve 4 and the rotor hub 3 fixed to the outer peripheral surface thereof is disposed so as to face the lower bush 22 with a minute gap. Then, the upper bush 21 is fixed to the shaft 1 from the upper side of the sleeve 4 so as to face the sleeve 4 through a minute gap (step S1).
Next, as shown in FIG. 4, the upper seal member 321 and the lower seal member 322 are fixed to the upper recess 311 and the lower recess 312 of the rotor hub 3 by welding or the like in the assembled state in step S <b> 1. (Step S2).

次に動圧軸受装置の上下を反転して静置し、周囲の環境を減圧する。これにより軸受間隙の内部が減圧環境下となる(ステップS3)なお、周囲が減圧された後、オイルが注入される直前に、動圧軸受装置の上下が反転されても構わない。   Next, the dynamic pressure bearing device is turned upside down and allowed to stand to reduce the surrounding environment. As a result, the inside of the bearing gap is in a reduced pressure environment (step S3). The upper and lower sides of the hydrodynamic bearing device may be inverted immediately before the oil is injected after the surroundings are depressurized.

この状態で、図5に示すように、ディスペンサーA等を用いて下側シール部材322とシャフト1の外周面との間の間隙からオイルを供給する潤滑流体供給工程が行われる。そして、軸受内はオイルにより満たされ、その後、オイルは、上側シール部材321とシャフト1との間の微少間隙で気液界面を形成する(ステップS4)。   In this state, as shown in FIG. 5, a lubricating fluid supply step is performed in which oil is supplied from the gap between the lower seal member 322 and the outer peripheral surface of the shaft 1 using the dispenser A or the like. Then, the bearing is filled with oil, and then the oil forms a gas-liquid interface in a minute gap between the upper seal member 321 and the shaft 1 (step S4).

オイルの供給が完了すると、周囲の環境を復圧する(ステップS5)。その後、図6の(a)および(b)に示されるように、動圧軸受装置の上下を戻し、下側テーパシール部420に形成された気液界面と、下側シール部材322または下側ブッシュ22の下端面との高低差Hを、レーザ変位計Bなどにより測定し、軸受間隙に注油されたオイルの量を判断する判定工程が行われる(ステップS6)。注入されたオイル量が適量でない場合は、ステップS3、ステップS4、ステップS5を繰り返し行ってもよい。   When the oil supply is completed, the surrounding environment is restored (step S5). Thereafter, as shown in FIGS. 6A and 6B, the fluid dynamic bearing device is turned up and down, the gas-liquid interface formed in the lower taper seal portion 420, the lower seal member 322 or the lower side. A height difference H from the lower end surface of the bush 22 is measured by a laser displacement meter B or the like, and a determination process for determining the amount of oil injected into the bearing gap is performed (step S6). When the injected oil amount is not an appropriate amount, step S3, step S4, and step S5 may be repeated.

オイルの供給量は、上側テーパシール部410または下側テーパシール部420に形成された気液界面の位置により確認することができる。軸受装置の軸方向上下と、重力方向の上下が対応するように軸受装置が配置された場合、重力の影響により下側テーパシール部420の気液界面の位置が下側に偏移される(偏移工程)。すなわち、オイルを注入するに従って、上側テーパシール部410の気液界面よりも、下側テーパシール部420の気液界面の位置がより大きく変化し、上側テーパシール部410よりも、下側テーパシール部の気液界面の曲率が小さくなる。言い換えると、注入したオイルの単位量あたりの気液界面の位置の変化量は、上側テーパシール部よりも下側テーパシール部においてより大きい。このために、同じ測定精度の機器を用いても、上側テーパシール部410の気液界面の位置を測定するより、下側テーパシール部420の気液界面の位置を測定した方が、軸受間隙内に注入されたオイルの量をより精度良く管理することができる。   The oil supply amount can be confirmed by the position of the gas-liquid interface formed in the upper taper seal portion 410 or the lower taper seal portion 420. When the bearing device is arranged so that the vertical direction of the bearing device corresponds to the vertical direction of the gravity direction, the position of the gas-liquid interface of the lower taper seal portion 420 is shifted downward due to the influence of gravity ( Shift process). That is, as the oil is injected, the position of the gas-liquid interface of the lower taper seal 420 changes more greatly than the gas-liquid interface of the upper taper seal 410, and the lower taper seal is lower than the upper taper seal 410. The curvature of the gas-liquid interface of the part becomes small. In other words, the amount of change in the position of the gas-liquid interface per unit amount of injected oil is larger in the lower taper seal portion than in the upper taper seal portion. For this reason, even if a device with the same measurement accuracy is used, it is more effective to measure the position of the gas-liquid interface of the lower taper seal portion 420 than to measure the position of the gas-liquid interface of the upper taper seal portion 410. The amount of oil injected into the inside can be managed with higher accuracy.

図7は、上下方向が重力方法の上下に対応する場合における、上側テーパシール部の気液界面と、下側テーパシール部の気液界面の位置の変化量を比較したグラフである。テーパシール部のテーパ角度Rは、上側および下側テーパシール部ともに20度である(図7(a)参照)。縦軸は気液界面の高さL(mm)を示し、横軸は上側および下側テーパシール部に介在する潤滑油の量(μl)を示している。グラフ中のTOPは、上側テーパシール部における気液界面の高さ、BOTTOMは下側テーパシール部における気液界面の高さを表している。図7(b)に示されているように、注入したオイルの単位量あたりの気液界面の位置の変化量は、上側テーパシール部よりも下側テーパシール部の方が大きい。従って、下側テーパシール部において気液界面の位置を測定し、軸受間隙に供給されたオイルの量を管理することで、容易かつ精密な油量の管理が可能となる。   FIG. 7 is a graph comparing the amount of change in the position of the gas-liquid interface of the upper taper seal portion and the gas-liquid interface of the lower taper seal portion when the vertical direction corresponds to the vertical direction of the gravity method. The taper angle R of the taper seal portion is 20 degrees for both the upper and lower taper seal portions (see FIG. 7A). The vertical axis indicates the height L (mm) of the gas-liquid interface, and the horizontal axis indicates the amount (μl) of lubricating oil interposed in the upper and lower tapered seal portions. TOP in the graph represents the height of the gas-liquid interface in the upper taper seal portion, and BOTTOM represents the height of the gas-liquid interface in the lower taper seal portion. As shown in FIG. 7B, the change amount of the position of the gas-liquid interface per unit amount of injected oil is larger in the lower tapered seal portion than in the upper tapered seal portion. Therefore, by measuring the position of the gas-liquid interface in the lower taper seal portion and managing the amount of oil supplied to the bearing gap, the oil amount can be easily and accurately managed.

上側テーパシール部または下側テーパシール部の気液界面は、例えば、重力以外の手段を用いて上方向または下方向に偏移されても構わない。例えば、図8に示されているように、上側テーパシール部410または下側テーパシール部420の一方が、他方よりも容積が小さくなるように形成され、容積が小さい側のテーパシール部において、気液界面の位置を測定しても構わない。また、図8に示されているように、容積の小さいテーパシール部を、重力下方向に配置すると、容積が小さい側のテーパシール部における気液界面の変化量がさらに大きくなる。従って、より精密に供給油量の管理を行うことができる。   The gas-liquid interface of the upper taper seal portion or the lower taper seal portion may be shifted upward or downward using means other than gravity, for example. For example, as shown in FIG. 8, one of the upper taper seal portion 410 and the lower taper seal portion 420 is formed to have a smaller volume than the other, and in the taper seal portion on the smaller volume side, The position of the gas-liquid interface may be measured. Further, as shown in FIG. 8, when the taper seal portion having a small volume is arranged in the downward direction of gravity, the change amount of the gas-liquid interface in the taper seal portion on the side having a smaller volume is further increased. Therefore, the amount of supplied oil can be managed more precisely.

さらに、上側テーパシール部または下側テーパシール部の気液界面は、上記以外の方法や手段を用いて、上方向または下方向に偏移されても構わない。例えば、圧力差、真空吸引、遠心力等を利用して、上側テーパシール部または下側テーパシール部の一方において気液界面の変化量がより大きくされても構わない。   Furthermore, the gas-liquid interface of the upper taper seal portion or the lower taper seal portion may be shifted upward or downward using a method or means other than those described above. For example, the amount of change in the gas-liquid interface may be increased in one of the upper taper seal portion or the lower taper seal portion using a pressure difference, vacuum suction, centrifugal force, or the like.

また、上側テーパシール部からオイルを注入すると同時に、下側テーパシール部において界面の変化量を測定しても構わない。   Further, at the same time when oil is injected from the upper taper seal portion, the amount of change in the interface may be measured at the lower taper seal portion.

本発明は、上記実施形態に限定されるものではなく、本発明の範囲を逸脱することなく種々の変形または修正が可能である。   The present invention is not limited to the above-described embodiment, and various changes or modifications can be made without departing from the scope of the present invention.

例えば、本発明の好適な実施例において述べられた方法は、各工程が記載されたものとは別の方法、順番で行われても構わない。例えば、減圧、復圧を行わなくても、軸受間隙に潤滑流体を充填できる場合は、減圧、復圧の工程が省略されても構わない。   For example, the methods described in the preferred embodiments of the present invention may be performed in a different manner and order than those described for each step. For example, if the bearing fluid can be filled with the lubricating fluid without performing decompression and decompression, the decompression and decompression processes may be omitted.

また、軸受間隙に潤滑流体を充填する工程は、ディスペンサーを用いたものに限定されるものではない。例えば、減圧した環境下で、一方のテーパシール部をオイル溜めに浸し、その後復圧し、間隙内にオイルを充填するといった方法が用いられても構わない。   Further, the process of filling the bearing gap with the lubricating fluid is not limited to a process using a dispenser. For example, a method may be used in which one taper seal portion is immersed in an oil reservoir under a reduced pressure environment, and then the pressure is restored and oil is filled in the gap.

例えば、本発明は、記録ディスク駆動装置の記録ディスク回転用のスピンドルモータだけでなく、コピー機、スキャナなどに用いられるポリゴンミラー用の軸受や、汎用モータ、静音ファン用モータなどにも使用することができる。   For example, the present invention can be used not only for a spindle motor for rotating a recording disk of a recording disk drive device, but also for a polygon mirror bearing, a general-purpose motor, a silent fan motor, etc. used in a copying machine, a scanner, etc. Can do.

また、本発明の方法に基づき製造された動圧軸受装置は、アウターロータ型のモータだけでなく、インナーロータ型のモータにも適用することができる。   The hydrodynamic bearing device manufactured based on the method of the present invention can be applied not only to an outer rotor type motor but also to an inner rotor type motor.

本発明の一例である製造方法にて作製された動圧軸受装置を、スピンドルモータに組み込んだ状態で示した縦断面図である。It is the longitudinal cross-sectional view shown in the state where the dynamic pressure bearing apparatus produced with the manufacturing method which is an example of this invention was integrated in the spindle motor. 本発明の製造方法に係る組立工程を示した図である。It is the figure which showed the assembly process which concerns on the manufacturing method of this invention. 本発明の製造方法の組立工程に係るステップS1を示した図である。It is the figure which showed step S1 which concerns on the assembly process of the manufacturing method of this invention. 本発明の製造方法の組立工程に係るステップS2を示した図である。It is the figure which showed step S2 which concerns on the assembly process of the manufacturing method of this invention. 本発明の製造方法の組立工程に係るステップS4を示した図である。It is the figure which showed step S4 which concerns on the assembly process of the manufacturing method of this invention. 本発明の製造方法の組立工程に係るステップS6を示した図である。It is the figure which showed step S6 which concerns on the assembly process of the manufacturing method of this invention. 上側テーパシール部と下側テーパシール部における気液界面の変化を示した図である。It is the figure which showed the change of the gas-liquid interface in an upper taper seal part and a lower taper seal part. 本発明の別の実施形態を示す図である。It is a figure which shows another embodiment of this invention.

符号の説明Explanation of symbols

1 シャフト
2 静止部
3 ロータハブ
4 スリーブ
5 回転部
8 ベースプレート
21 上側ブッシュ
22 下側ブッシュ
210 上側凹部
220 下側凹部
310 内側円筒部
311 上側凹部
320 外側円筒部
322 下側凹部
321 上側シール部材
322 下側シール部材
410 上側テーパシール部
420 下側テーパシール部
A ディスペンサー
B レーザ変位計
H 高低差
L 気液界面高さ
R テーパ角
DESCRIPTION OF SYMBOLS 1 Shaft 2 Static part 3 Rotor hub 4 Sleeve 5 Rotating part 8 Base plate 21 Upper bush 22 Lower bush 210 Upper recessed part 220 Lower recessed part 310 Inner cylindrical part 311 Upper recessed part 320 Outer cylindrical part 322 Lower recessed part 321 Upper seal member 322 Lower side Seal member 410 Upper taper seal portion 420 Lower taper seal portion A Dispenser B Laser displacement meter H Height difference L Gas-liquid interface height R Taper angle

Claims (7)

回転部と、
前記回転部の周面に対して微小間隙を介して対向する軸受面を有し、前記回転部を中心軸の周囲に回転可能に支持する、固定部と、
前記微小間隙の軸方向上側に連通し、その端部に向けて間隙が拡大する形状を有する、上側テーパシール部と、
前記微小間隙の軸方向下側に連通し、その端部に向けて間隙が拡大する形状を有する、下側テーパシール部と、
前記微小間隙並びに前記上側及び下側テーパシール部の一部を満たす、潤滑流体と、
からなる、動圧軸受装置の製造方法であって、
前記上側若しくは下側テーパシール部に前記潤滑流体を供給して、前記微小間隙並びに前記上側及び下側テーパシール部の一部を潤滑流体で満たし、前記上側及び下側テーパシール部に潤滑流体と外気との間に気液界面を形成させる、潤滑流体供給工程と、
潤滑流体に外力を作用させて、前記二つの界面のうち、一方側の界面の曲率が他方側の界面の曲率よりも小さな状態とする、潤滑流体の偏移工程と、
曲率の小さな側の界面の位置を測定することにより、前記潤滑流体の供給量を判断する、判定工程と、
からなることを特徴とする、動圧軸受装置の製造方法。
A rotating part;
A fixed portion having a bearing surface facing the circumferential surface of the rotating portion via a minute gap, and rotatably supporting the rotating portion around a central axis;
An upper taper seal portion that communicates with the axially upper side of the minute gap and has a shape in which the gap expands toward an end thereof;
A lower taper seal portion having a shape that communicates with the axially lower side of the minute gap and that the gap expands toward the end portion;
A lubricating fluid that fills a portion of the micro gap and the upper and lower taper seals;
A method of manufacturing a hydrodynamic bearing device comprising:
Supplying the lubricating fluid to the upper or lower tapered seal portion, filling the minute gap and part of the upper and lower tapered seal portions with the lubricating fluid, and supplying the lubricating fluid to the upper and lower tapered seal portions; A lubricating fluid supply step for forming a gas-liquid interface with the outside air;
Lubricating fluid shifting step in which an external force is applied to the lubricating fluid, and the curvature of one of the two interfaces is less than the curvature of the other interface;
A determination step of determining a supply amount of the lubricating fluid by measuring a position of an interface on a side having a small curvature; and
A method for manufacturing a hydrodynamic bearing device, comprising:
回転部と、
前記回転部の周面に対して微小間隙を介して対向する軸受面を有し、前記回転部を中心軸の周囲に回転可能に支持する、固定部と、
前記微小間隙の軸方向上側に連通し、その端部に向けて間隙が拡大する形状を有する、上側テーパシール部と、
前記微小間隙の軸方向下側に連通し、その端部に向けて間隙が拡大する形状を有する、下側テーパシール部と、
前記微小間隙並びに前記上側及び下側テーパシール部の一部を満たす、潤滑流体と、
からなり、前記上側シール部または前記下側シール部の一方は、他方よりもテーパ角が小さくなるように形成されている、動圧軸受装置の製造方法であって、
前記上側若しくは下側テーパシール部に前記潤滑流体を供給して、前記微小間隙並びに前記上側及び下側テーパシール部の一部を潤滑流体で満たし、前記上側及び下側テーパシール部に潤滑流体と外気との間に気液界面を形成させる、潤滑流体供給工程と、
前記上側若しくは下側テーパシール部のうち、前記テーパ角が小さくされた一方側において、気液界面の位置を測定することにより、前記潤滑流体の供給量を判断する、判定工程と、
からなることを特徴とする、動圧軸受装置の製造方法。
A rotating part;
A fixed portion having a bearing surface facing the circumferential surface of the rotating portion via a minute gap, and rotatably supporting the rotating portion around a central axis;
An upper taper seal portion that communicates with the axially upper side of the minute gap and has a shape in which the gap expands toward an end thereof;
A lower taper seal portion having a shape that communicates with the axially lower side of the minute gap and that the gap expands toward the end portion;
A lubricating fluid that fills a portion of the micro gap and the upper and lower taper seals;
One of the upper seal part or the lower seal part is formed so that the taper angle is smaller than the other,
Supplying the lubricating fluid to the upper or lower tapered seal portion, filling the minute gap and part of the upper and lower tapered seal portions with the lubricating fluid, and supplying the lubricating fluid to the upper and lower tapered seal portions; A lubricating fluid supply step for forming a gas-liquid interface with the outside air;
A determination step of determining a supply amount of the lubricating fluid by measuring a position of a gas-liquid interface on one side of the upper or lower taper seal portion where the taper angle is reduced; and
A method for manufacturing a hydrodynamic bearing device, comprising:
請求項2に記載の動圧軸受装置の製造方法であって、
さらに前記一方側へと前記潤滑流体を偏移させ、前記潤滑流体と外気との気液界面の位置を判定し、前記潤滑流体の供給量を判断することを特徴とする、動圧軸受装置の製造方法。
A method of manufacturing a hydrodynamic bearing device according to claim 2,
Further, the lubricating fluid is shifted to the one side, the position of the gas-liquid interface between the lubricating fluid and the outside air is determined, and the supply amount of the lubricating fluid is determined. Production method.
請求項1および3のいずれか一項に記載の動圧軸受装置の製造方法であって、
前記潤滑流体は、重力、圧力、遠心力、または減圧吸引のひとつまたはそれ以上を利用して、前記上側シール部および前記下側シール部の前記気液界面に、それぞれ異なる大きさの外力を付与し、前記潤滑流体を前記上側または前記下側シール部に偏移することを特徴とする、動圧軸受装置の製造方法。
A method for manufacturing a hydrodynamic bearing device according to any one of claims 1 and 3,
The lubricating fluid applies different external forces to the gas-liquid interface of the upper seal portion and the lower seal portion using one or more of gravity, pressure, centrifugal force, and vacuum suction. Then, the lubricating fluid is shifted to the upper side or the lower side seal part.
前記中心軸の軸方向に沿った上下方向が、重力方向の上下方向と対応するように、前記動圧軸受装置を配置し、前記下側シール部において、前記気液界面の位置を判定することを特徴とする、請求項1〜4のいずれか一項に記載の動圧軸受装置の製造方法。 The hydrodynamic bearing device is arranged so that the vertical direction along the axial direction of the central axis corresponds to the vertical direction of the gravity direction, and the position of the gas-liquid interface is determined in the lower seal portion. The method for manufacturing a hydrodynamic bearing device according to claim 1, wherein: 前記潤滑流体が偏移された前記上側シール部または前記下側シール部における、前記潤滑流体と前記外気との前記気液界面の位置を判定は、前記回転部または前記固定部の端面と、前記気液界面との軸方向高さの差を、レーザ変位計を用いて測定することにより行われる、請求項1〜5のいずれか一項に記載の動圧軸受装置の製造方法。 The position of the gas-liquid interface between the lubricating fluid and the outside air in the upper seal portion or the lower seal portion where the lubricating fluid is shifted is determined by the end surface of the rotating portion or the fixed portion, The method for manufacturing a hydrodynamic bearing device according to any one of claims 1 to 5, wherein the difference in height in the axial direction from the gas-liquid interface is measured by using a laser displacement meter. 請求項1〜6のいずれか一項に記載の方法により製造された動圧軸受装置を備える、記録ディスク駆動装置。 A recording disk drive device comprising a hydrodynamic bearing device manufactured by the method according to claim 1.
JP2006157878A 2006-06-06 2006-06-06 Method for manufacturing hydrodynamic bearing device Expired - Fee Related JP4811141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006157878A JP4811141B2 (en) 2006-06-06 2006-06-06 Method for manufacturing hydrodynamic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006157878A JP4811141B2 (en) 2006-06-06 2006-06-06 Method for manufacturing hydrodynamic bearing device

Publications (2)

Publication Number Publication Date
JP2007327528A true JP2007327528A (en) 2007-12-20
JP4811141B2 JP4811141B2 (en) 2011-11-09

Family

ID=38928127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006157878A Expired - Fee Related JP4811141B2 (en) 2006-06-06 2006-06-06 Method for manufacturing hydrodynamic bearing device

Country Status (1)

Country Link
JP (1) JP4811141B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100192378A1 (en) * 2009-02-04 2010-08-05 Alphana Technology Co., Ltd. Method for manufacturing a fluid dynamic bearing, a fluid dynamic bearing, a motor, and a disk drive device
JP2011239587A (en) * 2010-05-11 2011-11-24 Alphana Technology Co Ltd Rotating apparatus and manufacturing method thereof
US8144423B2 (en) 2008-03-11 2012-03-27 Nidec Corporation Fluid dynamic pressure bearing device, spindle motor and disk drive apparatus
US8191232B2 (en) 2007-11-26 2012-06-05 Nidec Corporation Method of manufacturing spindle motor
JP2012112534A (en) * 2012-03-16 2012-06-14 Alphana Technology Co Ltd Method of manufacturing fluid dynamic pressure bearing, fluid dynamic pressure bearing, motor, and disc driver
US8284513B2 (en) 2008-03-11 2012-10-09 Nidec Corporation Fluid dynamic pressure bearing device, spindle motor and disk drive apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002250341A (en) * 2001-02-21 2002-09-06 Matsushita Electric Ind Co Ltd Fluid bearing device and liquid level depth measuring method for liquid lubricant used in the same
JP2005337295A (en) * 2004-05-24 2005-12-08 Nippon Densan Corp Conical dynamic pressure bearing device, motor and disk driving device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002250341A (en) * 2001-02-21 2002-09-06 Matsushita Electric Ind Co Ltd Fluid bearing device and liquid level depth measuring method for liquid lubricant used in the same
JP2005337295A (en) * 2004-05-24 2005-12-08 Nippon Densan Corp Conical dynamic pressure bearing device, motor and disk driving device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8191232B2 (en) 2007-11-26 2012-06-05 Nidec Corporation Method of manufacturing spindle motor
US8144423B2 (en) 2008-03-11 2012-03-27 Nidec Corporation Fluid dynamic pressure bearing device, spindle motor and disk drive apparatus
US8284513B2 (en) 2008-03-11 2012-10-09 Nidec Corporation Fluid dynamic pressure bearing device, spindle motor and disk drive apparatus
US20100192378A1 (en) * 2009-02-04 2010-08-05 Alphana Technology Co., Ltd. Method for manufacturing a fluid dynamic bearing, a fluid dynamic bearing, a motor, and a disk drive device
JP2010180925A (en) * 2009-02-04 2010-08-19 Alphana Technology Co Ltd Method for manufacturing fluid dynamic bearing, fluid dynamic bearing, motor, and disk drive device
US8776377B2 (en) * 2009-02-04 2014-07-15 Samsung Electro-Mechanics Japan Advanced Technology Co., Ltd. Method for manufacturing a fluid dynamic bearing, a fluid dynamic bearing, a motor, and a disk drive device
JP2011239587A (en) * 2010-05-11 2011-11-24 Alphana Technology Co Ltd Rotating apparatus and manufacturing method thereof
US9030775B2 (en) 2010-05-11 2015-05-12 Samsung Electro-Mechanics Japan Advanced Technology Co., Ltd. Impact resistant rotating device with increased-thickness portion relationship and suction plate configuration
JP2012112534A (en) * 2012-03-16 2012-06-14 Alphana Technology Co Ltd Method of manufacturing fluid dynamic pressure bearing, fluid dynamic pressure bearing, motor, and disc driver

Also Published As

Publication number Publication date
JP4811141B2 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
CN102738942B (en) Motor and disk drive device
US7478951B2 (en) Hydrodynamic bearing device, spindle motor including the same, and recording and reproducing apparatus
US8858084B2 (en) Rotating device and component for fluid dynamic bearing unit thereof
US7576947B2 (en) Fluid dynamic pressure bearing device, spindle motor provided with fluid dynamic pressure bearing device, and recording disk drive device
JP4811141B2 (en) Method for manufacturing hydrodynamic bearing device
JP2009133361A (en) Fluid bearing device, and spindle motor and information device using the same
CN103453009A (en) Bearing mechanism, motor, and disk drive apparatus
CN102852967B (en) Method of manufacturing fluid dynamic bearing mechanism, motor, and storage disk drive
JP2006194400A (en) Spindle motor and rotating device
US20090148084A1 (en) Fluid Dynamic Bearing Device
JP2003161322A (en) Dynamic pressure bearing and manufacturing method thereof
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
US20080063332A1 (en) Hydrodynamic bearing device and motor and recording and reproducing apparatus using the same
JP2010127448A (en) Fluid dynamic-pressure bearing mechanism, motor, recording disk driving device, and method for producing fluid dynamic-pressure bearing mechanism
JP2015184086A (en) Support device for balance correction
JP2005337490A (en) Dynamic pressure bearing device
US8861130B1 (en) Spindle motor and recording disk driving device including the same
JP4657734B2 (en) Hydrodynamic bearing device
JP2006158015A (en) Method of manufacturing spindle motor
JP2007182946A (en) Dynamic pressure bearing unit, manufacturing method of dynamic pressure bearing unit, and disk drive using dynamic pressure bearing unit
JP2004316680A (en) Spindle motor and recording disk driving mechanism with the same
JP2007092783A (en) Method for manufacturing fluid dynamic bearing, fluid dynamic bearing, and spindle motor
JP2008275363A (en) Inspection method of fluid dynamic pressure bearing, and spindle motor equipped with same
JP4005825B2 (en) Hydrodynamic bearing, spindle motor, and recording disk drive
JP2009092435A (en) Floating amount measuring method and floating amount measuring device of rotor part of motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110808

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees