JP2007317696A - ガス処理装置、ガス処理方法、フッ化水素ガス供給装置、フッ化水素ガス供給方法、コンピュータ読取可能な記憶媒体 - Google Patents

ガス処理装置、ガス処理方法、フッ化水素ガス供給装置、フッ化水素ガス供給方法、コンピュータ読取可能な記憶媒体 Download PDF

Info

Publication number
JP2007317696A
JP2007317696A JP2006142513A JP2006142513A JP2007317696A JP 2007317696 A JP2007317696 A JP 2007317696A JP 2006142513 A JP2006142513 A JP 2006142513A JP 2006142513 A JP2006142513 A JP 2006142513A JP 2007317696 A JP2007317696 A JP 2007317696A
Authority
JP
Japan
Prior art keywords
gas
fluorine
hydrogen
supply line
hydrogen fluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006142513A
Other languages
English (en)
Inventor
Shusuke Miyoshi
秀典 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2006142513A priority Critical patent/JP2007317696A/ja
Publication of JP2007317696A publication Critical patent/JP2007317696A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

【課題】 プロセスの再現性に優れるとともに、フッ化水素ガスを長期間安定して処理容器内に供給することが可能なガス処理装置を提供する。
【解決手段】 COR装置5は、ウエハWを収容するチャンバー50と、水素を送給する水素送給ライン54bと、フッ素を送給するフッ素送給ライン55bと、水素送給ライン54bを流通する水素の流量を調整するマスフローコントローラ54cと、フッ素送給ライン55bを流通するフッ素の流量を調整するマスフローコントローラ55cと、水素送給ライン54bおよびフッ素送給ライン55bが接続され、水素送給ライン54bによって送給される水素とフッ素送給ライン55bによって送給されるフッ素とを反応させてフッ化水素ガスを生成する反応容器62と、反応容器62内で生成されたフッ化水素ガスをチャンバー50に供給するフッ化水素供給ライン61とを具備する。
【選択図】図2

Description

本発明は、被処理体にフッ化水素ガスを含むガスを供給してガス処理を施すガス処理装置およびガス処理方法、処理容器内に配置された被処理体に所定の処理を施すためのフッ化水素ガスを供給するフッ化水素ガス供給装置およびフッ化水素ガス供給方法、ならびに前記のガス処理方法を実行させるための制御プログラムを記憶したコンピュータ読取可能な記憶媒体に関する。
半導体デバイスの製造プロセスにおいては、半導体ウエハを収容するチャンバー内に処理ガスを供給して、半導体ウエハまたはチャンバーの内壁にガス処理を施すといったことが一般的に行われており、半導体ウエハのベーパー(Vapor)洗浄や化学的酸化物除去(Chemical Oxide Removal:COR)処理によるエッチング、チャンバー内のクリーニング等の種々のガス処理には、処理ガスとしてフッ化水素(HF)が用いられている。
チャンバー内へのHFガスの供給は通常、チャンバーに接続されたHFガスの送給ラインを介し、マスフローコントローラ等の流量調整機構によって流量調整しつつ行われる。ところが、HFガスは、HF分子が会合(重合)した多量体(HF)(n=1〜8)が混在して構成されており、HF分子の会合度は、圧力および温度に対して非常に敏感であるため、このような方法では、送給ラインを流通するHFガスの圧力または温度に僅かでも変動が生じると、HFガス中の多量体成分の比率が送給ライン中で大きく変化してしまう。したがって、HFガスの流量調整機構による設定流量と実流量とで誤差が生じやすく、プロセスの再現性の確保が難しい。
そこで、HFガスの流量調整機構による設定流量と実流量との誤差を抑止するため、流量調整機構の流量調整弁(流量制御器)をあらかじめ加熱しておくことにより、送給ラインを流通するHFガスが流量調整弁を通過する際にHFガス中のHF分子の会合を解離させ、一分子状態のHF分子で構成されたHFガスをチャンバー内に供給するといった試みもなされている(例えば特許文献1参照)。
しかしながら、HFはほとんどの無機酸化物と反応して無機酸化物を腐食させる性質を有しているため、流量調整弁を加熱する上記した従来の技術では、流量調整弁部分でHFの反応性が高められることにより、流量調整弁内部のHFガスとの接触部分が腐食してしまうおそれがある。一般的に、HFガスの送給ラインは細く、流量調整弁内部のHFガスとの接触部分は小さいため、この部分にあらかじめ耐食性加工を施しておくことが難しい。したがって、このような技術では、HFを長期間安定してチャンバー内に供給することが困難である。
特開2004−264881号公報
本発明は、かかる事情に鑑みてなされたものであって、プロセスの再現性に優れるとともに、フッ化水素ガスを長期間安定して被処理体に供給することが可能なガス処理装置、ガス処理方法、フッ化水素ガス供給装置、フッ化水素ガス供給方法、ならびに前記のガス処理方法を実行させるための制御プログラムを記憶したコンピュータ読取可能な記憶媒体の提供を目的とする。
上記課題を解決するために、本発明の第1の観点では、被処理体にフッ化水素ガスを含むガスを供給してガス処理を施すガス処理装置であって、内部に被処理体が配置される処理容器と、水素を送給する水素送給ラインと、フッ素を送給するフッ素送給ラインと、前記水素送給ラインを流通する水素の流量を制御する水素流量制御機構と、前記フッ素送給ラインを流通するフッ素の流量を制御するフッ素流量制御機構とを具備し、前記水素送給ラインによって送給される水素と前記フッ素送給ラインによって送給されるフッ素とを反応させてフッ化水素ガスを生成し、生成されたフッ化水素ガスにより前記処理容器内の被処理体を処理することを特徴とするガス処理装置を提供する。
本発明の第1の観点において、前記水素送給ラインおよび前記フッ素送給ラインはそれぞれ前記処理容器に接続されており、前記水素送給ラインによって送給される水素と前記フッ素送給ラインによって送給されるフッ素とを前記処理容器内で反応させてフッ化水素ガスを生成することができる。
本発明の第2の観点では、被処理体にフッ化水素ガスを含むガスを供給してガス処理を施すガス処理装置であって、内部に被処理体が配置される処理容器と、水素を送給する水素送給ラインと、フッ素を送給するフッ素送給ラインと、前記水素送給ラインを流通する水素の流量を制御する水素流量制御機構と、前記フッ素送給ラインを流通するフッ素の流量を制御するフッ素流量制御機構と、前記水素送給ラインおよび前記フッ素送給ラインが接続され、前記水素送給ラインによって送給される水素と前記フッ素送給ラインによって送給されるフッ素とを反応させてフッ化水素ガスを生成する反応容器と、前記反応容器内で生成されたフッ化水素ガスを前記処理容器内に供給するフッ化水素供給ラインとを具備することを特徴とするガス処理装置を提供する。
本発明の第2の観点において、前記反応容器内の温度を制御して水素とフッ素との反応を調整する温度制御機構をさらに具備することが好ましく、前記反応容器内に光を照射して水素とフッ素との反応を調整する光照射機構をさらに具備することが好まく、前記反応容器内には、水素とフッ素との反応を調整する触媒部が設けられていることが好ましい。
また、以上の本発明の第1、2の観点において、前記フッ素送給ラインを流通するフッ素を冷却する冷却機構をさらに具備することが好ましい。この場合に、前記冷却機構は、フッ素の冷却温度を−223℃以上とすることが好ましく、前記冷却機構は、フッ素の冷却温度を−188℃以上とすることがなお好ましい。
さらに、以上の本発明の第1、2の観点において、前記フッ素送給ラインは、希釈ガスとの混合によって希釈されたフッ素を送給することが好ましい。
また、以上の本発明の第1、2の観点において、前記水素流量制御機構および前記フッ素流量制御機構はそれぞれ、マスフローコントローラを有して構成することができる。
本発明の第3の観点では、被処理体にフッ化水素ガスを含むガスを供給してガス処理を施すガス処理方法であって、被処理体を処理容器内に配置し、水素およびフッ素をそれぞれ所定の流量に調整しつつ別個に送給し、これら水素およびフッ素を反応させてフッ化水素ガスを生成し、このフッ化水素ガスによって前記処理容器内の被処理体を処理することを特徴とするガス処理方法を提供する。
水素およびフッ素を前記処理容器内に別個に送給して前記処理容器内で反応させることができる。
本発明の第4の観点では、被処理体にフッ化水素ガスを含むガスを供給してガス処理を施すガス処理方法であって、被処理体を処理容器内に配置し、水素およびフッ素をそれぞれ所定の流量に調整しつつ別個に送給し、これら水素およびフッ素を反応容器内で反応させてフッ化水素ガスを生成し、このフッ化水素ガスを前記処理容器内に供給して前記処理容器内の被処理体を処理することを特徴とするガス処理方法を提供する。
本発明の第5の観点では、処理容器内に配置された被処理体に所定の処理を施すためのフッ化水素ガスを供給するフッ化水素ガス供給装置であって、水素を送給する水素送給ラインと、フッ素を送給するフッ素送給ラインと、前記水素送給ラインを流通する水素の流量を制御する水素流量制御機構と、前記フッ素送給ラインを流通するフッ素の流量を制御するフッ素流量制御機構と、前記水素送給ラインおよび前記フッ素送給ラインが接続され、前記水素送給ラインによって送給される水素と前記フッ素送給ラインによって送給されるフッ素とを反応させてフッ化水素ガスを生成する反応容器と、前記反応容器内で生成されたフッ化水素ガスを処理容器内に供給するフッ化水素供給ラインとを具備することを特徴とするフッ化水素ガス供給装置を提供する。
本発明の第6の観点では、処理容器内に配置された被処理体に所定の処理を施すためのフッ化水素ガスを供給するフッ化水素ガス供給方法であって、水素およびフッ素をそれぞれ所定の流量に調整しつつ別個に送給し、これら水素およびフッ素を反応容器内で反応させてフッ化水素ガスを生成し、このフッ化水素ガスを処理容器内の被処理体に供給することを特徴とするフッ化水素ガス供給方法を提供する。
本発明の第7の観点では、コンピュータ上で動作する制御プログラムが記憶されたコンピュータ読取可能な記憶媒体であって、前記制御プログラムは、実行時に上記ガス処理方法が行われるように、コンピュータに処理装置を制御させることを特徴とするコンピュータ読取可能な記憶媒体を提供する。
本発明の第1、3の観点によれば、反応性が極めて高く、かつ多量体化することのない水素およびフッ素をそれぞれ所定の流量に調整しつつ別個に送給し、これら水素およびフッ素を反応させてフッ化水素ガスを生成し、このフッ化水素ガスによって処理容器内に配置した被処理体を処理するため、水素およびフッ素の送給時の流量調整機構による設定流量と実流量との誤差がほとんど生じず、すなわち、水素およびフッ素の流量から算出されるフッ化水素の設定生成量と実際の生成量との誤差もほとんど生じない。したがって、プロセスの再現性を十分に確保することができるとともに、流量調整機構や送給ライン等を加熱する必要がないため、流量調整機構や送給ライン等の腐食を回避して被処理体にフッ化水素ガスを長期間安定して供給することが可能となる。
本発明の第2、4、5、6の観点によれば、反応性が極めて高く、かつ多量体化することのない水素およびフッ素をそれぞれ所定の流量に調整しつつ別個に送給し、これら水素およびフッ素を反応容器内で反応させてフッ化水素ガスを生成し、このフッ化水素ガスを前記処理容器内に供給して前記処理容器内に配置した被処理体を処理するため、水素およびフッ素の送給時の流量調整機構による設定流量と実流量との誤差がほとんど生じず、すなわち、水素およびフッ素の流量から算出されるフッ化水素の設定生成量と実際の生成量との誤差もほとんど生じない。しかも、処理容器の前段の反応容器内で生成されたフッ化水素ガスを処理容器内に供給するため、他の処理ガスを並行して処理容器内に供給する場合であっても、フッ化水素ガスを処理容器内の被処理体に均一に供給することができる。さらに、フッ化水素ガスが生成される場所、すなわち反応容器が、被処理体のガス処理を行う場所、すなわち処理容器と別に設けられているため、例えば、反応容器内と処理容器内とを異なる温度に設定したり、フッ化水素ガスの生成を調整するための反応容器内への触媒配置や反応容器内での光照射等を行ったりして、フッ化水素ガスの生成に最適な環境条件と被処理体のガス処理に最適な環境条件とを、互いに影響を及ぼすことなく別々に創出することができる。したがって、プロセスの再現性を著しく高めることが可能となるとともに、流量調整機構や送給ライン等を加熱する必要がないため、流量調整機構や送給ライン等の腐食を回避して被処理体にフッ化水素ガスを長期間安定して供給することが可能となる。
以下、添付図面を参照して本発明の実施形態について具体的に説明する。
図1は本発明に係るガス処理装置の一実施形態であるCOR装置を備えたウエハ処理システムの概略図である。
ウエハ処理システム1は、例えば円盤形状をなす半導体ウエハ(以下、「ウエハ」と記す)Wを搬入出するための搬入出部2と、搬入出部2に隣接して設けられた2つのロードロック室3と、各ロードロック室3にそれぞれ隣接して設けられた、ウエハWにPHT(Post Heat Treatment)を行うPHT装置4と、各PHT装置4にそれぞれ隣接して設けられた、ウエハWにCOR処理を行うCOR装置5とを備えている。ロードロック室3、PHT装置4およびCOR装置5は直線上に配列されている。
搬入出部2は、ウエハWを搬送する第1のウエハ搬送機構21が内部に設けられた搬送室22を備え、第1のウエハ搬送機構21は、ウエハWを略水平に保持し、前後動、水平回転および昇降可能に設けられた2つの搬送アーム23a,23bを有している。搬送室22の側部には載置台24が設けられ、この載置台24には、複数枚のウエハWを収容可能なキャリアCが例えば3つ配置されている。また、搬送室22の側部には、ウエハWの位置合わせを行うオリエンタ25が設置されている。搬入出部2においては、第1のウエハ搬送機構21が、搬送アーム23a,23bによって載置台24上のキャリアC、オリエンタ25およびロードロック室3の間でウエハWを搬入出するように構成されている。
各ロードロック室3は、ゲートバルブ11を介して搬送室22と接続され、ウエハWを収容可能であるとともに、所定の圧力に減圧可能に構成されている。各ロードロック室3内には、ウエハWを搬送する第2のウエハ搬送機構31が設けられ、このウエハ搬送機構31は、ウエハWを略水平に保持し、前後動、水平回転および昇降可能に設けられた搬送アーム32を有している。各ロードロック室3においては、第2のウエハ搬送機構31が、搬送アーム32により、ウエハWをPHT装置4との間で搬入出し、さらにCOR装置5との間で搬入出するように構成されている。
PHT装置4は、ゲートバルブ12を介してロードロック室3と接続された、ウエハWを収容可能な処理室40を備え、この処理室40内でウエハWにPHTを行うように構成されている。また、COR装置5は、ゲートバルブ13を介して処理室40と接続された、ウエハWを収容可能なチャンバー50を備え、このチャンバー50内でウエハWにCOR処理を施すように構成されている。なお、COR装置5については後に詳細に説明する。
ウエハ処理システム1の各構成部は、CPUを備えたプロセスコントローラ14に接続されて制御される。プロセスコントローラ14には、工程管理者がウエハ処理システム1を管理するためにコマンドの入力操作等を行うキーボードや、ウエハ処理システム1の稼働状況を可視化して表示するディスプレイ等からなるユーザーインタフェース15と、ウエハ処理システム1で実行される各種処理をプロセスコントローラ14の制御にて実現するための制御プログラムや処理条件データ等が記録されたレシピが格納された記憶部16とが接続されている。そして、必要に応じて、ユーザーインタフェース15からの指示等にて任意のレシピを記憶部16から呼び出してプロセスコントローラ14に実行させることで、プロセスコントローラ14の制御下で、ウエハ処理システム1での所望の処理が行われる。前記レシピは、CD−ROM、ハードディスク、フラッシュメモリ等のコンピュータ読み取り可能な記憶媒体に格納された状態のものを利用したり、あるいは、他の装置から専用回線を介して随時伝送させて利用したりすることも可能である。
このような構成のウエハ処理システム1においては、まず、複数枚のウエハWが収納されたキャリアCを載置台24上に載置し、第1のウエハ搬送機構21が、キャリアCから一枚のウエハWを取り出し、ロードロック室3内に搬入する。ロードロック室3にウエハWが搬入されると、ゲートバルブ11,12によってロードロック室3内が密閉されて減圧される。ロードロック室3内が所定の圧力まで減圧されると、ゲートバルブ12、13によってロードロック室3内、所定の圧力まで減圧されたPHT装置4の処理室40内およびCOR装置5のチャンバー50内が互いに連通し、第2のウエハ搬送機構31が、ウエハWを、処理室40内を介してチャンバー50内に搬入する。
チャンバー50内にウエハWが搬入されると、ゲートバルブ13によってチャンバー50内が閉塞され、ウエハWにCOR処理が施される。これにより、ウエハWの表面に形成されていた自然酸化膜が反応生成物に変質する。なお、COR装置5でのCOR処理については後に詳細に説明する。COR処理が終了すると、ゲートバルブ12、13によってロードロック室3内、処理室40内およびチャンバー50内が互いに連通し、第2のウエハ搬送機構31が、ウエハWを処理室40内に搬入する。
処理室40内にウエハWが搬入されると、ゲートバルブ12,13によって処理室40内が閉塞され、ウエハWのPHTが行われる。これにより、ウエハWの表面の反応生成物が気化または昇華する。PHTが終了すると、ゲートバルブ12によってロードロック室3内と処理室40内とが互いに連通し、第2のウエハ搬送機構31が、ウエハWを処理室40内から搬出してロードロック室3内に搬入する。そして、ロードロック室3内が密閉された後、ロードロック室3内と搬送室22内とが連通し、第1のウエハ搬送機構21が、ウエハWを載置台24の上のキャリアCに戻すこととなる。
次に、COR装置5について詳細に説明する。
図2はCOR装置5の概略図であり、図3はCOR装置5を構成するCORチャンバーの概略図であり、図4はCOR装置5を構成する反応部の概略断面図である。
COR装置5は、ハロゲン元素を含むガスと塩基性ガスを処理ガスとしてウエハWに接触させて、エッチング後にウエハWの表面に形成された自然酸化膜と処理ガスの分子とを化学反応させ、反応生成物を生じさせるものである。具体的に、処理ガス中のHFガスとNHガスをウエハW表面の自然酸化膜(SiO)に作用させることにより、反応生成物としてフルオロケイ酸アンモニウム[(NHSiF]を生成させる。COR装置5は、前述のチャンバー50(処理容器)と、チャンバー50内でウエハWを略水平に載置する載置台51と、チャンバー50内に処理ガスを供給するガス供給機構52と、チャンバー50内を排気する排気ガス処理機構53とを備えている。
チャンバー50は、上部が開口した筒状のチャンバー本体50aと、チャンバー本体50aの上部開口を閉塞する蓋体50bとを有している。蓋体50bは、図示しないシール部材を介してチャンバー本体50a上に装着されており、これによりチャンバー50内の気密性が確保されている。
チャンバー本体50aの側壁部には、図3に示すように、ゲートバルブ13によって開閉する、ウエハWをチャンバー50内に対して搬入出させるための搬入出口50cが設けられている。
蓋体50bは、図3に示すように、蓋体本体50dと、この蓋体本体50dに取り付けられた、ガス供給機構52による処理ガスをチャンバー50内に吐出するシャワーヘッド50eとを有している。シャワーヘッド50eは、内部に扁平な空間50gを有する略板状に形成され、蓋体本体50dの下部に取り付けられて蓋体50bの内面(下面)を構成している。シャワーヘッド50eは、処理ガスを吐出するための吐出口50fを下面に複数または多数有し、ガス供給機構52からの処理ガスを、空間50g内で拡散させ、吐出口50fによって上方からチャンバー50内またはチャンバー本体50a内に吐出するように構成されている。
載置台51は、図3に示すように、チャンバー本体50aの底部に固定されており、載置台51の内部には、載置台51の温度を調整する載置台温調器51aが設けられている。載置台温調器51aは、例えば、水等の温調流体を循環させる流路(図示せず)を有し、かかる流路を流れる温調流体と熱交換が行なわれることにより、載置台51の温度調整、すなわち載置台51上のウエハWの温度調整が行われるように構成されている。
ガス供給機構52は、図2に示すように、シャワーヘッド50eを介してチャンバー50内に、フッ化水素(HF)ガスを供給するフッ化水素ガス供給機構59(フッ化水素ガス供給装置)、アンモニア(NH)ガスを供給するアンモニアガス供給機構56、ならびに不活性ガスであるアルゴン(Ar)ガスを供給するアルゴンガス供給機構57および窒素(N)ガスを供給する窒素ガス供給機構58を備えている。
アンモニアガス供給機構56は、アンモニアガス供給源56aと、アンモニアガス供給源56aからのアンモニアガスをシャワーヘッド50eの空間50g内に導く供給路56bと、供給路56bを流通するアンモニアガスの流量を調整するマスフローコントローラ56cおよびバルブ56dと、供給路56bに分岐して設けられた、アンモニアガス供給源56aからのアンモニアガスをフッ化水素ガス供給機構59の後述する反応容器62内に導く分岐供給路56eと、分岐供給路56eを流通するアンモニアガスの流量を調整するマスフローコントローラ56fおよびバルブ56gとを有している。アルゴンガス供給機構57は、アルゴンガス供給源57aと、アルゴンガス供給源57aからのアルゴンガスをシャワーヘッド50eの空間50g内に導く供給路57bと、供給路57bを流通するアルゴンガスの流量を調整するマスフローコントローラ57cおよびバルブ57dと、供給路57bに分岐して設けられた、アルゴンガス供給源57aからのアルゴンガスをフッ化水素ガス供給機構59の後述する反応容器62内に導く分岐供給路57eと、分岐供給路57eを流通するアルゴンガスの流量を調整するマスフローコントローラ57fおよびバルブ57gとを有している。窒素ガス供給機構58は、窒素ガス供給源58aと、窒素ガス供給源58aからの窒素ガスをシャワーヘッド50eの空間50g内に導く供給路58bと、供給路58bを流通する窒素ガスの流量を調整するマスフローコントローラ58cおよびバルブ58dと、供給路58bに分岐して設けられた、窒素ガス供給源58aからの窒素ガスをフッ化水素ガス供給機構59の後述する反応容器62内に導く分岐供給路58eと、分岐供給路58eを流通する窒素ガスの流量を調整するマスフローコントローラ58fおよびバルブ58gとを有している。
フッ化水素ガス供給機構59は、一端部がチャンバー50に接続されたフッ化水素供給ライン61と、フッ化水素供給ライン61の他端部が接続された反応部60と、反応部60に水素(H)ガスを供給する水素供給機構54と、反応部60にフッ素(F)ガス(またはフッ素あるいは液体フッ素)を供給するフッ素供給機構55とを備えており、水素供給機構54からの水素ガスとフッ素供給機構55からのフッ素ガスとを反応部60で反応させることによりフッ化水素ガスを生成し、生成されたフッ化水素ガスを、フッ化水素供給ライン61によってチャンバー50内に供給するように構成されている。
反応部60は、図4に示すように、フッ化水素供給ライン61を介してチャンバー50内またはシャワーヘッド50e内の空間50gと連通するように設けられた反応容器62と、反応容器62の温度を調整する温度調整機構63と、反応容器62内を照らす光照射機構としてのライト64と、反応容器62を収容するケーシング65とを備え、水素供給機構54からの水素ガスおよびフッ素供給機構55からのフッ素ガスがそれぞれ、反応容器62内に送られ、反応容器62内でフッ化水素ガスが生成されるように構成されている。温度調整機構63は、例えば、反応容器62を加熱するヒーター63aや反応容器62を冷却するファン63b等で構成される。反応容器62は、例えばアルミニウム材料によって形成されている。反応容器62の内壁には、フッ素ガスまたはフッ化水素ガスとの反応によって腐食しないように、表面酸化処理または表面窒化処理を施しておくことが好ましい。あるいは、反応容器62は、少なくとも内壁がポリエチレン材料によって形成されていてもよく、内壁にテフロン(登録商標)コーティングが施されていてもよい。また、温度調整機構63による反応容器62の温度が500℃以下であれば、反応容器62は、少なくとも内壁が金(Au)または白金(Pt)で形成されていてもよい。反応容器62は、水素送給ライン54bおよびフッ素送給ライン55bによって供給された水素ガスおよびフッ素ガスの反応が急激に進行しないように、あるいは適度に進行するように、コーディエライト、アルミナ、アルミナシリカ、ムライト、シリコンカーバイド、シリコンナイトライド、ゼオライト、酸化ジルコニウム(ZrO)、酸化チタン(TiO)、白金、パラジウム(Pd)、ロジウム(Rh)、銅(Cu)、ニッケル(Ni)、コバルト(Co)、銀(Ag)、モリブデン(Mo)、タングステン(W)、バナジウム(V)、ランタン(La)等の触媒作用を有する物質から選択された少なくとも一種類の物質を含む材料で形成された触媒(正触媒または負触媒)部としての触媒層66が内壁の一部に設けられている。
水素供給機構54は、水素ガス供給源54aと、水素ガス供給源54aからの水素ガスを反応容器62内に導く、すなわち反応容器62内に送給または供給する水素送給ライン54bと、水素送給ライン54bを流通する水素ガスの流量を調整するマスフローコントローラ54cおよびバブル54d(水素流量調整機構)とを有している。フッ素供給機構55は、フッ素ガス供給源55aと、フッ素ガス供給源55aからのフッ素ガスを反応容器62内に導く、すなわち反応容器62内に送給または供給するフッ素送給ライン55bと、フッ素送給ライン55bを流通するフッ素ガスの流量を調整するマスフローコントローラ55cおよびバルブ55d(フッ素流量調整機構)とを有している。
フッ素は、反応性が極めて高く、ヘリウム、ネオン、アルゴン以外のほとんどの単体元素を酸化させる性質を有するため、フッ素供給機構55がフッ素ガスと反応して腐食しないように、フッ素供給機構55には、フッ素ガスを冷却する冷却機構を設けておき、冷却機構によってフッ素供給機構55でのフッ素ガスの反応性を低下させることが好ましい。例えば、フッ素送給ライン55bに冷却機構を設ける場合には、冷却機構を、フッ素送給ライン55bの外周に配置した、所定の温度に冷却された窒素ガス等の冷却流体が流通する冷媒流路55eで構成することができる。また、ペルチェ素子等を用いて冷却機構を構成してもよい。冷却機構は、冷却温度が低いほどフッ素ガスの反応性を低下させることができるが、フッ素ガス供給源55aからのフッ素ガスがフッ素送給ライン55bによってシャワーヘッド50eの空間50g内に確実に導かれるように、フッ素ガスを、融点の−223℃以上の温度に冷却することが好ましく、シャワーヘッド50eの空間50g内により確実に導かれるように、沸点の−188℃以上の温度に冷却することがなお好ましい。
排気ガス処理機構53は、チャンバー50と連通するように設けられた排気路53aと、排気路53aを介してチャンバー50内を強制排気するドライポンプ(DP)53bと、排気路53aを流通する排気ガス中に含まれる固形成分(析出物)を除去するためのトラップ装置(TR)53cと、排気路53aを開閉する開閉弁53dとを有している。排気路53aは、例えばチャンバー50またはチャンバー本体50aの底部に接続されている。開閉弁53d、ドライポンプ(DP)53bおよびトラップ装置(TR)53cは、排気路53aに上流側から下流側に向かって順に設けられている。
COR装置5を構成するチャンバー50、載置台51等の各種部材は、アルミニウム(Al)材料によって形成される。チャンバー50の内面(チャンバー本体50aの内面、シャワーヘッド50eの下面、載置台51など)は、フッ素ガスまたはフッ化水素ガスとの反応によって腐食しないように、表面酸化処理または表面窒化処理を施しておくことが好ましい。表面に酸化被膜(Al)を形成する表面酸化処理または窒化被膜(AlN)を形成する表面窒化処理を施しておくことにより、表面の硬度、耐食性および耐久性が向上し、腐食や衝撃等から保護することができる。
次に、COR装置5によるウエハWへのCOR処理について詳細に説明する。
ウエハWが、第2のウエハ搬送機構31(図1参照)により、ロードロック室3内から搬出され、搬入出口50cからチャンバー50内に搬入されて載置台51上に載置されると、ゲートバルブ13によって搬入出口50cが閉塞され、チャンバー50内が密閉される。そして、アンモニアガス供給機構56、アルゴンガス供給機構57および窒素ガス供給機構58によってそれぞれ、シャワーヘッド50eを介してチャンバー50内またはチャンバー本体50a内にアンモニアガス、アルゴンガスおよび窒素ガスが供給される。アンモニアガス供給機構56、アルゴンガス供給機構57および窒素ガス供給機構58ではそれぞれ、アンモニアガス供給源56a、アルゴンガス供給源57aおよび窒素ガス供給源58aからのアンモニアガス、アルゴンガスおよび窒素ガスが、供給路56b、57b、58bを流通してマスフローコントローラ56c、57c、58cおよびバルブ56d、57d、58dによって所定の流量に調整されつつ供給される。この際に、載置台温調器51aによって載置台51上のウエハWが所定の温度、例えば約25℃程度に調整される。
その後、水素供給機構54およびフッ素供給機構55によってそれぞれ、反応部60の反応容器62内に水素ガスおよびフッ素ガスが供給される。水素供給機構54およびフッ素供給機構55ではそれぞれ、水素ガス供給源54aおよびフッ素ガス供給源55aからの水素ガスおよびフッ素ガスが、水素送給ライン54bおよびフッ素送給ライン55bを流通してマスフローコントローラ54c、55cおよびバルブ54d、55dによって所定の流量に調整されつつ送給または供給される。マスフローコントローラ54c、バルブ54dおよびプロセスコントローラ14は、水素送給ライン54bを流通する水素の流量を制御する水素流量制御機構を構成し、マスフローコントローラ55c、バルブ55dおよびプロセスコントローラ14は、フッ素送給ライン55bを流通するフッ素ガスの流量を制御するフッ素流量制御機構を構成する。
水素供給機構54およびフッ素供給機構55による水素ガスおよびフッ素ガスの供給の際には、フッ素供給機構55のフッ素ガス、例えばフッ素送給ライン55bを流通するフッ素ガスは、冷却機構、例えば冷媒流路55eを流通する冷却流体によって所定の温度に冷却される。これにより、フッ素供給機構55でのフッ素ガスの反応性が低下し、フッ素ガスによるフッ素供給機構55の腐食が防止される。
水素供給機構54およびフッ素供給機構55によって供給された水素ガスおよびフッ素ガスが、反応容器62内で合流して反応することによりフッ化水素ガスが生成される。この際に、水素ガスおよびフッ素ガスの反応が急激に進行しないように、あるいは適度に進行するように、温度調整機構63によって反応容器62が所定の温度、例えば850度程度に調整され、さらに/または、ライト64によって反応容器62内が照らされる。ライト64によって反応容器62内を照らすことにより、反応に必要なエネルギーが熱以外のエネルギー形態として与えられて反応が促進される。また、この際に、アンモニアガス供給機構56の分岐供給路56eを介して反応容器62内にアンモニアガスを供給して、このアンモニアガスを水素ガスおよびフッ素ガスの反応を調整する触媒として作用させてもよい。
反応容器62内で生成されたフッ化水素ガスは、フッ化水素供給ライン61によってシャワーヘッド50e内の空間50gに導かれ、シャワーヘッド50eの吐出口50fからチャンバー50内またはチャンバー本体50a内に吐出される。これにより、チャンバー50内またはチャンバー本体50a内は、アンモニアガスとフッ化水素ガスとを含む処理雰囲気に満たされ、ウエハWへのCOR処理が開始される。これにより、自然酸化膜がフッ化水素ガスの分子およびアンモニアガスの分子と化学反応して反応生成物に変質する。COR処理中は、チャンバー50内が大気圧より減圧された所定の圧力、例えば約13.3Paの真空状態に維持される。反応生成物としては、フルオロケイ酸アンモニウムや水分等が生成される。なお、水素ガスおよびフッ素ガスの反応容器62内への供給の際に、アルゴンガス供給機構57の分岐供給路57eおよび窒素ガス供給機構58の分岐供給路58eを介して反応容器62内にアルゴンガスおよび窒素ガスを供給し、このアルゴンガスおよび窒素ガスを希釈ガスとして反応容器62内で生成されたフッ化水素ガスを希釈すれば、フッ化水素供給ライン61の腐食を効果的に抑止することができる。また、この場合には、未反応の水素およびフッ素がチャンバー50内に供給されることが防止されるように、水素とフッ素との供給を同一の流量で行うことが好ましい。あるいは、フッ化水素供給ライン61を腐食しにくい材料で形成した場合には、フッ化水素供給ライン61を流通する処理ガスを加熱するように構成してもよい。
本実施形態では、水素およびフッ素がそれぞれ、フッ化水素のように多量体化することのない点、ならびに水素およびフッ素の反応性が極めて高い点に着目し、水素ガスおよびフッ素ガスをそれぞれ、マスフローコントローラ54c、55cによって流量調整しつつ水素送給ライン54bおよびフッ素送給ライン55bを介して反応容器62内に供給し、反応容器62内で水素ガスとフッ素ガスとを反応させて生成されたフッ化水素ガスをチャンバー50内に供給するように構成したため、フッ化水素ガスをチャンバー50内に所望の量供給することが可能となる。
多量体からなるフッ化水素ガスをマスフローコントローラ等の流量調整機構によって流量調整しつつ送給ラインを介して処理容器内に供給する従来の技術では、送給ラインを流通するフッ化水素ガスの圧力または温度に僅かでも変動が生じると、フッ化水素ガス中の多量体成分の比率が送給ライン中で大きく変化してしまうため、フッ化水素ガスの流量調整機構による設定流量と実流量とで誤差が生じてしまうという問題があった。しかしながら、本実施形態では、フッ化水素ガスの原料となる、多量体化することのない水素およびフッ素を個別に流量調整しつつ供給するため、水素送給ライン54bおよびフッ素送給ライン55bをそれぞれ流通する水素ガスおよびフッ素ガスの圧力または温度に変動が生じても、水素送給ライン54bおよびフッ素送給ライン55b中の水素ガスおよびフッ素ガスのマスフローコントローラ54c、55cによる設定流量と実流量との誤差はほとんど生じず、水素ガスおよびフッ素ガスをそれぞれ、ほぼ設定流量通り反応容器62内に供給することができる。しかも、水素およびフッ素の反応性が極めて高いことにより、水素ガスおよびフッ素ガスは、反応容器62内でほぼ100%反応してフッ化水素ガスとなるため、マスフローコントローラ54cによる水素ガスの流量とマスフローコントローラ55cによるフッ素ガスの流量とから算出されるチャンバー50内へのフッ化水素ガスの設定供給量と実際の供給量との誤差もほとんど生じない。したがって、本実施形態は、フッ化水素ガスを流量調整しつつ処理容器内に供給する従来の技術と比較して、プロセスの再現性を大幅に向上させることが可能となる。
また、本実施形態では、多量体化することのない水素ガスおよびフッ素ガスを個別に流量調整しつつ供給することにより、フッ化水素ガスを流量調整しつつ処理容器内に供給する従来の技術のように、送給ラインまたは流量調整機構を加熱する必要がないため、フッ素送給ライン55bやバルブ55d等のフッ素供給機構55でフッ素ガスの反応性を高められてしまうといったことが回避され、フッ素ガスによるフッ素供給機構55の腐食を抑止することができる。特に、冷却機構、例えば冷媒流路55eによってフッ素供給機構55、例えばフッ素送給ライン55bを冷却することにより、フッ素供給機構55の腐食を確実に防止することが可能となる。
さらに、本実施形態では、チャンバー50の前段の反応容器62内で生成されたフッ化水素ガスをチャンバー50内に供給するため、フッ化水素ガスとともにアンモニアガスを並行してチャンバー50内に供給しても、フッ化水素ガスをチャンバー50内のウエハWに均一に供給することができる。その上、反応容器62内の温度等の条件とチャンバー50内の温度等の条件とを、互いに影響を及ぼすことなく別々に設定することができる。このため、反応容器62内にフッ素および水素の反応をより精緻に調整するための触媒層およびライト64を設けても、チャンバー50内でのCOR処理には直接影響せず、反応容器62内ではフッ化水素ガスの生成に最適な環境条件を創出することができる一方で、チャンバー50内ではCOR処理に最適な環境条件を創出することができる。したがって、本実施形態は、プロセスの再現性を著しく向上させることが可能となる。
なお、水素供給機構54およびフッ素供給機構55による水素ガスおよびフッ素ガスの供給前に、チャンバー50内を減圧して所定の圧力に保持しておくと、処理雰囲気の圧力が安定しやすく、処理雰囲気中のフッ化水素ガスやアンモニアガスの濃度の均一性を高めることができ、ウエハWの処理ムラの発生を防止できる。また、フッ化水素ガスは、液化しやすく、チャンバー50の内面等に付着しやすいが、COR処理の直前にフッ化水素ガスをチャンバー50内に供給することにより、付着を抑制することができる。
COR処理が終了すると、排気ガス処理機構53によってチャンバー50内が強制排気される。これにより、フッ化水素ガスやアンモニアガスがチャンバー50外に強制的に排出される。この際に、フッ化水素とアンモニアとの反応により反応生成物(副生成物)としてフッ化アンモニウム(NHF)も生成し、排気ガスとともにチャンバー50内から排出される。フッ化アンモニウムは、排気ガスとともにドライポンプ53bにより排気路53aを流通してトラップ装置53cまで運ばれ、トラップ装置53cで析出して捕集される。強制排気が終了すると、ゲートバルブ13によって搬入出口50cが開放され、ウエハWは、第2のウエハ搬送機構31(図1参照)により、チャンバー50内から搬出され、PHT装置4の処理室40内に搬入されることとなる。
以上、本発明の好適な実施の形態を説明したが、本発明は上記実施の形態に限定されるものではなく、種々の変更が可能である。上記実施の形態では、COR処理に適用したため、フッ素ガスおよび水素ガス以外の他の処理ガス(アンモニアガス、アルゴンガスおよび窒素ガス)の供給機構(アンモニアガス供給機構、アルゴンガス供給機構および窒素ガス供給機構)を設けたが、本発明は、フッ素ガスおよび水素ガスを反応させて生成したフッ化水素ガスによって被処理体に所定の処理を施すことを主眼とするものであり、他の処理ガスの供給および供給機構は必須ではない。フッ素ガスおよび水素ガスと反応する他の処理ガスが処理容器内に供給されない場合には、水素送給ラインおよびフッ素送給ラインを直接処理容器に接続しておき、水素送給ラインからの水素を水素流量制御機構によって所定の流量に制御しつつ処理容器内に供給するとともに、フッ素送給ラインからのフッ素をフッ素流量制御機構によって所定の流量に制御しつつ処理容器内に供給し、処理容器内で水素とフッ素とを反応させることにより生成されたフッ化水素ガスによって被処理体に所定の処理を施すように構成してもよい。
この場合には、処理容器の内壁をポリエチレン材料によって形成してもよく、処理容器の内壁にテフロン(登録商標)コーティングを施しておいてもよく、あるいは、温度調整機構63による反応容器62の温度が500℃以下であれば、処理容器の内壁を金または白金で形成してもよく、フッ素との反応によって生成される四フッ化ケイ素(SiF)がプロセスおよび装置に悪影響を与えないガス処理であれば、処理容器の内壁を二酸化ケイ素(SiO)によって形成してもよい。また、水素およびフッ素の反応が急激に進行しないように、あるいは適度に進行するように、処理容器内の温度を調整する温調機構を設けておいてもよく、処理容器内壁面に、前述した反応容器内に設けたものと同様の触媒(正触媒または負触媒)層を設けておいてもよく、処理容器内を照らす光照射機構を設けてもよい。
また、水素流量調整機構およびフッ素流量調整機構はそれぞれ、マスフローコントローラ等の熱式流量調整機構に限らず、圧力式流量調整機構で構成してもよい。さらに、フッ素ガスは、ヘリウム(He)やネオン(Ne)等の他の希釈ガスまたは不活性ガスとの混合によって希釈した状態でフッ素送給ラインにより処理容器内または反応容器内に供給してもよい。これにより、フッ素送給ラインやフッ素流量調整機構等のフッ素供給機構の腐食をより効果的に抑止することができる。
本発明によれば、COR処理に限らず、ウエハのベーパー洗浄やウエハを収容する処理容器の内壁(被処理体)のクリーニング等、フッ化水素ガスを含むガス処理に広く適用することができる。
本発明に係るガス処理装置の一実施形態であるCOR装置を備えたウエハ処理システムの概略平面図である。 COR装置の概略図である。 COR装置を構成するCORチャンバーの概略断面図である。 COR装置を構成する反応部の概略断面図である。
符号の説明
5:COR装置(ガス処理装置)
14:プロセスコントローラ
50:チャンバー(処理容器)
54b:水素送給ライン
54c:マスフローコントローラ(水素流量調整機構)
54d:バルブ(水素流量調整機構)
55b:フッ素送給ライン
55c:マスフローコントローラ(フッ素流量調整機構)
55d:バルブ(フッ素流量調整機構)
55e:冷媒流路(冷却機構)
59:フッ化水素ガス供給機構(フッ化水素ガス供給装置)
61:フッ化水素供給ライン
62:反応容器
63:温度調整機構
64:ライト(光照射機構)
W:ウエハ(被処理体)

Claims (17)

  1. 被処理体にフッ化水素ガスを含むガスを供給してガス処理を施すガス処理装置であって、
    内部に被処理体が配置される処理容器と、
    水素を送給する水素送給ラインと、
    フッ素を送給するフッ素送給ラインと、
    前記水素送給ラインを流通する水素の流量を制御する水素流量制御機構と、
    前記フッ素送給ラインを流通するフッ素の流量を制御するフッ素流量制御機構と
    を具備し、
    前記水素送給ラインによって送給される水素と前記フッ素送給ラインによって送給されるフッ素とを反応させてフッ化水素ガスを生成し、生成されたフッ化水素ガスにより前記処理容器内の被処理体を処理することを特徴とするガス処理装置。
  2. 前記水素送給ラインおよび前記フッ素送給ラインはそれぞれ前記処理容器に接続されており、
    前記水素送給ラインによって送給される水素と前記フッ素送給ラインによって送給されるフッ素とを前記処理容器内で反応させてフッ化水素ガスを生成することを特徴とする請求項1に記載のガス処理装置。
  3. 被処理体にフッ化水素ガスを含むガスを供給してガス処理を施すガス処理装置であって、
    内部に被処理体が配置される処理容器と、
    水素を送給する水素送給ラインと、
    フッ素を送給するフッ素送給ラインと、
    前記水素送給ラインを流通する水素の流量を制御する水素流量制御機構と、
    前記フッ素送給ラインを流通するフッ素の流量を制御するフッ素流量制御機構と、
    前記水素送給ラインおよび前記フッ素送給ラインが接続され、前記水素送給ラインによって送給される水素と前記フッ素送給ラインによって送給されるフッ素とを反応させてフッ化水素ガスを生成する反応容器と、
    前記反応容器内で生成されたフッ化水素ガスを前記処理容器内に供給するフッ化水素供給ラインと
    を具備することを特徴とするガス処理装置。
  4. 前記反応容器内の温度を制御して水素とフッ素との反応を調整する温度制御機構をさらに具備することを特徴とする請求項3に記載のガス処理装置。
  5. 前記反応容器内に光を照射して水素とフッ素との反応を調整する光照射機構をさらに具備することを特徴とする請求項3または請求項4に記載のガス処理装置。
  6. 前記反応容器内には、水素とフッ素との反応を調整する触媒部が設けられていることを特徴とする請求項3から請求項5のいずれか1項に記載のガス処理装置。
  7. 前記フッ素送給ラインを流通するフッ素を冷却する冷却機構をさらに具備することを特徴とする請求項1から請求項6のいずれか1項に記載のガス処理装置。
  8. 前記冷却機構は、フッ素の冷却温度を−223℃以上とすることを特徴とする請求項7に記載のガス処理装置。
  9. 前記冷却機構は、フッ素の冷却温度を−188℃以上とすることを特徴とする請求項7または請求項8に記載のガス処理装置。
  10. 前記フッ素送給ラインは、希釈ガスとの混合によって希釈されたフッ素を送給することを特徴とする請求項1から請求項9のいずれか1項に記載のガス処理装置。
  11. 前記水素流量制御機構および前記フッ素流量制御機構はそれぞれ、マスフローコントローラを有することを特徴とする請求項1から請求項10のいずれか1項に記載のガス処理装置。
  12. 被処理体にフッ化水素ガスを含むガスを供給してガス処理を施すガス処理方法であって、
    被処理体を処理容器内に配置し、
    水素およびフッ素をそれぞれ所定の流量に調整しつつ別個に送給し、これら水素およびフッ素を反応させてフッ化水素ガスを生成し、このフッ化水素ガスによって前記処理容器内の被処理体を処理することを特徴とするガス処理方法。
  13. 水素およびフッ素を前記処理容器内に別個に送給して前記処理容器内で反応させることを特徴とする請求項11に記載のガス処理方法。
  14. 被処理体にフッ化水素ガスを含むガスを供給してガス処理を施すガス処理方法であって、
    被処理体を処理容器内に配置し、
    水素およびフッ素をそれぞれ所定の流量に調整しつつ別個に送給し、これら水素およびフッ素を反応容器内で反応させてフッ化水素ガスを生成し、このフッ化水素ガスを前記処理容器内に供給して前記処理容器内の被処理体を処理することを特徴とするガス処理方法。
  15. 処理容器内に配置された被処理体に所定の処理を施すためのフッ化水素ガスを供給するフッ化水素ガス供給装置であって、
    水素を送給する水素送給ラインと、
    フッ素を送給するフッ素送給ラインと、
    前記水素送給ラインを流通する水素の流量を制御する水素流量制御機構と、
    前記フッ素送給ラインを流通するフッ素の流量を制御するフッ素流量制御機構と、
    前記水素送給ラインおよび前記フッ素送給ラインが接続され、前記水素送給ラインによって送給される水素と前記フッ素送給ラインによって送給されるフッ素とを反応させてフッ化水素ガスを生成する反応容器と、
    前記反応容器内で生成されたフッ化水素ガスを処理容器内に供給するフッ化水素供給ラインと
    を具備することを特徴とするフッ化水素ガス供給装置。
  16. 処理容器内に配置された被処理体に所定の処理を施すためのフッ化水素ガスを供給するフッ化水素ガス供給方法であって、
    水素およびフッ素をそれぞれ所定の流量に調整しつつ別個に送給し、これら水素およびフッ素を反応容器内で反応させてフッ化水素ガスを生成し、このフッ化水素ガスを処理容器内の被処理体に供給することを特徴とするフッ化水素ガス供給方法。
  17. コンピュータ上で動作する制御プログラムが記憶されたコンピュータ読取可能な記憶媒体であって、
    前記制御プログラムは、実行時に請求項12から請求項14のいずれか1項に記載のガス処理方法が行われるように、コンピュータに処理装置を制御させることを特徴とするコンピュータ読取可能な記憶媒体。
JP2006142513A 2006-05-23 2006-05-23 ガス処理装置、ガス処理方法、フッ化水素ガス供給装置、フッ化水素ガス供給方法、コンピュータ読取可能な記憶媒体 Pending JP2007317696A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006142513A JP2007317696A (ja) 2006-05-23 2006-05-23 ガス処理装置、ガス処理方法、フッ化水素ガス供給装置、フッ化水素ガス供給方法、コンピュータ読取可能な記憶媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006142513A JP2007317696A (ja) 2006-05-23 2006-05-23 ガス処理装置、ガス処理方法、フッ化水素ガス供給装置、フッ化水素ガス供給方法、コンピュータ読取可能な記憶媒体

Publications (1)

Publication Number Publication Date
JP2007317696A true JP2007317696A (ja) 2007-12-06

Family

ID=38851336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006142513A Pending JP2007317696A (ja) 2006-05-23 2006-05-23 ガス処理装置、ガス処理方法、フッ化水素ガス供給装置、フッ化水素ガス供給方法、コンピュータ読取可能な記憶媒体

Country Status (1)

Country Link
JP (1) JP2007317696A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158774A (ja) * 2007-12-27 2009-07-16 Tokyo Electron Ltd 基板処理方法、基板処理装置及び記憶媒体
US20100078045A1 (en) * 2008-09-29 2010-04-01 Toratani Kenichiro Semiconductor manufacturing apparatus and method for cleaning same
JP2010245512A (ja) * 2009-03-19 2010-10-28 Tokyo Electron Ltd 基板のエッチング方法及びシステム
JP2012009738A (ja) * 2010-06-28 2012-01-12 Ulvac Japan Ltd ドライエッチング方法およびドライエッチング装置
JP2012009739A (ja) * 2010-06-28 2012-01-12 Ulvac Japan Ltd ドライエッチング方法およびドライエッチング装置
JP2012009737A (ja) * 2010-06-28 2012-01-12 Ulvac Japan Ltd ドライエッチング方法およびドライエッチング装置
JP2013016592A (ja) * 2011-07-01 2013-01-24 Ulvac Japan Ltd 酸化膜エッチング装置、及び酸化膜エッチング方法
CN106406256A (zh) * 2016-09-23 2017-02-15 江苏中德电子材料科技有限公司 全自动氢氟酸生产***
JP7340723B1 (ja) * 2022-03-09 2023-09-07 株式会社日立ハイテク プラズマ処理装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158774A (ja) * 2007-12-27 2009-07-16 Tokyo Electron Ltd 基板処理方法、基板処理装置及び記憶媒体
US20100078045A1 (en) * 2008-09-29 2010-04-01 Toratani Kenichiro Semiconductor manufacturing apparatus and method for cleaning same
JP2010080850A (ja) * 2008-09-29 2010-04-08 Toshiba Corp 半導体製造装置及びそのクリーニング方法
US9566620B2 (en) 2008-09-29 2017-02-14 Kabushiki Kaisha Toshiba Semiconductor manufacturing apparatus and method for cleaning same
JP2010245512A (ja) * 2009-03-19 2010-10-28 Tokyo Electron Ltd 基板のエッチング方法及びシステム
JP2012009738A (ja) * 2010-06-28 2012-01-12 Ulvac Japan Ltd ドライエッチング方法およびドライエッチング装置
JP2012009739A (ja) * 2010-06-28 2012-01-12 Ulvac Japan Ltd ドライエッチング方法およびドライエッチング装置
JP2012009737A (ja) * 2010-06-28 2012-01-12 Ulvac Japan Ltd ドライエッチング方法およびドライエッチング装置
JP2013016592A (ja) * 2011-07-01 2013-01-24 Ulvac Japan Ltd 酸化膜エッチング装置、及び酸化膜エッチング方法
CN106406256A (zh) * 2016-09-23 2017-02-15 江苏中德电子材料科技有限公司 全自动氢氟酸生产***
JP7340723B1 (ja) * 2022-03-09 2023-09-07 株式会社日立ハイテク プラズマ処理装置
WO2023170822A1 (ja) * 2022-03-09 2023-09-14 株式会社日立ハイテク プラズマ処理装置

Similar Documents

Publication Publication Date Title
JP2007317696A (ja) ガス処理装置、ガス処理方法、フッ化水素ガス供給装置、フッ化水素ガス供給方法、コンピュータ読取可能な記憶媒体
JP6270575B2 (ja) 反応管、基板処理装置及び半導体装置の製造方法
JP5616591B2 (ja) 半導体装置の製造方法及び基板処理装置
KR101521466B1 (ko) 가스 공급 장치, 열처리 장치, 가스 공급 방법 및 열처리 방법
US8147786B2 (en) Gas exhaust system of film-forming apparatus, film-forming apparatus, and method for processing exhaust gas
TWI446404B (zh) 半導體裝置的製造方法、清潔方法及基板處理裝置
US20110020544A1 (en) Exhaust system structure of film formation apparatus, film formation apparatus, and exhaust gas processing method
US20050136657A1 (en) Film-formation method for semiconductor process
KR101015985B1 (ko) 기판 처리 장치
JP2011006782A (ja) 半導体装置の製造方法及び基板処理装置
KR20080028977A (ko) 열 처리 방법 및 열 처리 장치
US20080000416A1 (en) Film formation method and apparatus
JP2023080147A (ja) 基板処理装置、半導体装置の製造方法及びプログラム
WO2011033918A1 (ja) 成膜装置、成膜方法および記憶媒体
JP2006222265A (ja) 基板処理装置
CN110952078B (zh) 半导体装置的制造方法、存储介质和基板处理装置
JP6552206B2 (ja) 排気管無害化方法及び成膜装置
JP4356943B2 (ja) 基板処理装置及び半導体装置の製造方法
JP7175180B2 (ja) 除去方法及び処理方法
JP2003077863A (ja) Cvd成膜方法
WO2016120957A1 (ja) 半導体装置の製造方法、基板処理装置および記録媒体
WO2022004520A1 (ja) 成膜方法及び成膜装置
JP4114746B2 (ja) 成膜方法
JP2016065287A (ja) 半導体デバイスの製造方法、基板処理装置およびプログラム
JP2006066557A (ja) 基板処理装置