JP2007313513A - Method of controlling completion of welding of consumable electrode arc welding - Google Patents

Method of controlling completion of welding of consumable electrode arc welding Download PDF

Info

Publication number
JP2007313513A
JP2007313513A JP2006142520A JP2006142520A JP2007313513A JP 2007313513 A JP2007313513 A JP 2007313513A JP 2006142520 A JP2006142520 A JP 2006142520A JP 2006142520 A JP2006142520 A JP 2006142520A JP 2007313513 A JP2007313513 A JP 2007313513A
Authority
JP
Japan
Prior art keywords
welding
arc
time
consumable electrode
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006142520A
Other languages
Japanese (ja)
Other versions
JP5042527B2 (en
Inventor
Tetsuo Era
哲生 恵良
Akihiro Ide
章博 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2006142520A priority Critical patent/JP5042527B2/en
Publication of JP2007313513A publication Critical patent/JP2007313513A/en
Application granted granted Critical
Publication of JP5042527B2 publication Critical patent/JP5042527B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arc Welding Control (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the occurrence of spattering when controlling antistick in consumable electrode arc welding. <P>SOLUTION: A method of controlling the completion of welding in the consumable electrode arc welding is provided by which a feeding motor is decelerated and stopped by inertia when completion signal On of welding is input to a welding power source during performing the consumable electrode arc welding and the welding is completed after supplying the current by switching a welding current Iw to a pulse current at the predetermined switching timing during this inertia period Tk, wherein an average arc time which is the average value of arc periods Ta between short circuits during the welding before the completion signal On of welding is input is calculated, switching delayed time Td is calculated by multiplying this average arc time by a prescribed coefficient in the range of 0.3-0.7, and the switching to the pulse current is performed at the point of time when the arc period reaches the switching delayed time Td first after an elapse of the timing of switching. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、消耗電極アーク溶接において溶接終了時の溶接品質を向上させるための消耗電極アーク溶接の溶接終了制御方法に関するものである。   The present invention relates to a welding end control method of consumable electrode arc welding for improving the welding quality at the end of welding in consumable electrode arc welding.

CO2溶接、MAG溶接、MIG溶接等の消耗電極アーク溶接においては、溶接終了時に溶接ワイヤが溶融池に溶着(スチック)するのを防止し、溶接終了時に形成されるワイヤ先端粒のサイズを適正化して次のアークスタート性を良好にするための溶接終了制御(アンチスチック制御)が行われる。この溶接終了制御は、送給モータに停止信号が入力されてから送給モータが慣性によって過渡的に減速して停止するまでの慣性期間における溶接電流及び溶接電圧の制御である。パルス電流を通電しない直流又は交流の消耗電極アーク溶接では出力は定電圧制御されているので、慣性期間中も溶接電圧値を低くする定電圧制御が行われるのが一般的である。このために、アークが燃え上がりアークきれを発生して溶接が終了するので、ワイヤ先端粒径は大きくなりやすい。これを改善するための従来技術として、パルス電流を通電しない消耗電極アーク溶接において、慣性期間中にパルス電流を通電してワイヤ先端粒径を小さくする溶接終了制御方法が慣用されている。以下、この従来技術について説明する。   In consumable electrode arc welding such as CO2 welding, MAG welding, and MIG welding, the welding wire is prevented from sticking (sticking) to the molten pool at the end of welding, and the size of the wire tip grain formed at the end of welding is optimized. Then, the welding end control (anti-stick control) for improving the next arc start property is performed. This welding end control is control of a welding current and a welding voltage in an inertia period from when a stop signal is input to the feed motor to when the feed motor is decelerated transiently due to inertia and stops. In direct current or alternating current consumable electrode arc welding in which no pulse current is applied, the output is controlled at a constant voltage. Therefore, constant voltage control is generally performed to lower the welding voltage value even during the inertia period. For this reason, the arc burns up, arc breakage occurs, and welding ends, so that the wire tip particle size tends to increase. As a conventional technique for improving this, in a consumable electrode arc welding in which no pulse current is passed, a welding end control method is used in which the pulse current is passed during the inertia period to reduce the wire tip particle size. Hereinafter, this prior art will be described.

図5は、非パルス消耗電極アーク溶接において慣性期間中にパルス電流を通電する溶接終了制御方法を示す波形図である。同図(A)は起動信号Onを示し、同図(B)は送給速度vfを示し、同図(C)は溶接電流Iwを示し、同図(D)は溶接電圧Vwを示す。起動信号OnはHighレベルで溶接開始信号になり、Lowレベルで溶接終了信号になる。以下、同図を参照して説明する。   FIG. 5 is a waveform diagram showing a welding end control method in which a pulse current is applied during an inertia period in non-pulse consumable electrode arc welding. 3A shows the start signal On, FIG. 1B shows the feeding speed vf, FIG. 1C shows the welding current Iw, and FIG. 3D shows the welding voltage Vw. The start signal On becomes a welding start signal at a high level and becomes a welding end signal at a low level. Hereinafter, a description will be given with reference to FIG.

時刻t4以前の定常溶接期間中は、同図(A)に示すように、起動信号OnはHighレベル(溶接開始信号)であるので、同図(B)に示すように、送給速度vfは予め定めた一定送給速度であり、定常の消耗電極アーク溶接が行われる。時刻t1〜t2の短絡期間Ts中は溶接ワイヤが溶融池と短絡しており、同図(C)に示すように、溶接電流Iwは増加し、同図(D)に示すように、溶接電圧Vwは低い短絡電圧値になる。時刻t2〜t3のアーク期間Ta中はアークが発生しており、同図(C)に示すように、溶接電流Iwは減少し、同図(D)に示すように、溶接電圧Vwは高いアーク電圧値に上昇する。定常期間中は、短絡期間Tsとアーク期間Taとを繰り返す。   During the steady welding period before time t4, the start signal On is at a high level (welding start signal) as shown in FIG. 9A, so the feed speed vf is as shown in FIG. The constant consumable electrode arc welding is performed at a predetermined constant feed rate. During the short-circuit period Ts from time t1 to t2, the welding wire is short-circuited to the molten pool, and the welding current Iw increases as shown in FIG. Vw becomes a low short-circuit voltage value. During the arc period Ta between times t2 and t3, an arc is generated, the welding current Iw decreases as shown in FIG. 5C, and the welding voltage Vw is high as shown in FIG. The voltage rises. During the steady period, the short circuit period Ts and the arc period Ta are repeated.

時刻t4において、同図(A)に示すように、起動信号OnがLowレベル(溶接終了信号)に変化すると、同図(B)に示すように、送給モータに停止信号が入力されて送給速度vfは慣性期間Tkを経て時刻t5に停止する。この慣性期間Tkは数百ms程度である。時刻t4において起動信号Onが溶接終了信号に変化したことに応動して、同図(C)に示すように、パルス電流を通電し、同図(D)に示すように、パルス電圧が印加する。同図(B)に示すように、送給速度vfが略ゼロとなり送給が停止する時刻t5付近において、同図(C)に示すように、最後のパルス電流Ipeを通電して溶滴を移行させてワイヤ先端粒径を小さくして溶接を終了する。ワイヤ先端粒径は小さすぎるよりも所望値である方が次のアークスタート性が良好になる場合もあり、このような場合には最後のパルス電流Ipeに続けて所定期間のベース電流を通電して所望の先端粒を形成する。また、同図においてはパルス電流への切換タイミングを溶接終了信号が入力された時点からとしたが、送給速度vfが所定値(例えば略ゼロ)まで減速した時点とする場合もある。上述したような溶接終了制御は、ワイヤ先端粒径が大きくなりやすいステンレス鋼のMIG溶接には特に効果が大きい(例えば、特許文献1、2参照)。   At time t4, when the start signal On changes to a low level (welding end signal) as shown in FIG. 9A, a stop signal is input to the feed motor as shown in FIG. The feeding speed vf stops at time t5 after an inertia period Tk. This inertia period Tk is about several hundred ms. In response to the change of the start signal On to the welding end signal at time t4, a pulse current is applied as shown in FIG. 4C, and a pulse voltage is applied as shown in FIG. . As shown in FIG. 5B, around the time t5 when the feed speed vf becomes substantially zero and the feed is stopped, as shown in FIG. The transition is made to reduce the wire tip particle size and the welding is finished. When the wire tip particle size is a desired value rather than too small, the next arc start property may be better. In such a case, a base current for a predetermined period is supplied after the last pulse current Ipe. To form a desired tip grain. Further, although the timing for switching to the pulse current is set from the time when the welding end signal is input in the same figure, there are cases where the feed speed vf is reduced to a predetermined value (for example, substantially zero). The above-described welding end control is particularly effective for MIG welding of stainless steel in which the wire tip particle size tends to be large (see, for example, Patent Documents 1 and 2).

特開平4−111972号公報Japanese Patent Laid-Open No. 4-111972 特開平9−267171号公報JP-A-9-267171

上述したように、従来技術では、慣性期間Tk中のパルス電流への切換タイミングと一致してパルス電流の通電が開始する。この切換タイミングは、慣性期間TKの開始時点、慣性による送給速度が所定値まで減速した時点等のように予め定めたタイミングである。このために、切換タイミングにおけるアーク発生状態とは関係なくパルス電流の通電が開始される。この結果、以下のような問題が発生する。   As described above, in the prior art, energization of the pulse current starts in synchronization with the switching timing to the pulse current during the inertia period Tk. This switching timing is a predetermined timing such as the start time of the inertia period TK, the time when the feeding speed due to inertia is reduced to a predetermined value, or the like. For this reason, energization of the pulse current is started irrespective of the arc occurrence state at the switching timing. As a result, the following problems occur.

図6は、上述した図5に対応する波形図であり、同図(F1)〜(F3)に各時刻におけるアーク発生状態を示す。同図(A)〜(D)の各信号は図5と同一である。同図は、時刻t4において起動信号OnがLowレベル(溶接終了信号)に変化して慣性期間Tkに入った時点が切換タイミングの場合である。   FIG. 6 is a waveform diagram corresponding to FIG. 5 described above, and FIGS. (F1) to (F3) show arc generation states at each time. The signals in FIGS. 5A to 5D are the same as those in FIG. The figure shows the case where the switching timing is when the activation signal On changes to the low level (welding end signal) and enters the inertia period Tk at time t4.

時刻t4の直前において、同図(F1)に示すように、溶接ワイヤ1の溶滴は溶融地2に移行し、同図(F2)に示すように、短絡が解除されてアーク3が発生する。この短絡が解除されて溶融地2が盛り上がった状態で時刻t4になるので、同図(C)に示すように、大電流値のパルス電流が通電する。この大電流の通電による強いアーク力によって、同図(F3)に示すように、溶融池から大量のスパッタが発生して溶接品質が悪くなる。   Immediately before the time t4, as shown in the figure (F1), the droplet of the welding wire 1 moves to the melted land 2, and as shown in the figure (F2), the short circuit is released and the arc 3 is generated. . Since this short circuit is released and the melted ground 2 is raised, time t4 is reached, so that a pulse current having a large current value is energized as shown in FIG. Due to the strong arc force caused by the large current, a large amount of spatter is generated from the molten pool as shown in FIG.

図7は、上述した図5に対応する波形図であり、同図(F1)〜(F3)に各時刻におけるアーク発生状態を示す。同図(A)〜(D)の信号は図5と同一である。同図は、時刻t4において起動信号OnがLowレベル(溶接終了信号)に変化して慣性期間Tkに入った時点が切換タイミングの場合である。   FIG. 7 is a waveform diagram corresponding to FIG. 5 described above, and FIGS. (F1) to (F3) show the arc generation state at each time. The signals in FIGS. 9A to 9D are the same as those in FIG. The figure shows the case where the switching timing is when the activation signal On changes to the low level (welding end signal) and enters the inertia period Tk at time t4.

時刻t31において、同図(F1)に示すように、短絡が解除されてアーク3が再発生する。その後アーク期間が長く続き、時刻t4の直前において、同図(F2)に示すように、溶滴4が大きく成長し短絡寸算の状態になる。この状態で時刻t4になるので、同図(C)に示すように、大電流値のパルス電流が通電する。この大電流の通電による強い電磁的ピンチ力によって、同図(F3)に示すように、溶滴から大量のスパッタが発生して溶接品質が悪くなる。   At time t31, as shown in FIG. 5F1, the short circuit is released and the arc 3 is regenerated. Thereafter, the arc period continues for a long time, and immediately before time t4, as shown in FIG. Since it is time t4 in this state, a large current pulse current is applied as shown in FIG. Due to the strong electromagnetic pinch force caused by the energization of a large current, a large amount of spatter is generated from the droplet as shown in FIG.

上述したように、慣性期間におけるパルス電流への切換タイミングがアーク状態と無関係であるために、パルス電流通電開始字にスパッタが発生して溶接品質が悪くなるという問題があった。   As described above, since the switching timing to the pulse current in the inertia period is irrelevant to the arc state, there is a problem that spatter is generated in the pulse current energization start character and the welding quality is deteriorated.

そこで、本発明では、慣性期間におけるパルス電流の通電開始時点での溶接品質の低下を抑制することができる消耗電極アーク溶接の溶接終了制御方法を提供する。   Therefore, the present invention provides a welding end control method for consumable electrode arc welding that can suppress a decrease in welding quality at the start of energization of a pulse current in the inertia period.

上述した課題を解決するために、第1の発明は、パルス電流を通電しないで短絡を伴う消耗電極アーク溶接を行っているときに、溶接電源に溶接終了信号が入力されると送給モータに停止信号を出力し、この停止信号を受けて前記送給モータは慣性によって減速して停止し、この慣性期間中の予め定めた切換タイミングに溶接電流をパルス電流に切り換えて通電して溶接を終了する消耗電極アーク溶接の溶接終了制御方法において、
前記溶接終了信号が入力される以前の溶接中に短絡と短絡との間のアーク期間の平均値である平均アーク時間を算出し、この平均アーク時間に0.3〜0.7の範囲で所定の係数を乗じて切換遅延時間を算出し、
前記パルス電流への切換を、前記切換タイミングが経過した後にアーク期間が始めて前記切換遅延時間に達した時点で行う、ことを特徴とする消耗電極アーク溶接の溶接終了制御方法である。
In order to solve the above-described problem, the first invention is directed to a feeding motor when a welding end signal is input to a welding power source when performing consumable electrode arc welding with a short circuit without applying a pulse current. A stop signal is output, and upon receipt of this stop signal, the feed motor decelerates and stops due to inertia, and the welding current is switched to pulse current at a predetermined switching timing during the inertia period to complete the welding. In the consumable electrode arc welding welding end control method,
An average arc time, which is an average value of arc periods between short circuits, is calculated during welding before the welding end signal is input, and the average arc time is determined within a range of 0.3 to 0.7. Multiply the coefficient of to calculate the switching delay time,
It is a welding end control method of consumable electrode arc welding, wherein switching to the pulse current is performed when the arc period starts after the switching timing has elapsed and the switching delay time is reached.

第2の発明は、前記切換タイミングを、前記慣性期間の開始時点に設定する、ことを特徴とする第1の発明記載の消耗電極アーク溶接の溶接終了制御方法である。   A second invention is a welding end control method of consumable electrode arc welding according to the first invention, wherein the switching timing is set to a start time of the inertia period.

第3の発明は、前記切換タイミングを、前記慣性期間中の送給速度が所定値まで減速した時点に設定する、ことを特徴とする第1の発明記載の消耗電極アーク溶接の溶接終了制御方法である。   In a third aspect of the invention, the switching timing is set to a point in time when the feeding speed during the inertia period is decelerated to a predetermined value. The welding end control method for consumable electrode arc welding according to the first aspect of the invention. It is.

第4の発明は、前記平均アーク時間を、前記慣性期間の直前の所定期間中に算出する、ことを特徴とする第1〜第3の発明のいずれか1項に記載の消耗電極アーク溶接の溶接終了制御方法である。   4th invention calculates the said average arc time in the predetermined period just before the said inertia period, The consumable electrode arc welding of any one of the 1st-3rd invention characterized by the above-mentioned This is a welding end control method.

第5の発明は、前記消耗電極アーク溶接が、電極マイナス極性消耗電極アーク溶接又は交流消耗電極アーク溶接である、ことを特徴とする第1〜第4の発明のいずれか1項に記載の消耗電極アーク溶接の溶接終了制御方法である。   In a fifth aspect of the present invention, the consumable electrode arc welding is electrode negative polarity consumable electrode arc welding or AC consumable electrode arc welding, and the consumable according to any one of the first to fourth inventions It is a welding end control method of electrode arc welding.

上記第1の発明によれば、溶接終了信号が入力される以前の期間中において平均アーク時間を算出し、これに係数を乗じて切換遅延時間を算出する。そして、溶接終了信号が入力されて慣性期間に入り所定の切換タイミングが経過し、かつ、アーク期間が切換遅延時間に達した時点でパルス電流の通電を開始する。このために、溶滴が適正な大きさになった時点でパルス電流が通電を開始するので、スパッタの発生が少ない円滑な切り換えを行うことができる。   According to the first aspect, the average arc time is calculated during the period before the welding end signal is input, and the switching delay time is calculated by multiplying the average arc time by the coefficient. Then, when a welding end signal is input and an inertia period is entered, a predetermined switching timing elapses, and energization of a pulse current is started when the arc period reaches the switching delay time. For this reason, since the pulse current starts energization when the droplet becomes an appropriate size, it is possible to perform smooth switching with less spattering.

上記第2の発明によれば、切換タイミングを慣性期間の開始時点に設定した場合でも、上記第1の発明の効果を奏する。   According to the second aspect, even when the switching timing is set to the start point of the inertia period, the effect of the first aspect is obtained.

上記第3の発明によれば、切換タイミングを慣性期間中の送給速度が所定値まで減速した時点にに設定した場合でも、上記第1の発明の効果を奏する。   According to the third aspect of the invention, even when the switching timing is set to the time point when the feeding speed during the inertia period is decelerated to a predetermined value, the effect of the first aspect of the invention is achieved.

上述第4の発明によれば、平均アーク時間を慣性期間の直前の所定期間中に算出する。このために慣性期間中のアーク状態と略同じ状態で平均アーク時間を算出することができるので、パルス電流通電開始時の溶滴サイズをより正確に適正値にすることができ、スパッタ発生をさらに抑制することができる。   According to the fourth aspect, the average arc time is calculated during the predetermined period immediately before the inertia period. For this reason, since the average arc time can be calculated in substantially the same state as the arc state during the inertia period, the droplet size at the start of energization of the pulse current can be more accurately set to an appropriate value, and spatter generation can be further increased. Can be suppressed.

上記第5の発明によれば、消耗電極アーク溶接が電極マイナス極性消耗電極アーク溶接又は交流消耗電極アーク溶接である場合でも本発明を適用することができる。   According to the fifth aspect, the present invention can be applied even when the consumable electrode arc welding is electrode negative polarity consumable electrode arc welding or AC consumable electrode arc welding.

以下、図面を参照して本発明の実施の形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

[実施の形態1]
図1は、本発明の実施の形態1に係る消耗電極アーク溶接の溶接終了制御方法を示す波形図である。同図(A)は起動信号Onを示し、同図(B)は送給速度vfを示し、同図(C)は溶接電流Iwを示し、同図(D)は溶接電圧Vwを示し、同図(F1)〜(F3)は各時刻におけるアーク状態を示す。同図は、上述した図5と対応している。以下、同図を参照して説明する。
[Embodiment 1]
FIG. 1 is a waveform diagram showing a welding end control method of consumable electrode arc welding according to Embodiment 1 of the present invention. (A) shows the start signal On, (B) shows the feeding speed vf, (C) shows the welding current Iw, (D) shows the welding voltage Vw, Figures (F1) to (F3) show the arc state at each time. This figure corresponds to FIG. 5 described above. Hereinafter, a description will be given with reference to FIG.

時刻t4以前の所定期間(数十ms〜数秒)中に発生したアーク期間Taの平均値である平均アーク時間Tavを算出する。そして、この平均アーク時間Tavに0.3〜0.7の範囲で係数を乗じて切換遅延時間Tdを算出する。係数の意味については後述する。   An average arc time Tav, which is an average value of arc periods Ta generated during a predetermined period (several tens of ms to several seconds) before time t4, is calculated. Then, the switching delay time Td is calculated by multiplying the average arc time Tav by a coefficient in the range of 0.3 to 0.7. The meaning of the coefficient will be described later.

時刻t2において、同図(A)に示すように、起動信号OnがLowレベル(溶接終了信号)に変化すると、送給モータに停止信号が入力されて、同図(B)に示すように、送給速度vfは慣性により緩やかに減速して時刻t4において停止する。時刻t3においてアーク期間が上記の切換遅延時間Tdに達すると、同図(C)に示すように、パルス電流の通電を開始する。したがって、パルス電流の通電は、所定の切換タイミング(時刻t2)が経過し、かつ、それ以降においてアーク期間が切換遅延時間Tdに達した時点である・   At time t2, as shown in FIG. 9A, when the start signal On changes to a low level (welding end signal), a stop signal is input to the feed motor, and as shown in FIG. The feeding speed vf is slowly decelerated due to inertia and stops at time t4. When the arc period reaches the switching delay time Td at time t3, the application of pulse current is started as shown in FIG. Therefore, the energization of the pulse current is when the predetermined switching timing (time t2) has elapsed and the arc period has reached the switching delay time Td thereafter.

時刻t1において、同図(F1)に示すように、短絡が解除されてアーク3が再発生する。このとき、溶接ワイヤ1の先端の溶滴は短絡によって移行しているので溶滴はほとんど存在しない。時刻t3直前において、同図(F2)に示すように、小さな溶滴が形成された状態になる。これは、時刻t1〜t3のアーク期間が切換遅延時間Tdであり、切換遅延時間Tdは平均アーク時間Tavの0.3〜0.7の係数を乗じた時間となる。したがって、平均アーク時間Tavが経過した時点付近で大きな溶滴に成長して短絡が発生するので、切換遅延時間Tdが経過した時点では溶滴4は小さい状態である。時刻t3において、同図(F3)に示すように、パルス電流が通電すると、溶滴4はスパッタを発生することなくスプレー移行する。上記の係数が0に近い値であると、図6で上述したように、短絡解除直後にパルス電流を通電することになり、溶融池からスパッタが発生する。また、係数が1に近い値になると、図7で上述したように、溶滴が大きく成長しておりパルス電流の通電で溶滴からスパッタが発生する。したがって、係数は0.3〜0.7の範囲が適正である。上記の平均アーク時間Tavを、時刻t2までの全溶接期間中又は一部期間中において算出しても良い。   At time t1, the short circuit is released and the arc 3 is regenerated as shown in FIG. At this time, since the droplet at the tip of the welding wire 1 has moved due to a short circuit, there is almost no droplet. Just before time t3, a small droplet is formed as shown in FIG. This is because the arc period from time t1 to t3 is the switching delay time Td, and the switching delay time Td is a time obtained by multiplying the average arc time Tav by a coefficient of 0.3 to 0.7. Therefore, since a large droplet grows near the time when the average arc time Tav has elapsed and a short circuit occurs, the droplet 4 is small when the switching delay time Td has elapsed. At time t3, as shown in FIG. 5F3, when a pulse current is applied, the droplet 4 is sprayed without spattering. When the above coefficient is a value close to 0, as described above with reference to FIG. 6, a pulse current is applied immediately after the release of the short circuit, and spatter is generated from the molten pool. Further, when the coefficient is close to 1, as described above with reference to FIG. 7, the droplet grows large and spatter is generated from the droplet by energization of the pulse current. Therefore, the appropriate coefficient is in the range of 0.3 to 0.7. The average arc time Tav may be calculated during the entire welding period up to time t2 or during a partial period.

図2は、上述した実施の形態1に係る消耗電極アーク溶接の溶接終了制御方法を実施するための溶接電源PSのブロック図である。以下、同図を参照して各ブロックについて説明する。   FIG. 2 is a block diagram of a welding power source PS for carrying out the welding end control method of the consumable electrode arc welding according to Embodiment 1 described above. Hereinafter, each block will be described with reference to FIG.

電源主回路PMは、3相200V等の商用電源を入力として、後述する駆動信号Dvに従ってインバータ制御、サイリスタ位相制御等の出力制御を行い、アーク溶接に適した溶接電圧Vw及び溶接電流Iwを出力する。溶接ワイヤ1は、送給モータMに結合された送給ロール7によって溶接トーチ6内を送給されて、母材(溶融池2)との間でアーク3が発生する。   The power supply main circuit PM receives a commercial power supply such as a three-phase 200V as an input, performs output control such as inverter control and thyristor phase control according to a drive signal Dv described later, and outputs a welding voltage Vw and a welding current Iw suitable for arc welding. To do. The welding wire 1 is fed through the welding torch 6 by a feed roll 7 coupled to a feed motor M, and an arc 3 is generated between the base metal (the molten pool 2).

送給制御回路FCは、外部からの起動信号Onを入力として、起動信号OnがHighレベル(溶接開始信号)のときは送給モータを所定値で回転させ、Lowレベル(溶接終了信号)のときは回転を停止させる送給制御信号Fcを出力する。慣性期間オフディレイ回路ODは、上記の起動信号OnがHighレベルからLowレベルに変化するのを予め定めた慣性期間に相当する期間だけ遅延させて慣性期間オフディレイ信号Odを出力する。   The feed control circuit FC receives the start signal On from the outside, rotates the feed motor by a predetermined value when the start signal On is at a high level (welding start signal), and when the start signal On is at a low level (welding end signal). Outputs a feed control signal Fc for stopping the rotation. The inertia period off-delay circuit OD outputs the inertia period off-delay signal Od by delaying the start signal On from changing from the High level to the Low level by a period corresponding to a predetermined inertia period.

電流検出回路IDは、溶接電流Iwを検出して、電流検出信号Idを出力する。電圧検出信号VDは、溶接電圧Vwを検出して、電圧検出信号Vdを出力する。アーク期間計測回路TAは、短絡が解除されてアークが再発生した時点からのアーク期間の経過時間を計測して、アーク期間信号Taを出力する。切換遅延時間算出回路TDは、定常溶接期間中の上記アーク期間信号Taを平均化して平均アーク時間を算出し、これに予め定めた係数を乗して、切換遅延時間信号Tdを出力する。切換制御回路SCは、上記の起動信号OnがHighレベルになるとHighレベルにになり、Lowレベルに変化した後に上記のアーク期間信号Taが上記の切換遅延時間信号Tdの値と等しくなった時点でLowレベルになる切換制御信号Scを出力する。   The current detection circuit ID detects the welding current Iw and outputs a current detection signal Id. The voltage detection signal VD detects the welding voltage Vw and outputs a voltage detection signal Vd. The arc period measuring circuit TA measures the elapsed time of the arc period from the time when the short circuit is released and the arc is regenerated, and outputs an arc period signal Ta. The switching delay time calculation circuit TD averages the arc period signal Ta during the steady welding period to calculate an average arc time, multiplies it by a predetermined coefficient, and outputs a switching delay time signal Td. The switching control circuit SC becomes a high level when the activation signal On becomes a high level, and at the time when the arc period signal Ta becomes equal to the value of the switching delay time signal Td after changing to the low level. The switching control signal Sc which becomes Low level is output.

電圧設定回路VRは、予め定めた電圧設定信号Vrを出力する。パルス電流設定回路IPRは、パルス電流及びベース電流から形成されるパルス電流設定信号Iprを出力する。電圧誤差増幅回路EVは、上記の電圧設定信号Vrと電圧検出信号Vdとの誤差を増幅して、電圧誤差増幅信号Evを出力する。電流誤差増幅回路EIは、上記のパルス電流設定信号Iprと電流検出信号Idとの誤差を増幅して、電流誤差増幅信号Eiを出力する。切換回路SWは、上記の切換制御信号ScがHighレベル(非パルス通電期間)のときはa側に切り換わり上記の電圧誤差増幅Evを誤差増幅信号Eaとして出力氏し、Lowレベル(パルス通電期間)のときは上記の電流誤差増幅信号Eiを誤差増幅信号Eaとして出力する。したがって、切換制御信号ScがHighレベルのときは一般的な消耗電極アーク溶接電源と同様に定電圧制御となり、Lowレベルのときは定電流制御となりパルス電流(ベース電流も含む)が通電する。このときに図示していないが、パルス電流を通電する周期を上記の電圧誤差増幅信号Evに基づいて可変することで、この期間中のアーク長を制御する。駆動回路DVは、上記の慣性期間オフディレイ信号OdがHighレベルの間(定常溶接機間+慣性期間)は、上記の誤差増幅信号Eaに基づいてPWM制御等を行い、駆動信号Dvを出力する。 The voltage setting circuit VR outputs a predetermined voltage setting signal Vr. The pulse current setting circuit IPR outputs a pulse current setting signal Ipr formed from the pulse current and the base current. The voltage error amplification circuit EV amplifies the error between the voltage setting signal Vr and the voltage detection signal Vd and outputs a voltage error amplification signal Ev. The current error amplification circuit EI amplifies an error between the pulse current setting signal Ipr and the current detection signal Id and outputs a current error amplification signal Ei. When the switching control signal Sc is at a high level (non-pulse energization period), the switching circuit SW switches to the a side, outputs the voltage error amplification Ev as an error amplification signal Ea, and outputs a low level (pulse energization period). ), The current error amplification signal Ei is output as the error amplification signal Ea. Therefore, when the switching control signal Sc is at a high level, constant voltage control is performed as in a general consumable electrode arc welding power source, and when it is at a low level, constant current control is performed and a pulse current (including a base current) is energized. Although not shown at this time, the arc length during this period is controlled by varying the period in which the pulse current is applied based on the voltage error amplification signal Ev. The drive circuit DV performs PWM control or the like based on the error amplification signal Ea and outputs the drive signal Dv while the inertia period off-delay signal Od is at a high level (between steady welding machines + inertia period). .

上述した実施の形態1によれば、溶接終了信号が入力される以前の期間中において平均アーク時間を算出し、これに係数を乗じて切換遅延時間を算出する。そして、溶接終了信号が入力されて慣性期間に入り所定の切換タイミングが経過し、かつ、アーク期間が上記の切換遅延時間に達した時点でパルス電流の通電を開始する。このために、溶滴が適正な大きさになった時点でパルス電流が通電を開始するので、スパッタの発生が少ない円滑な切り換えを行うことができる。   According to the first embodiment described above, the average arc time is calculated during the period before the welding end signal is input, and the switching delay time is calculated by multiplying this by the coefficient. Then, when a welding end signal is input and an inertia period starts, a predetermined switching timing elapses, and energization of a pulse current is started when the arc period reaches the switching delay time. For this reason, since the pulse current starts energization when the droplet becomes an appropriate size, it is possible to perform smooth switching with less spattering.

[実施の形態2]
図3は、切換タイミングを慣性期間Tk中に送給速度vfが所定値まで減速した時点に設定した場合の図1に対応する波形図である。以下、図1と異なる点についてのみ説明する。
[Embodiment 2]
FIG. 3 is a waveform diagram corresponding to FIG. 1 in the case where the switching timing is set at the time when the feed speed vf is decelerated to a predetermined value during the inertia period Tk. Only differences from FIG. 1 will be described below.

時刻t1において、同図(A)に示すように、起動信号OnがLowレベル(溶接終了信号)に変化すると、同図(B)に示すように、送給速度vfが慣性によって減速する。時刻t3において、送給速度vfが所定値vftまで減速すると切換タイミングとなる。その後、時刻t4においてアーク期間が算出された切換遅延時間Tdに達すと、同図(C)に示すように、パルス電流の通電を開始する。このパルス電流通電時の溶滴の大きさは適正サイズであるので、スパッタ発生の少ない円滑な切り換えとなる。   At time t1, when the start signal On changes to a low level (welding end signal) as shown in FIG. 9A, the feed speed vf is decelerated due to inertia as shown in FIG. At time t3, when the feed speed vf is decelerated to the predetermined value vft, the switching timing is reached. Thereafter, when the switching delay time Td in which the arc period is calculated at time t4 is reached, energization of the pulse current is started as shown in FIG. Since the size of the droplet at the time of applying the pulse current is an appropriate size, the switching can be smoothly performed with less spattering.

図4は、上述した実施の形態2に係る消耗電極アーク溶接の溶接終了制御方法を実施するための溶接電源のブロック図である。同図において上述した図2と同一のブロックには同一符号を付してそれらの説明は省略する。以下、図2とは異なる点線で示すブロックについて説明する。   FIG. 4 is a block diagram of a welding power source for carrying out the welding end control method of consumable electrode arc welding according to Embodiment 2 described above. In the figure, the same blocks as those in FIG. 2 described above are denoted by the same reference numerals, and description thereof is omitted. Hereinafter, blocks indicated by dotted lines different from those in FIG. 2 will be described.

比較回路CMは、送給モータMの送給速度検出信号vfdを入力として、慣性期間中に所定vftまで減速したときにHighレベルとなる比較信号Cmを出力する。この比較信号CmがHighレベルになる時点が所定の切換タイミングとなる。第2切換制御回路SC2は、起動信号OnがHighレベル(溶接開始信号)になるとHighレベルになり、上記の比較信号CmがHighレベルに変化した後にアーク期間信号Taの値が切換t遅延時間信号Tdの値と等しくなった時点でLowレベルに変化する切換制御信号Scを出力する。   The comparison circuit CM receives the feed speed detection signal vfd of the feed motor M and outputs a comparison signal Cm that becomes High level when decelerated to a predetermined vft during the inertia period. The time when the comparison signal Cm becomes High level is the predetermined switching timing. The second switching control circuit SC2 becomes the high level when the start signal On becomes the high level (welding start signal), and the value of the arc period signal Ta changes to the switching t delay time signal after the comparison signal Cm changes to the high level. When it becomes equal to the value of Td, the switching control signal Sc that changes to the Low level is output.

上述した実施の形態2によれば、パルス電流への切換タイミングを慣性期間中の送給速度が所定値まで減速した時点に設定した場合でも、上述した実施の形態1の効果を奏することができる。   According to the second embodiment described above, even when the switching timing to the pulse current is set to the time when the feeding speed during the inertia period is decelerated to a predetermined value, the effects of the first embodiment described above can be achieved. .

本発明では、パルス電流を通電するまでの溶接法が、短絡を伴いパルス電流を通電しない交流消耗電極アーク溶接、短絡を伴いパルス電流を通電しない電極マイナス極性消耗電極アーク溶接である場合も同様の効果を奏する。また、切換遅延時間を予め実験によって算出して設定しても良い。   In the present invention, when the welding method until energizing the pulse current is AC consumable electrode arc welding that does not energize the pulse current with a short circuit, or negative polarity consumable electrode arc welding that energizes the short circuit but does not energize the pulse current. There is an effect. Further, the switching delay time may be calculated and set in advance by experiments.

本発明の実施の形態1に係る消耗電極アーク溶接の溶接終了制御方法を示す波形図である。It is a wave form diagram which shows the welding end control method of the consumable electrode arc welding which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る溶接電源のブロック図である。It is a block diagram of the welding power supply which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る消耗電極アーク溶接の溶接終了制御方法を示す波形図である。It is a wave form diagram which shows the welding end control method of the consumable electrode arc welding which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る溶接電源のブロック図である。It is a block diagram of the welding power supply which concerns on Embodiment 2 of this invention. 従来技術における消耗電極アーク溶接の溶接終了制御方法を示す波形図である。It is a wave form diagram which shows the welding end control method of consumable electrode arc welding in a prior art. 従来技術の課題を示す図5に対応する波形図である。It is a wave form diagram corresponding to Drawing 5 showing the subject of conventional technology. 従来技術の課題を示す図5に対応する図6とは異なる波形図である。FIG. 7 is a waveform diagram different from FIG. 6 corresponding to FIG.

符号の説明Explanation of symbols

1 溶接ワイヤ
2 溶融地(母材)
3 アーク
4 溶滴
5 スパッタ
6 溶接トーチ
7 送給ロール
CM 比較回路
Cm 比較信号
DV 駆動回路
Dv 駆動信号
Ea 誤差増幅信号
EI 電流誤差増幅回路
Ei 電流誤差増幅信号
EV 電圧誤差増幅回路
Ev 電圧誤差増幅信号
FC 送給制御回路
Fc 送給制御信号
ID 電流検出回路
Id 電流検出信号
Ipe 最後のパルス電流
IPR パルス電流設定回路
Ipr パルス電流設定信号
Iw 溶接電流
M 送給モータ
OD 慣性期間オフディレイ回路
Od 慣性期間オフディレイ信号
On 起動信号
PM 電源主回路
PS 溶接電源
SC 切換制御回路
Sc 切換制御信号
SC2 第2切換制御回路
SW 切換回路
TA アーク期間計測回路
Ta アーク期間(信号)
Tav 平均アーク時間
TD 切換遅延時間算出回路
Td 切換遅延時間(信号)
Tk 慣性期間
Ts 短絡期間
VD 電圧検出回路
Vd 電圧検出信号
vf 送給速度
vfd 所定値検出信号
vft 所定の送給速度値
VR 電圧設定回路
Vr 電圧設定信号
Vw 溶接電圧

1 Welding wire 2 Melt ground (base material)
3 Arc 4 Droplet 5 Spatter 6 Welding Torch 7 Feed Roll CM Comparison Circuit Cm Comparison Signal DV Drive Circuit Dv Drive Signal Ea Error Amplification Signal EI Current Error Amplification Circuit Ei Current Error Amplification Signal EV Voltage Error Amplification Circuit Ev Voltage Error Amplification Signal FC feed control circuit Fc feed control signal ID current detection circuit Id current detection signal Ipe last pulse current IPR pulse current setting circuit Ipr pulse current setting signal Iw welding current M feed motor OD inertia period off delay circuit Od inertia period off Delay signal On Start signal PM Power supply main circuit PS Welding power supply SC Switching control circuit Sc Switching control signal SC2 Second switching control circuit SW Switching circuit TA Arc period measuring circuit Ta Arc period (signal)
Tav average arc time TD switching delay time calculation circuit Td switching delay time (signal)
Tk inertia period Ts short circuit period VD voltage detection circuit Vd voltage detection signal vf feed speed vfd predetermined value detection signal vft predetermined feed speed value VR voltage setting circuit Vr voltage setting signal Vw welding voltage

Claims (5)

パルス電流を通電しないで短絡を伴う消耗電極アーク溶接を行っているときに、溶接電源に溶接終了信号が入力されると送給モータに停止信号を出力し、この停止信号を受けて前記送給モータは慣性によって減速して停止し、この慣性期間中の予め定めた切換タイミングに溶接電流をパルス電流に切り換えて通電して溶接を終了する消耗電極アーク溶接の溶接終了制御方法において、
前記溶接終了信号が入力される以前の溶接中に短絡と短絡との間のアーク期間の平均値である平均アーク時間を算出し、この平均アーク時間に0.3〜0.7の範囲で所定の係数を乗じて切換遅延時間を算出し、
前記パルス電流への切換を、前記切換タイミングが経過した後にアーク期間が始めて前記切換遅延時間に達した時点で行う、ことを特徴とする消耗電極アーク溶接の溶接終了制御方法。
When consumable electrode arc welding with short circuit is performed without applying a pulse current, if a welding end signal is input to the welding power source, a stop signal is output to the feed motor, and the feed signal is received in response to the stop signal. In the welding end control method of consumable electrode arc welding, the motor is decelerated by inertia and stopped, and the welding current is switched to a pulse current at a predetermined switching timing during the inertia period to energize the welding.
An average arc time, which is an average value of arc periods between short circuits, is calculated during welding before the welding end signal is input, and the average arc time is determined within a range of 0.3 to 0.7. Multiply the coefficient of to calculate the switching delay time,
Switching to the pulse current is performed at the time when the arc period starts after the switching timing elapses and the switching delay time is reached, and a welding end control method for consumable electrode arc welding.
前記切換タイミングを、前記慣性期間の開始時点に設定する、ことを特徴とする請求項1記載の消耗電極アーク溶接の溶接終了制御方法。   2. The welding end control method for consumable electrode arc welding according to claim 1, wherein the switching timing is set to a start time of the inertia period. 前記切換タイミングを、前記慣性期間中の送給速度が所定値まで減速した時点に設定する、ことを特徴とする請求項1記載の消耗電極アーク溶接の溶接終了制御方法。   2. The welding end control method of consumable electrode arc welding according to claim 1, wherein the switching timing is set to a time point when a feeding speed during the inertia period is decelerated to a predetermined value. 前記平均アーク時間を、前記慣性期間の直前の所定期間中に算出する、ことを特徴とする請求項1〜3のいずれか1項に記載の消耗電極アーク溶接の溶接終了制御方法。   The welding end control method for consumable electrode arc welding according to any one of claims 1 to 3, wherein the average arc time is calculated during a predetermined period immediately before the inertia period. 前記消耗電極アーク溶接が、電極マイナス極性消耗電極アーク溶接又は交流消耗電極アーク溶接である、ことを特徴とする請求項1〜4のいずれか1項に記載の消耗電極アーク溶接の溶接終了制御方法。

5. The consumable electrode arc welding welding end control method according to any one of claims 1 to 4, wherein the consumable electrode arc welding is electrode negative polarity consumable electrode arc welding or AC consumable electrode arc welding. .

JP2006142520A 2006-05-23 2006-05-23 Welding end control method for consumable electrode arc welding Active JP5042527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006142520A JP5042527B2 (en) 2006-05-23 2006-05-23 Welding end control method for consumable electrode arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006142520A JP5042527B2 (en) 2006-05-23 2006-05-23 Welding end control method for consumable electrode arc welding

Publications (2)

Publication Number Publication Date
JP2007313513A true JP2007313513A (en) 2007-12-06
JP5042527B2 JP5042527B2 (en) 2012-10-03

Family

ID=38847844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006142520A Active JP5042527B2 (en) 2006-05-23 2006-05-23 Welding end control method for consumable electrode arc welding

Country Status (1)

Country Link
JP (1) JP5042527B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012071310A (en) * 2010-08-31 2012-04-12 Daihen Corp Method of detecting/controlling constriction in consumable electrode arc welding
CN104690397A (en) * 2013-12-05 2015-06-10 株式会社大亨 Anti-viscin thread control method
JP2016159316A (en) * 2015-02-27 2016-09-05 株式会社神戸製鋼所 Arc welding method, arc welding device and control device for arc welding
CN108890084A (en) * 2018-07-18 2018-11-27 唐山松下产业机器有限公司 Welding equipment, welding controller and welding control method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861966A (en) * 1981-10-08 1983-04-13 Honda Motor Co Ltd Welding method for work
JPS6068171A (en) * 1983-09-21 1985-04-18 Matsushita Electric Ind Co Ltd Automatic arc welding machine
JPH04111972A (en) * 1990-08-31 1992-04-13 Daihen Corp Consumable electrode arc welding method and welding equipment
JPH04210872A (en) * 1990-12-10 1992-07-31 Daihen Corp Consumable electrode arc welding control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861966A (en) * 1981-10-08 1983-04-13 Honda Motor Co Ltd Welding method for work
JPS6068171A (en) * 1983-09-21 1985-04-18 Matsushita Electric Ind Co Ltd Automatic arc welding machine
JPH04111972A (en) * 1990-08-31 1992-04-13 Daihen Corp Consumable electrode arc welding method and welding equipment
JPH04210872A (en) * 1990-12-10 1992-07-31 Daihen Corp Consumable electrode arc welding control method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012071310A (en) * 2010-08-31 2012-04-12 Daihen Corp Method of detecting/controlling constriction in consumable electrode arc welding
CN104690397A (en) * 2013-12-05 2015-06-10 株式会社大亨 Anti-viscin thread control method
JP2016159316A (en) * 2015-02-27 2016-09-05 株式会社神戸製鋼所 Arc welding method, arc welding device and control device for arc welding
KR20160105319A (en) * 2015-02-27 2016-09-06 가부시키가이샤 고베 세이코쇼 Arc welding method, arc welding apparatus, and arc welding controller
CN105921860A (en) * 2015-02-27 2016-09-07 株式会社神户制钢所 Arc Welding Method, Arc Welding Apparatus, And Arc Welding Controller
EP3067146A1 (en) * 2015-02-27 2016-09-14 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Arc welding method, arc welding apparatus, and arc welding controller
US9962786B2 (en) 2015-02-27 2018-05-08 Kobe Steel, Ltd. Arc welding method, arc welding apparatus, and arc welding controller
KR101898325B1 (en) * 2015-02-27 2018-09-12 가부시키가이샤 고베 세이코쇼 Arc welding method, arc welding apparatus, and arc welding controller
CN108890084A (en) * 2018-07-18 2018-11-27 唐山松下产业机器有限公司 Welding equipment, welding controller and welding control method

Also Published As

Publication number Publication date
JP5042527B2 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
JP5293884B2 (en) Arc welding control method
JP2012006020A (en) Arc welding control method
JPWO2009051107A1 (en) Arc start control method
JP6778857B2 (en) Arc welding control method
WO2016039113A1 (en) Arc welding control method
JP2009154173A (en) Ending control method of two-wire welding
WO2016080166A1 (en) Arc welding control method
JP5042527B2 (en) Welding end control method for consumable electrode arc welding
US9352410B2 (en) System for and method of narrow-groove joining of metals
JP7113329B2 (en) Arc welding control method
JP2012000632A (en) Method for controlling feed of arc welding accompanying short circuit
JP5557245B2 (en) End control method of pulse arc welding
JP5918021B2 (en) AC pulse arc welding control method
EP3695929B1 (en) Arc welding method
JP4391877B2 (en) Heat input control DC arc welding / pulse arc welding switching welding method
JP5545996B2 (en) Constriction detection control method for consumable electrode arc welding
JP7017291B2 (en) Arc start control method for forward / reverse feed arc welding
JP5943460B2 (en) Arc start control method for consumable electrode arc welding
EP3695930B1 (en) Arc welding method
JP2022185997A (en) Pulse arc welding power source
JP5972109B2 (en) AC pulse arc welding control method
JP5349152B2 (en) AC pulse arc welding control method
JP6176785B2 (en) Two-wire welding end control method
WO2018070364A1 (en) Arc welding method and arc welding device
JP5888943B2 (en) End control method of pulse arc welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120711

R150 Certificate of patent or registration of utility model

Ref document number: 5042527

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250