JP2007327041A - Method for producing chitosan derivative - Google Patents

Method for producing chitosan derivative Download PDF

Info

Publication number
JP2007327041A
JP2007327041A JP2007120843A JP2007120843A JP2007327041A JP 2007327041 A JP2007327041 A JP 2007327041A JP 2007120843 A JP2007120843 A JP 2007120843A JP 2007120843 A JP2007120843 A JP 2007120843A JP 2007327041 A JP2007327041 A JP 2007327041A
Authority
JP
Japan
Prior art keywords
chitosan
group
substituent
general formula
hydrocarbon group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007120843A
Other languages
Japanese (ja)
Other versions
JP5224264B2 (en
Inventor
Yoshio Okamoto
佳男 岡本
Tomoyo Yamamoto
智代 山本
Mari Fujisawa
麻里 藤澤
Masami Uegakito
正己 上垣外
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Daicel Corp
Original Assignee
Nagoya University NUC
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, Daicel Chemical Industries Ltd filed Critical Nagoya University NUC
Priority to JP2007120843A priority Critical patent/JP5224264B2/en
Publication of JP2007327041A publication Critical patent/JP2007327041A/en
Application granted granted Critical
Publication of JP5224264B2 publication Critical patent/JP5224264B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To produce a chitosan derivative to which a substituent is introduced efficiently and which has improved abilities for optical resolution. <P>SOLUTION: The chitosan derivative represented by general formula (I) is produced by deacetylating a raw material chitosan in a basic aqueous solution by heating treatment, and introducing a substituent to the deacetylated chitosan. (In the formula, R and Ra are each a substituent or the like including a 1-30C aliphatic hydrocarbon group or aromatic hydrocarbon group which may have a substituent, or Ra is a group forming pyridylimine or benzylimine with Rb; Rb is a hydrogen atom, a nitrogen atom of chitosan, or the like; and n is an integer of ≥5). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はキトサン誘導体の製造方法に関する。   The present invention relates to a method for producing a chitosan derivative.

多糖誘導体が優れた光学分割能を示すことは良く知られている(特許文献1、2等)。しかし、これら光学分割能に優れた多糖誘導体を用いても分割することが難しい化合物もある。
多糖誘導体が優れた光学分割能を示すのは、多糖誘導体の高次構造が分割対象たる光学異性体の構造に良好に適合し、両者の間で種々の相互作用が効果的に働くためであると考えられている。
そして、このような光学分割能を示す多糖誘導体の一つとして、キトサン誘導体も研究されてきた(特許文献3、非特許文献1、2等)。
しかし、これまで光学異性体分離用充填剤として用いられてきたキトサン誘導体は、必ずしもその光学分割能は充分とはいえなかった(特許文献3)。
特許第1466384号明細書 特許第1799654号明細書 特公平08-13844号公報 J. Am. Chem. Soc., 106, 5357 (1984) Reactive & Functional Polymers, 37, 183-188(1998)
It is well known that polysaccharide derivatives exhibit excellent optical resolution (Patent Documents 1, 2, etc.). However, some compounds are difficult to resolve even using these polysaccharide derivatives having excellent optical resolution.
The reason why the polysaccharide derivative has an excellent optical resolution is that the higher order structure of the polysaccharide derivative is well adapted to the structure of the optical isomer to be resolved, and various interactions work between them effectively. It is believed that.
In addition, chitosan derivatives have been studied as one of the polysaccharide derivatives exhibiting such optical resolution (Patent Document 3, Non-Patent Documents 1 and 2, etc.).
However, chitosan derivatives that have been used as fillers for separating optical isomers so far have not always had sufficient optical resolution (Patent Document 3).
Patent No. 1466384 Japanese Patent No. 1799654 Japanese Patent Publication No. 08-13844 J. Am. Chem. Soc., 106, 5357 (1984) Reactive & Functional Polymers, 37, 183-188 (1998)

本発明は、置換基が効率よく導入され、光学分割能が向上したキトサン誘導体の製造方法に関する。   The present invention relates to a method for producing a chitosan derivative in which substituents are efficiently introduced and optical resolution is improved.

本発明者らはキトサン誘導体の光学分割能を向上させるべく鋭意検討を行った。その結果、原料キトサンの脱アセチル化を十分に行った後に置換基導入反応を行うことで、置換基の導入効率がよく、光学分割能が向上したキトサン誘導体の光学分割能が得られることを見出し、本発明に達した。   The present inventors diligently studied to improve the optical resolution of chitosan derivatives. As a result, it was found that by carrying out a substituent introduction reaction after sufficiently deacetylating the raw material chitosan, the introduction efficiency of the substituent can be improved and the optical resolution of the chitosan derivative with improved optical resolution can be obtained. The present invention has been reached.

すなわち、本発明は以下のとおりである。
(1)下記一般式(I)で表されるキトサン誘導体の製造方法であって、塩基性水溶液中で原料のキトサンを加熱処理して脱アセチル化し、脱アセチル化されたキトサンに置換基を導入してキトサン誘導体を得ることを特徴とする方法。

Figure 2007327041
式中、Rは、置換基を有していてもよい炭素数1〜30の脂肪族炭化水素基または芳香
族炭化水素基を含む置換基を示し、Raは、置換基を有していてもよい炭素数1〜30の脂肪族炭化水素基もしくは芳香族炭化水素基を含む置換基、水素原子、ピリジルアルキル基、ベンジルアルキル基、キトサンの窒素原子およびRbとともにイミド環を形成する基、または、キトサンの窒素原子およびRbとともにピリジルイミンもしくはベンジルイミンを形成する基を示し、Rbは、水素原子、キトサンの窒素原子およびRaとともにイミド環を形成する基、または、キトサンの窒素原子およびRaとともにピリジルイミンもしくはベンジルイミンを形成する基を示し、nは5以上の整数を示す。
(2)一般式(I)中、RおよびRaが下記の一般式(II)または(III)のいずれかで表される置換基であり、Rbが水素原子であることを特徴とする、(1)のキトサン誘導体の製造方法。
Figure 2007327041
式中、R’は、置換基を有していてもよい炭素数1〜30の脂肪族炭化水素基又は芳香族炭化水素基である。
(3)一般式(I)中、RおよびRaが下記一般式(IV)で表される置換基であり、Rbが水素原子であることを特徴とする、(1)または(2)のキトサン誘導体の製造方法。
Figure 2007327041
式中、X は 3,4または5位に導入された1〜3個のメチル基またはハロゲン基を示す。好ましい誘導体としては、3,5-ジメチル、3,5-ジクロロ、3,4-ジクロロ、4-クロロ、4-ブロモ、3-クロロ、3-メチル、および4-メチル等を挙げることができる。また、クロロ基の代わりにフルオロ基でもよい。
(4)一般式(I)中、RおよびRaが下記の一般式(V)で表される置換基であり、Rbが水素原子であることを特徴とする、(1)のキトサン誘導体の製造方法。
Figure 2007327041
式中、Xは4-メチルまたは3-メチルを示す。
(5)一般式(I)中、Rが下記の一般式(II)で表される置換基であり、Raがピリジルアルキル基またはベンジルアルキル基であり、Rbが水素原子であることを特徴とする、(1)のキトサン誘導体の製造方法。
Figure 2007327041
式中、R’は、置換基を有していてもよい炭素数1〜30の脂肪族炭化水素基又は芳香族炭化水素基である。
(6)一般式(I)中、Rが下記の一般式(II)で表される置換基であり、Raが、キトサンの窒素原子およびRbとともにピリジルイミンを形成する基であることを特徴とする、(1)のキトサン誘導体の製造方法。
Figure 2007327041
式中、R’は、置換基を有していてもよい炭素数1〜30の脂肪族炭化水素基又は芳香族炭化水素基である。
(7)一般式(I)中、Rが下記の一般式(II)で表される置換基であり、Raが、キトサンの窒素原子およびRbとともにベンジルイミンを形成する基であることを特徴とする、(1)のキトサン誘導体の製造方法。
Figure 2007327041
式中、R’は、置換基を有していてもよい炭素数1〜30の脂肪族炭化水素基又は芳香族炭化水素基である。
(8)塩基性水溶液が水酸化ナトリウム、水酸化カリウムのいずれかであることを特徴とする、(1)〜(7)のいずれかのキトサン誘導体の製造方法。
(9)(1)〜(8)のいずれかの製造方法によりキトサン誘導体を製造し、得られたキトサン誘導体を用いて光学異性体用分離剤を製造する、光学異性体用分離剤の製造方法。(10)(1)〜(8)のいずれかの製造方法により製造されたキトサン誘導体。
(11)(10)のキトサン誘導体からなる光学異性体用分離剤。
That is, the present invention is as follows.
(1) A method for producing a chitosan derivative represented by the following general formula (I), wherein the raw chitosan is deacetylated by heat treatment in a basic aqueous solution, and a substituent is introduced into the deacetylated chitosan. To obtain a chitosan derivative.
Figure 2007327041
In the formula, R represents a substituent containing an optionally substituted aliphatic hydrocarbon group having 1 to 30 carbon atoms or an aromatic hydrocarbon group, and Ra may have a substituent. A group which forms an imide ring together with a substituent containing a good aliphatic hydrocarbon group having 1 to 30 carbon atoms or an aromatic hydrocarbon group, a hydrogen atom, a pyridylalkyl group, a benzylalkyl group, a nitrogen atom of chitosan and Rb, or A group that forms pyridylimine or benzylimine with the nitrogen atom and Rb of chitosan, Rb represents a hydrogen atom, a group that forms an imide ring with nitrogen atom and Ra of chitosan, or a pyridylimine with nitrogen atom and Ra of chitosan Alternatively, it represents a group forming benzylimine, and n represents an integer of 5 or more.
(2) In the general formula (I), R and Ra are substituents represented by the following general formula (II) or (III), and Rb is a hydrogen atom, A method for producing a chitosan derivative according to 1).
Figure 2007327041
In the formula, R ′ is an optionally substituted aliphatic hydrocarbon group or aromatic hydrocarbon group having 1 to 30 carbon atoms.
(3) The chitosan of (1) or (2), wherein in general formula (I), R and Ra are substituents represented by the following general formula (IV), and Rb is a hydrogen atom A method for producing a derivative.
Figure 2007327041
In the formula, X represents 1 to 3 methyl groups or halogen groups introduced at the 3, 4 or 5 position. Preferred derivatives include 3,5-dimethyl, 3,5-dichloro, 3,4-dichloro, 4-chloro, 4-bromo, 3-chloro, 3-methyl, 4-methyl and the like. Further, a fluoro group may be used instead of the chloro group.
(4) Production of a chitosan derivative according to (1), wherein R and Ra in general formula (I) are substituents represented by the following general formula (V), and Rb is a hydrogen atom Method.
Figure 2007327041
In the formula, X represents 4-methyl or 3-methyl.
(5) In the general formula (I), R is a substituent represented by the following general formula (II), Ra is a pyridylalkyl group or a benzylalkyl group, and Rb is a hydrogen atom, A method for producing a chitosan derivative according to (1).
Figure 2007327041
In formula, R 'is a C1-C30 aliphatic hydrocarbon group or aromatic hydrocarbon group which may have a substituent.
(6) In the general formula (I), R is a substituent represented by the following general formula (II), and Ra is a group that forms pyridylimine together with the nitrogen atom of chitosan and Rb, A method for producing a chitosan derivative according to (1).
Figure 2007327041
In formula, R 'is a C1-C30 aliphatic hydrocarbon group or aromatic hydrocarbon group which may have a substituent.
(7) In the general formula (I), R is a substituent represented by the following general formula (II), and Ra is a group that forms benzylimine with the nitrogen atom and Rb of chitosan, A method for producing a chitosan derivative according to (1).
Figure 2007327041
In formula, R 'is a C1-C30 aliphatic hydrocarbon group or aromatic hydrocarbon group which may have a substituent.
(8) The method for producing a chitosan derivative according to any one of (1) to (7), wherein the basic aqueous solution is either sodium hydroxide or potassium hydroxide.
(9) A method for producing a separating agent for optical isomers, wherein a chitosan derivative is produced by the production method of any one of (1) to (8), and a separating agent for optical isomers is produced using the obtained chitosan derivative. . (10) A chitosan derivative produced by the production method of any one of (1) to (8).
(11) A separating agent for optical isomers comprising the chitosan derivative of (10).

本発明によれば、置換基が効率がよく導入され、光学分割能が向上したキトサン誘導体が得られる。得られたキトサン誘導体は、光学異性体用分離剤として有用である。
According to the present invention, a chitosan derivative in which substituents are efficiently introduced and optical resolution is improved can be obtained. The obtained chitosan derivative is useful as a separating agent for optical isomers.

本発明においては、塩基性水溶液中で原料のキトサンを加熱処理して脱アセチル化し、
脱アセチル化されたキトサンに置換基を導入することにより、下記一般式(I)で表されるキトサン誘導体を製造する。
In the present invention, the raw chitosan is deacetylated by heat treatment in a basic aqueous solution,
A chitosan derivative represented by the following general formula (I) is produced by introducing a substituent into deacetylated chitosan.

Figure 2007327041
一般式(I)において、Rは、置換基を有していてもよい炭素数1〜30の脂肪族炭化水素基又は芳香族炭化水素基を含む置換基を示す。
一般式(I)において、Raは、置換基を有していてもよい炭素数1〜30の脂肪族炭化水素基もしくは芳香族炭化水素基を含む置換基、水素原子、ピリジルアルキル基、ベンジルアルキル基、キトサンの窒素原子およびRbとともにイミド環を形成する基、または、キトサンの窒素原子およびRbとともにピリジルイミンもしくはベンジルイミンを形成する基を示す。
一般式(I)において、Rbは、水素原子、キトサンの窒素原子およびRaとともにイミド環を形成する基、または、キトサンの窒素原子およびRaとともにピリジルイミンもしくはベンジルイミンを形成する基を示す。なお、Raが置換基を有していてもよい炭素数1〜30の脂肪族炭化水素基もしくは芳香族炭化水素基を含む置換基、ピリジルアルキル基、ベンジルアルキル基、または水素原子であるとき、Rbは水素原子である。
一般式(I)において、nは5以上の整数を示す。
炭素数1〜30の脂肪族基は、直鎖脂肪族基でも分岐脂肪族基でもよいし、不飽和結合を有していてもよい。
炭素数1〜30の脂肪族炭化水素基又は芳香族炭化水素基が置換基を有するとき、置換基の例としては、炭素数1〜12のアルキル基、炭素数1〜12のアルコキシ基、炭素数1〜12のアルキルチオ基、シアノ基、ハロゲン原子、炭素数1〜8のアシル基、炭素数1〜8のアルコキシカルボニル基、ニトロ基、アミノ基、炭素数1〜8のアルキルアミノ基などが挙げられる。なお、置換基は複数でもよい。
Figure 2007327041
In general formula (I), R shows the substituent containing the C1-C30 aliphatic hydrocarbon group or aromatic hydrocarbon group which may have a substituent.
In the general formula (I), Ra is a substituent containing a C 1-30 aliphatic hydrocarbon group or aromatic hydrocarbon group which may have a substituent, a hydrogen atom, a pyridylalkyl group, a benzylalkyl group. A group that forms an imide ring with the nitrogen atom and Rb of the group, chitosan, or a group that forms pyridymine or benzylimine with the nitrogen atom and Rb of chitosan.
In the general formula (I), Rb represents a group that forms an imide ring together with a hydrogen atom, a nitrogen atom of chitosan, and Ra, or a group that forms a pyridymine or benzylimine together with the nitrogen atom and Ra of chitosan. In addition, when Ra is a substituent containing a C1-C30 aliphatic hydrocarbon group or aromatic hydrocarbon group which may have a substituent, a pyridylalkyl group, a benzylalkyl group, or a hydrogen atom, Rb is a hydrogen atom.
In general formula (I), n represents an integer of 5 or more.
The aliphatic group having 1 to 30 carbon atoms may be a linear aliphatic group or a branched aliphatic group, and may have an unsaturated bond.
When the aliphatic hydrocarbon group or aromatic hydrocarbon group having 1 to 30 carbon atoms has a substituent, examples of the substituent include alkyl groups having 1 to 12 carbon atoms, alkoxy groups having 1 to 12 carbon atoms, carbon An alkylthio group having 1 to 12 carbon atoms, a cyano group, a halogen atom, an acyl group having 1 to 8 carbon atoms, an alkoxycarbonyl group having 1 to 8 carbon atoms, a nitro group, an amino group, an alkylamino group having 1 to 8 carbon atoms, and the like. Can be mentioned. A plurality of substituents may be used.

好ましくは、RおよびRaは下記の一般式(II)または(III)のいずれかで表される。このときRbは水素原子である。

Figure 2007327041
式中、R’は、置換基を有していてもよい炭素数1〜30の脂肪族炭化水素基又は芳香族炭化水素基である。
式(II)の置換基は、例えば、脱アセチル化されたキトサンを、R’を含むイソシアン酸と反応させることにより導入することができる。
式(III)の置換基は、例えば、脱アセチル化されたキトサンを、R’を含む、カルボン
酸、エステル、酸ハロゲン化物、酸アミド化合物、またはアルデヒドと反応させることにより導入することができる。 Preferably, R and Ra are represented by any of the following general formulas (II) or (III). At this time, Rb is a hydrogen atom.
Figure 2007327041
In the formula, R ′ represents an aliphatic hydrocarbon group having 1 to 30 carbon atoms or an aromatic hydrocarbon group which may have a substituent.
The substituent of formula (II) can be introduced, for example, by reacting deacetylated chitosan with isocyanic acid containing R ′.
The substituent of formula (III) can be introduced, for example, by reacting deacetylated chitosan with a carboxylic acid, ester, acid halide, acid amide compound or aldehyde containing R ′.

より好ましくは、RおよびRaは下記のものである。このときRbは水素原子である。

Figure 2007327041
ここで、Xは、3,4または5位に導入された1〜3個のメチル基またはハロゲン基を示す。
式(IV)の置換基は、例えば、脱アセチル化されたキトサンを、3,5-ジメチル、3,5-ジクロロ、3,4-ジクロロ、4-クロロ、4-ブロモ、3-クロロ、3-メチル、および4-メチルから選択される置換基を有するフェニル基を含む、イソシアン酸と反応させることにより導入することができる。
また、他の好ましい誘導体としては、一般式(I)中、RおよびRaが下記の一般式(V)で表される置換基であり、Rbが水素原子であるものが挙げられる。
Figure 2007327041
式中、Xは4-メチルまたは3-メチルを示す。 More preferably, R and Ra are: At this time, Rb is a hydrogen atom.
Figure 2007327041
Here, X represents 1-3 methyl groups or halogen groups introduced at the 3, 4 or 5 position.
Substituents of formula (IV) are, for example, deacetylated chitosan, 3,5-dimethyl, 3,5-dichloro, 3,4-dichloro, 4-chloro, 4-bromo, 3-chloro, 3 It can be introduced by reacting with isocyanic acid containing a phenyl group having a substituent selected from -methyl and 4-methyl.
Other preferable derivatives include those in which, in general formula (I), R and Ra are substituents represented by the following general formula (V), and Rb is a hydrogen atom.
Figure 2007327041
In the formula, X represents 4-methyl or 3-methyl.

なお、Raは、キトサンの窒素原子およびRbとともにイミド環を形成する基であってもよい。Raがキトサンの窒素原子およびRbとともにイミド環を形成する場合、キトサン誘導体の2位には、例えば、下記のような構造を有する基が結合する。

Figure 2007327041
このようなキトサン誘導体は、脱アセチル化されたキトサンに下記のような酸無水物を反応させることにより得ることができる。
Figure 2007327041
なお、このとき、Rは、上記酸無水物が開環して、キトサンの酸素原子とエステル結合を形成した構造となる。 In addition, Ra may be a group that forms an imide ring together with the nitrogen atom of chitosan and Rb. When Ra forms an imide ring together with the nitrogen atom of chitosan and Rb, for example, a group having the following structure is bonded to the 2-position of the chitosan derivative.
Figure 2007327041
Such a chitosan derivative can be obtained by reacting a deacetylated chitosan with an acid anhydride as described below.
Figure 2007327041
At this time, R has a structure in which the acid anhydride is ring-opened to form an ester bond with the oxygen atom of chitosan.

また、一般式(I)において、Rが上記式(II)の置換基であり、Raがピリジルアルキル基またはベンジルアルキル基であり、Rbが水素原子であってもよい。ピリジルアルキル基としてはピリジルメチル基が好ましく、ベンジルアルキル基としてはベンジルメチル基が好ましい。
このような誘導体(下記に例を示す)は、例えば、脱アセチル化されたキトサンを、還元条件下で、2−ピリジンカルボキシアルデヒドまたはベンズアルデヒドと反応させ、次に、R’を含むイソシアン酸と反応させることにより得ることができる。

Figure 2007327041
In the general formula (I), R may be a substituent of the above formula (II), Ra may be a pyridylalkyl group or a benzylalkyl group, and Rb may be a hydrogen atom. The pyridylalkyl group is preferably a pyridylmethyl group, and the benzylalkyl group is preferably a benzylmethyl group.
Such derivatives (examples shown below) are for example reacted with deacetylated chitosan under reducing conditions with 2-pyridinecarboxaldehyde or benzaldehyde and then with isocyanate containing R ′. Can be obtained.
Figure 2007327041

また、一般式(I)において、Rが上記式(II)の置換基であり、Raが、キトサンの窒素原子およびRbとともにピリジルイミンまたはベンジルイミンを形成する基であってもよい。
このような誘導体(下記に例を示す)は、例えば、脱アセチル化されたキトサンを、2−ピリジンカルボキシアルデヒドと反応させ、次に、R’を含むイソシアン酸と反応させることにより得ることができる。

Figure 2007327041
In the general formula (I), R may be a substituent of the above formula (II), and Ra may be a group that forms pyridymine or benzylimine together with the nitrogen atom of chitosan and Rb.
Such derivatives (examples shown below) can be obtained, for example, by reacting deacetylated chitosan with 2-pyridinecarboxaldehyde and then with isocyanic acid containing R ′. .
Figure 2007327041

本発明の方法により製造される多糖誘導体において、RおよびRaはすべて上記で例示したような置換基であってもよいが、一部が水素原子のままであってもよい。また、RとRaがともに上記置換基であってもよいが、Rが上記置換基であり、Raは水素原子のままでもよい。例えば、脱アセチル化されたキトサンと、置換基を有していてもよい炭素数1〜30の脂肪族炭化水素基又は芳香族炭化水素基を含むアルコールとを反応させたときは、Rは置換基を有していてもよい炭素数1〜30の脂肪族炭化水素基又は芳香族炭化水素基を含む置換基であるが、RaおよびRbは水素原子である、キトサン誘導体が得られる。
また、一般式(I)において、RおよびRaの種類は、1種類でも複数種類でもよい。
RおよびRaに含まれる、置換基を有していてもよい炭素数1〜30の脂肪族炭化水素基又は芳香族炭化水素基は、同じ種類であってもよいし、異なる種類であってもよい。
In the polysaccharide derivative produced by the method of the present invention, R and Ra may all be substituents as exemplified above, but a part of them may remain as hydrogen atoms. In addition, both R and Ra may be the above substituents, but R is the above substituent and Ra may be a hydrogen atom. For example, when deacetylated chitosan is reacted with an alcohol containing an optionally substituted aliphatic hydrocarbon group or aromatic hydrocarbon group having 1 to 30 carbon atoms, R is substituted. A chitosan derivative is obtained, which is a substituent containing an aliphatic hydrocarbon group having 1 to 30 carbon atoms or an aromatic hydrocarbon group which may have a group, but Ra and Rb are hydrogen atoms.
In the general formula (I), the types of R and Ra may be one type or plural types.
The same or different types of the aliphatic hydrocarbon group or aromatic hydrocarbon group having 1 to 30 carbon atoms which may have a substituent, contained in R and Ra, may be used. Good.

原料のキトサンの重合度は、5以上、好ましくは10以上であり、特に上限はないが500以下であることが取り扱いの容易さから好ましい。
原料のキトサンは市販のものでもよい。
The degree of polymerization of the raw material chitosan is 5 or more, preferably 10 or more. Although there is no particular upper limit, it is preferably 500 or less from the viewpoint of ease of handling.
The raw material chitosan may be commercially available.

本発明のキトサン誘導体の製造法においては、まず、原料のキトサンを塩基性水溶液中で加熱処理して脱アセチル化する。塩基性水溶液は、pH9〜14が好ましい。塩基性水溶液としては、M(OH)n(但しMはアルカリ金属またはアルカリ土類金属、nは1または2)に代表される水酸化物の水溶液が挙げられ、好ましくは水酸化ナトリウムや水酸化カリウム水溶液などが挙げられる。また、キトサンを脱アセチル化するときの塩基性水溶液の濃度は、30wt%〜50wt%が好ましい。加熱処理の時間と温度はキトサンを十分脱アセチル化できる時間と温度であれば特に制限されないが、50℃〜120℃の温度で1〜4時間加熱処理することが好ましい。
なお、原料のキトサンが不純物を含む場合などは、脱アセチル化処理の前に、酢酸などの酸でキトサンを処理し、酸不溶部を除いて酸可溶部のみを脱アセチル化処理に用いてもよい。また、脱アセチル化処理を行った後に、酸で処理して酸不溶部を除いて酸可溶部のみを次の置換基導入反応に用いてもよい。なお、後者の場合、キトサンの再アセチル化を防ぐために得られた酸可溶部を塩基性にすることが好ましい。
In the method for producing a chitosan derivative of the present invention, first, the raw material chitosan is deacetylated by heat treatment in a basic aqueous solution. The basic aqueous solution preferably has a pH of 9-14. Examples of the basic aqueous solution include hydroxide aqueous solutions represented by M (OH) n (where M is an alkali metal or alkaline earth metal, and n is 1 or 2), preferably sodium hydroxide or hydroxide. Examples thereof include an aqueous potassium solution. Further, the concentration of the basic aqueous solution when deacetylating chitosan is preferably 30 wt% to 50 wt%. The time and temperature of the heat treatment are not particularly limited as long as the time and temperature can sufficiently deacetylate chitosan, but the heat treatment is preferably performed at a temperature of 50 ° C. to 120 ° C. for 1 to 4 hours.
In addition, when the raw material chitosan contains impurities, chitosan is treated with an acid such as acetic acid before the deacetylation treatment, and only the acid soluble portion is used for the deacetylation treatment except the acid insoluble portion. Also good. Moreover, after performing a deacetylation process, you may process with an acid and remove an acid insoluble part, and you may use only an acid soluble part for the following substituent introduction | transduction reaction. In the latter case, it is preferable to make the acid-soluble part obtained to prevent reacetylation of chitosan basic.

上記脱アセチル化処理の後に、キトサンを、置換基を有していてもよい炭素数1〜30の脂肪族炭化水素基又は芳香族炭化水素基を含むイソシアン酸、カルボン酸、エステル、酸ハロゲン化物、酸アミド化合物、ハロゲン化物、アルデヒド、アルコールなどと反応させることにより、一般式(I)で示されるキトサン誘導体が得られる。反応溶媒としては、例えば、ピリジン、N,N-ジメチルアセトアミド/リチウムクロライドなどが挙げられる。反応は加熱・撹拌しながら行うことが好ましい。   After the deacetylation treatment, chitosan is converted to an isocyanic acid, carboxylic acid, ester or acid halide containing an optionally substituted aliphatic hydrocarbon group or aromatic hydrocarbon group having 1 to 30 carbon atoms. , An acid amide compound, a halide, an aldehyde, an alcohol and the like can be reacted to obtain a chitosan derivative represented by the general formula (I). Examples of the reaction solvent include pyridine, N, N-dimethylacetamide / lithium chloride, and the like. The reaction is preferably carried out with heating and stirring.

上記製造方法によって得られたキトサン誘導体を用いて光学異性体用分離剤を作製することができる。例えば、キトサン誘導体を担体に担持させるか、またはキトサン誘導体自体を破砕、又は公知の方法により球状粒子化(例えば、特開平7−285889号公報)することにより光学異性体用分離剤を作製することができる。なお、ここでいう担持とは、担体上にキトサン誘導体が固定化されていることである。担持方法は公知の担持方法を適用することができ、キトサン誘導体と担体との間の物理的な吸着、担体との間の化学結合、キトサン誘導体同士の化学結合、第三成分の化学結合、キトサン誘導体への光照射、ラジカル反応等の方法を適用することができる(例えば、特開平6−93002公報参照)。   A separation agent for optical isomers can be produced using the chitosan derivative obtained by the above production method. For example, a separation agent for optical isomers is prepared by supporting a chitosan derivative on a carrier, or crushing the chitosan derivative itself or making it spherical by a known method (for example, JP-A-7-285889) Can do. Here, the term “support” means that a chitosan derivative is immobilized on a carrier. As the loading method, a known loading method can be applied, physical adsorption between the chitosan derivative and the carrier, chemical bond between the carrier, chemical bond between the chitosan derivatives, chemical bond of the third component, chitosan Methods such as light irradiation to the derivative and radical reaction can be applied (see, for example, JP-A-6-93002).

担体としては、多孔質有機担体及び多孔質無機担体が挙げられ、好ましくは多孔質無機担体である。多孔質担体の平均孔径は1nm〜100μmが好ましく、5nm〜5μmがより好
ましい。多孔質有機担体として適当なものは、ポリスチレン、ポリアクリルアミド、ポリアクリレート等からなる高分子物質であり、多孔質無機担体として適当なものは、シリカ、アルミナ、マグネシア、ガラス、カオリン、酸化チタン、ケイ酸塩、ヒドロキシアパタイトなどである。
特に好ましい担体はシリカゲルであり、シリカゲルの粒径は1μm〜1mm、好ましくは1μm〜300μm、更に好ましくは1μm〜100μmである。
また、担体は、キトサン誘導体との親和性を良くしたり、担体自身の表面の特性を改質するための処理を施したものを用いても良い。表面処理の方法としては有機シラン化合物によるシラン化処理やプラズマ重合による表面処理方法がある。
担体上へのキトサン誘導体の担持量は、光学異性体用分離剤100質量部に対して、1〜100質量部が好ましく、更に5〜60質量部が好ましく、特に10〜40質量部が望ましい。
またキトサン誘導体自体を破砕又は球状粒子化するとき、乳鉢等を用いることで得られた破砕状又は球状のキトサン誘導体は、分級して粒度を揃えておくことが望ましい。
Examples of the carrier include a porous organic carrier and a porous inorganic carrier, and a porous inorganic carrier is preferable. The average pore diameter of the porous carrier is preferably 1 nm to 100 μm, more preferably 5 nm to 5 μm. Suitable materials for the porous organic carrier are polymeric substances composed of polystyrene, polyacrylamide, polyacrylate, etc., and suitable materials for the porous inorganic carrier are silica, alumina, magnesia, glass, kaolin, titanium oxide, silica. Acid salts, hydroxyapatite, and the like.
A particularly preferable carrier is silica gel, and the particle size of the silica gel is 1 μm to 1 mm, preferably 1 μm to 300 μm, and more preferably 1 μm to 100 μm.
In addition, a carrier that has been treated to improve the affinity with the chitosan derivative or to modify the surface properties of the carrier itself may be used. As the surface treatment method, there are a silanization treatment with an organosilane compound and a surface treatment method by plasma polymerization.
The amount of the chitosan derivative supported on the carrier is preferably 1 to 100 parts by weight, more preferably 5 to 60 parts by weight, and particularly preferably 10 to 40 parts by weight with respect to 100 parts by weight of the optical isomer separating agent.
Further, when the chitosan derivative itself is crushed or formed into spherical particles, it is desirable that the crushed or spherical chitosan derivative obtained by using a mortar or the like is classified to have a uniform particle size.

キトサン誘導体から作製される光学異性体用分離剤は、例えば、クロマトグラフィーの固定相として用いることができ、ガスクロマトグラフィー、液体クロマトグラフィー、薄層クロマトグラフィー、超臨界流体クロマトグラフィー、電気泳動等に適用することができ、特に(連続式)液体クロマトグラフィー法、薄層クロマトグラフィー、電気泳動に好適である。また、クロマトグラフィー用分離剤のみならず、ホストゲスト分離剤、膜分離、液晶材料への応用もできる。   Separating agents for optical isomers produced from chitosan derivatives can be used, for example, as a stationary phase for chromatography, and can be used for gas chromatography, liquid chromatography, thin layer chromatography, supercritical fluid chromatography, electrophoresis, etc. It can be applied and is particularly suitable for (continuous) liquid chromatography, thin layer chromatography, and electrophoresis. Moreover, it can be applied not only to chromatographic separation agents, but also to host guest separation agents, membrane separations, and liquid crystal materials.

wako chitosan100を用いて以下の実験を行った。
1.キトサンの精製
*脱アセチル化処理
キトサンの脱アセチル化処理は、50wt%NaOH水溶液中120〜130℃で二時間煮沸し、一度洗浄、溶媒を取り替えて煮沸することを3回行った。
The following experiment was performed using wako chitosan100.
1. Purification of chitosan * Deacetylation treatment The deacetylation treatment of chitosan was boiled for 3 hours at 120 to 130 ° C in 50 wt% NaOH aqueous solution, washed once, and boiled after changing the solvent.

*酸可溶部の回収
キトサン0.5gを1%酢酸水溶液500mlに溶解させ、不溶部を濾過し、可溶部のみをNaOH塩基性条件下(pH10以上)で回収した。
濃NaOH水溶液に注射器でキトサンの酢酸溶液を押し出す方法では、キトサン溶液500mlに対し、1L以上の塩基溶液を必要とし、押し出した形のままキトサン溶液がゲル化した。
逆に、酸性溶液を撹拌しながら塩基性水溶液を滴下し、pH10以上とすることで、繊維状のキトサンが析出したので、これを濾過し、水で洗浄した。
固定相として用いたキトサンの精製は、全て後者の方法で行った。
* Recovery of acid-soluble part 0.5 g of chitosan was dissolved in 500 ml of 1% acetic acid aqueous solution, the insoluble part was filtered, and only the soluble part was recovered under NaOH basic conditions (pH 10 or more).
In the method of extruding an acetic acid solution of chitosan to concentrated NaOH aqueous solution with a syringe, 1 L or more of base solution was required for 500 ml of chitosan solution, and the chitosan solution gelled in the extruded form.
Conversely, a basic aqueous solution was added dropwise while stirring the acidic solution to adjust the pH to 10 or more, so that fibrous chitosan was precipitated, which was filtered and washed with water.
All the purification of chitosan used as the stationary phase was performed by the latter method.

2. キトサン誘導体の合成
<キトサンのトリスカルバメート、またはN-アシル化3,6-ビスベンゾエート誘導体の合成>
乾燥したキトサンに、脱水ピリジンとイソシアナートまたは酸クロライドを反応部位の1.3等量以上加え、IRで反応の進行を確認しながら約一日反応させ、メタノール中に沈殿させて回収した。
以下、それぞれの誘導体の合成例を示す。
2. Synthesis of chitosan derivatives <Synthesis of triscarbamate or N-acylated 3,6-bisbenzoate derivatives of chitosan>
To the dried chitosan, dehydrated pyridine and isocyanate or acid chloride were added in an amount equal to or greater than 1.3 equivalents of the reaction site, reacted for about one day while confirming the progress of the reaction by IR, and precipitated in methanol for recovery.
Hereinafter, synthesis examples of each derivative will be shown.

[合成例1]
*chitosan tris(3,5-dimethylphenylcarbamate)
以下のスキームにしたがって合成した。

Figure 2007327041
[Synthesis Example 1]
* Chitosan tris (3,5-dimethylphenylcarbamate)
Synthesized according to the following scheme.
Figure 2007327041

<塩基処理キトサン誘導体>
脱アセチル化処理(塩基処理)したキトサン0.51gにpyridine 20mLと3,5-dimethylphenylisocyanate 1.9gを加えて80℃で加熱撹拌し、溶解し始めてから、pyridine10mLを追加した。さらに3,5-dimethylphenylisocyanateを2.5g追加し、IRで反応の進行を確認後、メタノール不溶部として回収したところ、2gのガム状の固体を得た。THFに溶解させ再びメタノールで再沈殿させたところ1.8g(92%)の収量を得た(キトサン誘導体1)。
<Base-treated chitosan derivative>
To 0.51 g of deacetylated (base-treated) chitosan, 20 mL of pyridine and 1.9 g of 3,5-dimethylphenylisocyanate were added, heated and stirred at 80 ° C., and dissolved, and then 10 mL of pyridine was added. Further, 2.5 g of 3,5-dimethylphenylisocyanate was added, and after confirming the progress of the reaction by IR, it was recovered as a methanol-insoluble part to obtain 2 g of a gummy solid. When dissolved in THF and reprecipitated again with methanol, a yield of 1.8 g (92%) was obtained (chitosan derivative 1).

<塩基・酸処理キトサン誘導体>
脱アセチル化処理(塩基処理)し、酢酸水溶液可溶部を回収したキトサン0.48gにpyridine 10mLと3,5-dimethylphenylisocyanate 1.7gを加えて80℃で加熱撹拌し、反応液の様子をIRで確認しながら、3,5-dimethylphenylisocyanateを2.3g加え、メタノール不溶部として回収したところ、2gのガム状の固体を得た。不純物を除くため、THFに溶解させ再びメタノールで再沈殿させたところ0.51g(28%)の収量を得た(キトサン誘導体2)。
<Base / acid-treated chitosan derivative>
Deacetylation treatment (base treatment) and 0.48 g of chitosan collected with acetic acid aqueous solution, add 10 mL of pyridine and 1.7 g of 3,5-dimethylphenylisocyanate, heat and stir at 80 ° C, and confirm the reaction state by IR While 2.3 g of 3,5-dimethylphenylisocyanate was added and recovered as a methanol-insoluble part, 2 g of a gummy solid was obtained. In order to remove impurities, it was dissolved in THF and reprecipitated with methanol to obtain a yield of 0.51 g (28%) (chitosan derivative 2).

<未処理キトサン誘導体>
脱アセチル化処理(塩基処理)を行っていないキトサン(wako chitosan100) 0.50gにpyridine 20mLと3,5-dimethylphenylisocyanate 1.9gを加えて80℃で加熱撹拌し、溶解し始めてからpyridine10mLを追加し、反応液の様子をIRで確認しながら、pyridinie10mLと3,5-dimethylphenylisocyanateを0.69g加え、メタノール不溶部として回収したが、反応系に不溶部が残っていた。不純物を除くため、THF可溶部をメタノールで再沈殿させたところ0.51g(28%)の収量を得た(キトサン誘導体3)。
<Untreated chitosan derivative>
Add 20mL of pyridine and 1.9g of 3,5-dimethylphenylisocyanate to 0.50g of chitosan (wako chitosan100) that has not been deacetylated (base treatment), heat and stir at 80 ° C, add 10mL of pyridine after starting dissolution. While confirming the state of the solution by IR, 0.69 g of pyridinie and 3,5-dimethylphenylisocyanate were added and recovered as a methanol-insoluble part, but an insoluble part remained in the reaction system. In order to remove impurities, the THF soluble part was reprecipitated with methanol to obtain a yield of 0.51 g (28%) (chitosan derivative 3).

[合成例2]
*chitosan tris(3,5-dichlorophenylcarbamate)
次のスキームにしたがって合成した。

Figure 2007327041
脱アセチル化したキトサン0.50gにpyridine 20mLと3,5-dichlorophenylisocyanate 2.4gを加えて85℃で加熱撹拌し、適宜3,5-dichlorophenylisocyanate 1.0gとpyridineを追加し、IRで反応の進行を確認後、メタノール不溶部として回収したところ、1.7g(75%)の収量を得た。 (目的化合物1) [Synthesis Example 2]
* Chitosan tris (3,5-dichlorophenylcarbamate)
Synthesized according to the following scheme.
Figure 2007327041
After adding 20mL of pyridine and 2.4g of 3,5-dichlorophenylisocyanate to 0.50g of deacetylated chitosan, stirring with heating at 85 ° C, adding 1.0g of 3,5-dichlorophenylisocyanate and pyridine as appropriate, and confirming the progress of the reaction by IR When recovered as a methanol-insoluble part, a yield of 1.7 g (75%) was obtained. (Target compound 1)

[合成3]
*chitosan tris(3,4-dichlorophenylcarbamate)
次のスキームにしたがって合成した。

Figure 2007327041
脱アセチル化したキトサン0.50gにpyridine 20mLと3,4-dichlorophenylisocyanate 2.3gを加えて80℃で加熱撹拌し、IRで反応の進行を確認後、メタノール不溶部として回収したところ、1.8g(80%)の収量を得た。 (目的化合物2) [Synthesis 3]
* Chitosan tris (3,4-dichlorophenylcarbamate)
Synthesized according to the following scheme.
Figure 2007327041
To 0.50 g of deacetylated chitosan, 20 mL of pyridine and 2.3 g of 3,4-dichlorophenylisocyanate were added and heated and stirred at 80 ° C. After confirming the progress of the reaction by IR, it was recovered as a methanol-insoluble part, and 1.8 g (80% ) Yield was obtained. (Target compound 2)

[合成例4]
*chitosan tris(4-chlorophenylcarbamate)
次のスキームにしたがって合成した。

Figure 2007327041
脱アセチル化したキトサン0.50gにpyridine 20mLと4-chlorophenylisocyanate 1.9gを加えて85℃で加熱撹拌し、IRで反応の進行を確認しながら、4-chlorophenylisocyanateを適宜追加し、メタノール不溶部として回収したところ、ガム状の固体1.0g(53%)の収量を得た (目的化合物3)。 [Synthesis Example 4]
* Chitosan tris (4-chlorophenylcarbamate)
Synthesized according to the following scheme.
Figure 2007327041
Add 0.5 mL of deacetylated chitosan 20 mL of pyridine and 1.9 g of 4-chlorophenylisocyanate and heat and stir at 85 ° C. While confirming the progress of the reaction by IR, add 4-chlorophenylisocyanate as appropriate and collect as methanol insoluble part A yield of 1.0 g (53%) of a gummy solid was obtained (target compound 3).

[合成例5]
*chitosan tris(4-bromophenylcarbamate)
次のスキームにしたがって合成した。

Figure 2007327041
脱アセチル化したキトサン0.50gにpyridine 20mLと4-bromophenylisocyanate 2.0gを加えて80℃で加熱撹拌し、IRで反応溶液の様子を確認しながら、4-bromophenylisocyanateとpyridineとを適宜追加した。IRで反応の進行を確認し、メタノール不溶部として回収したところ2.0g(84%)の収量を得た(目的化合物4)。 [Synthesis Example 5]
* Chitosan tris (4-bromophenylcarbamate)
Synthesized according to the following scheme.
Figure 2007327041
To 0.50 g of deacetylated chitosan, 20 mL of pyridine and 2.0 g of 4-bromophenylisocyanate were added, heated and stirred at 80 ° C., and 4-bromophenylisocyanate and pyridine were appropriately added while confirming the state of the reaction solution by IR. The progress of the reaction was confirmed by IR and recovered as a methanol-insoluble part to obtain a yield of 2.0 g (84%) (target compound 4).

[合成例6]
*chitosan tris(3-chlorophenylcarbamate)
次のスキームにしたがって合成した。

Figure 2007327041
脱アセチル化したキトサン0.50gにpyridine 20mLと3-chlorophenylisocyanate 1.9gを加えて85℃で加熱撹拌し、IRで反応の進行を確認しながら、3-chlorophenylisocyanateとpyridineを適宜加え、メタノール不溶部として回収したところ、ガム状の固体1.9g(99%)の収量を得た(目的化合物5)。 [Synthesis Example 6]
* Chitosan tris (3-chlorophenylcarbamate)
Synthesized according to the following scheme.
Figure 2007327041
Add 0.5 mL of deacetylated chitosan 20 mL of pyridine and 1.9 g of 3-chlorophenylisocyanate and heat and stir at 85 ° C. While confirming the progress of the reaction by IR, add 3-chlorophenylisocyanate and pyridine as appropriate and recover as a methanol-insoluble part As a result, a yield of 1.9 g (99%) of a gummy solid was obtained (target compound 5).

[合成例7]
*chitosan tris(phenylcarbamate)
次のスキームにしたがって合成した。

Figure 2007327041
脱アセチル化したキトサン0.50gにpyridine 20mLとphenylisocyanate 1.9gを加えて85℃で加熱撹拌した。IRで反応の進行を確認し、メタノール不溶部として回収し、ガム状の固体1.7g(99%)の収量を得た(目的化合物6)。 [Synthesis Example 7]
* Chitosan tris (phenylcarbamate)
Synthesized according to the following scheme.
Figure 2007327041
20 mL of pyridine and 1.9 g of phenylisocyanate were added to 0.50 g of deacetylated chitosan, and the mixture was heated and stirred at 85 ° C. The progress of the reaction was confirmed by IR, and recovered as a methanol-insoluble part to obtain 1.7 g (99%) of a gummy solid (target compound 6).

[合成例8]
*chitosan tris(4-methylphenylcarbamate)
次のスキームにしたがって合成した。

Figure 2007327041
脱アセチル化したキトサン0.20gにpyridine 10mLと4-methylphenylisocyanate 0.69gを加えて85℃で加熱撹拌し、IRで反応溶液の様子を確認しながら、適宜4-methylphenylisocyanateを追加した。反応系中の不溶部をメタノールに注ぎ、アセトン可溶部と不溶部に分離したところ、不溶部の反応が進行している様子が確認されたが、収量は微量であった (目的化合物7)。 [Synthesis Example 8]
* Chitosan tris (4-methylphenylcarbamate)
Synthesized according to the following scheme.
Figure 2007327041
To 0.20 g of deacetylated chitosan, 10 mL of pyridine and 0.69 g of 4-methylphenylisocyanate were added and stirred at 85 ° C., and 4-methylphenylisocyanate was appropriately added while confirming the state of the reaction solution by IR. When the insoluble part in the reaction system was poured into methanol and separated into an acetone soluble part and an insoluble part, it was confirmed that the reaction of the insoluble part was proceeding, but the yield was very small (target compound 7). .

[合成例9]
*chitosan tris(3-methylphenylcarbamate)
次のスキームにしたがって合成した。

Figure 2007327041
脱アセチル化したキトサン0.20gにpyridine 10mLと3-methylphenylisocyanate 0.66gを加えて85℃で加熱撹拌し、溶解し始めてからpyridine5mL追加した。さらにpyridineと3-methylphenylisocyanateを適宜追加した。IRで反応溶液の様子を確認し、メタノール不溶部として回収した。アセトン可溶部と不溶部に分離したところ、不溶部の反応が進行している様子が確認されたが、収量は微量であった(目的化合物8)。 [Synthesis Example 9]
* Chitosan tris (3-methylphenylcarbamate)
Synthesized according to the following scheme.
Figure 2007327041
To 0.20 g of deacetylated chitosan, 10 mL of pyridine and 0.66 g of 3-methylphenylisocyanate were added and stirred with heating at 85 ° C. After the dissolution began, 5 mL of pyridine was added. Furthermore, pyridine and 3-methylphenylisocyanate were added as appropriate. The state of the reaction solution was confirmed by IR and recovered as a methanol-insoluble part. When the acetone soluble part and the insoluble part were separated, it was confirmed that the reaction of the insoluble part was proceeding, but the yield was very small (target compound 8).

[合成例10]
*N-(4-methylbenzoyl)chitosan 3,6-bis(4-methylbenzoate)
次のスキームにしたがって合成した。

Figure 2007327041
脱アセチル化したキトサン0.50gにpyridine 10mLと4-methylbenzoyl chloride 1.9gを加えて80℃で加熱撹拌し、4-methylbenzoyl chlorideを1.3g追加した。その後pyridine 20mLを加えた。IRで反応の進行を確認し、固体をメタノールで洗浄して回収したところ、1.6g(98%)の収量で得られた (目的化合物9−1)。これを再び反応させたが溶解性が上がることはなかった(目的化合物9−2)。 [Synthesis Example 10]
* N- (4-methylbenzoyl) chitosan 3,6-bis (4-methylbenzoate)
Synthesized according to the following scheme.
Figure 2007327041
To 0.50 g of deacetylated chitosan, 10 mL of pyridine and 1.9 g of 4-methylbenzoyl chloride were added and stirred at 80 ° C., and 1.3 g of 4-methylbenzoyl chloride was added. Thereafter, 20 mL of pyridine was added. The progress of the reaction was confirmed by IR, and the solid was washed and recovered with methanol, and obtained in a yield of 1.6 g (98%) (target compound 9-1). This was reacted again, but the solubility did not increase (target compound 9-2).

[合成例11]
*N-(3-methylbenzoyl)chitosan 3,6-bis(3-methylbenzoate)
次のスキームにしたがって合成した。

Figure 2007327041
脱アセチル化したキトサン0.50gにpyridine 10mLと3-methylbenzoyl chloride 1.9gを加えて80℃で加熱撹拌し、さらに3-methylbenzoyl chlorideを1.0g追加した。系中の不溶部についてIRで反応の進行を確認し、メタノールで洗浄したところ、1.6g(99%)の収量で得られた (目的化合物10)。 [Synthesis Example 11]
* N- (3-methylbenzoyl) chitosan 3,6-bis (3-methylbenzoate)
Synthesized according to the following scheme.
Figure 2007327041
To 0.50 g of deacetylated chitosan, 10 mL of pyridine and 1.9 g of 3-methylbenzoyl chloride were added and stirred at 80 ° C., and 1.0 g of 3-methylbenzoyl chloride was further added. When the progress of the reaction was confirmed by IR for the insoluble part in the system and washed with methanol, it was obtained in a yield of 1.6 g (99%) (target compound 10).

3.キラル固定相の調製
各誘導体を公知の方法でシリカゲルにコーティングして光学異性体用分離剤を作製した。
3. Preparation of chiral stationary phase Each derivative was coated on silica gel by a known method to prepare a separating agent for optical isomers.

4.高速液体クロマトグラフィーによる光学分割能の評価
上記合成例1で調製した、未処理、塩基処理、または塩基・酸処理のキトサンに3,5−ジメチルフェニル基が導入されたキトサン誘導体を固定化して作製された光学異性体用分離剤を、それぞれ、内径2.0mmまたは4.6mm、長さ25cmのステンレスカラムに充填し、HPLC用キラル固定相とした。それぞれのHPLC用キラル固定相を用いて下記ラセミ化合物1〜10の光学分割を行った。
4). Evaluation of optical resolution by high performance liquid chromatography Prepared by immobilizing a chitosan derivative with 3,5-dimethylphenyl group introduced into untreated, base-treated, or base / acid-treated chitosan prepared in Synthesis Example 1 above. The obtained optical isomer separation agent was packed in a stainless steel column having an inner diameter of 2.0 mm or 4.6 mm and a length of 25 cm, respectively, to obtain a chiral stationary phase for HPLC. The following racemic compounds 1 to 10 were optically resolved using the respective chiral stationary phases for HPLC.

Figure 2007327041
Figure 2007327041

なお、HPLCは、(PU-980またはPU-986, 日本分光)を用い、溶離液にはヘキサン/2−プロパノール=90/10、流速は0.5 ml/minとし、UV検出器(UV-970またはMD-2010-plus、日本分光、254 nm)と旋光検出器(OR-990、日本分光)を用いてピークの検出、同
定を行った。なお、理論段数Nはベンゼンのピークから、また溶離液がカラムを素通りする時間t0は1,3,5−トリ−tert−ブチルベンゼンの溶出時間から求めた。
The HPLC was (PU-980 or PU-986, JASCO), the eluent was hexane / 2-propanol = 90/10, the flow rate was 0.5 ml / min, and the UV detector (UV-970 or Peak detection and identification were performed using MD-2010-plus (JASCO, 254 nm) and an optical rotation detector (OR-990, JASCO). The theoretical plate number N was determined from the peak of benzene, and the time t0 for the eluent to pass through the column was determined from the elution time of 1,3,5-tri-tert-butylbenzene.

光学分割結果を表1に示す。
表中の値は容量比k1’と分離係数αで、かっこの中の符号は先に溶出したエナンチオマーの旋光性である。なお、容量比k1’、分離係数αは下式で定義される。以下の実施例及び比較例においても同じ式を用いて容量比及び分離係数を算出した。
Table 1 shows the optical resolution results.
The values in the table are the volume ratio k1 ′ and the separation factor α, and the sign in parentheses is the optical rotation of the enantiomer eluted earlier. The capacity ratio k1 ′ and the separation factor α are defined by the following equations. In the following examples and comparative examples, the capacity ratio and the separation factor were calculated using the same formula.

Figure 2007327041
Figure 2007327041
Figure 2007327041
Figure 2007327041

表1の結果から、塩基による脱アセチル化処理を行ったキトサンを用いて得られたキトサン誘導体は、未処理キトサンを用いて得られたキトサン誘導体に比べて、光学異性体の分離度が向上することが確認できた。   From the results in Table 1, chitosan derivatives obtained using chitosan that has been deacetylated with a base have improved resolution of optical isomers compared to chitosan derivatives obtained using untreated chitosan. I was able to confirm.

Figure 2007327041
カラム: 25 x 0.20 (i.d.) cm, 流速: 0.1ml/min, 移動相: ヘキサン/2-プロパノール=90/10, 温度: 室温
※) カラム: 25 x 0.46 (i.d.) cm, 流速: 0.5ml/min, 移動相: ヘキサン/2-プロパノール=90/10, 温度: 室温
Figure 2007327041
Column: 25 x 0.20 (id) cm, Flow rate: 0.1 ml / min, Mobile phase: Hexane / 2-propanol = 90/10, Temperature: Room temperature *) Column: 25 x 0.46 (id) cm, Flow rate: 0.5 ml / min, mobile phase: hexane / 2-propanol = 90/10, temperature: room temperature

同様に、上記実施例で得られたキトサン誘導体について、光学分割能の評価を行った。得られたキトサン誘導体は以下のとおりである。
chitosan tris(3,5-dichlorophenylcarbamate) (目的化合物1)
chitosan tris(3,4-dichlorophenylcarbamate) (目的化合物2)
chitosan tris(4-chlorophenylcarbamate) (目的化合物3)
chitosan tris(4-bromophenylcarbamate) (目的化合物4)
chitosan tris(3-chlorophenylcarbamate) (目的化合物5)
結果を表2に示す。表2の結果から、塩基による脱アセチル化処理を行ったキトサンを用いて得られたその他のキトサン誘導体も光学異性体の分離度が向上することが確認できた。
Similarly, the optical resolution of the chitosan derivatives obtained in the above examples was evaluated. The obtained chitosan derivatives are as follows.
chitosan tris (3,5-dichlorophenylcarbamate) (Target compound 1)
chitosan tris (3,4-dichlorophenylcarbamate) (target compound 2)
chitosan tris (4-chlorophenylcarbamate) (Target compound 3)
chitosan tris (4-bromophenylcarbamate) (Target compound 4)
chitosan tris (3-chlorophenylcarbamate) (Target compound 5)
The results are shown in Table 2. From the results in Table 2, it was confirmed that other chitosan derivatives obtained using chitosan that had been deacetylated with a base also improved the resolution of optical isomers.

Figure 2007327041
Figure 2007327041

[合成例12]
* chitosan 2-(2-pyridylimine)-3,6-bis(3,5-dimethylphenylcarbamate)
次のスキームに従って合成した。

Figure 2007327041
脱アセチル化処理したキトサン1.0g を2%酢酸水溶液200mL に溶解させ、2-
pyridinecarboxaldehyde 6.7g(10 等量)を水50mL で希釈したものを滴下したところ、ゲル状の粒子が析出した(中間化合物1)。
得られた中間化合物1の0.45 g を乾燥させ、脱水ピリジン15ml と3,5-dimethylphenyl
isocyanateを0.90g 加え、80℃で加熱し反応させた。IR で反応の進行を確認後、メタノール不溶部として回収したところ、収量0.81g を得た(目的化合物11)。 [Synthesis Example 12]
* chitosan 2- (2-pyridylimine) -3,6-bis (3,5-dimethylphenylcarbamate)
Synthesized according to the following scheme.

Figure 2007327041
Dissolve 1.0 g of deacetylated chitosan in 200 mL of 2% acetic acid aqueous solution.
When 6.7 g (10 equivalents) of pyridinecarboxaldehyde diluted with 50 mL of water was added dropwise, gel-like particles were precipitated (intermediate compound 1).
0.45 g of the obtained intermediate compound 1 was dried, dehydrated pyridine 15 ml and 3,5-dimethylphenyl
0.90g of isocyanate was added and heated to react at 80 ° C. After confirming the progress of the reaction by IR, it was recovered as a methanol-insoluble part to obtain a yield of 0.81 g (target compound 11).

[合成例13]
* chitosan 2-(2-pyridylimine)-3,6-bis(3,5-dichlorophenylcarbamate)
次のスキームに従って合成した。

Figure 2007327041
中間化合物1の0.50g を乾燥させ、ピリジン30ml と3,5-dichlorophenyl isocyanate を0.58g加え、80℃で加熱し反応させた。IR で反応の進行を確認してメタノール不溶部として回収したところ、収量0.94g を得た(目的化合物12)。 [Synthesis Example 13]
* chitosan 2- (2-pyridylimine) -3,6-bis (3,5-dichlorophenylcarbamate)
Synthesized according to the following scheme.
Figure 2007327041
0.50 g of the intermediate compound 1 was dried, 30 ml of pyridine and 0.58 g of 3,5-dichlorophenyl isocyanate were added, and the reaction was performed by heating at 80 ° C. When the progress of the reaction was confirmed by IR and recovered as a methanol-insoluble part, a yield of 0.94 g was obtained (target compound 12).

[合成例14]
* chitosan 2-(2-pyridylimine)-3,6-bis(3,4-dichlorophenylcarbamate)
次のスキームに従って合成した。

Figure 2007327041
中間化合物1の0.51g を乾燥させ、ピリジン30ml と3,4-dichlorophenyl isocyanate を0.59g加え、80℃で加熱し反応させた。反応の進行を確認し、メタノール不溶部として回収した。最後までピリジン中でゲル化した部分が残ったが、ともに回収し、収量0.66g を得た(目的化合物13)。 [Synthesis Example 14]
* chitosan 2- (2-pyridylimine) -3,6-bis (3,4-dichlorophenylcarbamate)
Synthesized according to the following scheme.
Figure 2007327041
0.51 g of Intermediate Compound 1 was dried, 30 ml of pyridine and 0.59 g of 3,4-dichlorophenyl isocyanate were added, and the reaction was carried out by heating at 80 ° C. The progress of the reaction was confirmed and recovered as a methanol-insoluble part. A portion gelled in pyridine remained until the end, and was recovered together to obtain a yield of 0.66 g (target compound 13).

[合成例15]
* chitosan 2-(benzylimine)-3,6-bis(3,5-dimethylphenylcarbamate)
次のスキームに従って合成した。

Figure 2007327041

脱アセチル化処理したキトサン1.0g を2%酢酸水溶液100mL に溶解させ、メ
タノール100mL で希釈した。benzaldehyde 12g(20 等量)をメタノール30mLで希釈したものを滴下し、35℃で24 時間熟成させたところ、ゲル化した中間体(中間化合物2)を得た。
中間化合物2を乾燥させ、脱水ピリジン中で3,5-dichlorophenyl isocyanate と80℃で加熱し反応させた。IR で反応の進行を確認してメタノール不溶部として回収した(目的化合物14)。 [Synthesis Example 15]
* chitosan 2- (benzylimine) -3,6-bis (3,5-dimethylphenylcarbamate)
Synthesized according to the following scheme.
Figure 2007327041

1.0 g of deacetylated chitosan was dissolved in 100 mL of 2% aqueous acetic acid and diluted with 100 mL of methanol. A solution obtained by diluting 12 g (20 equivalents) of benzaldehyde with 30 mL of methanol was dropped and aged at 35 ° C. for 24 hours to obtain a gelled intermediate (intermediate compound 2).
Intermediate compound 2 was dried and reacted with 3,5-dichlorophenyl isocyanate at 80 ° C. in dehydrated pyridine. The progress of the reaction was confirmed by IR and recovered as a methanol-insoluble part (target compound 14).

[合成例16]
* chitosan 2-(benzylimine)-3,6-bis(3,5-dichlorophenylcarbamate)
次のスキームに従って合成した。

Figure 2007327041
中間化合物2の0.20g を乾燥させ、ピリジン10ml と3,5-dichlorophenyl isocyanate を1.0ml 加え、80℃で加熱し反応させた。反応終了後、メタノール不溶部として回収し、収量0.30g を得た(目的化合物15)。 [Synthesis Example 16]
* chitosan 2- (benzylimine) -3,6-bis (3,5-dichlorophenylcarbamate)
Synthesized according to the following scheme.
Figure 2007327041
0.20 g of the intermediate compound 2 was dried, 10 ml of pyridine and 1.0 ml of 3,5-dichlorophenyl isocyanate were added, and the reaction was performed by heating at 80 ° C. After completion of the reaction, the product was recovered as a methanol-insoluble part to obtain a yield of 0.30 g (target compound 15).

[合成例17]
* chitosan 2-(benzylimine)-3,6-bis(3,4-dichlorophenylcarbamate)
次のスキームに従って合成した。

Figure 2007327041
中間化合物2の0.20g を乾燥させ、ピリジン10ml と3,4-dichlorophenyl isocyanate を1.0ml 加え、80℃で加熱し反応させた。反応終了をIR で確認
した後、メタノール不溶部として回収し、収量0.30g を得た(目的化合物16)。 [Synthesis Example 17]
* chitosan 2- (benzylimine) -3,6-bis (3,4-dichlorophenylcarbamate)
Synthesized according to the following scheme.
Figure 2007327041
0.20 g of the intermediate compound 2 was dried, 10 ml of pyridine and 1.0 ml of 3,4-dichlorophenyl isocyanate were added, and the reaction was performed by heating at 80 ° C. After confirming the completion of the reaction by IR, it was recovered as a methanol-insoluble part to obtain a yield of 0.30 g (target compound 16).

[合成例18]
* N-(2-pyridyl)methyl chitosan 3,6-bis(3,5-dimethylphenylcarbamate)
次のスキームに従って合成した。

Figure 2007327041
脱アセチル化したキトサン2.0g のうち、酢酸水溶液(pH5.1)800mL 可溶部を
ろ別し、シアノトリヒドロホウ素化ナトリウム3.0g を加えた。そこへ、水で希釈した2-pyridinecarboxaldehyde 3.5g(2.5 等量)を加え、室温で5 時間撹拌した。水、エタノール、ヘキサンで洗浄し、乾燥させると白色の粉末が2.4g得られた(中間化合物3)。
中間化合物3の0.73 g を乾燥させ、脱水ピリジン25ml と3,5-dimethylphenyl isocyanateを3.0g 加え、80℃で加熱し反応させた。IR で反応の進行を確認後、メタノール/水(95/5)不溶部として回収したところ、収量1.78g を得た(目的化合物17)。 [Synthesis Example 18]
* N- (2-pyridyl) methyl chitosan 3,6-bis (3,5-dimethylphenylcarbamate)
Synthesized according to the following scheme.
Figure 2007327041
Of 2.0 g of deacetylated chitosan, 800 mL of acetic acid aqueous solution (pH 5.1) soluble part was filtered off, and 3.0 g of sodium cyanotrihydroborate was added. Thereto was added 3.5 g (2.5 equivalents) of 2-pyridinecarboxaldehyde diluted with water, and the mixture was stirred at room temperature for 5 hours. Washing with water, ethanol, hexane and drying gave 2.4 g of white powder (Intermediate Compound 3).
0.73 g of the intermediate compound 3 was dried, 25 ml of dehydrated pyridine and 3.0 g of 3,5-dimethylphenyl isocyanate were added, and the mixture was heated at 80 ° C. for reaction. After confirming the progress of the reaction by IR, the product was recovered as an insoluble part of methanol / water (95/5), yielding 1.78 g (target compound 17).

[合成例19]
* N-(2-pyridyl)methyl chitosan 3,6-bis(3,5-dichlorophenylcarbamate)
次のスキームに従って合成した。

Figure 2007327041
中間化合物3の0.73 g を乾燥させ、脱水ピリジン25ml と3,5-dichlorophenyl isocyanateを3mL 加え、80℃で加熱し反応させた。IR で反応の進行を確認後、メタノール不溶部として回収したところ、収量0.99g を得た(目的化合物18)。 [Synthesis Example 19]
* N- (2-pyridyl) methyl chitosan 3,6-bis (3,5-dichlorophenylcarbamate)
Synthesized according to the following scheme.
Figure 2007327041
0.73 g of intermediate compound 3 was dried, 25 ml of dehydrated pyridine and 3 ml of 3,5-dichlorophenyl isocyanate were added, and the mixture was heated at 80 ° C. for reaction. After confirming the progress of the reaction by IR, it was recovered as a methanol-insoluble part to obtain a yield of 0.99 g (target compound 18).

[合成例20]
* N-(2-pyridyl)methyl chitosan 3,6-bis(3,4-dichlorophenylcarbamate)
次のスキームに従って合成した。

Figure 2007327041
中間化合物3の0.73 g を乾燥させ、脱水ピリジン25ml と3,4-dichlorophenyl isocyanateを3mL 加え、80℃で加熱し反応させた。IR で反応の進行を確認後、メタノール不溶部として回収したところ、収量1.79g を得た(目的化合物19)。 [Synthesis Example 20]
* N- (2-pyridyl) methyl chitosan 3,6-bis (3,4-dichlorophenylcarbamate)
Synthesized according to the following scheme.
Figure 2007327041
0.73 g of the intermediate compound 3 was dried, 25 ml of dehydrated pyridine and 3 mL of 3,4-dichlorophenyl isocyanate were added, and the reaction was performed by heating at 80 ° C. After confirming the progress of the reaction by IR, it was recovered as a methanol-insoluble part to obtain 1.79 g in yield (target compound 19).

[合成例21]
* N-benzyl chitosan 3,6-bis(3,5-dimethylphenylcarbamate)
次のスキームに従って合成した。

Figure 2007327041
脱アセチル化したキトサン2.0g のうち、酢酸水溶液(pH5.4) 400mL 可溶部をろ別し400mL のエタノール、シアノトリヒドロホウ素化ナトリウム3.0g を
加えた。そこへ、エタノールで希釈した2-pyridinecarboxaldehyde 3.5g (2.5等量)を加えたところ、白色の粉末が析出した。乾燥させると白色の粉末が得られ、収量は2.6g であった(中間化合物4)。
乾燥させた中間化合物4の 0.70 g に脱水ピリジン20ml と3,5-dimethylphenyl isocyanate を2.0g 加え、80℃で加熱し反応させた。IR で反応の進行を確認後、メタノール不溶部として回収し、収量2.8g を得た(目的化合物20)。 [Synthesis Example 21]
* N-benzyl chitosan 3,6-bis (3,5-dimethylphenylcarbamate)
Synthesized according to the following scheme.
Figure 2007327041
From 2.0 g of deacetylated chitosan, 400 mL of acetic acid aqueous solution (pH 5.4) soluble part was filtered off, and 400 mL of ethanol and 3.0 g of sodium cyanotrihydroborate were added. Thereto was added 3.5 g (2.5 equivalents) of 2-pyridinecarboxaldehyde diluted with ethanol, and a white powder was precipitated. When dried, a white powder was obtained, and the yield was 2.6 g (intermediate compound 4).
To 0.70 g of the dried intermediate compound 4, 20 ml of dehydrated pyridine and 2.0 g of 3,5-dimethylphenyl isocyanate were added and reacted by heating at 80 ° C. After confirming the progress of the reaction by IR, it was recovered as a methanol-insoluble part to obtain a yield of 2.8 g (target compound 20).

[合成例22]
* N-benzyl chitosan 3,6-bis(3,5-dichlorophenylcarbamate)
次のスキームに従って合成した。

Figure 2007327041
乾燥させた中間化合物4の0.70 g に脱水ピリジン20ml と3,5-dichlorophenyl isocyanate を2mL 加え、80℃で加熱し反応させた。IR で反応の進行を確認後、ヘキサン不溶部として回収し、ヘキサン-2-プロパノール混合溶媒で洗浄、乾燥後収量1.9g を得た(目的化合物21)。 [Synthesis Example 22]
* N-benzyl chitosan 3,6-bis (3,5-dichlorophenylcarbamate)
Synthesized according to the following scheme.
Figure 2007327041
To 0.70 g of the dried intermediate compound 4, 20 ml of dehydrated pyridine and 2 mL of 3,5-dichlorophenyl isocyanate were added and reacted by heating at 80 ° C. After confirming the progress of the reaction by IR, the reaction mixture was recovered as a hexane-insoluble part, washed with a hexane-2-propanol mixed solvent, and dried to obtain 1.9 g (target compound 21).

[合成例23]
* N-benzyl chitosan 3,6-bis(3,4-dichlorophenylcarbamate)
次のスキームに従って合成した。

Figure 2007327041
乾燥させた中間化合物4の0.70 g に脱水ピリジン20ml と3,4-dichlorophenyl isocyanate を2mL 加え、80℃で加熱し反応させた。IR で反応の進行を確認後、メタノール/水(4/1)不溶部として回収し、メタノール、エタノール、ヘキサンを用いてろ紙上で洗浄したところ、大半が溶け出した(目的化合物22)。 [Synthesis Example 23]
* N-benzyl chitosan 3,6-bis (3,4-dichlorophenylcarbamate)
Synthesized according to the following scheme.
Figure 2007327041
To 0.70 g of the dried intermediate compound 4, 20 ml of dehydrated pyridine and 2 mL of 3,4-dichlorophenyl isocyanate were added and reacted by heating at 80 ° C. After confirming the progress of the reaction by IR, it was recovered as an insoluble part of methanol / water (4/1) and washed on a filter paper with methanol, ethanol and hexane, and most of the substance was dissolved (target compound 22).

[合成例24]
* 2 -位にアミノ基を残したキトサン誘導体
次のスキームに従って合成した。

Figure 2007327041
文献(Y. Wu, T. Seo, S. Maeda, T. Sasaki, S. Irie, K. Sakurai, J. Polym. Sci. Part B: Polym. Phys.2005, 43, 1354.)を参考に、キトサンを室温でメタンスルホン酸に溶解させた後、氷浴中で撹拌しながらゆっくりとイソシアネートを加えた。徐々に発泡しながら反応が進行し、そのまま0℃で30 分撹拌を続けた。室温に戻して3 時間さらに撹拌した後、−30℃で一晩静置した。
析出した尿素の固体ごとメタノールに溶解させ、水に再沈殿させて固体を分
離した。次に1.4%のアンモニア水で中和した後、水、メタノール、エーテルで
洗浄した。 (参照化合物1) [Synthesis Example 24]
* Chitosan derivative leaving an amino group in the 2-position was synthesized according to the following scheme.
Figure 2007327041
With reference to the literature (Y. Wu, T. Seo, S. Maeda, T. Sasaki, S. Irie, K. Sakurai, J. Polym. Sci. Part B: Polym. Phys. 2005, 43, 1354.) After chitosan was dissolved in methanesulfonic acid at room temperature, isocyanate was slowly added while stirring in an ice bath. The reaction proceeded while gradually foaming, and stirring was continued at 0 ° C. for 30 minutes. After returning to room temperature and further stirring for 3 hours, the mixture was allowed to stand at −30 ° C. overnight.
The precipitated urea solid was dissolved in methanol and reprecipitated in water to separate the solid. Next, the mixture was neutralized with 1.4% aqueous ammonia and washed with water, methanol, and ether. (Reference compound 1)

[固定相の調製]
目的化合物11〜20及び参照化合物1を、表面処理したシリカゲルに公知の方法でコーティングした。それを長さ25cm、内径0.46cmまたは0.20cm のステンレススチール製のカラムにそれぞれスラリー法により充填し、HPLC用キラル固定相とした。それぞれのHPLC用キラル固定相を用いて、前記ラセミ化合物1〜10の光学分割を行った。
[Preparation of stationary phase]
The target compounds 11 to 20 and the reference compound 1 were coated on the surface-treated silica gel by a known method. It was packed in a stainless steel column having a length of 25 cm and an inner diameter of 0.46 cm or 0.20 cm by a slurry method to obtain a chiral stationary phase for HPLC. The racemic compounds 1 to 10 were optically resolved using the respective chiral stationary phases for HPLC.

[光学分割能の評価]
測定装置は前述の通りである。溶離液は、Hexane-2-propanol(9:1)を用い、内径0.46cm のカラムでは流速0.5ml/min とし、室温で測定を行った。理論段数、t0、αは前述と同様に算出した。
以下に結果を示す。
[Evaluation of optical resolution]
The measuring device is as described above. Hexane-2-propanol (9: 1) was used as the eluent, and measurement was performed at room temperature with a flow rate of 0.5 ml / min for a 0.46 cm inner diameter column. The number of theoretical plates, t0, and α were calculated in the same manner as described above.
The results are shown below.

Figure 2007327041
カラム: 25 x 0.46 (i.d.) cm, 流速: 0.5ml/min, 移動相: ヘキサン/2-プロパノール=90/10, 温度: 室温
a) カラム: 25 x 0.20 (i.d.) cm, 流速: 0.1ml/min, 移動相: ヘキサン/2-プロパノール=90/10, 温度: 室温
Figure 2007327041
Column: 25 x 0.46 (id) cm, Flow rate: 0.5 ml / min, Mobile phase: Hexane / 2-propanol = 90/10, Temperature: Room temperature
a) Column: 25 x 0.20 (id) cm, Flow rate: 0.1 ml / min, Mobile phase: Hexane / 2-propanol = 90/10, Temperature: Room temperature

Figure 2007327041
カラム: 25 x 0.46 (i.d.) cm, 流速: 0.5ml/min, 移動相: ヘキサン/2-プロパノール=90/10, 温度: 室温
Figure 2007327041
Column: 25 x 0.46 (id) cm, Flow rate: 0.5 ml / min, Mobile phase: Hexane / 2-propanol = 90/10, Temperature: Room temperature

Figure 2007327041
カラム: 25 x 0.20 (i.d.) cm, 流速: 0.1ml/min, 移動相: ヘキサン/2-プロパノール=90/10, 温度: 室温
Figure 2007327041
Column: 25 x 0.20 (id) cm, Flow rate: 0.1 ml / min, Mobile phase: Hexane / 2-propanol = 90/10, Temperature: Room temperature

Claims (11)

下記一般式(I)で表されるキトサン誘導体の製造方法であって、塩基性水溶液中で原料のキトサンを加熱処理して脱アセチル化し、脱アセチル化されたキトサンに置換基を導入してキトサン誘導体を得ることを特徴とする方法。
Figure 2007327041
式中、Rは、置換基を有していてもよい炭素数1〜30の脂肪族炭化水素基または芳香族炭化水素基を含む置換基を示し、Raは、置換基を有していてもよい炭素数1〜30の脂肪族炭化水素基もしくは芳香族炭化水素基を含む置換基、水素原子、ピリジルアルキル基、ベンジルアルキル基、キトサンの窒素原子およびRbとともにイミド環を形成する基、または、キトサンの窒素原子およびRbとともにピリジルイミンもしくはベンジルイミンを形成する基を示し、Rbは、水素原子、キトサンの窒素原子およびRaとともにイミド環を形成する基、または、キトサンの窒素原子およびRaとともにピリジルイミンもしくはベンジルイミンを形成する基を示し、nは5以上の整数を示す。
A method for producing a chitosan derivative represented by the following general formula (I), wherein chitosan as a raw material is heated and deacetylated in a basic aqueous solution to introduce a substituent into the deacetylated chitosan, thereby producing chitosan A method characterized in that a derivative is obtained.
Figure 2007327041
In the formula, R represents a substituent containing an optionally substituted aliphatic hydrocarbon group having 1 to 30 carbon atoms or an aromatic hydrocarbon group, and Ra may have a substituent. A group that forms an imide ring together with a substituent containing a good aliphatic hydrocarbon group having 1 to 30 carbon atoms or an aromatic hydrocarbon group, a hydrogen atom, a pyridylalkyl group, a benzylalkyl group, a nitrogen atom of chitosan, and Rb, or A group that forms pyridylimine or benzylimine with the nitrogen atom of chitosan and Rb, Rb represents a hydrogen atom, a group that forms an imide ring with the nitrogen atom and Ra of chitosan, or a pyridylimine with nitrogen atom and Ra of chitosan Alternatively, it represents a group that forms benzylimine, and n represents an integer of 5 or more.
一般式(I)中、RおよびRaが下記の一般式(II)または(III)のいずれかで表される置換基であり、Rbが水素原子であることを特徴とする、請求項1に記載のキトサン誘導体の製造方法。
Figure 2007327041
式中、R’は、置換基を有していてもよい炭素数1〜30の脂肪族炭化水素基又は芳香族炭化水素基である。
2. In general formula (I), R and Ra are substituents represented by either of the following general formula (II) or (III), and Rb is a hydrogen atom: A method for producing the described chitosan derivative.
Figure 2007327041
In formula, R 'is a C1-C30 aliphatic hydrocarbon group or aromatic hydrocarbon group which may have a substituent.
一般式(I)中、RおよびRaが下記一般式(IV)で表される置換基であり、Rbが水素原子であることを特徴とする、請求項1または2に記載のキトサン誘導体の製造方法。
Figure 2007327041
式中、Xは3,4または5位に導入された1〜3個のメチル基またはハロゲン基を示す
3. The production of a chitosan derivative according to claim 1 or 2, wherein in general formula (I), R and Ra are substituents represented by the following general formula (IV), and Rb is a hydrogen atom. Method.
Figure 2007327041
In the formula, X represents 1 to 3 methyl groups or halogen groups introduced at the 3, 4 or 5 position.
一般式(I)中、RおよびRaが下記の一般式(V)で表される置換基であり、Rbが水素原子であることを特徴とする、請求項1に記載のキトサン誘導体の製造方法。
Figure 2007327041
式中、Xは4-メチルまたは3-メチルを示す。
The method for producing a chitosan derivative according to claim 1, wherein R and Ra in the general formula (I) are substituents represented by the following general formula (V), and Rb is a hydrogen atom. .
Figure 2007327041
In the formula, X represents 4-methyl or 3-methyl.
一般式(I)中、Rが下記の一般式(II)で表される置換基であり、Raがピリジルアルキル基またはベンジルアルキル基であり、Rbが水素原子であることを特徴とする、請求項1に記載のキトサン誘導体の製造方法。
Figure 2007327041
式中、R’は、置換基を有していてもよい炭素数1〜30の脂肪族炭化水素基又は芳香族炭化水素基である。
In general formula (I), R is a substituent represented by the following general formula (II), Ra is a pyridylalkyl group or benzylalkyl group, and Rb is a hydrogen atom, Item 2. A method for producing a chitosan derivative according to Item 1.
Figure 2007327041
In formula, R 'is a C1-C30 aliphatic hydrocarbon group or aromatic hydrocarbon group which may have a substituent.
一般式(I)中、Rが下記の一般式(II)で表される置換基であり、Raが、キトサンの窒素原子およびRbとともにピリジルイミンを形成する基であることを特徴とする、請求項1に記載のキトサン誘導体の製造方法。
Figure 2007327041
式中、R’は、置換基を有していてもよい炭素数1〜30の脂肪族炭化水素基又は芳香族炭化水素基である。
In general formula (I), R is a substituent represented by the following general formula (II), and Ra is a group that forms pyridylimine together with the nitrogen atom of chitosan and Rb, Item 2. A method for producing a chitosan derivative according to Item 1.
Figure 2007327041
In formula, R 'is a C1-C30 aliphatic hydrocarbon group or aromatic hydrocarbon group which may have a substituent.
一般式(I)中、Rが下記の一般式(II)で表される置換基であり、Raが、キトサンの窒素原子およびRbとともにベンジルイミンを形成する基であることを特徴とする、請求項1に記載のキトサン誘導体の製造方法。
Figure 2007327041
式中、R’は、置換基を有していてもよい炭素数1〜30の脂肪族炭化水素基又は芳香族炭化水素基である。
In general formula (I), R is a substituent represented by the following general formula (II), and Ra is a group that forms benzylimine together with the nitrogen atom of chitosan and Rb, Item 2. A method for producing a chitosan derivative according to Item 1.
Figure 2007327041
In formula, R 'is a C1-C30 aliphatic hydrocarbon group or aromatic hydrocarbon group which may have a substituent.
塩基性水溶液が水酸化ナトリウム、水酸化カリウムのいずれかであることを特徴とする、請求項1〜7のいずれか一項に記載のキトサン誘導体の製造方法。 The method for producing a chitosan derivative according to any one of claims 1 to 7, wherein the basic aqueous solution is either sodium hydroxide or potassium hydroxide. 請求項1〜8のいずれか一項に記載の製造方法によりキトサン誘導体を製造し、得られたキトサン誘導体を用いて光学異性体用分離剤を製造する、光学異性体用分離剤の製造方法。 The manufacturing method of the separating agent for optical isomers which manufactures a separating agent for optical isomers by manufacturing a chitosan derivative by the manufacturing method as described in any one of Claims 1-8, and using the obtained chitosan derivative. 請求項1〜8のいずれか一項に記載の製造方法により製造されたキトサン誘導体。 The chitosan derivative manufactured by the manufacturing method as described in any one of Claims 1-8. 請求項10に記載のキトサン誘導体からなる光学異性体用分離剤。 A separating agent for optical isomers comprising the chitosan derivative according to claim 10.
JP2007120843A 2006-05-09 2007-05-01 Method for producing chitosan derivative Active JP5224264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007120843A JP5224264B2 (en) 2006-05-09 2007-05-01 Method for producing chitosan derivative

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006130192 2006-05-09
JP2006130192 2006-05-09
JP2007120843A JP5224264B2 (en) 2006-05-09 2007-05-01 Method for producing chitosan derivative

Publications (2)

Publication Number Publication Date
JP2007327041A true JP2007327041A (en) 2007-12-20
JP5224264B2 JP5224264B2 (en) 2013-07-03

Family

ID=38927717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007120843A Active JP5224264B2 (en) 2006-05-09 2007-05-01 Method for producing chitosan derivative

Country Status (1)

Country Link
JP (1) JP5224264B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152996A1 (en) * 2015-03-24 2016-09-29 株式会社ダイセル Stationary phase for supercritical fluid chromatography
WO2020241678A1 (en) * 2019-05-30 2020-12-03 株式会社ダイセル Chitosan compounds and optical isomer separating agent

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60142930A (en) * 1983-12-28 1985-07-29 Daicel Chem Ind Ltd Resolving agent
JPS60226831A (en) * 1984-04-02 1985-11-12 Daicel Chem Ind Ltd Separating agent
JPS63178101A (en) * 1986-03-20 1988-07-22 Daicel Chem Ind Ltd Alkyl-substituted phenylcarbamate derivative of polysaccharide
JPH01203402A (en) * 1988-02-08 1989-08-16 Daicel Chem Ind Ltd Polysaccharide carbamate derivative
JPH0693002A (en) * 1992-09-16 1994-04-05 Daicel Chem Ind Ltd Separating agent consisting of alkoxy-substituted aromatic carbamate derivative of cellulose
JPH07285889A (en) * 1994-04-20 1995-10-31 Daicel Chem Ind Ltd Separation of optical isomer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60142930A (en) * 1983-12-28 1985-07-29 Daicel Chem Ind Ltd Resolving agent
JPS60226831A (en) * 1984-04-02 1985-11-12 Daicel Chem Ind Ltd Separating agent
JPS63178101A (en) * 1986-03-20 1988-07-22 Daicel Chem Ind Ltd Alkyl-substituted phenylcarbamate derivative of polysaccharide
JPH01203402A (en) * 1988-02-08 1989-08-16 Daicel Chem Ind Ltd Polysaccharide carbamate derivative
JPH0693002A (en) * 1992-09-16 1994-04-05 Daicel Chem Ind Ltd Separating agent consisting of alkoxy-substituted aromatic carbamate derivative of cellulose
JPH07285889A (en) * 1994-04-20 1995-10-31 Daicel Chem Ind Ltd Separation of optical isomer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012053881; 実験化学講座 26 -高分子化学- 第5版, 2005, 第206-208頁 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152996A1 (en) * 2015-03-24 2016-09-29 株式会社ダイセル Stationary phase for supercritical fluid chromatography
CN107430100A (en) * 2015-03-24 2017-12-01 株式会社大赛璐 The stationary phase of supercritical fluid chromatography
JPWO2016152996A1 (en) * 2015-03-24 2018-01-18 株式会社ダイセル Stationary phases for supercritical fluid chromatography.
US11065558B2 (en) 2015-03-24 2021-07-20 Daicel Corporation Stationary phase for supercritical fluid chromatography
WO2020241678A1 (en) * 2019-05-30 2020-12-03 株式会社ダイセル Chitosan compounds and optical isomer separating agent
CN113891899A (en) * 2019-05-30 2022-01-04 株式会社大赛璐 Chitosan compound and separating agent for optical isomers
JP7428706B2 (en) 2019-05-30 2024-02-06 株式会社ダイセル Separating agent for chitosan compounds and optical isomers

Also Published As

Publication number Publication date
JP5224264B2 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
JP5070596B2 (en) Chitosan derivative and method for producing the same
AU708454B2 (en) Photochemically cross-linked polysaccharide derivatives as supports for the chromatographic separation of enantiomers
EP2853892B1 (en) Separating agent
JP5106524B2 (en) Filler for optical isomer separation
US9499638B2 (en) Polysaccharide derivative and separating agent for optical isomer containing the same
JP5224264B2 (en) Method for producing chitosan derivative
CN101766995A (en) Bonded polysaccharide chiral separation liquid chromatography stationary phase material and synthesis method thereof
JP2000086702A (en) Crosslinked polymer including derivatives of bis-silane, bis-thioether, bis-sulfoxide, bis-sulfone and butanediyl of polysaccharide and oligosaccharide as base and its molding as support material
TWI607803B (en) Catalyst, and method for producing optically active anti-1,2-nitroalkanol compound
JPH0442371B2 (en)
CN110684043B (en) C-N axis chiral arylamine compound and preparation method thereof
JP5051814B2 (en) Polysaccharide derivative and optical isomer separation filler using the same
JP2013184947A (en) Method for manufacturing biaryl compound
JP2011252723A (en) Separation medium constituted of organic polymer monolith, reverse-phase liquid chromatography column using the same, and method for manufacturing them
JP4696275B2 (en) Indole compound production method and catalyst
CN112759695B (en) Preparation method of gel emulsion and templated preparation of low-density fluorescent porous metal complex material
CN113891899B (en) Chitosan compound and separating agent for optical isomer
JPH1143447A (en) Chiral compound, its synthesis and use of the same on carrier
JP4761763B2 (en) Boric acid selective binding substance and boric acid removal or recovery method
JP6791565B2 (en) Separator for optical isomers
JP2004163110A (en) Separating agent for optical isomer and manufacturing method of the same
JPH11335306A (en) Optically resolving agent and optical resolution using the same
JPH0579242B2 (en)
JP2000302698A (en) Separating agent for optical isomer
JP2005255795A (en) Optically active polymaleimide derivative, method for producing the derivative, resolving agent comprising the derivative, and method for resolving optically active compound by using the resolving agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100506

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130305

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5224264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250