JP2007303033A - Method for treating fiber structure - Google Patents

Method for treating fiber structure Download PDF

Info

Publication number
JP2007303033A
JP2007303033A JP2006133558A JP2006133558A JP2007303033A JP 2007303033 A JP2007303033 A JP 2007303033A JP 2006133558 A JP2006133558 A JP 2006133558A JP 2006133558 A JP2006133558 A JP 2006133558A JP 2007303033 A JP2007303033 A JP 2007303033A
Authority
JP
Japan
Prior art keywords
ion
fiber structure
ionic liquid
group
yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006133558A
Other languages
Japanese (ja)
Inventor
Yuji Kubota
裕次 窪田
Osamu Hasegawa
修 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshinbo Holdings Inc
Original Assignee
Nisshinbo Industries Inc
Nisshin Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshinbo Industries Inc, Nisshin Spinning Co Ltd filed Critical Nisshinbo Industries Inc
Priority to JP2006133558A priority Critical patent/JP2007303033A/en
Publication of JP2007303033A publication Critical patent/JP2007303033A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for treating a fiber structure, which imparts a unique feeling and removes fluffs and improves a fiber strength without reducing a fiber volume. <P>SOLUTION: The method for treating a fiber structure comprises bringing a fibrous material composed of a polymer compound soluble or swellable in an ionic liquid, for example, into contact with a medium including an ionic liquid represented by formula (1) [R<SP>1</SP>-R<SP>3</SP>may be each the same or different and a 1-5C alkyl group, a 3-5C alkenyl group or an alkoxy alkyl group represented by R<SP>4</SP>-O-(CH<SB>2</SB>)<SB>n</SB>- (R<SP>4</SP>is a methyl group or an ethyl group; n is 1 or 2; Y is a halogenide ion, a carboxylate ion having a total carbon atom of 1-3, a perchlorate ion, a pseudohalide ion, a cyanamide ion or dicyanamide ion)] so as to improve the tensile strength of the fiber structure. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、繊維構造体の処理方法に関し、さらに詳述すると、イオン液体を用いた繊維構造体の処理方法に関する。   The present invention relates to a method for treating a fiber structure, and more particularly to a method for treating a fiber structure using an ionic liquid.

従来、セルロース繊維等から構成される繊維構造体の風合いを向上させたり、毛羽を除去したりする目的で、繊維構造体を各種処理剤にて処理することが行われている。
例えば、特許文献1(特開平7−189125号公報)には、セルロース繊維をN−メチルモルホリンオキシド水溶液で処理し、風合いを硬化させることなく、染色性および柔軟性を向上させる加工方法が開示されている。
特許文献2(特開平8−3869号公報)には、セルロース系繊維を酒石酸鉄IIIナトリウム水溶液などのセルロース溶解能を有する溶液に浸漬し、糸の毛羽を溶解除去して糸の容量を減少させる加工方法が開示されている。
Conventionally, a fiber structure is treated with various treatment agents for the purpose of improving the texture of a fiber structure composed of cellulose fibers or the like or removing fluff.
For example, Patent Document 1 (Japanese Patent Application Laid-Open No. 7-189125) discloses a processing method in which cellulose fibers are treated with an N-methylmorpholine oxide aqueous solution to improve dyeability and flexibility without curing the texture. ing.
In Patent Document 2 (Japanese Patent Laid-Open No. 8-3869), cellulosic fibers are immersed in a solution capable of dissolving cellulose, such as an aqueous solution of sodium iron tartrate, and the yarn fluff is dissolved and removed to reduce the yarn capacity. A processing method is disclosed.

特許文献3(特開平8−209535号公報)には、セルロース繊維布帛を、N−メチルモルホリンオキシド等のアミンオキシドを含有する溶液に加熱下で浸漬し、セルロース単繊維の構造を変化させることで、セルロース繊維布帛の強度を維持しつつ、布帛に様々な風合いを付与する加工方法が開示されている。
特許文献4(特表2005−530910号公報)には、イオン液体を含む布地処理剤が開示され、この処理剤で処理されたセルロース系布地は、機能的または美観的に優れた外観を示し、繊維強化効果が発揮され得ることが開示されている。
Patent Document 3 (JP-A-8-209535) discloses that a cellulose fiber fabric is immersed in a solution containing an amine oxide such as N-methylmorpholine oxide under heating to change the structure of the cellulose monofilament. A processing method for imparting various textures to a fabric while maintaining the strength of the cellulose fiber fabric is disclosed.
Patent Document 4 (Japanese Patent Publication No. 2005-530910) discloses a fabric treatment agent containing an ionic liquid, and the cellulosic fabric treated with this treatment agent exhibits a functional or aesthetically superior appearance, It is disclosed that a fiber reinforcement effect can be exhibited.

しかし、上記特許文献1の加工方法では、繊維の染色性および柔軟性が向上するものの、処理後の繊維強度が20〜30%も低下してしまうという問題がある。
また、特許文献2の加工方法では、糸の毛羽を効率的に除去し得るものの、糸の容量が減少してしまうという問題がある。
特許文献3の加工方法では、繊維の強度は維持し得るものの、強度向上という点では不十分である。また、溶媒が可燃性であり、120℃以上に加熱すると無水物となり、さらにそれ以上に加熱すると爆発の危険が生じるという点も問題である。
特許文献4の加工方法では、イオン液体を処理剤として用いることで、セルロース系布帛の繊維強化効果が得られることが示唆されているものの、その具体的手段は何ら明らかにされておらず、イオン液体を用いてどの程度の処理を行えば、繊維強化効果が得られるかは不明である。
However, although the dyeing property and flexibility of the fiber are improved, the processing method of Patent Document 1 has a problem that the fiber strength after the treatment is reduced by 20 to 30%.
Moreover, although the processing method of patent document 2 can remove the fluff of a thread | yarn efficiently, there exists a problem that the capacity | capacitance of a thread | yarn will reduce.
The processing method of Patent Document 3 can maintain the strength of the fiber, but is insufficient in terms of strength improvement. Another problem is that the solvent is flammable and becomes anhydrous when heated to 120 ° C. or higher, and further explosive danger occurs when heated further.
In the processing method of Patent Document 4, although it has been suggested that the fiber reinforcing effect of the cellulosic fabric can be obtained by using an ionic liquid as a treatment agent, the specific means is not clarified at all. It is unclear how much the fiber reinforcement effect can be obtained by using a liquid.

また、上記特許文献1〜3の方法では、混合系溶媒を使用せざるを得ないため、各成分の濃度を厳密に管理する必要があることから、取り扱いが非常に複雑であるという問題がある。
さらに、いずれの特許文献においても、セルロース以外の繊維からなる繊維構造体を処理して、毛羽の除去や風合いの向上を図ることについては開示されていない。
Moreover, in the method of the said patent documents 1-3, since mixed solvent must be used, since it is necessary to manage the density | concentration of each component exactly | strictly, there exists a problem that handling is very complicated. .
Furthermore, none of the patent documents disclose that a fiber structure composed of fibers other than cellulose is processed to remove fuzz and improve texture.

特開平7−189125号公報JP 7-189125 A 特開平8−3869号公報JP-A-8-3869 特開平8−209535号公報JP-A-8-209535 特表2005−530910号公報JP 2005-530910 A

本発明は、このような事情に鑑みてなされたものであり、繊維の容量を減少させることなく、独特な風合いの付与および毛羽の除去が可能であるうえに、繊維強度をも向上し得る繊維構造体の処理方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and it is possible to impart a unique texture and remove fluff without reducing the capacity of the fiber and to improve the fiber strength. An object of the present invention is to provide a method for processing a structure.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、イオン液体に溶解または膨潤する高分子化合物からなる繊維状物を含有する繊維構造体をイオン液体を含む媒体に接触させることで、独特の風合い付与効果や毛羽除去効果を与えつつ、繊維構造体の強度が向上し、しかも処理後の繊維容量が減少しないことを見出し、本発明を完成した。   As a result of intensive studies to solve the above-mentioned problems, the present inventors contact a fibrous structure containing a fibrous material composed of a polymer compound dissolved or swelled in an ionic liquid with a medium containing the ionic liquid. Thus, the present inventors have found that the strength of the fiber structure is improved while giving a unique texture-imparting effect and fluff removal effect, and that the fiber capacity after the treatment is not reduced, and the present invention has been completed.

すなわち、本発明は、
1. イオン液体に溶解または膨潤する高分子化合物からなる繊維状物を含有する繊維構造体を、イオン液体を含む媒体に接触させて前記繊維構造体の引張強度を向上させることを特徴とする繊維構造体の処理方法、
2. 前記高分子化合物が、セルロースおよびタンパク質から選ばれる少なくとも1種である1の繊維構造体の処理方法、
3. 前記イオン液体が、前記媒体中に80〜100質量%含まれる1または2の繊維構造体の処理方法、
4. 前記イオン液体が、ハロゲン化物イオン、総炭素数1〜3のカルボン酸イオン、過塩素酸イオン、擬ハロゲン化物イオン、シアナミドイオン、またはジシアナミドイオンをアニオン成分とする1〜3のいずれかの繊維構造体の処理方法、
5. 前記イオン液体が、下記式(1)で示される4級アンモニウム系イオン液体である1〜4のいずれかの繊維構造体の処理方法、
〔式中、R1〜R3は、互いに同一でも異なっていてもよい、炭素数1〜5のアルキル基、炭素数3〜5のアルケニル基、またはR4−O−(CH2n−で表されるアルコキシアルキル基を示し、R4は、メチル基またはエチル基を示し、nは1または2である。Yは、ハロゲン化物イオン、総炭素数1〜3のカルボン酸イオン、過塩素酸イオン、擬ハロゲン化物イオン、シアナミドイオン、またはジシアナミドイオンを示す。〕
6. 前記R1〜R3が、互いに同一でも異なっていてもよい、メチル基、エチル基、アリル基、2−メチルアリル基、またはR4−O−(CH2n−で表されるアルコキシアルキル基(R4およびnは、前記と同じ意味を表す。)である5の繊維構造体の処理方法、
7. 前記イオン液体が、式(2)で示される6の繊維構造体の処理方法、
〔式中、nおよびYは前記と同じ意味を表す。〕
8. 前記イオン液体が、式(3)で示される7の繊維構造体の処理方法、
9. 前記接触が、0.01秒から120分間行われる5〜8のいずれかの繊維構造体の処理方法、
10. 前記イオン液体が、イミダゾリウムカチオンと、ハロゲン化物イオン、総炭素数1〜3のカルボン酸イオン、過塩素酸イオン、擬ハロゲン化物イオン、シアナミドイオン、またはジシアナミドイオンとからなるイミダゾリウム系イオン液体である1〜4のいずれかの繊維構造体の処理方法、
11. 前記接触が、0.01秒から60分間行われる10の繊維構造体の処理方法、
12. 1〜11のいずれかの処理方法で処理された繊維構造体
を提供する。
That is, the present invention
1. A fibrous structure comprising: a fibrous structure containing a fibrous material composed of a polymer compound dissolved or swelled in an ionic liquid is brought into contact with a medium containing the ionic liquid to improve the tensile strength of the fibrous structure. Processing method,
2. A method for treating a fiber structure, wherein the polymer compound is at least one selected from cellulose and protein;
3. A method for treating one or two fibrous structures in which the ionic liquid is contained in the medium in an amount of 80 to 100% by mass;
4). The fiber according to any one of 1 to 3, wherein the ionic liquid contains a halide ion, a carboxylate ion having 1 to 3 carbon atoms, a perchlorate ion, a pseudohalide ion, a cyanamide ion, or a dicyanamide ion as an anion component. Structure processing method,
5). The method for treating a fiber structure according to any one of 1 to 4, wherein the ionic liquid is a quaternary ammonium-based ionic liquid represented by the following formula (1):
Wherein, R 1 to R 3 may be the same or different, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 3 to 5 carbon atoms, or R 4 -O- (CH 2) n , - R 4 represents a methyl group or an ethyl group, and n is 1 or 2. Y represents a halide ion, a carboxylate ion having 1 to 3 carbon atoms, a perchlorate ion, a pseudohalide ion, a cyanamide ion, or a dicyanamide ion. ]
6). R 1 to R 3 may be the same as or different from each other, and an alkoxyalkyl group represented by a methyl group, an ethyl group, an allyl group, a 2-methylallyl group, or R 4 —O— (CH 2 ) n — (R 4 and n represent the same meaning as described above) 5. The method for treating a fiber structure according to 5,
7). The method for treating the fibrous structure of 6 represented by the formula (2), wherein the ionic liquid is:
[Wherein, n and Y represent the same meaning as described above. ]
8). The processing method of the fiber structure of 7 by which the said ionic liquid is shown by Formula (3),
9. The method for treating a fiber structure according to any one of 5 to 8, wherein the contact is performed for 0.01 seconds to 120 minutes,
10. The ionic liquid is composed of an imidazolium cation and a halide ion, a carboxylic acid ion having 1 to 3 carbon atoms, a perchlorate ion, a pseudohalide ion, a cyanamide ion, or a dicyanamide ion. A method for treating a fiber structure according to any one of 1 to 4,
11. A treatment method of 10 fibrous structures, wherein the contact is performed for 0.01 seconds to 60 minutes;
12 The fiber structure processed with the processing method in any one of 1-11 is provided.

本発明の繊維構造体の処理方法によれば、繊維の容量を減少させることなしに、繊維構造体に独特な風合いを付与でき、かつ、繊維構造体の毛羽を除去できるうえ、その繊維強度をも向上させることができる。   According to the method for treating a fiber structure of the present invention, a unique texture can be imparted to the fiber structure without reducing the fiber capacity, and the fluff of the fiber structure can be removed, and the fiber strength can be increased. Can also be improved.

以下、本発明についてさらに詳しく説明する。
本発明に係る繊維構造体の処理方法は、イオン液体に溶解または膨潤する高分子化合物からなる繊維状物を含有する繊維構造体を、イオン液体を含む媒体に接触させて繊維構造体の引張強度を向上させるものである。ここで、イオン液体とは、100℃以下で液状を呈する有機塩をいう。
本発明において繊維とは、太さに対して十分な長さをもつ、細くてたわみやすいもの(「繊維」東京電機大学出版局、石川欣造監修、3頁)をいう。
繊維構造体とは、繊維状物を構成単位として形成される構造体をいい、具体的には、糸、織物、編物、不織布、紙、シート状物などが挙げられる。
溶解とは、媒体中で高分子化合物の分子鎖の凝集状態が解かれることをいうが、ここでは高分子化合物が媒体中に均一相として存在するように視認されることをいう。
膨潤とは、媒体が高分子化合物の凝集分子鎖中に浸入し、分子鎖同士の相互作用が緩和されているが、完全に分子鎖の凝集が解かれるまでには至っていない状態をいう。
Hereinafter, the present invention will be described in more detail.
The method for treating a fiber structure according to the present invention includes bringing a fiber structure containing a fibrous material made of a polymer compound dissolved or swelled in an ionic liquid into contact with a medium containing the ionic liquid to bring about the tensile strength of the fiber structure. Is to improve. Here, the ionic liquid refers to an organic salt that exhibits a liquid state at 100 ° C. or lower.
In the present invention, the fiber means a thin and flexible fiber having a sufficient length with respect to the thickness (“Fiber”, Tokyo Denki University Press, supervised by Sozo Ishikawa, page 3).
The fiber structure refers to a structure formed using a fibrous material as a structural unit, and specifically includes a thread, a woven fabric, a knitted fabric, a nonwoven fabric, paper, a sheet-like material, and the like.
Dissolution means that the state of aggregation of the molecular chains of the polymer compound is solved in the medium, but here it means that the polymer compound is visually recognized as a uniform phase in the medium.
Swelling refers to a state in which the medium has entered the aggregated molecular chain of the polymer compound and the interaction between the molecular chains has been relaxed, but the molecular chain has not been completely agglomerated.

本発明において、高分子化合物としては、イオン液体に溶解または膨潤するものであれば特に限定はなく、糖鎖もしくはタンパク質、またはこれらの混合物が挙げられる。
糖鎖としては、セルロース、キチン、キトサンなどが挙げられる。
セルロースとしては、植物由来セルロース、動物由来セルロース、バクテリア由来セルロース、再生セルロースが挙げられる。具体的には、綿、麻、竹、バナナ、月桃、ハイビスカスローゼル、ケナフ、広葉樹パルプ、針葉樹パルプ、ホヤセルロース、バクテリアセルロース、レーヨン、キュプラ、テンセル、イオン液体による再生セルロースなどが挙げられ、イオン液体に溶解,膨潤し得る限り、それらの誘導体も含まれる。誘導体としては、例えばセルロースの水酸基をエーテル化またはエステル化した誘導体や、シアノエチル化した誘導体などが挙げられる。
なお、セルロースの結晶構造は任意であり、I型、II型、III型、IV型、非晶のいずれか1つの構造またはそれらの組合せからなる構造を有するセルロースを採用できる。また、セルロースの結晶化度に関わらず本発明の方法が適用できる。
タンパク質としては、絹、羊毛、コラーゲン、ケラチン、セリシン、フィブロイン、カゼイン等が挙げられる。
In the present invention, the polymer compound is not particularly limited as long as it dissolves or swells in an ionic liquid, and includes a sugar chain or protein, or a mixture thereof.
Examples of sugar chains include cellulose, chitin, chitosan and the like.
Examples of cellulose include plant-derived cellulose, animal-derived cellulose, bacterial-derived cellulose, and regenerated cellulose. Specific examples include cotton, hemp, bamboo, banana, moon peach, hibiscus rosel, kenaf, hardwood pulp, conifer pulp, squirt cellulose, bacterial cellulose, rayon, cupra, tencel, regenerated cellulose using ionic liquid, etc. Their derivatives are also included as long as they can be dissolved and swelled in the liquid. Examples of the derivatives include derivatives obtained by etherifying or esterifying a hydroxyl group of cellulose, and derivatives obtained by cyanoethylation.
The crystal structure of cellulose is arbitrary, and cellulose having a structure composed of any one of I-type, II-type, III-type, IV-type, and amorphous structure or a combination thereof can be employed. Further, the method of the present invention can be applied regardless of the crystallinity of cellulose.
Examples of proteins include silk, wool, collagen, keratin, sericin, fibroin, and casein.

本発明の繊維構造体は、イオン液体に溶解または膨潤する高分子化合物以外のその他の高分子化合物からなる繊維状物を含んでいてもよい。
このようなその他の高分子化合物としては、イオン液体に溶解,膨潤しない高分子化合物が挙げられ、例えば、ポリエステル(ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート等)、ポリオレフィン(ポリエチレン、ポリプロピレン、ポリブタジエン等)、プロミックス、ポリアミド(ナイロン)、ポリイミド、ポリスチレン、ポリ乳酸、ポリメタクリル酸、ポリメタクリル酸メチル、ポリアクリル酸、ポリアクリロニトリル、ポリアクリルアミド、ポリ酢酸ビニル、ポリビニルアルコール、ビニロン、ポリウレタン、ポリ塩化ビニル、ポリアニリン、ポリテトラフルオロエチレン、ポリエーテルスルホン、ポリエーテルエーテルケトン、トリアセテート繊維、ガラス繊維、炭素繊維、金属繊維、ロックウールなどが挙げられる。
なお、その他の高分子化合物からなる繊維状物の含有量は任意であるが、繊維構造体全体に対して、5〜95質量%程度が好適である。
The fiber structure of the present invention may include a fibrous material made of a polymer compound other than the polymer compound dissolved or swollen in the ionic liquid.
Examples of such other polymer compounds include polymer compounds that do not dissolve or swell in ionic liquids. Examples include polyesters (polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, etc.), polyolefins (polyethylene, polypropylene, polybutadiene). Etc.), promix, polyamide (nylon), polyimide, polystyrene, polylactic acid, polymethacrylic acid, polymethyl methacrylate, polyacrylic acid, polyacrylonitrile, polyacrylamide, polyvinyl acetate, polyvinyl alcohol, vinylon, polyurethane, polychlorinated Vinyl, polyaniline, polytetrafluoroethylene, polyethersulfone, polyetheretherketone, triacetate fiber, glass fiber, carbon fiber, metal fiber Such as rock wool, and the like.
In addition, although content of the fibrous material which consists of another high molecular compound is arbitrary, about 5-95 mass% is suitable with respect to the whole fiber structure.

繊維構造体の処理に用いられるイオン液体は任意であり、従来公知の各種イオン液体を用いることができるが、上述したセルロースなどの糖鎖や、羊毛などのタンパク質の溶解性の点から、アニオン成分が、ハロゲン化物イオン、総炭素数1〜3のカルボン酸イオン、過塩素酸イオン、擬ハロゲン化物イオン、シアナミドイオン、またはジシアナミドイオンであるイオン液体が好ましい。
ハロゲン化物イオンとしては、Cl-、Br-、I-が挙げられ、総炭素数1〜3のカルボン酸イオンとしては、C25CO2 -、CH3CO2 -、HCO2 -等が挙げられ、擬ハロゲン化物イオンとしては、一価でありハロゲン化物に類似した特性を有するCN-、SCN-、OCN-、ONC-、N3 -等が挙げられるが、セルロースの溶解性を高めるという点から、ハロゲン化物イオン、総炭素数1〜3のカルボン酸イオン、または擬ハロゲン化物イオンが好ましく、特に、Cl-、Br-、HCO2 -、SCN-が好ましい。
The ionic liquid used for the treatment of the fiber structure is arbitrary, and various conventionally known ionic liquids can be used. From the viewpoint of solubility of sugar chains such as cellulose and proteins such as wool described above, anionic components Are preferably halide ions, carboxylate ions having 1 to 3 carbon atoms, perchlorate ions, pseudohalide ions, cyanamide ions, or dicyanamide ions.
Examples of halide ions include Cl , Br , and I , and examples of carboxylate ions having 1 to 3 carbon atoms include C 2 H 5 CO 2 , CH 3 CO 2 , HCO 2 −, and the like. Examples of pseudohalide ions include CN , SCN , OCN , ONC , N 3 − and the like, which are monovalent and have properties similar to halides, but increase the solubility of cellulose. From the viewpoint, a halide ion, a carboxylate ion having 1 to 3 carbon atoms, or a pseudohalide ion is preferable, and Cl , Br , HCO 2 , and SCN are particularly preferable.

一方、カチオン成分の点から、イオン液体はイミダゾリウム系イオン液体と4級アンモニウム塩系のイオン液体とに大別されるが、本発明の繊維構造体の処理方法では、どちらも用いることができる。
4級アンモニウム塩系のイオン液体としては、下記式(1)で示されるものが好適である。
On the other hand, from the viewpoint of the cationic component, ionic liquids are roughly classified into imidazolium-based ionic liquids and quaternary ammonium salt-based ionic liquids, and both can be used in the method for treating a fiber structure of the present invention. .
As the quaternary ammonium salt-based ionic liquid, those represented by the following formula (1) are suitable.

〔式中、R1〜R3は、互いに同一でも異なっていてもよい、炭素数1〜5のアルキル基、炭素数3〜5のアルケニル基、またはR4−O−(CH2n−で表されるアルコキシアルキル基を示し、R4は、メチル基またはエチル基を示し、nは1または2である。Yは、ハロゲン化物イオン、総炭素数1〜3のカルボン酸イオン、過塩素酸イオン、擬ハロゲン化物イオン、シアナミドイオン、またはジシアナミドイオンを示す。〕 Wherein, R 1 to R 3 may be the same or different, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 3 to 5 carbon atoms, or R 4 -O- (CH 2) n , - R 4 represents a methyl group or an ethyl group, and n is 1 or 2. Y represents a halide ion, a carboxylate ion having 1 to 3 carbon atoms, a perchlorate ion, a pseudohalide ion, a cyanamide ion, or a dicyanamide ion. ]

式(1)において、炭素数1〜5のアルキル基としては、メチル基、エチル基、1−プロピル基、2−プロピル基、1−ブチル基、2−ブチル基、2−メチルプロピル基、1,1−ジメチルエチル基、1−ペンチル基、2−ペンチル基、3−ペンチル基、1−メチルブチル基、2−メチルブチル基、3−メチルブチル基、2,2−ジメチルプロピル基等が挙げられる。炭素数3〜5のアルケニル基としては、1−プロペニル基、2−プロペニル基(アリル基)、イソプロペニル基、1−ブテニル基、2−ブテニル基(クロチル基)、3−ブテニル基、イソクロチル基、2−メチルアリル基(メタリル基)等が挙げられる。R4−O−(CH2n−で表されるアルコキシアルキル基としては、メトキシまたはエトキシメチル基、メトキシまたはエトキシエチル基が挙げられる。 In the formula (1), examples of the alkyl group having 1 to 5 carbon atoms include methyl group, ethyl group, 1-propyl group, 2-propyl group, 1-butyl group, 2-butyl group, 2-methylpropyl group, 1 , 1-dimethylethyl group, 1-pentyl group, 2-pentyl group, 3-pentyl group, 1-methylbutyl group, 2-methylbutyl group, 3-methylbutyl group, 2,2-dimethylpropyl group, and the like. Examples of the alkenyl group having 3 to 5 carbon atoms include 1-propenyl group, 2-propenyl group (allyl group), isopropenyl group, 1-butenyl group, 2-butenyl group (crotyl group), 3-butenyl group, and isocrotyl group. , 2-methylallyl group (methallyl group) and the like. Examples of the alkoxyalkyl group represented by R 4 —O— (CH 2 ) n — include a methoxy or ethoxymethyl group and a methoxy or ethoxyethyl group.

これらの中でも、式(1)におけるR1〜R3が、互いに同一でも異なっていてもよい、メチル基、エチル基、アリル基、メタリル基、またはR4−O−(CH2n−で表されるアルコキシアルキル基(特に、メトキシエチル基またはメトキシメチル基)であるものが好ましい。
より具体的には、下記式(2)で示されるイオン液体を好適に用いることができる。
Among these, R 1 to R 3 in Formula (1) may be the same or different, a methyl group, an ethyl group, an allyl group, methallyl group, or R 4 -O- (CH 2) n , - with What is represented is an alkoxyalkyl group (particularly a methoxyethyl group or a methoxymethyl group).
More specifically, an ionic liquid represented by the following formula (2) can be preferably used.

〔式中、nおよびYは上記と同じ意味を表す。〕 [Wherein, n and Y represent the same meaning as described above. ]

特に、n=2およびY=Cl-である、下記式(3)で示されるジエチルメチルメトキシエチルアンモニウムクロライド(DEMECl)が、糖鎖やタンパク質繊維の溶解能に優れているうえに、繊維構造体を構成する高分子化合物の分子量低下を引き起こしにくいことから、好適である。 Particularly, n = 2 and Y = Cl - is, on top of diethyl methyl methoxyethyl chloride represented by the following formula (3) (DEMECl) is of excellent ability to dissolve sugar and protein fibers, fibrous structure This is preferred because it does not easily cause a decrease in the molecular weight of the polymer compound constituting the.

また、イミダゾリウム系イオン液体を構成するイミダゾリウムカチオンとしては、例えば、ジアルキルイミダゾリウムカチオン、トリアルキルイミダゾリウムカチオン等が挙げられ、具体例としては、1−エチル−3−メチルイミダゾリウムイオン、1−ブチル−3−メチルイミダゾリウムイオン、1−プロピル−3−メチルイミダゾリウムイオン、1−(1,2または3−ヒドロキシプロピル)−3−メチルイミダゾリウムイオン、1,2,3−トリメチルイミダゾリウムイオン、1,2−ジメチル−3−エチルイミダゾリウムイオン、1,2−ジメチル−3−プロピルイミダゾリウムイオン、1−ブチル−2,3−ジメチルイミダゾリウムイオンなどが挙げられる。
イミダゾリウム系イオン液体としては、糖鎖やタンパク質繊維の溶解能を考慮すると、1−ブチル−3−メチルイミダゾリウムクロライド(BMIMCl)が好適である。
Examples of the imidazolium cation constituting the imidazolium-based ionic liquid include a dialkyl imidazolium cation and a trialkyl imidazolium cation. Specific examples thereof include 1-ethyl-3-methylimidazolium ion, 1 -Butyl-3-methylimidazolium ion, 1-propyl-3-methylimidazolium ion, 1- (1,2 or 3-hydroxypropyl) -3-methylimidazolium ion, 1,2,3-trimethylimidazolium Ion, 1,2-dimethyl-3-ethylimidazolium ion, 1,2-dimethyl-3-propylimidazolium ion, 1-butyl-2,3-dimethylimidazolium ion, and the like.
As the imidazolium-based ionic liquid, 1-butyl-3-methylimidazolium chloride (BMIMCl) is preferable in consideration of the solubility of sugar chains and protein fibers.

なお、繊維処理時の処理温度との兼ね合いから、イオン液体は、100℃以下で液体であるものが好ましく、80℃以下で液体であるものがより好ましく、70℃以下で液体であるものがより一層好ましい。   In consideration of the treatment temperature during fiber treatment, the ionic liquid is preferably a liquid at 100 ° C. or lower, more preferably a liquid at 80 ° C. or lower, more preferably a liquid at 70 ° C. or lower. Even more preferred.

本発明においては、1種以上のイオン液体を組合せて用いることも可能である。これによって繊維構造体の風合いや毛羽、強度等の諸特性をコントロールすることができる。この場合、カチオンのみが1種以上であってもよく、アニオンのみが1種以上であってもよく、またカチオン、アニオン共に1種以上であってもよい。具体的には、DEMEClとBMIMClとの組合せ、DEMEClとその塩素イオンをチオシアンイオンに置換したジエチルメチルメトキシエチルアンモニウムチオシアネート(DEMESCN)との組合せ、DEMESCNとBMIMClとの組合せ等が挙げられる。   In the present invention, one or more ionic liquids may be used in combination. This makes it possible to control various properties such as texture, fluff and strength of the fiber structure. In this case, the cation alone may be one or more, the anion alone may be one or more, and both the cation and the anion may be one or more. Specific examples include a combination of DEMECl and BMIMCl, a combination of DEMECl and diethylmethylmethoxyethylammonium thiocyanate (DEMESCN) in which its chloride ion is substituted with thiocyan ion, and a combination of DEMESCN and BMIMCl.

本発明の繊維構造体の処理方法において、処理媒体中のイオン液体含有量は、本発明の効果が得られる限り任意であるが、イオン液体含有量が多いほど、短時間で処理効果が発揮されることから、10〜100質量%が好ましく、50〜100質量%がより好ましく、80〜100質量%がより好ましい。
処理媒体にイオン液体以外のその他の溶媒を用いる場合、イオン液体と相溶かつ分離回収が容易な溶媒が好ましい。
具体的には、水;メタノール、エタノール等のアルコール類;テトラヒドロフラン、ジオキサン等のエーテル類;アセトン、メチルエチルケトン等のケトン類;クロロホルム、ジクロロメタン等のハロゲン化炭化水素類;アセトニトリル等のニトリル類などが挙げられる。回収効率を考慮すると水やアルコールが好適であり、環境面をも考慮すると水が最適である。
In the method for treating a fiber structure of the present invention, the content of the ionic liquid in the treatment medium is arbitrary as long as the effect of the present invention is obtained, but the treatment effect is exhibited in a shorter time as the ionic liquid content is higher. Therefore, 10 to 100% by mass is preferable, 50 to 100% by mass is more preferable, and 80 to 100% by mass is more preferable.
When a solvent other than the ionic liquid is used as the treatment medium, a solvent that is compatible with the ionic liquid and that can be easily separated and recovered is preferable.
Specific examples include water; alcohols such as methanol and ethanol; ethers such as tetrahydrofuran and dioxane; ketones such as acetone and methyl ethyl ketone; halogenated hydrocarbons such as chloroform and dichloromethane; and nitriles such as acetonitrile. It is done. Water and alcohol are preferable in consideration of the recovery efficiency, and water is optimal in consideration of environmental aspects.

イオン液体を含む媒体と繊維構造体との接触は、少なくとも繊維構造体の表面部分を、媒体で一定時間覆う処理である。この接触処理により、繊維構造体の少なくとも表面部分が溶解、膨潤するものと考えられる。それによって風合い変化や毛羽の減少がもたらされるだけでなく、繊維状物表面にある構造ひずみや構造欠陥が解消し、また繊維構造体を構成する単繊維同士の融着が生じるため、強度が向上するものと考えられる。
接触手法としては、浸漬、媒体槽通過、噴霧等の任意の手法を用いることができる。また、接触処理は、繊維構造体の張力下、非張力下のどちらで行ってもよい。布地のような二次元的な繊維構造物を張力下で処理する場合、張力は一方向だけでなく、直交する二方向にかけることも可能である。
The contact between the medium containing the ionic liquid and the fiber structure is a process of covering at least the surface portion of the fiber structure with the medium for a certain period of time. By this contact treatment, it is considered that at least the surface portion of the fiber structure is dissolved and swollen. This not only changes the texture and reduces the fluff, but also eliminates structural distortion and structural defects on the surface of the fibrous material, and creates a fusion between the single fibers that make up the fiber structure, improving strength. It is thought to do.
As the contact method, any method such as immersion, passage through a medium tank, or spraying can be used. Further, the contact treatment may be performed under either tension or non-tension of the fiber structure. When a two-dimensional fiber structure such as a fabric is processed under tension, the tension can be applied not only in one direction but also in two orthogonal directions.

イオン液体を含む媒体と繊維構造体との接触時間は、使用するイオン液体の種類(高分子化合物の溶解能)や媒体中のイオン液体の濃度にもよるため一概には規定できないが、上述したイオン液体濃度の媒体を用いる場合、0.01秒から180分間程度が好ましい。
特に、4級アンモニウム塩系イオン液体を用いる場合には、0.01秒から120分間程度が好ましく、1秒から20分間がより好ましく、1秒から5分間がより一層好ましく、1秒から3分間がさらに好ましく、1〜60秒が最適である。
一方、イミダゾリウム系イオン液体を用いる場合には、0.01秒から60分間程度が好ましく、1秒から5分間がより好ましく、1秒から3分間がより一層好ましく、1〜60秒が最適である。
The contact time between the medium containing the ionic liquid and the fiber structure cannot be defined unconditionally because it depends on the type of ionic liquid used (dissolvability of the polymer compound) and the concentration of the ionic liquid in the medium. When a medium having an ionic liquid concentration is used, it is preferably about 0.01 seconds to 180 minutes.
In particular, when a quaternary ammonium salt ionic liquid is used, it is preferably about 0.01 seconds to 120 minutes, more preferably 1 second to 20 minutes, still more preferably 1 second to 5 minutes, and 1 second to 3 minutes. Is more preferable, and 1 to 60 seconds is optimal.
On the other hand, when an imidazolium-based ionic liquid is used, it is preferably about 0.01 second to 60 minutes, more preferably 1 second to 5 minutes, still more preferably 1 second to 3 minutes, and most preferably 1 to 60 seconds. is there.

接触温度は、処理媒体が液体を呈し、それに含まれるイオン液体が分解しない程度の温度、かつ、繊維構造体が着火や炭化を引き起こさない程度の温度であれば任意である。一例を挙げると、処理媒体としてDEMEClを100wt%で使用した場合には59℃(DEMEClが液状を呈する温度)〜197℃(DEMEClの分解点)である。
処理効率を高めるためには、加熱下で接触させることが好ましく、60〜190℃程度、特に70〜150℃程度の加熱下で接触させることが好適である。加熱手段は任意であるが、オーブンによる加熱、水浴や油浴による加熱、電磁波による加熱などの一般的な加熱手段を用いればよい。
The contact temperature is arbitrary as long as the treatment medium exhibits a liquid and the ionic liquid contained in the treatment medium does not decompose and the fiber structure does not cause ignition or carbonization. As an example, when DEMECl is used as a treatment medium at 100 wt%, the temperature is from 59 ° C. (temperature at which DEMECl exhibits a liquid state) to 197 ° C. (decomposition point of DEMECl).
In order to increase the treatment efficiency, it is preferable to contact under heating, and it is preferable to contact under heating at about 60 to 190 ° C., particularly about 70 to 150 ° C. Any heating means may be used, but general heating means such as heating by an oven, heating by a water bath or oil bath, heating by electromagnetic waves, etc. may be used.

本発明においては、上述した接触処理後に繊維構造体を洗浄してもよい。
洗浄媒体は、イオン液体と相溶であって、繊維構造体を溶解させない媒体が好ましく、上述の「その他の溶媒」と同一の溶媒を用いることができる。また、接触処理媒体としてイオン液体とその他の溶媒との混合媒体を用いる場合、溶媒回収の点から、接触処理時のその他の溶媒と同一の溶媒を洗浄に用いることが好ましい。
洗浄方法としては、浸漬、洗浄槽通過、噴霧等の通常の洗浄手段を用いることができる。また、この場合も張力下、非張力下のどちらで処理することもできる。布地のような二次元的な繊維構造物を張力下で処理する場合、張力は一方向だけでなく、直交する二方向にかけることも可能である。
In the present invention, the fiber structure may be washed after the contact treatment described above.
The cleaning medium is preferably a medium that is compatible with the ionic liquid and does not dissolve the fiber structure, and the same solvent as the above-mentioned “other solvent” can be used. Moreover, when using the mixed medium of an ionic liquid and another solvent as a contact processing medium, it is preferable to use the same solvent as the other solvent at the time of contact processing for washing | cleaning from the point of solvent collection | recovery.
As a cleaning method, normal cleaning means such as immersion, passage through a cleaning tank, and spraying can be used. Also in this case, the treatment can be performed under tension or under tension. When a two-dimensional fiber structure such as a fabric is processed under tension, the tension can be applied not only in one direction but also in two orthogonal directions.

接触処理および必要に応じて行われる洗浄処理後、繊維構造体を乾燥させる。乾燥手法は任意であり、公知の各種方法を用いることができる。具体例としては、ヒートドラム、熱風、赤外線、天日による方法などが挙げられる。   After the contact treatment and the cleaning treatment performed as necessary, the fiber structure is dried. Any drying method can be used, and various known methods can be used. Specific examples include a heat drum, hot air, infrared rays, and a method using sunlight.

以下、合成例、実施例および比較例を挙げて、本発明をより具体的に説明するが、本発明は、下記の実施例に限定されるものではない。   EXAMPLES Hereinafter, although a synthesis example, an Example, and a comparative example are given and this invention is demonstrated more concretely, this invention is not limited to the following Example.

[合成例1]N,N−ジエチル−N−メチル−N−2−メトキシエチルアンモニウムクロライドの合成
Synthesis Example 1 Synthesis of N, N-diethyl-N-methyl-N-2-methoxyethylammonium chloride

ジエチルアミン(関東化学(株)製)71質量部と2−メトキシエチルクロライド(関東化学(株)製)88質量部とを混合し、オートクレーブ中、120℃で24時間反応させた。この時、最高到達内圧は4.5kgf/cm2(0.44MPa)であった。24時間後、析出した結晶を、テトラフヒドロフラン(和光純薬工業(株)製)を用いて洗浄して濾別した。濾液を常圧蒸留し、沸点135℃付近の留分を81質量部得た。この化合物が2−メトキシエチルジエチルアミンであることを核磁気共鳴スペクトル(NMR)により確認した。
続いて、オートクレーブ中にてテトラヒドロフラン(和光純薬工業(株)製)80質量部に2−メトキシエチルジエチルアミン9.0質量部を溶解し、攪拌を行いつつ15%塩化メチルガス(窒素中、日本特殊化学工業(株)製)を導入した。内圧が4kgf/cm2(0.39MPa)になるまで塩化メチルガスを加えた後、3時間かけて徐々に60℃まで昇温した。この時、最高到達内圧は5.4kgf/cm2(0.53MPa)であった。この後、攪拌を続けながら放冷し、析出した結晶を濾別した。この結晶を減圧下乾燥し、目的物であるN,N−ジエチル−N−メチル−N−2−メトキシエチルアンモニウムクロライド(以下、DEMEClという)を12質量部得た。
71 parts by mass of diethylamine (manufactured by Kanto Chemical Co., Ltd.) and 88 parts by mass of 2-methoxyethyl chloride (manufactured by Kanto Chemical Co., Ltd.) were mixed and reacted at 120 ° C. for 24 hours in an autoclave. At this time, the maximum ultimate internal pressure was 4.5 kgf / cm 2 (0.44 MPa). After 24 hours, the precipitated crystals were washed with tetrafhydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) and separated by filtration. The filtrate was distilled at atmospheric pressure to obtain 81 parts by mass of a fraction having a boiling point of around 135 ° C. It was confirmed by nuclear magnetic resonance spectrum (NMR) that this compound was 2-methoxyethyldiethylamine.
Subsequently, 9.0 parts by mass of 2-methoxyethyldiethylamine was dissolved in 80 parts by mass of tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) in an autoclave, and 15% methyl chloride gas (in nitrogen, Nippon Special Corporation) was stirred. Chemical Industry Co., Ltd.) was introduced. Methyl chloride gas was added until the internal pressure reached 4 kgf / cm 2 (0.39 MPa), and then the temperature was gradually raised to 60 ° C. over 3 hours. At this time, the maximum internal pressure was 5.4 kgf / cm 2 (0.53 MPa). Thereafter, the mixture was allowed to cool while stirring, and the precipitated crystals were separated by filtration. The crystals were dried under reduced pressure to obtain 12 parts by mass of N, N-diethyl-N-methyl-N-2-methoxyethylammonium chloride (hereinafter referred to as DEMECl) which is the target product.

[合成例2]N,N−ジエチル−N−メチル−N−2−メトキシエチルアンモニウムチオシアネートの合成
Synthesis Example 2 Synthesis of N, N-diethyl-N-methyl-N-2-methoxyethylammonium thiocyanate

合成例1の中間生成物である2−メトキシエチルジエチルアミン(20g:152.4mmol)を、テトラフヒドロフラン(和光純薬工業(株)製)中で攪拌し、これにヨウ化メチル[シグマアルドリッチジャパン(株)製](11.29ml:182.9mmol)を滴下した。室温にて約24時間攪拌した後、析出した結晶を濾別した。この結晶を減圧下乾燥し、目的物であるN,N−ジエチル−N−メチル−N−2−メトキシエチルアンモニウムヨーダイド(以下、DEMEIという)を得た。構造確認は核磁気共鳴スペクトル(NMR)により行った。次に文献(J. M. Pringle et al., Journal of Materials Chemistry, 2002, vol.12, p3475-3480)記載の方法に準じて、DEMEIのI-イオンをSCN-イオンに置換し、N,N−ジエチル−N−メチル−N−2−メトキシエチルアンモニウムチオシアネート(DEMESCN)を得た。構造確認は核磁気共鳴スペクトル(NMR)により行った。 2-Methoxyethyldiethylamine (20 g: 152.4 mmol), which is an intermediate product of Synthesis Example 1, was stirred in tetrahydrohydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.), and methyl iodide [Sigma Aldrich] was stirred therein. Japan Co., Ltd.] (11.29 ml: 182.9 mmol) was added dropwise. After stirring at room temperature for about 24 hours, the precipitated crystals were separated by filtration. The crystals were dried under reduced pressure to obtain the target N, N-diethyl-N-methyl-N-2-methoxyethylammonium iodide (hereinafter referred to as DEMEI). The structure was confirmed by nuclear magnetic resonance spectrum (NMR). Next, according to the method described in the literature (JM Pringle et al., Journal of Materials Chemistry, 2002, vol. 12, p3475-3480), the I ion of DEMEI was substituted with the SCN ion, and N, N-diethyl was obtained. -N-methyl-N-2-methoxyethylammonium thiocyanate (DEMESCN) was obtained. The structure was confirmed by nuclear magnetic resonance spectrum (NMR).

[合成例3]N,N−ジエチル−N−(2−メトキシエチル)−N−(2−プロペニル)アンモニウムクロライドの合成
Synthesis Example 3 Synthesis of N, N-diethyl-N- (2-methoxyethyl) -N- (2-propenyl) ammonium chloride

合成例1の中間生成物である2−メトキシエチルジエチルアミン(3.43g:0.026mol)をアセトニトリル中で攪拌し、これに3−クロロプロペン[東京化成工業(株)製](2.6ml:0.031mol)を滴下した。暗所、室温にて約72時間攪拌した後、真空ポンプで原料および溶媒を除去し、N,N−ジエチル−N−(2−メトキシエチル)−N−(2−プロペニル)アンモニウムクロライド(以下、DEMPClという)を得た。構造確認は核磁気共鳴スペクトル(NMR)により行った。   2-Methoxyethyldiethylamine (3.43 g: 0.026 mol), an intermediate product of Synthesis Example 1, was stirred in acetonitrile, and 3-chloropropene [manufactured by Tokyo Chemical Industry Co., Ltd.] (2.6 ml: 0.031 mol) was added dropwise. After stirring in the dark at room temperature for about 72 hours, the raw materials and solvent were removed with a vacuum pump, and N, N-diethyl-N- (2-methoxyethyl) -N- (2-propenyl) ammonium chloride (hereinafter, Obtained DEMPCl). The structure was confirmed by nuclear magnetic resonance spectrum (NMR).

[実施例1]
50mlサンプル瓶に、合成例1で得られたDEMECl(融点59〜60℃)(含水率1400ppm)30mlを入れ、乾燥機(Yamato CONSTANT TEMPERATURE OVEN DN−42)内に投入し、100℃で加熱して融解させた後、これに50番手3撚綿糸(カネボウカタン糸)(カネボウ繊維(株)製)30cmを1秒間浸漬させた。その後、糸を水で数回洗浄し、充分に乾燥させ目的の糸を得た。糸の質量は処理前後で不変であった。
[Example 1]
30 ml of DEMECl (melting point: 59 to 60 ° C.) (water content: 1400 ppm) obtained in Synthesis Example 1 is put into a 50 ml sample bottle, put into a dryer (Yamato CONSTANT TEMPERATURE OPEN DN-42), and heated at 100 ° C. Then, 50 cm, 3 twisted cotton yarn (Kanebo Katan Yarn) (manufactured by Kanebo Fibers Co., Ltd.) 30 cm was immersed in this for 1 second. Thereafter, the yarn was washed several times with water and sufficiently dried to obtain the intended yarn. The yarn mass was unchanged before and after treatment.

[実施例2]
浸漬時間を1秒間から30秒間に代えた以外は実施例1と同様にして目的の糸を得た。糸の質量は処理前後で不変であった。
[Example 2]
The target yarn was obtained in the same manner as in Example 1 except that the dipping time was changed from 1 second to 30 seconds. The yarn mass was unchanged before and after treatment.

[実施例3]
浸漬時間を1秒間から60秒間に代えた以外は実施例1と同様にして目的の糸を得た。糸の質量は処理前後で不変であった。
[Example 3]
The target yarn was obtained in the same manner as in Example 1 except that the dipping time was changed from 1 second to 60 seconds. The yarn mass was unchanged before and after treatment.

[実施例4]
浸漬時間を1秒間から180秒間に代えた以外は実施例1と同様にして目的の糸を得た。糸の質量は処理前後で不変であった。
[Example 4]
The target yarn was obtained in the same manner as in Example 1 except that the dipping time was changed from 1 second to 180 seconds. The yarn mass was unchanged before and after treatment.

[実施例5]
DEMEClを1−ブチル−3−メチルイミダゾリウムクロライド(BMIMCl、融点73℃)(ACROS ORGANICS社製)(含水率3670ppm)に代えた以外は実施例1と同様にして目的の糸を得た。糸の質量は処理前後で不変であった。
[Example 5]
A target yarn was obtained in the same manner as in Example 1 except that DEMECl was replaced with 1-butyl-3-methylimidazolium chloride (BMIMCl, melting point 73 ° C.) (manufactured by ACROS ORGANICS) (water content 3670 ppm). The yarn mass was unchanged before and after treatment.

[実施例6]
浸漬時間を1秒間から30秒間に代えた以外は実施例5と同様にして目的の糸を得た。糸の質量は処理前後で不変であった。
[Example 6]
The target yarn was obtained in the same manner as in Example 5 except that the dipping time was changed from 1 second to 30 seconds. The yarn mass was unchanged before and after treatment.

[実施例7]
浸漬時間を1秒間から180秒間に代えた以外は実施例5と同様にして目的の糸を得た。糸の質量は処理前後で不変であった。
[Example 7]
The target yarn was obtained in the same manner as in Example 5 except that the dipping time was changed from 1 second to 180 seconds. The yarn mass was unchanged before and after treatment.

[実施例8]
DEMEClを含水率35000ppmのものに代えた以外は実施例1と同様にして目的の糸を得た。糸の質量は処理前後で不変であった。
[Example 8]
The target yarn was obtained in the same manner as in Example 1 except that DEMECl was replaced with a water content of 35000 ppm. The yarn mass was unchanged before and after treatment.

[実施例9]
浸漬時間を1秒間から30秒間に代えた以外は実施例8と同様にして目的の糸を得た。糸の質量は処理前後で不変であった。
[Example 9]
The target yarn was obtained in the same manner as in Example 8 except that the dipping time was changed from 1 second to 30 seconds. The yarn mass was unchanged before and after treatment.

[実施例10]
浸漬時間を1秒間から60秒間に代えた以外は実施例8と同様にして目的の糸を得た。糸の質量は処理前後で不変であった。
[Example 10]
The target yarn was obtained in the same manner as in Example 8 except that the dipping time was changed from 1 second to 60 seconds. The yarn mass was unchanged before and after treatment.

[実施例11]
浸漬時間を1秒間から180秒間に代えた以外は実施例8と同様にして目的の糸を得た。糸の質量は処理前後で不変であった。
[Example 11]
The target yarn was obtained in the same manner as in Example 8 except that the dipping time was changed from 1 second to 180 seconds. The yarn mass was unchanged before and after treatment.

[実施例12]
DEMEClを含水率10質量%(100000ppm)のものに代えた以外は実施例2と同様にして目的の糸を得た。糸の質量は処理前後で不変であった。
[Example 12]
A target yarn was obtained in the same manner as in Example 2 except that DEMECl was replaced with one having a water content of 10% by mass (100,000 ppm). The yarn mass was unchanged before and after treatment.

[実施例13]
浸漬時間を30秒間から60秒間に代えた以外は実施例12と同様にして目的の糸を得た。糸の質量は処理前後で不変であった。
[Example 13]
The target yarn was obtained in the same manner as in Example 12 except that the dipping time was changed from 30 seconds to 60 seconds. The yarn mass was unchanged before and after treatment.

[実施例14]
浸漬時間を30秒間から180秒間に代えた以外は実施例12と同様にして目的の糸を得た。糸の質量は処理前後で不変であった。
[Example 14]
The target yarn was obtained in the same manner as in Example 12 except that the dipping time was changed from 30 seconds to 180 seconds. The yarn mass was unchanged before and after treatment.

[実施例15]
DEMEClを含水率20質量%(200000ppm)のものに代えた以外は実施例2と同様にして目的の糸を得た。糸の質量は処理前後で不変であった。
[Example 15]
A target yarn was obtained in the same manner as in Example 2 except that DEMECl was replaced with one having a water content of 20% by mass (200000 ppm). The yarn mass was unchanged before and after treatment.

[実施例16]
浸漬時間を30秒間から60秒間に代えた以外は実施例15と同様にして目的の糸を得た。糸の質量は処理前後で不変であった。
[Example 16]
The target yarn was obtained in the same manner as in Example 15 except that the dipping time was changed from 30 seconds to 60 seconds. The yarn mass was unchanged before and after treatment.

[実施例17]
DEMEClをDEMPCl(含水率340.4ppm)に代え、温度を110℃に代えた以外は実施例1と同様にして目的の糸を得た。糸の質量は処理前後で不変であった。
[Example 17]
The target yarn was obtained in the same manner as in Example 1 except that DEMECl was replaced with DEMCl (water content 340.4 ppm) and the temperature was changed to 110 ° C. The yarn mass was unchanged before and after treatment.

[実施例18]
浸漬時間を1秒間から30秒間に代えた以外は実施例17と同様にして目的の糸を得た。糸の質量は処理前後で不変であった。
[Example 18]
A target yarn was obtained in the same manner as in Example 17 except that the dipping time was changed from 1 second to 30 seconds. The yarn mass was unchanged before and after treatment.

[実施例19]
浸漬時間を1秒間から60秒間に代えた以外は実施例17と同様にして目的の糸を得た。糸の質量は処理前後で不変であった。
[Example 19]
A target yarn was obtained in the same manner as in Example 17 except that the dipping time was changed from 1 second to 60 seconds. The yarn mass was unchanged before and after treatment.

[実施例20]
浸漬時間を1秒間から180秒間に代えた以外は実施例17と同様にして目的の糸を得た。糸の質量は処理前後で不変であった。
[Example 20]
The target yarn was obtained in the same manner as in Example 17 except that the dipping time was changed from 1 second to 180 seconds. The yarn mass was unchanged before and after treatment.

[実施例21]
DEMEClを、DEMEClとDEMESCNとの混合物(DEMECl:DEMESCN=4:6(モル比率)、含水率1718ppm)に代えた以外は実施例1と同様にして目的の糸を得た。糸の質量は処理前後で不変であった。
[Example 21]
A target yarn was obtained in the same manner as in Example 1 except that DEMECl was changed to a mixture of DEMECl and DEMESCN (DEMECl: DEMESCN = 4: 6 (molar ratio), moisture content 1718 ppm). The yarn mass was unchanged before and after treatment.

[実施例22]
浸漬時間を1秒間から30秒間に代えた以外は実施例21と同様にして目的の糸を得た。糸の質量は処理前後で不変であった。
[Example 22]
The target yarn was obtained in the same manner as in Example 21 except that the dipping time was changed from 1 second to 30 seconds. The yarn mass was unchanged before and after treatment.

[実施例23]
浸漬時間を1秒間から60秒間に代えた以外は実施例21と同様にして目的の糸を得た。糸の質量は処理前後で不変であった。
[Example 23]
The target yarn was obtained in the same manner as in Example 21 except that the dipping time was changed from 1 second to 60 seconds. The yarn mass was unchanged before and after treatment.

[実施例24]
浸漬時間を1秒間から180秒間に代えた以外は実施例21と同様にして目的の糸を得た。糸の質量は処理前後で不変であった。
[Example 24]
The target yarn was obtained in the same manner as in Example 21 except that the dipping time was changed from 1 second to 180 seconds. The yarn mass was unchanged before and after treatment.

[実施例25]
浸漬時間を1秒間から1200秒間に代えた以外は実施例21と同様にして目的の糸を得た。糸の質量は処理前後で不変であった。
[Example 25]
The target yarn was obtained in the same manner as in Example 21 except that the dipping time was changed from 1 second to 1200 seconds. The yarn mass was unchanged before and after treatment.

[比較例1]
DEMEClをN−メチルモルホリンオキシド(NMMO・H2O、含水率155800ppm)(和光純薬工業(株)製)に代えた以外は実施例1と同様にして目的の糸を得た。
[Comparative Example 1]
A target yarn was obtained in the same manner as in Example 1 except that DEMECl was replaced with N-methylmorpholine oxide (NMMO · H 2 O, water content 155800 ppm) (manufactured by Wako Pure Chemical Industries, Ltd.).

[比較例2]
浸漬時間を1秒間から30秒間に代えた以外は比較例1と同様にして目的の糸を得た。
[Comparative Example 2]
A target yarn was obtained in the same manner as in Comparative Example 1 except that the dipping time was changed from 1 second to 30 seconds.

[比較例3]
浸漬時間を1秒間から60秒間に代えた以外は比較例1と同様にして目的の糸を得た。
[Comparative Example 3]
A target yarn was obtained in the same manner as in Comparative Example 1 except that the dipping time was changed from 1 second to 60 seconds.

[比較例4]
浸漬時間を1秒間から180秒間に代えた以外は比較例1と同様にして目的の糸を得た。
[Comparative Example 4]
A target yarn was obtained in the same manner as in Comparative Example 1 except that the dipping time was changed from 1 second to 180 seconds.

[実施例26]
50番手3撚綿糸を48番手単糸綿/ポリエステル混紡糸(50%/50%)(日清紡績(株)製)に代えた以外は実施例1と同様にして目的の糸を得た。糸の質量は処理前後で不変であった。
[Example 26]
A target yarn was obtained in the same manner as in Example 1 except that the 50th single-twisted cotton yarn was replaced with 48th single yarn cotton / polyester blended yarn (50% / 50%) (Nisshinbo Co., Ltd.). The yarn mass was unchanged before and after treatment.

[実施例27]
浸漬時間を1秒間から30秒間に代えた以外は実施例26と同様にして目的の糸を得た。糸の質量は処理前後で不変であった。
[Example 27]
A target yarn was obtained in the same manner as in Example 26 except that the dipping time was changed from 1 second to 30 seconds. The yarn mass was unchanged before and after treatment.

[実施例28]
浸漬時間を1秒間から60秒間に代えた以外は実施例26と同様にして目的の糸を得た。糸の質量は処理前後で不変であった。
[Example 28]
The target yarn was obtained in the same manner as in Example 26 except that the dipping time was changed from 1 second to 60 seconds. The yarn mass was unchanged before and after treatment.

[実施例29]
浸漬時間を1秒間から180秒間に代えた以外は実施例26と同様にして目的の糸を得た。糸の質量は処理前後で不変であった。
[Example 29]
A target yarn was obtained in the same manner as in Example 26 except that the dipping time was changed from 1 second to 180 seconds. The yarn mass was unchanged before and after treatment.

[比較例5]
DEMEClをNMMO・H2O(含水率155800ppm)に代えた以外は実施例26と同様にして目的の糸を得た。
[Comparative Example 5]
A target yarn was obtained in the same manner as in Example 26 except that DEMECl was changed to NMMO.H 2 O (water content 155800 ppm).

[実施例30]
50番手3撚綿糸を50番手絹糸((株)東神製)に代えた以外は実施例1と同様にして目的の糸を得た。糸の質量は処理前後で不変であった。
[Example 30]
A target yarn was obtained in the same manner as in Example 1 except that the 50th count 3 twisted cotton yarn was replaced with 50th count silk yarn (manufactured by Toshin Co., Ltd.). The yarn mass was unchanged before and after treatment.

[実施例31]
浸漬時間を1秒間から30秒間に代えた以外は実施例30と同様にして目的の糸を得た。糸の質量は処理前後で不変であった。
[Example 31]
The target yarn was obtained in the same manner as in Example 30 except that the dipping time was changed from 1 second to 30 seconds. The yarn mass was unchanged before and after treatment.

[実施例32]
浸漬時間を1秒間から60秒間に代えた以外は実施例30と同様にして目的の糸を得た。糸の質量は処理前後で不変であった。
[Example 32]
The target yarn was obtained in the same manner as in Example 30 except that the dipping time was changed from 1 second to 60 seconds. The yarn mass was unchanged before and after treatment.

[比較例6]
DEMEClをNMMO・H2O(含水率155800ppm)に代えた以外は実施例30と同様にして目的の糸を得た。
[Comparative Example 6]
A target yarn was obtained in the same manner as in Example 30 except that DEMECl was changed to NMMO.H 2 O (water content: 155800 ppm).

[実施例33]
50番手3撚綿糸を14番手羊毛糸(日本毛織(株)製)に代えた以外は実施例1と同様にして目的の糸を得た。糸の質量は処理前後で不変であった。
[Example 33]
The target yarn was obtained in the same manner as in Example 1 except that the 50th 3 twisted cotton yarn was replaced with the 14th wool yarn (manufactured by Nippon Woolen Co., Ltd.). The yarn mass was unchanged before and after treatment.

[実施例34]
浸漬時間を1秒間から60秒間に代えた以外は実施例33と同様にして目的の糸を得た。糸の質量は処理前後で不変であった。
[Example 34]
A target yarn was obtained in the same manner as in Example 33 except that the dipping time was changed from 1 second to 60 seconds. The yarn mass was unchanged before and after treatment.

[実施例35]
浸漬時間を1秒間から180秒間に代えた以外は実施例33と同様にして目的の糸を得た。糸の質量は処理前後で不変であった。
[Example 35]
A target yarn was obtained in the same manner as in Example 33 except that the dipping time was changed from 1 second to 180 seconds. The yarn mass was unchanged before and after treatment.

[比較例7]
DEMEClをNMMO・H2O(含水率155800ppm)に代えた以外は実施例33と同様にして目的の糸を得た。
[Comparative Example 7]
The target yarn was obtained in the same manner as in Example 33 except that DEMECl was replaced with NMMO.H 2 O (water content 155800 ppm).

上記実施例1〜35、および比較例1〜7で得られた各繊維構造体について、風合い、毛羽の増減を目視にて観察した結果、および引張強度を下記手法により測定し、未処理繊維構造体と比較した結果を表1に示す。
[引張強度]
インストロン万能試験機(5582型)(INSTRON社製)を使用して、つかみ間距離25cm,引張速度30cm/minとし、JIS L1095−9.5に準じて行った。
なお、強度比は、未処理の糸の強度を1として表した。
For each of the fiber structures obtained in Examples 1 to 35 and Comparative Examples 1 to 7, the texture, the result of visually observing the increase and decrease in fluff, and the tensile strength were measured by the following method, and the untreated fiber structure Table 1 shows the result of comparison with the body.
[Tensile strength]
Using an Instron universal testing machine (model 5582) (manufactured by INSTRON), the distance between the grips was 25 cm and the tensile speed was 30 cm / min, and the test was performed in accordance with JIS L1095-9.5.
In addition, the strength ratio was expressed by assuming the strength of the untreated yarn as 1.

表1に示されるように、実施例1〜35で得られた繊維構造体は、イオン液体による接触処理により風合いが変化し、かつ、毛羽が減少していることがわかる。また、比較例のNMMOにより処理された繊維構造体はすべて強度が低下しているが、実施例1〜35で得られた繊維構造体は全て強度減少がなく、場合によっては10%も強度が向上していることがわかる。   As shown in Table 1, it can be seen that the textures of the fiber structures obtained in Examples 1 to 35 were changed by the contact treatment with the ionic liquid and the fluff was reduced. Moreover, although the fiber structures processed by NMMO of the comparative examples are all reduced in strength, the fiber structures obtained in Examples 1 to 35 are not reduced in strength, and in some cases, the strength is 10%. It can be seen that it has improved.

[実施例36]
50番手3撚綿糸を綿ガーゼ(日清紡績(株)製)に代えた以外は実施例1と同様にして目的の繊維構造体を得た。繊維構造体の質量は処理前後で不変であった。
[Example 36]
A target fiber structure was obtained in the same manner as in Example 1 except that the 50th count 3 twisted cotton yarn was replaced with cotton gauze (Nisshinbo Co., Ltd.). The mass of the fiber structure was unchanged before and after treatment.

[実施例37]
浸漬時間を1秒間から30秒間に代えた以外は実施例36と同様にして目的の繊維構造体を得た。繊維構造体の質量は処理前後で不変であった。
[Example 37]
A target fiber structure was obtained in the same manner as in Example 36 except that the immersion time was changed from 1 second to 30 seconds. The mass of the fiber structure was unchanged before and after treatment.

[実施例38]
浸漬時間を1秒間から60秒間に代えた以外は実施例36と同様にして目的の繊維構造体を得た。繊維構造体の質量は処理前後で不変であった。
[Example 38]
A target fiber structure was obtained in the same manner as in Example 36 except that the immersion time was changed from 1 second to 60 seconds. The mass of the fiber structure was unchanged before and after treatment.

[比較例8]
DEMEClをNMMO・H2O(含水率155800ppm)に代えた以外は実施例36と同様にして目的の繊維構造体を得た。
[Comparative Example 8]
A target fiber structure was obtained in the same manner as in Example 36 except that DEMECl was replaced with NMMO · H 2 O (water content: 155800 ppm).

[比較例9]
浸漬時間を1秒間から30秒間に代えた以外は比較例8と同様にして目的の繊維構造体を得た。
[Comparative Example 9]
A target fiber structure was obtained in the same manner as in Comparative Example 8 except that the immersion time was changed from 1 second to 30 seconds.

[比較例10]
浸漬時間を1秒間から60秒間に代えた以外は比較例8と同様にして目的の繊維構造体を得た。
[Comparative Example 10]
A target fiber structure was obtained in the same manner as in Comparative Example 8 except that the immersion time was changed from 1 second to 60 seconds.

[実施例39]
50番手3撚綿糸をろ紙((有)桐山製作所製)に代えた以外は実施例1と同様にして目的の繊維構造体を得た。繊維構造体の質量は処理前後で不変であった。
[Example 39]
The target fiber structure was obtained in the same manner as in Example 1 except that the 50th count 3 twisted cotton yarn was replaced with filter paper (manufactured by Kiriyama Seisakusho). The mass of the fiber structure was unchanged before and after treatment.

[実施例40]
浸漬時間を1秒間から30秒間に代えた以外は実施例39と同様にして目的の繊維構造体を得た。繊維構造体の質量は処理前後で不変であった。
[Example 40]
A target fiber structure was obtained in the same manner as in Example 39 except that the immersion time was changed from 1 second to 30 seconds. The mass of the fiber structure was unchanged before and after treatment.

[実施例41]
浸漬時間を1秒間から60秒間に代えた以外は実施例39と同様にして目的の繊維構造体を得た。繊維構造体の質量は処理前後で不変であった。
[Example 41]
A target fiber structure was obtained in the same manner as in Example 39 except that the immersion time was changed from 1 second to 60 seconds. The mass of the fiber structure was unchanged before and after treatment.

[実施例42]
浸漬時間を1秒間から180秒間に代えた以外は実施例39と同様にして目的の繊維構造体を得た。繊維構造体の質量は処理前後で不変であった。
[Example 42]
A target fiber structure was obtained in the same manner as in Example 39 except that the immersion time was changed from 1 second to 180 seconds. The mass of the fiber structure was unchanged before and after treatment.

[比較例11]
DEMEClをNMMO・H2O(含水率155800ppm)に代えた以外は実施例39と同様にして目的の繊維構造体を得た。
[Comparative Example 11]
A target fiber structure was obtained in the same manner as in Example 39 except that DEMECl was replaced with NMMO · H 2 O (water content: 155800 ppm).

[比較例12]
浸漬時間を1秒間から30秒間に代えた以外は比較例11と同様にして目的の繊維構造体を得た。
[Comparative Example 12]
A target fiber structure was obtained in the same manner as in Comparative Example 11 except that the immersion time was changed from 1 second to 30 seconds.

[比較例13]
浸漬時間を1秒間から60秒間に代えた以外は比較例11と同様にして目的の繊維構造体を得た。
[Comparative Example 13]
A target fiber structure was obtained in the same manner as in Comparative Example 11 except that the immersion time was changed from 1 second to 60 seconds.

[比較例14]
浸漬時間を1秒間から180秒間に代えた以外は比較例11と同様にして目的の繊維構造体を得た。
[Comparative Example 14]
A target fiber structure was obtained in the same manner as in Comparative Example 11 except that the immersion time was changed from 1 second to 180 seconds.

上記各実施例36〜42および比較例8〜14で得られた各繊維構造体について、風合い、毛羽の増減(実施例36〜38、比較例8〜10について)を目視にて観察するとともに、引張強度を測定し、未処理繊維構造体と比較した。なお、引張強度はインストロン万能試験機(5582型)(INSTRON社製)を使用して、JIS P8113、JIS L1096−8.12.1(B法)に準じて行った。強度比は、未処理のガーゼおよび布の強度を1として表した。また、実施例38については剛軟度を下記手法により測定した。結果を表2に示す。
[剛軟度]
ガ―レ式試験機を用いて、試料1×1.5インチ(縦×横)をJIS L 1096 A法により測定した。なお、未処理綿ガーゼの剛軟度は0.1mNであった。
For each of the fiber structures obtained in Examples 36 to 42 and Comparative Examples 8 to 14, the texture and fluff increase / decrease (for Examples 36 to 38 and Comparative Examples 8 to 10) were visually observed, Tensile strength was measured and compared to an untreated fiber structure. The tensile strength was measured according to JIS P8113 and JIS L1096-8.12.1 (Method B) using an Instron universal testing machine (model 5582) (manufactured by INSTRON). The strength ratio was expressed by taking the strength of untreated gauze and fabric as 1. In Example 38, the bending resistance was measured by the following method. The results are shown in Table 2.
[Bending softness]
A 1 × 1.5 inch sample (length × width) was measured by a JIS L 1096 A method using a Galley tester. The bending resistance of the untreated cotton gauze was 0.1 mN.

表2に示されるように、実施例36〜42で得られた繊維構造体は、イオン液体による処理により風合いが変化し、かつ、毛羽が減少していることがわかる。また、実施例36〜42で得られた繊維構造体の強度は、全く減少が見られなかっただけでなく、ガーゼの横糸方向を除き、10%以上向上していることがわかる。   As shown in Table 2, it can be seen that the textures of the fiber structures obtained in Examples 36 to 42 are changed in texture by the treatment with the ionic liquid and the fluff is reduced. Moreover, it turns out that the intensity | strength of the fiber structure obtained in Examples 36-42 not only did not reduce at all, but also improved 10% or more except the weft direction of gauze.

上記実施例5、12、31、35、37、41、および比較例1で得られた繊維構造体、並びに未処理の50番手3撚綿糸、50番手絹糸、14番手羊毛糸、綿ガーゼ、およびろ紙を、それぞれSEM(S−4800、(株)日立製作所製)にて撮影した電子顕微鏡写真を図1〜12に示す。   The fiber structures obtained in Examples 5, 12, 31, 35, 37, 41 and Comparative Example 1, and untreated 50-th count 3 twisted cotton yarn, 50-th count silk yarn, 14th-number wool yarn, cotton gauze, and The electron micrograph which each image | photographed the filter paper in SEM (S-4800, Hitachi Ltd. make) is shown in FIGS.

未処理の50番手3撚綿糸(カネボウ繊維(株)製)の電子顕微鏡写真を示す図である。It is a figure which shows the electron micrograph of unprocessed 50 count 3 twisted cotton yarn (made by Kanebo Fiber Co., Ltd.). 実施例5の綿糸の電子顕微鏡写真を示す図である。It is a figure which shows the electron micrograph of the cotton yarn of Example 5. 実施例12の綿糸の電子顕微鏡写真を示す図である。It is a figure which shows the electron micrograph of the cotton thread of Example 12. 比較例1の綿糸の電子顕微鏡写真を示す図である。It is a figure which shows the electron micrograph of the cotton thread of the comparative example 1. 未処理の50番手絹糸((株)東神製)の電子顕微鏡写真を示す図である。It is a figure which shows the electron micrograph of an unprocessed 50th count silk thread (product made from Toshin). 実施例31の絹糸の電子顕微鏡写真を示す図である。FIG. 4 is an electron micrograph of the silk thread of Example 31. 未処理の14番手羊毛糸(日本毛織(株)製)の電子顕微鏡写真を示す図である。It is a figure which shows the electron micrograph of an unprocessed 14th-number wool yarn (made by Nippon woolen company). 実施例35の羊毛糸の電子顕微鏡写真を示す図である。It is a figure which shows the electron micrograph of the wool yarn of Example 35. 未処理の綿ガーゼ(日清紡績(株)製)の電子顕微鏡写真を示す図である。It is a figure which shows the electron micrograph of untreated cotton gauze (Nisshinbo Co., Ltd. product). 実施例37の綿ガーゼの電子顕微鏡写真を示す図である。It is a figure which shows the electron micrograph of the cotton gauze of Example 37. 未処理のろ紙((有)桐山製作所製)の電子顕微鏡写真を示す図である。It is a figure which shows the electron micrograph of untreated filter paper (made by Kiriyama Seisakusho). 実施例41のろ紙の電子顕微鏡写真を示す図である。FIG. 4 is an electron micrograph of the filter paper of Example 41.

Claims (12)

イオン液体に溶解または膨潤する高分子化合物からなる繊維状物を含有する繊維構造体を、イオン液体を含む媒体に接触させて前記繊維構造体の引張強度を向上させることを特徴とする繊維構造体の処理方法。   A fiber structure comprising a fibrous structure made of a polymer compound dissolved or swelled in an ionic liquid is brought into contact with a medium containing the ionic liquid to improve the tensile strength of the fiber structure. Processing method. 前記高分子化合物が、セルロースおよびタンパク質から選ばれる少なくとも1種である請求項1記載の繊維構造体の処理方法。   The method for treating a fiber structure according to claim 1, wherein the polymer compound is at least one selected from cellulose and protein. 前記イオン液体が、前記媒体中に80〜100質量%含まれる請求項1または2記載の繊維構造体の処理方法。   The processing method of the fiber structure according to claim 1 or 2, wherein the ionic liquid is contained in the medium in an amount of 80 to 100 mass%. 前記イオン液体が、ハロゲン化物イオン、総炭素数1〜3のカルボン酸イオン、過塩素酸イオン、擬ハロゲン化物イオン、シアナミドイオン、またはジシアナミドイオンをアニオン成分とする請求項1〜3のいずれか1項記載の繊維構造体の処理方法。   The ionic liquid according to any one of claims 1 to 3, wherein the ionic liquid comprises a halide ion, a carboxylate ion having 1 to 3 carbon atoms, a perchlorate ion, a pseudohalide ion, a cyanamide ion, or a dicyanamide ion. The processing method of the fiber structure of 1 item | term. 前記イオン液体が、下記式(1)で示される4級アンモニウム系イオン液体である請求項1〜4のいずれか1項記載の繊維構造体の処理方法。
〔式中、R1〜R3は、互いに同一でも異なっていてもよい、炭素数1〜5のアルキル基、炭素数3〜5のアルケニル基、またはR4−O−(CH2n−で表されるアルコキシアルキル基を示し、R4は、メチル基またはエチル基を示し、nは1または2である。Yは、ハロゲン化物イオン、総炭素数1〜3のカルボン酸イオン、過塩素酸イオン、擬ハロゲン化物イオン、シアナミドイオン、またはジシアナミドイオンを示す。〕
The method for treating a fiber structure according to any one of claims 1 to 4, wherein the ionic liquid is a quaternary ammonium-based ionic liquid represented by the following formula (1).
Wherein, R 1 to R 3 may be the same or different, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 3 to 5 carbon atoms, or R 4 -O- (CH 2) n , - R 4 represents a methyl group or an ethyl group, and n is 1 or 2. Y represents a halide ion, a carboxylate ion having 1 to 3 carbon atoms, a perchlorate ion, a pseudohalide ion, a cyanamide ion, or a dicyanamide ion. ]
前記R1〜R3が、互いに同一でも異なっていてもよい、メチル基、エチル基、アリル基、2−メチルアリル基、またはR4−O−(CH2n−で表されるアルコキシアルキル基(R4およびnは、前記と同じ意味を表す。)である請求項5記載の繊維構造体の処理方法。 An alkoxyalkyl group represented by a methyl group, an ethyl group, an allyl group, a 2-methylallyl group, or R 4 —O— (CH 2 ) n —, wherein R 1 to R 3 may be the same as or different from each other. The method for treating a fiber structure according to claim 5, wherein R 4 and n are as defined above. 前記イオン液体が、式(2)で示される請求項6記載の繊維構造体の処理方法。
〔式中、nおよびYは前記と同じ意味を表す。〕
The processing method of the fiber structure according to claim 6, wherein the ionic liquid is represented by the formula (2).
[Wherein, n and Y represent the same meaning as described above. ]
前記イオン液体が、式(3)で示される請求項7記載の繊維構造体の処理方法。
The method for treating a fiber structure according to claim 7, wherein the ionic liquid is represented by Formula (3).
前記接触が、0.01秒から120分間行われる請求項5〜8のいずれか1項記載の繊維構造体の処理方法。   The method for treating a fiber structure according to any one of claims 5 to 8, wherein the contact is performed for 0.01 seconds to 120 minutes. 前記イオン液体が、イミダゾリウムカチオンと、ハロゲン化物イオン、総炭素数1〜3のカルボン酸イオン、過塩素酸イオン、擬ハロゲン化物イオン、シアナミドイオン、またはジシアナミドイオンとからなるイミダゾリウム系イオン液体である請求項1〜4のいずれか1項記載の繊維構造体の処理方法。   The ionic liquid is composed of an imidazolium cation and a halide ion, a carboxylic acid ion having 1 to 3 carbon atoms, a perchlorate ion, a pseudohalide ion, a cyanamide ion, or a dicyanamide ion. The method for treating a fiber structure according to any one of claims 1 to 4. 前記接触が、0.01秒から60分間行われる請求項10記載の繊維構造体の処理方法。   The method for treating a fiber structure according to claim 10, wherein the contact is performed for 0.01 seconds to 60 minutes. 請求項1〜11のいずれか1項記載の処理方法で処理された繊維構造体。   The fiber structure processed by the processing method of any one of Claims 1-11.
JP2006133558A 2006-05-12 2006-05-12 Method for treating fiber structure Pending JP2007303033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006133558A JP2007303033A (en) 2006-05-12 2006-05-12 Method for treating fiber structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006133558A JP2007303033A (en) 2006-05-12 2006-05-12 Method for treating fiber structure

Publications (1)

Publication Number Publication Date
JP2007303033A true JP2007303033A (en) 2007-11-22

Family

ID=38837203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006133558A Pending JP2007303033A (en) 2006-05-12 2006-05-12 Method for treating fiber structure

Country Status (1)

Country Link
JP (1) JP2007303033A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010139426A1 (en) * 2009-06-02 2010-12-09 Carl Freudenberg Kg Solution comprising cellulose, process for preparation thereof and use thereof
JP2016138339A (en) * 2015-01-26 2016-08-04 国立大学法人高知大学 Method for producing paper having wet strength
JP2017155346A (en) * 2016-02-29 2017-09-07 国立大学法人高知大学 Method for producing granular substance holding paper
JP2019520487A (en) * 2016-05-03 2019-07-18 ナチュラル ファイバー ウェルディング インコーポレーテッド Method, process and apparatus for producing dyed and welded substrates
US20200173063A1 (en) * 2017-06-15 2020-06-04 Natural Fiber Welding, Inc. Methods, processes, and apparatuses for producing dyed and welded substrates
CN113896644A (en) * 2021-10-15 2022-01-07 河南省科学院高新技术研究中心 Method for preparing N-ethyl-N- (beta-methoxycarbonylethyl) aniline by using ionic liquid
US11555263B2 (en) 2014-10-06 2023-01-17 Natural Fiber Welding, Inc. Methods, processes, and apparatuses for producing dyed and welded substrates
US11766835B2 (en) 2016-03-25 2023-09-26 Natural Fiber Welding, Inc. Methods, processes, and apparatuses for producing welded substrates

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010139426A1 (en) * 2009-06-02 2010-12-09 Carl Freudenberg Kg Solution comprising cellulose, process for preparation thereof and use thereof
US11555263B2 (en) 2014-10-06 2023-01-17 Natural Fiber Welding, Inc. Methods, processes, and apparatuses for producing dyed and welded substrates
JP2016138339A (en) * 2015-01-26 2016-08-04 国立大学法人高知大学 Method for producing paper having wet strength
JP2017155346A (en) * 2016-02-29 2017-09-07 国立大学法人高知大学 Method for producing granular substance holding paper
US11766835B2 (en) 2016-03-25 2023-09-26 Natural Fiber Welding, Inc. Methods, processes, and apparatuses for producing welded substrates
JP2019520487A (en) * 2016-05-03 2019-07-18 ナチュラル ファイバー ウェルディング インコーポレーテッド Method, process and apparatus for producing dyed and welded substrates
JP7114484B2 (en) 2016-05-03 2022-08-08 ナチュラル ファイバー ウェルディング インコーポレーテッド Method, process and apparatus for producing dyed and welded substrates
US11920263B2 (en) 2016-05-03 2024-03-05 Natural Fiber Welding, Inc. Methods, processes, and apparatuses for producing dyed and welded substrates
US20200173063A1 (en) * 2017-06-15 2020-06-04 Natural Fiber Welding, Inc. Methods, processes, and apparatuses for producing dyed and welded substrates
CN113896644A (en) * 2021-10-15 2022-01-07 河南省科学院高新技术研究中心 Method for preparing N-ethyl-N- (beta-methoxycarbonylethyl) aniline by using ionic liquid

Similar Documents

Publication Publication Date Title
JP2007303033A (en) Method for treating fiber structure
JP4044155B2 (en) Processing method of solvent-spun cellulose fiber
JPH0849167A (en) Method for processing fiber
JPWO2008133269A1 (en) Ionic liquid and polymer treatment agent comprising this ionic liquid
JP2010111707A (en) Polymer treating agent and dope
TW201330880A (en) Cellulosic fibre with hydrophobic properties and high softness and process for production thereof
CN105061637A (en) Water-soluble antibacterial monocarboxylic chitosan as well as preparation method and application thereof
KR100789462B1 (en) The preparation method of chitosan crosslinked cellulose fabrics
JP2008266401A (en) Molded cellulose article and method for producing the same
JP5135120B2 (en) Modification process for cellulosic fiber materials
JP5912761B2 (en) Deodorized regenerated cellulose fiber, fiber structure using the same, and production method thereof
JP6150526B2 (en) Hygroscopic cellulose fiber and process for producing the same
JP5646572B2 (en) Modified fiber and method for producing the same
JP2010031434A5 (en)
JP3627411B2 (en) Textile structure and manufacturing method thereof
US7087093B2 (en) Modification of fibers or fabrics
TW311949B (en)
KR100927184B1 (en) Processing Method of Solvent-Spun Cellulose Fibers
JPH09158054A (en) Fiber structure and its production
EP3868789A1 (en) Method for preparing water repellent textile substrates and products thereof
CN115244245A (en) Method for treating regenerated cellulose fiber and treated regenerated cellulose fiber
JPH1181135A (en) Prevention of fibrillation of solvent-spun cellulose fiber
JP3593539B2 (en) Processing method for cellulose fiber products
JP2013044060A (en) Modified fiber
CN115216974A (en) Method for preparing antibacterial stain-resistant handbag by regenerating waste fiber cloth