JP2002250341A - Fluid bearing device and liquid level depth measuring method for liquid lubricant used in the same - Google Patents

Fluid bearing device and liquid level depth measuring method for liquid lubricant used in the same

Info

Publication number
JP2002250341A
JP2002250341A JP2001044369A JP2001044369A JP2002250341A JP 2002250341 A JP2002250341 A JP 2002250341A JP 2001044369 A JP2001044369 A JP 2001044369A JP 2001044369 A JP2001044369 A JP 2001044369A JP 2002250341 A JP2002250341 A JP 2002250341A
Authority
JP
Japan
Prior art keywords
sleeve
liquid
annular gap
liquid lubricant
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001044369A
Other languages
Japanese (ja)
Inventor
Toshifumi Hino
利文 日野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001044369A priority Critical patent/JP2002250341A/en
Publication of JP2002250341A publication Critical patent/JP2002250341A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fluid bearing device capable of adjusting the amount of liquid lubricant to a proper amount, preventing seizure of a bearing caused by winding in air into the bearing and friction due to deficiency of liquid lubricant, and preventing the liquid lubricant to flow out due to its excess amount to provide a liquid level depth measuring method for the liquid lubricant used in the same. SOLUTION: In this fluid bearing device constituted such that a tapered annular clearance 10 is formed on the opening part 6 side of a sleeve 2 by communicating with a minute annular clearance 4 between the sleeve 2 and a shaft 3 to fill lubricating oil 5 in such a way that its liquid level is positioned in the tapered annular clearance 10, a focus of lens part 23 of a microscope 22 is focused on the end face 14 of the sleeve 2, a focus of the lens part 23 is focused on a liquid level of the lubricating oil 5, and a distance from the end face 14 of the sleeve 2 to the liquid level of the lubricating oil 5 is measured based on a difference in height position of the lens part 23 between the lens and the oil to obtain the liquid level depth of the lubricating oil 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、情報機器などのス
ピンドルモータに好適に使用される流体軸受装置及びそ
れに用いる液体潤滑剤の液面深さ測定方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrodynamic bearing device suitably used for a spindle motor of information equipment and the like, and a method of measuring a liquid surface depth of a liquid lubricant used therein.

【0002】[0002]

【従来の技術】従来、流体軸受装置においては、例えば
特開平8−270653号公報に示すように、真空ポン
プを利用して潤滑油を軸受内すなわちスリーブとシャフ
トとの間に形成された微小間隙に充填する方法が提案さ
れている。
2. Description of the Related Art Conventionally, in a hydrodynamic bearing device, as shown in, for example, Japanese Patent Application Laid-Open No. 8-270653, a lubricating oil is injected into a bearing using a vacuum pump, that is, a minute gap formed between a sleeve and a shaft. Has been proposed.

【0003】[0003]

【発明が解決しようとする課題】しかし、流体軸受装置
においては前記のような微小間隙に潤滑油を充填するた
め充填された潤滑油の液量を確認することが困難であっ
て、その液量が適正に管理されていなかったために、潤
滑油の液量が少ない場合には時間の経過とともに潤滑油
が蒸発して液量が減少し、潤滑油不足により、軸受内に
空気が巻き込まれたり、摩擦による焼き付きを起こして
流体軸受としての機能を損なうおそれがあった。一方、
潤滑油の液量が多過ぎる場合には、その使用環境が高温
になった時に潤滑油が膨張して軸受の外部に流出し、そ
れによって流体軸受が組み込まれたスピンドルモータに
取り付けた機器が汚染されてその機能を損なうという問
題があり、例えば磁気記録装置においては流出した潤滑
油によって記録媒体(メディア)がヘッドに張り付くと
いう致命的な問題を引き起こし、磁気記録装置としての
本来の機能を損なうという問題があった。
However, in the hydrodynamic bearing device, it is difficult to check the liquid amount of the filled lubricating oil to fill the minute gap with the lubricating oil. If the amount of lubricating oil was small, the amount of lubricating oil would evaporate over time and the amount of liquid would decrease due to lack of lubricating oil. Seizure due to friction may occur, impairing the function as a fluid bearing. on the other hand,
If the amount of lubricating oil is too high, the lubricating oil expands and flows out of the bearings when the environment in which it is used becomes high temperature, which contaminates the equipment attached to the spindle motor with the built-in fluid bearing. For example, in a magnetic recording device, the leaked lubricating oil causes a fatal problem that a recording medium (media) sticks to a head, thereby impairing the original function of the magnetic recording device. There was a problem.

【0004】そこで、本発明は、前記課題を解決するも
のであって、液体潤滑剤の液量を適正な量に調整するこ
とができて、液体潤滑剤の不足による軸受内への空気の
巻き込み及び摩擦による軸受の焼き付きを防止すること
ができるとともに液体潤滑剤の過多による流出を防止す
ることができる液体軸受装置及びそれに用いる液体潤滑
剤の液面深さ測定方法を提供することを課題とするもの
である。
In view of the above, the present invention has been made to solve the above-mentioned problem, and it is possible to adjust a liquid amount of a liquid lubricant to an appropriate amount, and to trap air into a bearing due to a shortage of the liquid lubricant. It is another object of the present invention to provide a liquid bearing device that can prevent seizure of a bearing due to friction and prevent outflow due to excessive liquid lubricant, and a method of measuring a liquid surface depth of a liquid lubricant used therein. Things.

【0005】[0005]

【課題を解決するための手段】前記課題を解決するため
に、本発明の流体軸受装置は、スリーブと、このスリー
ブ内にこれとの間に所定間隔の微小環状間隙を形成して
挿入したシャフトと、前記微小環状間隙に充填した液体
潤滑剤とから構成され、前記微小環状間隙に充填した液
体潤滑剤を介して前記シャフトと前記スリーブとが同軸
上で相対的に回転駆動する流体軸受装置において、前記
スリーブの開口部側に、開口部側ほど前記スリーブと前
記シャフトとの間の間隔が大きいテーパ状環状間隙を前
記微小環状間隙に連通して形成し、前記液体潤滑剤をそ
の液面が前記テーパ状環状間隙内に位置するように充填
したことを特徴とするものである。
In order to solve the above-mentioned problems, a hydrodynamic bearing device according to the present invention comprises a shaft inserted into a sleeve with a small annular gap formed between the sleeve and a predetermined interval. And a liquid lubricant filled in the small annular gap, wherein the shaft and the sleeve are relatively coaxially driven to rotate via the liquid lubricant filled in the small annular gap. On the opening side of the sleeve, a tapered annular gap in which the distance between the sleeve and the shaft is larger toward the opening side is formed so as to communicate with the minute annular gap, and the liquid level of the liquid lubricant is increased. The filling is performed so as to be located in the tapered annular gap.

【0006】前記構成によれば、スリーブの開口部側に
テーパ状環状間隙を形成したので、毛細管現象が促進さ
れて液体潤滑剤が広い断面のテーパ状環状間隙側から狭
い断面に微小環状間隙側へ確実に移動して充填されると
ともに、液体潤滑剤中に空気などが巻き込まれることが
なく、テーパ状環状間隙内に毛細管現象によって維持さ
れ安定に保たれた液面を形成することができる。そし
て、毛細管現象によって維持された液面を安定に保つこ
とができることから、液体潤滑剤の液面深さを調節する
ことによって、液体潤滑剤の液量を適正な量に調整する
ことができる。
According to the above construction, since the tapered annular gap is formed on the opening side of the sleeve, the capillary phenomenon is promoted, and the liquid lubricant is changed from the tapered annular gap having a wide cross section to the small annular gap having a narrow cross section. As a result, air and the like are not entrained in the liquid lubricant, and a liquid surface maintained and maintained stably by capillary action in the tapered annular gap can be formed. Since the liquid surface maintained by the capillary phenomenon can be stably maintained, the liquid amount of the liquid lubricant can be adjusted to an appropriate amount by adjusting the liquid surface depth of the liquid lubricant.

【0007】したがって、流体軸受装置をスピンドルモ
ータなどに組み込む前に、液体潤滑剤の液量を適正な量
に調整することによって、液体潤滑剤の不足による軸受
内への空気に巻き込み、摩擦による軸受の焼き付き及び
液体潤滑剤の過多による流出を防止することができる。
Therefore, before the fluid bearing device is incorporated into a spindle motor or the like, by adjusting the amount of the liquid lubricant to an appropriate amount, the liquid lubricant is entrained in air into the bearing due to a shortage of the liquid lubricant, and the bearing is caused by friction. Of the liquid lubricant and outflow due to excessive liquid lubricant can be prevented.

【0008】また、請求項2に記載された発明は、前記
構成において、テーパ状環状間隙を、スリーブに開口部
側の内周面に対向したシャフトの外周面をテーパ状に切
り欠いて形成したことを特徴とするものである。
According to the second aspect of the present invention, in the above structure, the tapered annular gap is formed by tapering the outer peripheral surface of the shaft facing the inner peripheral surface on the opening side in the sleeve. It is characterized by the following.

【0009】前記構成によれば、テーパ状環状間隙をシ
ャフトの外周面をテーパ状に切り欠いて形成したので、
スリーブを回転運動させる場合は勿論のこと、シャフト
を回転駆動させる場合にテーパ状環状間隙内の液体潤滑
剤にシャフトの回転駆動による遠心力が作用しても、ス
リーブによって液体潤滑剤が飛散することが防止され
る。
According to the above construction, the tapered annular gap is formed by cutting the outer peripheral surface of the shaft into a tapered shape.
When the shaft is rotationally driven, as well as when the shaft is rotationally driven, the liquid lubricant is scattered by the sleeve even when a centrifugal force due to the rotational drive of the shaft acts on the liquid lubricant in the tapered annular gap. Is prevented.

【0010】また、請求項3に記載された発明は、前記
構成において、テーパ状環状間隙を、スリーブの開口部
側の内周面をテーパ状に切り欠いて形成したことを特徴
とするものである。
According to a third aspect of the present invention, in the above structure, the tapered annular gap is formed by tapering the inner peripheral surface of the sleeve on the opening side. is there.

【0011】前記構成によれば、テーパ状環状間隙をス
リーブの内周面をテーパ状に切り欠いて形成したので、
開口部側から前記テーパ状環状間隙を視認することがで
きて、毛細管現象によって維持された液体潤滑剤に液面
を光学機器の視野に捕らえ易く、光学機器によってその
液面深さを容易に測定することができる。
According to the above configuration, the tapered annular gap is formed by cutting the inner peripheral surface of the sleeve into a tapered shape.
The tapered annular gap can be visually recognized from the opening side, and the liquid level easily maintained by the liquid lubricant maintained by capillary action in the visual field of the optical device, and the liquid surface depth can be easily measured by the optical device. can do.

【0012】また、請求項4に記載された発明は、前記
構成において、シャフトをハウジングに取り付けるため
にスリーブの開口部から突出させて前記スリーブに挿入
するとともに、この突出部の外径を前記スリーブの内径
よりも小径に形成して開口部側から前記テーパ状環状間
隙を視認し得るようにしたことを特徴とするものであ
る。
Further, in the invention described in claim 4, in the above construction, the shaft is inserted into the sleeve by projecting from an opening of the sleeve to attach the shaft to the housing, and the outer diameter of the projecting portion is set to the sleeve diameter. The tapered annular gap is formed to be smaller than the inner diameter so that the tapered annular gap can be viewed from the opening side.

【0013】前記構成によれば、突出部の外径を前記ス
リーブの内径よりも小径に形成したので、シャフトをス
リーブの開口部から突出させても、開口部側から前記テ
ーパ環状間隙を視認することができて、毛細管現象によ
って維持された液体潤滑剤の液面を光学機器の視野に捕
らえ易く、光学機器によってその液面深さを容易に測定
することができる。
According to the above construction, the outer diameter of the projection is formed smaller than the inner diameter of the sleeve. Therefore, even if the shaft is projected from the opening of the sleeve, the tapered annular gap is visually recognized from the opening. As a result, the liquid surface of the liquid lubricant maintained by the capillary phenomenon can be easily captured in the visual field of the optical device, and the liquid surface depth can be easily measured by the optical device.

【0014】さらに、本発明の液体潤滑剤の液面深さ測
定方法は、スリーブと、このスリーブ内にこれとの間に
所定間隔の微小環状間隙を形成して挿入したシャフト
と、前記微小環状間隙に充填した液体潤滑剤とから構成
され、前記微小環状間隙に充填した液体潤滑剤を介して
前記シャフトと前記スリーブとが同軸上で相対的に回転
駆動するようになし、かつ前記スリーブの開口部側に、
開口部側ほど前記スリーブと前記シャフトとの間の間隔
が大きいテーパ状環状間隙を前記微小環状間隙に連通し
て形成し、前記液体潤滑剤をその液面が前記テーパ状環
状間隙内に位置するように充填した流体軸受装置におい
て、前記液体潤滑剤の液面深さを測定するに際し、レン
ズ部を備えた光学機器のレンズ部の焦点を前記スリーブ
の開口部側の端面に合わせるとともに、前記レンズ部の
焦点を前記液体潤滑剤の液面に合わせ、前記レンズ部の
焦点が前記スリーブの開口部側の端面に合ったときの前
記レンズ部の高さ位置と前記レンズ部の焦点が前記液体
潤滑剤の液面に合ったときの前記レンズ部の高さ位置と
の差から、前記スリーブの端面から前記液体潤滑剤の液
面までの距離を測定することを特徴とするものである。
Further, according to the method for measuring the liquid surface depth of a liquid lubricant according to the present invention, there is provided a shaft having a sleeve formed therein with a minute annular gap formed at a predetermined interval therebetween, A liquid lubricant filled in the gap, wherein the shaft and the sleeve are driven to rotate relatively coaxially via the liquid lubricant filled in the micro annular gap, and an opening of the sleeve is provided. On the part side,
A tapered annular gap in which the distance between the sleeve and the shaft is larger toward the opening is formed so as to communicate with the minute annular gap, and the liquid surface of the liquid lubricant is located in the tapered annular gap. In the fluid bearing device filled as described above, when measuring the liquid surface depth of the liquid lubricant, the focal point of the lens unit of the optical device having the lens unit is adjusted to the end surface on the opening side of the sleeve, and the lens The focus of the lens unit is adjusted to the liquid surface of the liquid lubricant, and the height position of the lens unit and the focus of the lens unit when the focus of the lens unit is aligned with the end surface on the opening side of the sleeve are the liquid lubricant. The distance from the end surface of the sleeve to the liquid surface of the liquid lubricant is measured from the difference from the height position of the lens portion when the liquid lubricant is fitted to the liquid surface.

【0015】前記構成によれば、レンズ部を備えた光学
機器のレンズ部の焦点を前記スリーブの開口部側の端面
に合わせるとともに、前記レンズ部の焦点を前記液体潤
滑剤の液面に合わせ、両者におけるレンズ部の高さ位置
の差から、前記スリーブの端面から前記液体潤滑剤の液
面までの距離を測定するので、液体潤滑剤の液面深さを
正確に測定することができ、液体潤滑剤の液量を容易に
適正な量に管理することができる。
According to the above construction, the focal point of the lens unit of the optical device having the lens unit is adjusted to the end face of the sleeve on the opening side, and the focal point of the lens unit is adjusted to the liquid level of the liquid lubricant. Since the distance from the end surface of the sleeve to the liquid surface of the liquid lubricant is measured from the difference in the height position of the lens portion between the two, the liquid surface depth of the liquid lubricant can be accurately measured, and the liquid The amount of the lubricant can be easily controlled to an appropriate amount.

【0016】したがって、流体軸受装置をスピンドルモ
ータなどに組み込む前に、液体潤滑剤の液量を適正な量
に調整することによって、液体潤滑剤の不足による軸受
内への空気に巻き込み、摩擦による軸受の焼き付き及び
液体潤滑剤の過多による流出を防止することができる。
Therefore, before incorporating the hydrodynamic bearing device into a spindle motor or the like, by adjusting the liquid amount of the liquid lubricant to an appropriate amount, the liquid lubricant is caught in the air into the bearing due to a shortage of the liquid lubricant, and the bearing is caused by friction. Of the liquid lubricant and outflow due to excessive liquid lubricant can be prevented.

【0017】また、請求項6に記載された発明は、前記
構成において、光学機器として顕微鏡を用いることを特
徴とするものである。前記構成によれば、光学機器とし
て顕微鏡を用いるので、簡便かつ正確に液体潤滑剤の液
面深さを測定することができる。
The invention according to claim 6 is characterized in that, in the above configuration, a microscope is used as an optical device. According to the configuration, since the microscope is used as the optical device, the liquid surface depth of the liquid lubricant can be measured simply and accurately.

【0018】[0018]

【発明の実施の形態】(実施の形態1)以下、請求項
1、2及び4に記載された発明の実施の形態を図1に基
づいて説明する。
(Embodiment 1) An embodiment of the invention described in claims 1, 2 and 4 will be described below with reference to FIG.

【0019】図1は本発明の一実施の形態における流体
軸受装置を示す断面図である。図1において、流体軸受
装置1はスリーブ2と、このスリーブ2内に挿入したシ
ャフト3と、前記スリーブ2とシャフト3との間に形成
された微小環状間隙4に充填した潤滑油(液体潤滑剤)
5とから構成され、前記シャフト3のスリーブ2からの
突出部がスピンドルモータのハウジング又はブラケット
に固定され、スリーブ2が前記潤滑剤5を介してシャフ
ト3に軸受支持されて回転駆動するものである。
FIG. 1 is a sectional view showing a hydrodynamic bearing device according to an embodiment of the present invention. In FIG. 1, a hydrodynamic bearing device 1 includes a sleeve 2, a shaft 3 inserted into the sleeve 2, and a lubricating oil (liquid lubricant) filled in a minute annular gap 4 formed between the sleeve 2 and the shaft 3. )
5, a protruding portion of the shaft 3 from the sleeve 2 is fixed to a housing or a bracket of a spindle motor, and the sleeve 2 is supported by the shaft 3 via the lubricant 5 to be rotationally driven. .

【0020】前記スリーブ2は一端側が開口して開口部
6が形成され、このスリーブ2内にはこれとの間に所定
間隔の前記微小環状間隙4を形成して前記シャフト3が
挿入されている。前記スリーブ2の開口部6側の内周面
7に対向するシャフト3の外周面8をテーパ状に切り欠
いてテーパ面9を形成し、それによって前記開口部6側
に前記微小環状間隙4よりもスリーブ2とシャフト3と
の間の間隔が大きくかつこの間隔が開口部6側ほど大き
いテーパ状環状間隙10が前記微小環状間隙4に連通し
て形成されている。そして、前記シャフト3にはスピン
ドルモータに取り付けるための突出部11が前記開口部
6よりも上方に突出し、この突出部11の外径D1はス
リーブ2の内径D2よりも小径に形成されている。
One end of the sleeve 2 is opened to form an opening 6, and the shaft 3 is inserted into the sleeve 2 with the small annular gap 4 formed at a predetermined interval therebetween. . The outer peripheral surface 8 of the shaft 3 facing the inner peripheral surface 7 on the opening 6 side of the sleeve 2 is tapered to form a tapered surface 9, whereby the small annular gap 4 is formed on the opening 6 side. Also, a tapered annular gap 10 in which the distance between the sleeve 2 and the shaft 3 is large and the distance is larger toward the opening 6 is formed so as to communicate with the small annular gap 4. The shaft 3 has a protruding portion 11 for mounting on a spindle motor protruding above the opening 6, and the outer diameter D 1 of the protruding portion 11 is formed smaller than the inner diameter D 2 of the sleeve 2. I have.

【0021】前記構成において、潤滑油5を開口部6か
ら例えば真空注入によってテーパ状環状間隙10内に注
入する。注入された潤滑油5は、テーパ状環状間隙10
によって毛細管現象が促進されて、微小環状間隙4に空
気などを含むことなく充填されるとともに、テーパ状環
状間隙10内に毛細管現象によって維持された潤滑油5
の液面すなわちキャピラリシール面12が形成される。
このキャピラリシール面12は変動することがなく、安
定した液面深さが保持される。したがって、このキャピ
ラリシール面12の液面深さを調節することによって、
潤滑油5の液量を適正な量に調整することができる。ま
た、回転駆動しないシャフト3にテーパ面9を形成した
ので、潤滑油5が飛散するおそれはない。さらに、突出
部11の外径D1をスリーブ2の内径D2よりも小径に形
成したので、キャピラリシール面12の液面深さを光学
機器などによって測定しようとするときに、前記キャピ
ラリシール面12を光学機器の視野に容易に捕らえるこ
とができる。したがって、流体軸受装置1をスピンドル
モータに組み込む前に、潤滑油5の液量を適正な量に調
整することによって、潤滑油5の不足による軸受内への
空気の巻き込み、摩擦による軸受の焼き付き及び潤滑油
5の過多による流出を防止することができる。
In the above configuration, the lubricating oil 5 is injected into the tapered annular gap 10 from the opening 6 by, for example, vacuum injection. The injected lubricating oil 5 has a tapered annular gap 10
As a result, the microscopic gap 4 is filled without containing air and the like, and the lubricating oil 5 maintained in the tapered annular gap 10 by the capillary action
, The capillary seal surface 12 is formed.
The capillary seal surface 12 does not fluctuate, and a stable liquid level is maintained. Therefore, by adjusting the liquid surface depth of the capillary seal surface 12,
The liquid amount of the lubricating oil 5 can be adjusted to an appropriate amount. Further, since the tapered surface 9 is formed on the shaft 3 which is not driven to rotate, there is no possibility that the lubricating oil 5 is scattered. Further, the outer diameter D 1 since a diameter smaller than the inner diameter D 2 of the sleeve 2 of the protruding portion 11, the liquid level depth of the capillary seal surface 12 when trying to measure the like optics, the capillary seal surface 12 can be easily captured in the field of view of the optical device. Therefore, by adjusting the amount of the lubricating oil 5 to an appropriate amount before assembling the hydrodynamic bearing device 1 into the spindle motor, air is trapped in the bearing due to lack of the lubricating oil 5, seizure of the bearing due to friction, and Outflow of the lubricating oil 5 due to excessive amount can be prevented.

【0022】本実施の形態では、回転駆動しないシャフ
ト3にテーパ面9を形成したが、シャフト3が回転駆動
する流体軸受装置1においてシャフト3にテーパ面9を
形成してもよく、この場合にはテーパ状環状間隙10内
の潤滑油5にシャフト3の回転駆動による遠心力が作用
しても、スリーブ2によって潤滑油5が飛散することが
防止される。また、本実施の形態ではスリーブ2の一端
が開口した流体軸受装置を示したが、両端が開口したも
のでもよい。 (実施の形態2)次に、請求項3に記載された発明の実
施の形態を図2に基づいて説明する。
In this embodiment, the tapered surface 9 is formed on the shaft 3 that is not driven to rotate. However, the tapered surface 9 may be formed on the shaft 3 in the fluid bearing device 1 that is driven to rotate. The sleeve 2 prevents the lubricating oil 5 from being scattered even when a centrifugal force due to the rotation of the shaft 3 acts on the lubricating oil 5 in the tapered annular gap 10. Further, in the present embodiment, the fluid bearing device in which one end of the sleeve 2 is opened is shown, but a fluid bearing device in which both ends are opened may be used. (Embodiment 2) Next, an embodiment of the invention described in claim 3 will be described with reference to FIG.

【0023】図2は本発明の他実施の形態における流体
軸受装置を示す断面図である。なお、前記実施の形態に
おいて説明した事項及び符号の説明は省略する。図2に
おいて、流体軸受装置1は、スリーブ2にその内周面7
を開口部6側において切り欠いてテーパ面13を形成
し、それによってテーパ状環状間隙10を形成したもの
であって、シャフト3が潤滑油5を介してスリーブ2に
軸受支持されて回転駆動するものである。
FIG. 2 is a sectional view showing a hydrodynamic bearing device according to another embodiment of the present invention. The description of the items and reference numerals described in the above embodiment is omitted. In FIG. 2, the hydrodynamic bearing device 1 has an inner peripheral surface 7 on a sleeve 2.
Is cut out at the opening 6 side to form a tapered surface 13, thereby forming a tapered annular gap 10. The shaft 3 is supported by the sleeve 2 via the lubricating oil 5 and is rotationally driven. Things.

【0024】前記構成によれば、前記実施の形態1と同
様に安定したキャピラリシール面12を形成することが
できる。さらに、キャピラリシール面12の液面深さを
光学機器などによって測定しようとするときに、前記キ
ャピラリシール面12を光学機器の視野に容易に捕らえ
ることができる。 (実施の形態3)次に、請求項5及び6に記載された発
明の実施の形態を図3〜図5に基づいて説明する。
According to the above configuration, a stable capillary seal surface 12 can be formed as in the first embodiment. Further, when the liquid surface depth of the capillary seal surface 12 is to be measured by an optical device or the like, the capillary seal surface 12 can be easily captured in the visual field of the optical device. (Embodiment 3) Next, an embodiment of the invention described in claims 5 and 6 will be described with reference to FIGS.

【0025】図3は本発明の実施の形態における液体潤
滑剤の液面深さ測定方法を示す概略図、図4は図3に要
部拡大図、図5は液面深さを示す部分拡大図である。な
お、前記実施の形態1において説明した事項及び符号の
説明は省略する。
FIG. 3 is a schematic view showing a method for measuring the liquid surface depth of the liquid lubricant according to the embodiment of the present invention, FIG. 4 is an enlarged view of a main part in FIG. 3, and FIG. FIG. The description of the items and reference numerals described in the first embodiment will be omitted.

【0026】図3、図4は図1に示した流体軸受装置に
おいてそれに用いる潤滑剤の液面深さを測定する方法を
示すものであって、流体軸受装置1が支持台20の上に
載置され、流体軸受装置1の上方の所定位置に、測長ゲ
ージ(ハイトゲージ)24を備えた顕微鏡22が配置さ
れている。
FIGS. 3 and 4 show a method for measuring the liquid surface depth of the lubricant used in the hydrodynamic bearing device shown in FIG. 1, in which the hydrodynamic bearing device 1 is mounted on a support base 20. A microscope 22 having a length measuring gauge (height gauge) 24 is disposed at a predetermined position above the hydrodynamic bearing device 1.

【0027】潤滑油5の液面深さを測定するに際して
は、まず、顕微鏡22のレンズ部23の高さ位置を、支
持台20の表面を基準面とする測長ゲージ24の目盛に
合わせてレンズ部23の初期位置を読み取り、それをレ
ンズ部23の基準面からの高さとして測定する。
When measuring the liquid surface depth of the lubricating oil 5, first, the height position of the lens portion 23 of the microscope 22 is adjusted to the scale of the length measuring gauge 24 with the surface of the support base 20 as a reference plane. The initial position of the lens unit 23 is read and measured as the height of the lens unit 23 from the reference plane.

【0028】次いで、支持台20をX−Y方向(水平方
向)へ適宜移動してスリーブ2の端面14を顕微鏡22
のレンズ部23の下方に位置させ、その状態でレンズ部
23をスリーブ2の端面14の方向に移動させて焦点を
スリーブ2の端面14に合わせ、焦点が合ったときのレ
ンズ部23の高さ位置を測長ゲージ24にて読み取っ
て、スリーブ2の端面14の高さL1を測定する。
Next, the support base 20 is appropriately moved in the XY directions (horizontal direction), and the end face 14 of the sleeve 2 is
Is positioned below the lens portion 23, and in that state, the lens portion 23 is moved in the direction of the end surface 14 of the sleeve 2 so that the focal point is adjusted to the end surface 14 of the sleeve 2, and the height of the lens portion 23 when focused position read by measuring gauge 24 measures the height L 1 of the end face 14 of the sleeve 2.

【0029】次いで、支持台20をX方向へ移動してス
リーブ2の開口部6をレンズ部23の下方に位置させ、
その状態でレンズ部23をキャピラリシール面12の方
向に移動させて焦点をキャピラリシール面12に合わ
せ、焦点が合ったときのレンズ部23の高さ位置を測長
ゲージ24にて読み取って、キャピラリシール面12の
高さL2を測定する。
Next, the support base 20 is moved in the X direction so that the opening 6 of the sleeve 2 is positioned below the lens portion 23.
In this state, the lens unit 23 is moved in the direction of the capillary seal surface 12 so as to focus on the capillary seal surface 12, and the height position of the lens unit 23 at the time of focusing is read by the length measuring gauge 24, and the capillary is read. the height L 2 of the sealing surface 12 measured.

【0030】そして、スリーブ2の端面14の高さL1
とキャピラリシール面12の高さL2の値から次式によ
ってスリーブ2の端面14からの潤滑油5の液面深さL
を求める。すなわち、潤滑油5の液面深さは、前記レン
ズ部の焦点が前記スリーブの開口部側の端面に合ったと
きの前記レンズ部の高さ位置と前記レンズ部の焦点が前
記液体潤滑剤の液面に合ったときの前記レンズ部の高さ
位置との差から求められる。
The height L 1 of the end surface 14 of the sleeve 2
From the value of the height L 2 of the capillary seal surface 12 and the value of the liquid surface depth L of the lubricating oil 5 from the end surface 14 of the sleeve 2 according to the following equation:
Ask for. That is, the liquid surface depth of the lubricating oil 5 depends on the height position of the lens portion when the focal point of the lens portion is aligned with the end surface on the opening side of the sleeve and the focal point of the lens portion. It is determined from the difference from the height position of the lens unit when the lens unit matches the liquid level.

【0031】潤滑油5の液面深さ=L1−L2 以上のようにして潤滑油5の液面深さを測定できること
から、流体軸受装置1へ潤滑油5を充填するに際して
は、図5に示すように、充填する潤滑油5の高温時にお
ける膨張時の液面深さ34、低温時又は蒸発による減少
時の液面深さ35を考慮して、予め高温時に潤滑油5が
流出しないように液面深さに上限32を設定するととも
に、蒸発などによる潤滑油5の液量の減少によって寿命
が短縮されずかつ低温時に軸受内に気液境界面が形成さ
れないように液面深さの下限33を設定し、それによっ
て所定の液面深さのキャピラリシール面12になるよう
に潤滑油5の液量を調整する。
Since the liquid surface depth of the lubricating oil 5 can be measured in such a manner that the liquid surface depth of the lubricating oil 5 is equal to or greater than L 1 -L 2 , when filling the lubricating oil 5 into the hydrodynamic bearing device 1, FIG. As shown in FIG. 5, the lubricating oil 5 flows out at a high temperature in advance in consideration of the liquid level depth 34 at the time of expansion of the lubricating oil 5 to be filled at a high temperature and the liquid level depth 35 at a low temperature or a decrease due to evaporation. The liquid surface depth is set to an upper limit 32 so as not to prevent the liquid level of the lubricating oil 5 from decreasing due to evaporation or the like. The lower limit 33 is set, and the liquid amount of the lubricating oil 5 is adjusted so that the capillary seal surface 12 has a predetermined liquid surface depth.

【0032】前記構成によれば、潤滑油5の液面深さを
正確に測定することができ、流体軸受装置1に充填する
潤滑油5の液量を適正な量に調整することができる。し
たがって、流体軸受装置1をスピンドルモータなどに組
み込む前に、潤滑油5の液量を調整することによって、
潤滑油5の不足による軸受内への空気の巻き込み、摩擦
による軸受の焼き付き及び潤滑油5の過多による流出を
防止することができる。
According to the above configuration, the liquid surface depth of the lubricating oil 5 can be accurately measured, and the amount of the lubricating oil 5 to be filled in the hydrodynamic bearing device 1 can be adjusted to an appropriate amount. Therefore, by adjusting the amount of the lubricating oil 5 before incorporating the hydrodynamic bearing device 1 into a spindle motor or the like,
Entrapment of air into the bearing due to lack of lubricating oil 5, seizure of the bearing due to friction, and outflow due to excessive lubricating oil 5 can be prevented.

【0033】本実施の形態においては、潤滑油5の液面
深さを、流体軸受装置1が載置された支持台20の表面
を基準面とすることによって、この基準面からスリーブ
2の端面14までの高さ及びキャピラリシール面12ま
での高さを測定することによって求めたが、スリーブ2
の端面14からキャピラリシール面12までの距離を測
定することができれば、いずれの方法で求めてもよい。
In the present embodiment, the liquid surface depth of the lubricating oil 5 is determined by using the surface of the support base 20 on which the hydrodynamic bearing device 1 is mounted as a reference surface. 14 and by measuring the height to the capillary seal surface 12, the sleeve 2
Any method can be used as long as the distance from the end surface 14 of the above to the capillary seal surface 12 can be measured.

【0034】[0034]

【発明の効果】以上のように、本発明の流体軸受装置に
よれば、スリーブの開口部側にテーパ状環状間隙を形成
したので、テーパ状環状間隙に毛細管現象によって維持
され安定に保たれた液体潤滑剤の液面を形成することが
でき、液体潤滑剤の液面深さを調節することによって、
液体潤滑剤の液量を適正な量に調整することができる。
As described above, according to the hydrodynamic bearing device of the present invention, the tapered annular gap is formed on the opening side of the sleeve, so that the tapered annular gap is maintained by the capillary action and is stably maintained. The liquid surface of the liquid lubricant can be formed, and by adjusting the liquid surface depth of the liquid lubricant,
The liquid amount of the liquid lubricant can be adjusted to an appropriate amount.

【0035】したがって、流体軸受装置をスピンドルモ
ータなどに組み込む前に、液体潤滑剤の液量を適正な量
に調整することによって、液体潤滑剤の不足による軸受
内への空気の巻き込み、摩擦による軸受の焼き付き及び
液体潤滑剤の過多による流出を防止することができる。
Therefore, before incorporating the hydrodynamic bearing device into a spindle motor or the like, by adjusting the liquid amount of the liquid lubricant to an appropriate amount, air is entrapped in the bearing due to a shortage of the liquid lubricant, and the bearing is caused by friction. Of the liquid lubricant and outflow due to excessive liquid lubricant can be prevented.

【0036】また、請求項2に記載された発明によれ
ば、スリーブを回転駆動させる場合は勿論のこと、シャ
フトを回転駆動させる場合にも、スリーブによって液体
潤滑剤が飛散することが防止される。
According to the second aspect of the invention, the liquid lubricant is prevented from being scattered by the sleeve not only when the sleeve is driven to rotate but also when the shaft is driven to rotate. .

【0037】また、請求項3に記載された発明によれ
ば、毛細管現象によって維持された液体潤滑剤の液面を
光学機器の視野に捕らえ易く、光学機器によってその液
面深さを容易に測定することができる。
According to the third aspect of the present invention, the liquid surface of the liquid lubricant maintained by the capillary action can be easily captured in the visual field of the optical device, and the liquid surface depth can be easily measured by the optical device. can do.

【0038】また、請求項4に記載された発明によれ
ば、シャフトをスリーブの開口部から突出させても、毛
細管現象によって維持された液体潤滑剤の液面を光学機
器の視野に捕らえ易く、光学機器によってその液面深さ
を容易に測定することができる。
According to the fourth aspect of the present invention, even when the shaft is projected from the opening of the sleeve, the liquid surface of the liquid lubricant maintained by the capillary phenomenon can be easily captured in the visual field of the optical device. The optical instrument can easily measure the liquid surface depth.

【0039】さらに、本発明の液体潤滑剤の液面深さ測
定方法によれば、レンズを備えた光学機器によって液体
潤滑剤の液面深さを測定するので、液体潤滑剤の液面深
さを正確に測定することができ、液体潤滑剤の液量を容
易に適正な量に管理することができる。
Further, according to the liquid lubricant liquid surface depth measuring method of the present invention, since the liquid lubricant liquid surface depth is measured by an optical device having a lens, the liquid lubricant liquid surface depth is measured. Can be accurately measured, and the liquid amount of the liquid lubricant can be easily controlled to an appropriate amount.

【0040】したがって、流体軸受装置をスピンドルモ
ータなどに組み込む前に、液体潤滑剤の液量を適正な量
に調整することによって、液体潤滑剤の不足による軸受
内への空気の巻き込み、摩擦による軸受の焼き付き及び
液体潤滑剤の過多による流出を防止することができる。
Therefore, before the fluid bearing device is incorporated into a spindle motor or the like, the amount of the liquid lubricant is adjusted to an appropriate amount, whereby air is entrapped in the bearing due to a shortage of the liquid lubricant, and the bearing due to friction. Of the liquid lubricant and outflow due to excessive liquid lubricant can be prevented.

【0041】また、請求項6に記載された発明によれ
ば、光学機器として顕微鏡を用いるので、簡便かつ正確
に液体潤滑剤の液面深さを測定することができる。
Further, according to the invention described in claim 6, since the microscope is used as the optical device, the liquid surface depth of the liquid lubricant can be measured simply and accurately.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態における流体軸受装置を
示す断面図である。
FIG. 1 is a sectional view showing a hydrodynamic bearing device according to an embodiment of the present invention.

【図2】本発明の他実施の形態における流体軸受装置を
示す断面図である。
FIG. 2 is a sectional view showing a hydrodynamic bearing device according to another embodiment of the present invention.

【図3】本発明の実施の形態における液体潤滑剤の液面
深さ測定方法を示す概略図である。
FIG. 3 is a schematic diagram showing a method of measuring a liquid surface depth of a liquid lubricant according to an embodiment of the present invention.

【図4】図3の要部拡大図である。FIG. 4 is an enlarged view of a main part of FIG. 3;

【図5】液面深さの示す部分拡大図である。FIG. 5 is a partially enlarged view showing a liquid surface depth.

【符号の説明】[Explanation of symbols]

1 流体軸受装置 2 スリーブ 3 シャフト 4 微小環状間隙 5 潤滑剤 6 開口部 7 内周面 8 外周面 9 テーパ面 10 テーパ状環状間隙 11 突出部 12 キャピラリシール面 13 テーパ面 14 スリーブの端面 19 リング状封止部材 20 支持台 22 顕微鏡 23 レンズ部 24 測長ゲージ 32 液面深さの上限 33 液面深さの下限 34 膨張時の液面深さ 35 減少時の液面深さ L 潤滑油の液面深さ L1 スリーブ端面の高さ L2 キャピラリシール面の高さ X 支持台の移動方向DESCRIPTION OF SYMBOLS 1 Fluid bearing device 2 Sleeve 3 Shaft 4 Micro annular gap 5 Lubricant 6 Opening 7 Inner peripheral surface 8 Outer peripheral surface 9 Tapered surface 10 Tapered annular gap 11 Projection 12 Capillary seal surface 13 Tapered surface 14 Sleeve end surface 19 Ring shape Sealing member 20 Support base 22 Microscope 23 Lens part 24 Measurement gauge 32 Upper limit of liquid surface depth 33 Lower limit of liquid surface depth 34 Liquid surface depth when expanded 35 Liquid surface depth when reduced L Lubricating oil liquid Surface depth L 1 Height of sleeve end surface L 2 Height of capillary seal surface X Moving direction of support base

フロントページの続き Fターム(参考) 2F014 AA08 FA10 2F065 AA06 AA25 CC00 FF10 FF61 HH13 JJ03 JJ09 NN20 PP24 QQ25 3J011 AA07 BA02 BA04 BA06 BA08 DA02 EA04 JA02 KA02 KA03 MA01 MA24 PA03 RA01 Continued on front page F term (reference) 2F014 AA08 FA10 2F065 AA06 AA25 CC00 FF10 FF61 HH13 JJ03 JJ09 NN20 PP24 QQ25 3J011 AA07 BA02 BA04 BA06 BA08 DA02 EA04 JA02 KA02 KA03 MA01 MA24 PA03 RA01

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 スリーブと、このスリーブ内にこれとの
間に所定間隔の微小環状間隙を形成して挿入したシャフ
トと、前記微小環状間隙に充填した液体潤滑剤とから構
成され、前記微小環状間隙に充填した液体潤滑剤を介し
て前記シャフトと前記スリーブとが同軸上で相対的に回
転駆動する流体軸受装置において、前記スリーブの開口
部側に、開口部側ほど前記スリーブと前記シャフトとの
間の間隔が大きいテーパ状環状間隙を前記微小環状間隙
に連通して形成し、前記液体潤滑剤をその液面が前記テ
ーパ状環状間隙内に位置するように充填したことを特徴
とする流体軸受装置。
1. A micro-ring comprising: a sleeve; a shaft inserted into the sleeve with a minute annular gap formed therebetween; and a liquid lubricant filled in the minute annular gap. In the fluid bearing device in which the shaft and the sleeve are relatively coaxially driven to rotate via the liquid lubricant filled in the gap, the opening of the sleeve is closer to the opening, and the opening is closer to the sleeve and the shaft. A fluid bearing, wherein a tapered annular gap having a large space therebetween is formed so as to communicate with the micro annular gap, and the liquid lubricant is filled so that a liquid level thereof is located in the tapered annular gap. apparatus.
【請求項2】 前記テーパ状環状間隙を、前記スリーブ
に開口部側の内周面に対向したシャフトの外周面をテー
パ状に切り欠いて形成したことを特徴とする請求項1記
載の流体軸受装置。
2. The hydrodynamic bearing according to claim 1, wherein the tapered annular gap is formed by cutting the outer peripheral surface of the shaft facing the inner peripheral surface on the opening side in the sleeve into a tapered shape. apparatus.
【請求項3】 前記テーパ状環状間隙を、前記スリーブ
の開口部側に内周面をテーパ状に切り欠いて形成したこ
とを特徴とする請求項1記載の流体軸受装置。
3. The hydrodynamic bearing device according to claim 1, wherein the tapered annular gap is formed by tapering an inner peripheral surface on an opening side of the sleeve.
【請求項4】 前記シャフトをハウジングに取り付ける
ために前記スリーブの開口部から突出させて前記スリー
ブに挿入するとともに、この突出部の外径を前記スリー
ブの内径よりも小径に形成して開口部側から前記テーパ
状環状間隙を視認し得るようにしたことを特徴とする請
求項1〜請求項3のいずれかに記載の流体軸受装置。
4. In order to attach the shaft to the housing, the shaft is protruded from an opening of the sleeve and inserted into the sleeve. The hydrodynamic bearing device according to any one of claims 1 to 3, wherein the tapered annular gap can be visually recognized from (1).
【請求項5】 スリーブと、このスリーブ内にこれとの
間に所定間隔の微小環状間隙を形成して挿入したシャフ
トと、前記微小環状間隙に充填した液体潤滑剤とから構
成され、前記微小環状間隙に充填した液体潤滑剤を介し
て前記シャフトと前記スリーブとが同軸上で相対的に回
転駆動するようになし、かつ前記スリーブの開口部側
に、開口部側ほど前記スリーブと前記シャフトとの間の
間隔が大きいテーパ状環状間隙を前記微小環状間隙に連
通して形成し、前記液体潤滑剤をその液面が前記テーパ
状環状間隙内に位置するように充填した流体軸受装置に
おいて、前記液体潤滑剤の液面深さを測定するに際し、
レンズ部を備えた光学機器のレンズ部の焦点を前記スリ
ーブの開口部側の端面に合わせるとともに、前記レンズ
部の焦点を前記液体潤滑剤の液面に合わせ、前記レンズ
部の焦点が前記スリーブの開口部側の端面に合ったとき
の前記レンズ部の高さ位置と前記レンズ部の焦点が前記
液体潤滑剤の液面に合ったときの前記レンズ部の高さ位
置との差から、前記スリーブの端面から前記液体潤滑剤
の液面までの距離を測定することを特徴とする流体軸受
装置における液体潤滑剤の液面深さ測定方法。
5. A micro-ring comprising: a sleeve; a shaft inserted into the sleeve with a minute annular gap formed between the sleeve and a liquid lubricant filled in the minute annular gap; The shaft and the sleeve are relatively rotatably driven coaxially via the liquid lubricant filled in the gap, and the opening of the sleeve is closer to the opening, and the opening is closer to the sleeve and the shaft. A fluid bearing device in which a tapered annular gap having a large space therebetween is formed so as to communicate with the micro annular gap, and the liquid lubricant is filled so that a liquid level thereof is located in the tapered annular gap. When measuring the liquid level of the lubricant,
The focal point of the lens unit of the optical device having the lens unit is adjusted to the end surface on the opening side of the sleeve, and the focal point of the lens unit is adjusted to the liquid surface of the liquid lubricant. From the difference between the height position of the lens unit when it is aligned with the end face on the opening side and the height position of the lens unit when the focus of the lens unit is aligned with the liquid surface of the liquid lubricant, the sleeve Measuring the distance from the end face of the liquid lubricant to the liquid surface of the liquid lubricant.
【請求項6】 前記光学機器として顕微鏡を用いること
を特徴とする請求項5記載の流体軸受装置における液体
潤滑剤の液面深さ測定方法。
6. The method according to claim 5, wherein a microscope is used as the optical device.
JP2001044369A 2001-02-21 2001-02-21 Fluid bearing device and liquid level depth measuring method for liquid lubricant used in the same Pending JP2002250341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001044369A JP2002250341A (en) 2001-02-21 2001-02-21 Fluid bearing device and liquid level depth measuring method for liquid lubricant used in the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001044369A JP2002250341A (en) 2001-02-21 2001-02-21 Fluid bearing device and liquid level depth measuring method for liquid lubricant used in the same

Publications (1)

Publication Number Publication Date
JP2002250341A true JP2002250341A (en) 2002-09-06

Family

ID=18906373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001044369A Pending JP2002250341A (en) 2001-02-21 2001-02-21 Fluid bearing device and liquid level depth measuring method for liquid lubricant used in the same

Country Status (1)

Country Link
JP (1) JP2002250341A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005134384A (en) * 2003-10-30 2005-05-26 Minebea Co Ltd Optical measuring method for liquid-filled level
WO2005124005A1 (en) * 2004-06-15 2005-12-29 Kabushiki Kaisha Toshiba Drum type washing machine
US7118278B2 (en) 2003-06-12 2006-10-10 Nidec Corporation Hydrodynamic bearing, manufacturing method of hydrodynamic bearing, spindle motor provided with hydrodynamic bearing and disk drive device provided with this spindle motor
DE102005015627A1 (en) * 2005-04-06 2006-10-12 Carl Zeiss Smt Ag Optical imaging device
JP2007327528A (en) * 2006-06-06 2007-12-20 Nippon Densan Corp Hydrodynamic bearing device manufacturing method
US7344002B2 (en) 2003-03-31 2008-03-18 Minebea Co., Ltd. Method and apparatus for filling the bearing gap of a hydrodynamic bearing with a lubricant
KR101038786B1 (en) 2009-09-28 2011-06-03 삼성전기주식회사 Method and decive for measuring oil interface of hydrodynamic bearing assembly of motor
US8064166B2 (en) 2007-12-28 2011-11-22 Panasonic Corporation Hydrodynamic bearing device, spindle motor, and recording and reproducing apparatus

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7344002B2 (en) 2003-03-31 2008-03-18 Minebea Co., Ltd. Method and apparatus for filling the bearing gap of a hydrodynamic bearing with a lubricant
US7118278B2 (en) 2003-06-12 2006-10-10 Nidec Corporation Hydrodynamic bearing, manufacturing method of hydrodynamic bearing, spindle motor provided with hydrodynamic bearing and disk drive device provided with this spindle motor
JP4494163B2 (en) * 2003-10-30 2010-06-30 ミネベア株式会社 Method for optical measurement of liquid filling level
JP2005134384A (en) * 2003-10-30 2005-05-26 Minebea Co Ltd Optical measuring method for liquid-filled level
JP2006000190A (en) * 2004-06-15 2006-01-05 Toshiba Corp Drum type washing machine
GB2430941A (en) * 2004-06-15 2007-04-11 Toshiba Kk Drum type washing machine
WO2005124005A1 (en) * 2004-06-15 2005-12-29 Kabushiki Kaisha Toshiba Drum type washing machine
US7797971B2 (en) 2004-06-15 2010-09-21 Kabushiki Kaisha Toshiba Drum washing machine
JP4564287B2 (en) * 2004-06-15 2010-10-20 株式会社東芝 Drum washing machine
DE102005015627A1 (en) * 2005-04-06 2006-10-12 Carl Zeiss Smt Ag Optical imaging device
US7548387B2 (en) 2005-04-06 2009-06-16 Carl Zeiss Smt Ag Optical imaging device
JP2007327528A (en) * 2006-06-06 2007-12-20 Nippon Densan Corp Hydrodynamic bearing device manufacturing method
US8064166B2 (en) 2007-12-28 2011-11-22 Panasonic Corporation Hydrodynamic bearing device, spindle motor, and recording and reproducing apparatus
KR101038786B1 (en) 2009-09-28 2011-06-03 삼성전기주식회사 Method and decive for measuring oil interface of hydrodynamic bearing assembly of motor

Similar Documents

Publication Publication Date Title
US6843602B2 (en) Hydrodynamic bearing unit
US7118278B2 (en) Hydrodynamic bearing, manufacturing method of hydrodynamic bearing, spindle motor provided with hydrodynamic bearing and disk drive device provided with this spindle motor
US7478951B2 (en) Hydrodynamic bearing device, spindle motor including the same, and recording and reproducing apparatus
JP2009041671A (en) Bearing device and motor using the same, and information device
JPH0351514A (en) Magnetic fluid bearing device or motor including the device
JP2002250341A (en) Fluid bearing device and liquid level depth measuring method for liquid lubricant used in the same
JP2009162246A (en) Fluid bearing device, spindle motor and recording and reproducing apparatus
US7740407B2 (en) Hydrodynamic bearing type rotary device and recording and reproduction apparatus including the same
JP2005155912A5 (en)
JP4811141B2 (en) Method for manufacturing hydrodynamic bearing device
JP2010127448A (en) Fluid dynamic-pressure bearing mechanism, motor, recording disk driving device, and method for producing fluid dynamic-pressure bearing mechanism
US20050111766A1 (en) Fluid dynamic pressure bearing device, motor, and recording medium driving device
JP2008051133A (en) Bearing unit and motor equipped therewith
JP2004176816A (en) Dynamic pressure bearing device
JP4127040B2 (en) Hydrodynamic bearing device and disk rotating device
US20030202722A1 (en) Spindle motor having a fluid dynamic bearing system
JP2000155284A (en) Deflection scanner
JP2006194384A (en) Dynamic pressure bearing device
US20060126981A1 (en) Grooving in FDB motor capillary seal
JP3405750B2 (en) Spindle motor
JP3551036B2 (en) Spindle device with hydrodynamic bearing
JP2004294347A (en) Liquid level depth measuring method for liquid lubricant in fluid bearing unit
JP3677805B2 (en) Rotating polygon mirror scanning device and manufacturing method thereof
JP2007182946A (en) Dynamic pressure bearing unit, manufacturing method of dynamic pressure bearing unit, and disk drive using dynamic pressure bearing unit
JPH0870555A (en) Spindle motor