JP2007291227A - Flame-retardant carbon fiber reinforced composite - Google Patents

Flame-retardant carbon fiber reinforced composite Download PDF

Info

Publication number
JP2007291227A
JP2007291227A JP2006120425A JP2006120425A JP2007291227A JP 2007291227 A JP2007291227 A JP 2007291227A JP 2006120425 A JP2006120425 A JP 2006120425A JP 2006120425 A JP2006120425 A JP 2006120425A JP 2007291227 A JP2007291227 A JP 2007291227A
Authority
JP
Japan
Prior art keywords
phosphorus
epoxy resin
carbon fiber
resin
reinforced composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006120425A
Other languages
Japanese (ja)
Inventor
Shuya Shinohara
周也 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohto Kasei Co Ltd
Original Assignee
Tohto Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohto Kasei Co Ltd filed Critical Tohto Kasei Co Ltd
Priority to JP2006120425A priority Critical patent/JP2007291227A/en
Publication of JP2007291227A publication Critical patent/JP2007291227A/en
Pending legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flame-retardant carbon fiber reinforced composite which contains no halogen atom in a matrix resin, does not generate a harmful gas component in the case of fire, has excellent flame retardancy, and excellent in mechanical properties. <P>SOLUTION: The flame-retardant carbon fiber reinforced composite comprises a phosphorus-containing epoxy resin (A), an epoxy resin (B) containing no phosphorus, an epoxy resin-curing agent (C), and a carbon fiber (D). The content of phosphorus in the matrix resin containing (A), (B), and (C) as essential components is 0.4 to 5.0 wt.%. The phosphorus-containing epoxy resin (A) is a reaction product of a specific phosphorus-containing compound with an epoxy resin. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はそのマトリックス樹脂中にハロゲン原子を含有せず、火災時に有害なガス成分を発生する事がなく、優れた難燃性を有し、機械特性に優れた、炭素繊維強化複合材料を提供するものであり、レジャー及び生活関連用品、自動車、車両、船舶及び航空機等の交通関連用品、一般工業及び産業資材、電子・電気関連資材として広範囲の利用分野で使用される難燃性炭素繊維強化複合材料に関するものである。   The present invention provides a carbon fiber reinforced composite material that does not contain halogen atoms in its matrix resin, does not generate harmful gas components in the event of a fire, has excellent flame retardancy, and has excellent mechanical properties. Reinforced flame retardant carbon fiber used in a wide range of fields such as leisure and life-related products, transportation-related products such as automobiles, vehicles, ships and aircraft, general industrial and industrial materials, and electronic / electrical materials It relates to composite materials.

炭素繊維とマトリックス樹脂からなる炭素繊維強化複合材料は、機械特性、熱的特性に優れ、釣り竿、ゴルフシャフト、テニスラッケト等のレジャー用品、プロペラシャフト、エンジンフード、スポイラー等の自動車部品、工業用ローラー、圧力容器等の工業用部品、電車車体、座席等の鉄道車両、パソコン筐体等の電子材料、船舶、航空機等さまざまな用途に使用されている。   Carbon fiber reinforced composite material consisting of carbon fiber and matrix resin is excellent in mechanical and thermal properties, leisure goods such as fishing rods, golf shafts, tennis rackets, automobile parts such as propeller shafts, engine hoods, spoilers, and industrial rollers. It is used for various applications such as industrial parts such as pressure vessels, railway vehicles such as train bodies, seats, electronic materials such as personal computer cases, ships, and aircraft.

炭素繊維強化複合材料のマトリックス樹脂としては、機械的特性、熱的特性、炭素繊維との密着性に優れるエポキシ樹脂が好適に使用される。エポキシ樹脂としてはビスフェノールA型、ビスフェノールF型エポキシ樹脂が主として使用されてきたが、従来のエポキシ樹脂/炭素繊維強化複合材料では難燃性、燃焼時の発煙性に問題があった。特に電子材料用途、自動車部品、鉄道車両、航空機等の用途ではエポキシ樹脂/炭素繊維強化複合材料の難燃化、燃焼時の低発煙化への要求が近年高まってきている。   As the matrix resin of the carbon fiber reinforced composite material, an epoxy resin excellent in mechanical properties, thermal properties, and adhesion to carbon fibers is preferably used. As epoxy resins, bisphenol A type and bisphenol F type epoxy resins have been mainly used, but conventional epoxy resins / carbon fiber reinforced composite materials have problems in flame retardancy and smoke generation during combustion. In particular, in applications such as electronic materials, automobile parts, railway vehicles, and aircraft, there has been an increasing demand for flame retardancy of epoxy resin / carbon fiber reinforced composite materials and low smoke generation during combustion.

エポキシ樹脂/炭素繊維の難燃化方法としては、臭素化エポキシ樹脂を使用する方法(特許文献1)が広く採用されてきた。臭素化エポキシ樹脂は良好な難燃性を有するものの、火災時に発生するガスの毒性が問題となり、人体への安全性、地球環境保護の観点から代替方法が望まれている。   As a method for flame retarding epoxy resin / carbon fiber, a method using a brominated epoxy resin (Patent Document 1) has been widely adopted. Although brominated epoxy resins have good flame retardancy, the toxicity of gas generated in the event of a fire becomes a problem, and an alternative method is desired from the viewpoints of safety to the human body and protection of the global environment.

一方、臭素化エポキシ樹脂を代替する難燃化方法として、リン化合物を添加する方法(特許文献2)などがあるが、機械的強度の低下、プリプレグの安定性不良などの問題が多く改良が望まれている。   On the other hand, as a flame retardant method replacing brominated epoxy resin, there is a method of adding a phosphorus compound (Patent Document 2), but there are many problems such as a decrease in mechanical strength and poor stability of prepreg, and improvement is expected. It is rare.

特開昭54−74899号公報JP 54-74899 A 特公昭45−28510号公報Japanese Examined Patent Publication No. 45-28510

本発明の目的は、マトリックス樹脂がハロゲン原子を含有せず、火災時に有害なガス成分を発生する事がなく、優れた難燃性を有し、機械特性に優れた、難燃性炭素繊維強化複合材料及び炭素繊維プリプレグを提供するものである。   The purpose of the present invention is that the matrix resin does not contain a halogen atom, does not generate harmful gas components in the event of a fire, has excellent flame retardancy, and has excellent mechanical properties, flame retardant carbon fiber reinforcement A composite material and a carbon fiber prepreg are provided.

本発明者は上記課題を解決するため鋭意研究の結果、マトリックス樹脂として特定の構造を有するリン原子含有エポキシ樹脂(A)、非リン含有エポキシ樹脂(B)、エポキシ樹脂硬化剤(C)を必須とすることにより、難燃性に優れ、良好な機械的特性を有する炭素繊維プリプレグ、及び、難燃性炭素繊維強化複合材料を得ることを見出し本発明に至った。   As a result of diligent research, the present inventor required a phosphorus atom-containing epoxy resin (A), a non-phosphorus-containing epoxy resin (B), and an epoxy resin curing agent (C) having a specific structure as a matrix resin. Thus, the present inventors have found that a carbon fiber prepreg excellent in flame retardancy and good mechanical properties and a flame retardant carbon fiber reinforced composite material can be obtained.

即ち本発明は、リン含有エポキシ樹脂(A)、非リン含有エポキシ樹脂(B)、とエポキシ樹脂硬化剤(C)を必須成分とするマトリックス樹脂中のリン含有量が0.4〜5.0%であって、リン含有エポキシ樹脂(A)が、一般式(1)及び(2)で表される少なくとも1種のリン化合物と、エポキシ樹脂との反応物であることを特徴とする炭素繊維プリプレグ及び難燃性炭素繊維強化複合材料を提供するものである。   That is, in the present invention, the phosphorus content in the matrix resin containing the phosphorus-containing epoxy resin (A), the non-phosphorus-containing epoxy resin (B), and the epoxy resin curing agent (C) as essential components is 0.4 to 5.0. %, Wherein the phosphorus-containing epoxy resin (A) is a reaction product of at least one phosphorus compound represented by the general formulas (1) and (2) and an epoxy resin. A prepreg and a flame retardant carbon fiber reinforced composite material are provided.

Figure 2007291227

(式中R、RはC〜C12の脂肪族炭化水素基、アリール基、置換アリール基であり、互いに結合して環状構造を形成していても良い。nは0又は1)
Figure 2007291227

(Wherein R 1 and R 2 are a C 1 to C 12 aliphatic hydrocarbon group, aryl group, and substituted aryl group, and may be bonded to each other to form a cyclic structure. N is 0 or 1)

Figure 2007291227
(式中R、RはC〜C12の脂肪族炭化水素基、アリール基、置換アリール基であり、互いに結合して環状構造を形成していても良い。mは0又は1。式中Xは一般式(3)又は一般式(4)を示す。)
Figure 2007291227
(Wherein R 3 and R 4 are a C 1 to C 12 aliphatic hydrocarbon group, aryl group, and substituted aryl group, and may be bonded to each other to form a cyclic structure. M is 0 or 1. In the formula, X represents the general formula (3) or the general formula (4).

Figure 2007291227
(式中RはC〜Cの炭化水素基であり、qは0〜3の整数)
Figure 2007291227
(Wherein R 5 is a C 1 to C 6 hydrocarbon group, and q is an integer of 0 to 3)

Figure 2007291227
(式中RはC〜Cの炭化水素基であり、rは0〜5の整数)
Figure 2007291227
(Wherein R 6 is a C 1 to C 6 hydrocarbon group, and r is an integer of 0 to 5)

本発明の炭素繊維プリプレグは硬化させることにより炭素繊維強化複合材料として、優れた機械的強度を維持し、有害なハロゲン系ガスを発生することなく、難燃性を付与することができる。   The carbon fiber prepreg of the present invention is cured to maintain excellent mechanical strength as a carbon fiber reinforced composite material, and can impart flame retardancy without generating harmful halogen-based gas.

本発明で必須とするリン含有エポキシ樹脂(A)は、前記の一般式(1)又は(2)で表される少なくとも1種のリン化合物と、エポキシ樹脂とを付加反応させて得ることができる。   The phosphorus-containing epoxy resin (A) essential in the present invention can be obtained by addition reaction of at least one phosphorus compound represented by the general formula (1) or (2) with an epoxy resin. .

一般式(1)で表される化合物は活性水素を一個もつリン化合物であり、式中のR、Rが炭素数1から12の脂肪族炭化水素基、アリール基または置換アリール基であって、RとRが直接結合して環状構造を形成しても良いものである。また、nの数は0または1である。R、Rの具体的な例としては、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert−ペンチル基、1−メチルブチル基、1−メチルヘプチル基、オクチル基、ノニル基、ドデシル基、ウンデシル基、ドデシル基、ベンジル基、フェニル基、トルイル基、キシリル基等が挙げられ、RとRは同一でも異なっていてもかまわない。また、RとRが結合して環状構造を形成しているものの例としては、例えば、テトラメチレン、シクロペントレン、シクロヘキシレン、シクロヘブチレン、シクロオクチレン、シクロデシレン、ノルボルニレン基、ビフェニレン基等が挙げられる。これらの中では、一般式(5)で表される9,10−ジヒドロ−9−オキサ−10−フォスフォフェナントレン−10−オキサイドが好ましい。 The compound represented by the general formula (1) is a phosphorus compound having one active hydrogen, and R 1 and R 2 in the formula are an aliphatic hydrocarbon group having 1 to 12 carbon atoms, an aryl group or a substituted aryl group. Thus, R 1 and R 2 may be directly bonded to form a cyclic structure. The number of n is 0 or 1. Specific examples of R 1 and R 2 include methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, and neopentyl. Group, tert-pentyl group, 1-methylbutyl group, 1-methylheptyl group, octyl group, nonyl group, dodecyl group, undecyl group, dodecyl group, benzyl group, phenyl group, toluyl group, xylyl group, etc. 1 and R 2 may be the same or different. Examples of those in which R 1 and R 2 are bonded to form a cyclic structure include, for example, tetramethylene, cyclopentylene, cyclohexylene, cyclohexylene, cyclooctylene, cyclodecylene, norbornylene group, biphenylene group Etc. Among these, 9,10-dihydro-9-oxa-10-phosphophenanthrene-10-oxide represented by the general formula (5) is preferable.

Figure 2007291227
一般式(5)で表されるリン化合物である9,10−ジヒドロ−9−オキサ−10−フォスフォフェナントレン−10−オキサイドは、商品名「HCA」(三光化学株式会社製、以下HCAと略記する)として入手することができる。
Figure 2007291227
9,10-dihydro-9-oxa-10-phosphophenanthrene-10-oxide, which is a phosphorus compound represented by the general formula (5), is trade name “HCA” (manufactured by Sanko Chemical Co., Ltd., hereinafter abbreviated as HCA). To be available).

一般式(2)で表される化合物は、Xが一般式(3)又は(4)で示される活性水素を二個もつリン化合物であり、式中のR、Rが炭素数1から12の脂肪族炭化水素基、アリール基または置換アリール基であって、RとRが直接結合して環状構造を形成しても良いものである。また、mの数は0または1である。R1及びR2の具体例は前記〔0012〕と同じものを例示できる。RとRが直接結合して環状構造を形成している例として一般式(5)で表わされるリン化合物である9,10−ジヒドロ−9−オキサ−10−フォスフォフェナントレン−10−オキサイドであり、Xが一般式(3)又は(4)で示されるリン含有化合物である。これらのリン含有化合物は一般式(5)の化合物と単環又は多環キノン化合物との反応によって得られる。これらのキノン化合物の具体例としては、1,4−ベンゾキノン、1,4−ナフトキノン等を例示できるが、これらに限定されるものではない。 The compound represented by the general formula (2) is a phosphorus compound in which X has two active hydrogens represented by the general formula (3) or (4), and R 1 and R 2 in the formula are from 1 carbon atom. 12 aliphatic hydrocarbon group, an aryl group or a substituted aryl group are those R 1 and R 2 may form a ring structure directly bonded. The number m is 0 or 1. Specific examples of R 1 and R 2 can be the same as the above [0012]. As an example in which R 1 and R 2 are directly bonded to form a cyclic structure, 9,10-dihydro-9-oxa-10-phosphophenanthrene-10-oxide, which is a phosphorus compound represented by the general formula (5) And X is a phosphorus-containing compound represented by the general formula (3) or (4). These phosphorus-containing compounds are obtained by reacting the compound of the general formula (5) with a monocyclic or polycyclic quinone compound. Specific examples of these quinone compounds include 1,4-benzoquinone and 1,4-naphthoquinone, but are not limited thereto.

本発明に使用される好ましいリン含有化合物としては、9,10−ジヒドロ−9−オキサ−10−フォスフォフェナントレン−10−オキサイドと1,4−ベンゾキノンの付加反応物である一般式(6)で示されるリン含有化合物であり、商品名「HCA−HQ」(三光化学株式会社製、以下HCA−HQ略記)として入手することができる。   A preferable phosphorus-containing compound used in the present invention is represented by the general formula (6) which is an addition reaction product of 9,10-dihydro-9-oxa-10-phosphophenanthrene-10-oxide and 1,4-benzoquinone. It is a phosphorus-containing compound shown and can be obtained as a trade name “HCA-HQ” (manufactured by Sanko Chemical Co., Ltd., hereinafter abbreviated as HCA-HQ).

Figure 2007291227
Figure 2007291227

更に、本発明に使用される好ましいリン含有化合物としては、9,10−ジヒドロ−9−オキサ−10−フォスフォフェナントレン−10−オキサイドと1,4−ナフトキノンの付加反応物である一般式(7)で示されるリン含有化合物(以下HCA−NQと略記)である。   Furthermore, as a preferable phosphorus-containing compound used in the present invention, a general formula (7) which is an addition reaction product of 9,10-dihydro-9-oxa-10-phosphophenanthrene-10-oxide and 1,4-naphthoquinone is used. ) -Containing compound (hereinafter abbreviated as HCA-NQ).

Figure 2007291227
Figure 2007291227

本発明でマットリック樹脂に使用されるリン含有エポキシ樹脂(A)は、好ましくは前記のリン化合物(5)から(7)の少なくとも1種と、非リン含有エポキシ樹脂であるビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂から選ばれた少なくとも1種以上のエポキシ樹脂との付加反応させて得られるが、HCA−HQ及びHCA−NQを使用した場合、分子末端エポキシ官能基は維持できるが、HCAを使用した場合は減少するので、HCAは主として当該リン含有エポキシ樹脂の粘度、分子量、リン含有量を調整する目的で使用される。   The phosphorus-containing epoxy resin (A) used for the matric resin in the present invention is preferably a bisphenol-type epoxy resin which is at least one of the phosphorus compounds (5) to (7) and a non-phosphorus-containing epoxy resin, It can be obtained by addition reaction with at least one epoxy resin selected from novolak type epoxy resins, but when HCA-HQ and HCA-NQ are used, molecular terminal epoxy functional groups can be maintained, but HCA is used. Therefore, HCA is mainly used for the purpose of adjusting the viscosity, molecular weight, and phosphorus content of the phosphorus-containing epoxy resin.

リン含有エポキシ樹脂(A)の出発原料となるエポキシ樹脂はグリシジルエーテル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂が挙げられ、これらのなかではグリシジルエーテル型エポキシ樹脂が好ましい。   Examples of the epoxy resin that is a starting material for the phosphorus-containing epoxy resin (A) include glycidyl ether type epoxy resins, glycidyl amine type epoxy resins, and glycidyl ester type epoxy resins. Among these, glycidyl ether type epoxy resins are preferred.

グリシジルエーテル型エポキシ樹脂としては、ビスフェノール型エポキシ樹脂、ビフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、レゾルシン型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ナフトール型エポキシ樹脂が挙げられ、これらのなかではビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂が好ましい。   Examples of glycidyl ether type epoxy resins include bisphenol type epoxy resins, biphenol type epoxy resins, novolac type epoxy resins, hydroquinone type epoxy resins, resorcin type epoxy resins, diphenyl ether type epoxy resins, and naphthol type epoxy resins. Bisphenol type epoxy resins and novolac type epoxy resins are preferred.

ビスフェノール型エポキシ樹脂としてはビスフェノール型エポキシ樹脂としてはビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、テトラメチルビスフェノールF型エポキシ樹脂等が挙げられ、これらのなかではビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂が好ましい。またノボラック型エポキシ樹脂としてはフェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、フェノールアラルキルノボラック型エポキシ樹脂、ナフトールアラルキルノボラック型エポキシ樹脂、フェノールビフェニルノボラック型エポキシ樹脂等が挙げられるが、これらのなかではフェノールノボラック型エポキシ樹脂が好ましい。   Examples of the bisphenol type epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, tetramethylbisphenol F type epoxy resin, and the like. Among these, bisphenol A type epoxy resin Resin and bisphenol F type epoxy resin are preferable. Examples of novolak type epoxy resins include phenol novolak type epoxy resins, orthocresol novolak type epoxy resins, phenol aralkyl novolak type epoxy resins, naphthol aralkyl novolak type epoxy resins, and phenol biphenyl novolak type epoxy resins. Phenol novolac type epoxy resins are preferred.

リン含有エポキシ樹脂(A)の出発原料となるビスフェノール型エポキシ樹脂としては、分子量の低いものが好ましく、例えば商品名「エポトートYD−8125」、「エポトートYD−127」、「エポトートYD−128」、「エポトートYD−134」、「エポトートYD−011」等のビスフェノールA型エポキシ樹脂、商品名「エポトートYDF−8170」、「エポトートYDF−8170C」、「エポトートYDF−170」、「エポトートYDF−2001」等のビスフェノールF型樹脂、また、ノボラック型エポキシ樹脂としては例えば商品名「エポトートYDPN−638」(いずれも東都化成製)等が挙げられるがこれらに限定されるものではない。   As the bisphenol type epoxy resin used as a starting material for the phosphorus-containing epoxy resin (A), those having a low molecular weight are preferable. For example, trade names “Epototo YD-8125”, “Epototo YD-127”, “Epototo YD-128”, Bisphenol A type epoxy resins such as “Epototo YD-134” and “Epototo YD-011”, trade names “Epototo YDF-8170”, “Epototo YDF-8170C”, “Epototo YDF-170”, “Epototo YDF-2001” Examples of the bisphenol F-type resin and the novolak-type epoxy resin include, for example, “Epototo YDPN-638” (all manufactured by Toto Kasei) and the like, but are not limited thereto.

リン含有化合物(6)及び/又は(7)の活性水素、または必要に応じてリン化合物(5)の活性水素とエポキシ樹脂のエポキシ基との仕込比率は、エポキシ基が過剰である必要があり、エポキシ基1当量当たり、リン化合物の活性水素の合計が0.1〜0.99当量が好ましく、更に好ましくは0.2〜0.9の範囲である。この反応は公知の方法によれば良く、例えばアルカリ金属水酸化物、三級アミン類、四級アンモニウム塩類、イミダゾール類、トリフェニルフォスフイン、ホスフォニウム塩類、等の触媒の存在下、反応温度50〜250℃、反応時間0.5〜20時間の条件で反応することができる。2種以上のリン化合物と2種以上のエポキシ樹脂を使用する場合、夫々同時に、或いは逐次に反応してもかまわない。   The active hydrogen of the phosphorus-containing compound (6) and / or (7) or, if necessary, the charge ratio of the active hydrogen of the phosphorus compound (5) and the epoxy group of the epoxy resin, the epoxy group must be excessive. The total active hydrogen of the phosphorus compound is preferably 0.1 to 0.99 equivalent, more preferably 0.2 to 0.9, per equivalent of epoxy group. This reaction may be performed by a known method. For example, in the presence of a catalyst such as an alkali metal hydroxide, a tertiary amine, a quaternary ammonium salt, an imidazole, triphenylphosphine, a phosphonium salt, a reaction temperature of 50 to The reaction can be carried out under the conditions of 250 ° C. and reaction time of 0.5 to 20 hours. When using 2 or more types of phosphorus compounds and 2 or more types of epoxy resins, you may react simultaneously or sequentially, respectively.

リン含有化合物、エポキシ樹脂の種類、リン含有化合物の活性水素とエポキシ樹脂のエポキシ基の仕込比率により、常温で液状から固形のエポキシ当量160〜2,000g/eq、リン含有量0.5〜7.0重量%のリン含有エポキシ樹脂(A)を製造することができる。前記リン含有化合物の仕込み比率の小さい場合は、実質的にリン含有エポキシ樹脂(A)と非リン含有エポキシ樹脂の混合物となる。マトリックス樹脂中のリン含有エポキシ樹脂(A)の含有比率はそのリン含有比率に因るが25〜95重量%、より好ましくは30重量%から90重量%である。   Phosphorus-containing compound, epoxy resin type, active hydrogen of phosphorus-containing compound and epoxy resin charge ratio of epoxy group, liquid to solid epoxy equivalent of 160 to 2,000 g / eq at room temperature, phosphorus content of 0.5 to 7 0.0% by weight of phosphorus-containing epoxy resin (A) can be produced. When the charging ratio of the phosphorus-containing compound is small, the mixture is substantially a mixture of the phosphorus-containing epoxy resin (A) and the non-phosphorus-containing epoxy resin. The content ratio of the phosphorus-containing epoxy resin (A) in the matrix resin is 25 to 95% by weight, more preferably 30% to 90% by weight, although it depends on the phosphorus content ratio.

本発明の炭素繊維プリプレグはリン含有エポキシ樹脂(A)以外の非リン含有エポキシ樹脂(B)も必須である。係る非リン含有エポキシ樹脂の例としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、テトラメチルビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、レゾルシン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、アミノフェノール型エポキシ樹脂、トリグリシジルイソシアヌレート型樹脂、ジシクロペンタジエン型エポキシ樹脂、ウレタン変性エポキシ樹脂、オキサゾリドン環含有エポキシ樹脂等が挙げられるがこれらに限定されるものではない。   In the carbon fiber prepreg of the present invention, a non-phosphorus-containing epoxy resin (B) other than the phosphorus-containing epoxy resin (A) is also essential. Examples of such non-phosphorus-containing epoxy resins include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, tetramethylbisphenol F type epoxy resins, biphenyl type epoxy resins, hydroquinone type epoxy resins, and resorcin type epoxy resins. Resin, phenol novolac type epoxy resin, orthocresol novolac type epoxy resin, glycidyl amine type epoxy resin, aminophenol type epoxy resin, triglycidyl isocyanurate type resin, dicyclopentadiene type epoxy resin, urethane modified epoxy resin, oxazolidone ring containing epoxy Examples of the resin include, but are not limited to, resin.

本発明の炭素繊維プリプレグはリン含有エポキシ樹脂(A)、非リン含有エポキシ樹脂(B)の他にフェノキシ樹脂(E)を配合することができる。フェノキシ樹脂は、マトリックス樹脂に、可撓性、耐衝撃性、接着力の付与、適度の粘性を目的に配合されるものであり、その配合量は全マトリックス樹脂に対して、0〜20重量%の範囲で、より好ましくは0.5〜15重量%、更に好ましくは1.0〜13重量%である。フェノキシ樹脂(E)は、一般式(8)で示される。   The carbon fiber prepreg of the present invention can contain a phenoxy resin (E) in addition to a phosphorus-containing epoxy resin (A) and a non-phosphorus-containing epoxy resin (B). The phenoxy resin is blended in the matrix resin for the purpose of flexibility, impact resistance, adhesion, and moderate viscosity. The blending amount is 0 to 20% by weight based on the total matrix resin. More preferably, it is 0.5-15 weight%, More preferably, it is 1.0-13 weight%. The phenoxy resin (E) is represented by the general formula (8).

Figure 2007291227
ここでMは2価フェノール残基を示す。フェノキシ樹脂を構成する2価フェノールは一種類で構成されているホモポリマーで有ってもよく、また、2種類以上の2価フェノールから構成されるランダムコポリマーまたはブロックコポリマーで有っても良い。更には、本発明の目的を阻害しない範囲での長鎖分岐或いは短鎖分岐をしていても差し支えない。
Figure 2007291227
Here, M represents a divalent phenol residue. The dihydric phenol constituting the phenoxy resin may be a homopolymer composed of one kind, or may be a random copolymer or a block copolymer composed of two or more kinds of dihydric phenols. Furthermore, long-chain branching or short-chain branching within the range not impairing the object of the present invention may be used.

具体的に本発明で使用される2価フェノール類を例示すると、ハイドロキノン、レゾルシン、カテコール、2,5−ジターシャリーブチルハイドロキノン等の2価単核フェノール類、ビスフェノールA(以下BPAと略記),ビスフェノールB、ビスフェノールE、ビスフェノールK、ビスフェノールF(以下BPFと略記)、ビスフェノールS(以下BPSと略記)、3,3’−5,5’−テトラメチルビスフェノールF等の2価多核ビスフェノール類、1,4−ナフタレンジオール、1,6−ナフタレンジオール等のナフタレンジオール類、4、4’−ビフェノール、3,3’−5,5’テトラメチルビフェノール等のビフェノール類、ビスフェノールフルオレイン等の環を有するビスフェノール類等である。フェノキシ樹脂は、係る2価フェノール類とアルカリ金属水酸化物の存在下にエピクロルヒドリンと反応させる直接製造法で有ってもよく、前記2価フェノール類と2官能のエポキシ樹脂との反応による間接製造法によるものであっても良い。係るフェノキシ樹脂の分子量としては、標準ポリスチレンを標準物質としてゲル浸透クロマトグラフィー(GPC)によって測定された数平均分子量が3,000〜100,000、更に好ましくは、5,000〜80,000程度のものが好ましい。フェノキシ樹脂の具体的な市販品としては何れも東都化成株式会社製である「フェノトートYP−40」、「フェノトートYP−50」、「フェノトートYP−50S」等のBPA型フェノキシ樹脂、「フェノトートYP-70」等のBPA/BPF型フェノキシ樹脂、「フェノトートERF−001」等のリン含有フェノキシ樹脂、「フェノトートYPS−007」等のビスフェノールスルフォン型フェノキシ樹脂を例示することが出来る。
また、フェノキシ樹脂以外の樹脂成分としてポリビニルホルマール、ポリスルフォン、ポリエーテルスルホン、ポリエーテルイミド、ポリフェニレンサルファイド等の熱可塑性樹脂を本発明の効果を損なわない範囲で配合することもできる。
Specific examples of dihydric phenols used in the present invention include dihydric mononuclear phenols such as hydroquinone, resorcin, catechol, 2,5-ditertiary butyl hydroquinone, bisphenol A (hereinafter abbreviated as BPA), bisphenol. B, bisphenol E, bisphenol K, bisphenol F (hereinafter abbreviated as BPF), bisphenol S (hereinafter abbreviated as BPS), divalent polynuclear bisphenols such as 3,3′-5,5′-tetramethylbisphenol F, 1, Naphthalenediols such as 4-naphthalenediol and 1,6-naphthalenediol, biphenols such as 4,4′-biphenol, 3,3′-5,5′tetramethylbiphenol, and bisphenol having a ring such as bisphenolfluorene Etc. The phenoxy resin may be a direct production method in which the dihydric phenol is reacted with epichlorohydrin in the presence of an alkali metal hydroxide, and indirect production by reaction of the dihydric phenol with a bifunctional epoxy resin. It may be by law. The molecular weight of the phenoxy resin is such that the number average molecular weight measured by gel permeation chromatography (GPC) using standard polystyrene as a standard substance is about 3,000 to 100,000, more preferably about 5,000 to 80,000. Those are preferred. As specific commercial products of phenoxy resin, BPA type phenoxy resins such as “Phenotote YP-40”, “Phenotote YP-50”, “Phenototo YP-50S”, etc., all manufactured by Tohto Kasei Co., Ltd., “ Examples thereof include BPA / BPF type phenoxy resins such as “phenototo YP-70”, phosphorus-containing phenoxy resins such as “phenototo ERF-001”, and bisphenol sulfone type phenoxy resins such as “phenototo YPS-007”.
Moreover, as a resin component other than the phenoxy resin, a thermoplastic resin such as polyvinyl formal, polysulfone, polyethersulfone, polyetherimide, polyphenylene sulfide, etc. can be blended within a range not impairing the effects of the present invention.

本発明の炭素繊維プリプレグはエポキシ樹脂硬化剤(C)を必須成分として含有する。好ましい硬化剤としては所謂、潜在性硬化剤とされるものが望ましい。係る硬化剤の例としては、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルスルフォン、3,3’−ジアミノジフェニルスルフォン、ジアミノエチルベンゼン等の芳香族アミン類、フェノールノボラック、アルキルフェノールノボラック、アラルキルフェノールノボラック、トリアジン環含有ノボラックフェノール、ビフェニルアラルキルフェノール、ナフタレンアラルキルフェノール、トリスフェニルメタン、テトラキスフェニルエタン等の多価フェノール類及びそれらのアルキルエステル類、アジピン酸ジヒドラジド、セバチン酸ジヒドラジド等のヒドラジド類、イミダゾール化合物類及びその塩類、ジシアンジアミド、アミノ安息酸エステル類、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、メタキシレンジアミン、イソホロンジアミン等の脂肪族アミン類等が挙げられるがこれらに限定するものではない。また、必要に応じて3−(3,4−ジクロロジフェニル)−1,1−ジメチルウレア、3−(4−クロロフェニル)−1,1−ジメチルウレア、3−フェニルー1,1―ジメチルウレア、イミダゾール類、三弗化硼素モノエチルアミン錯体、三塩化ホウ素モノエチル錯体等の促進剤を併用することもできる。   The carbon fiber prepreg of the present invention contains an epoxy resin curing agent (C) as an essential component. As a preferable curing agent, what is called a latent curing agent is desirable. Examples of such curing agents include aromatic amines such as 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylsulfone, 3,3′-diaminodiphenylsulfone, diaminoethylbenzene, phenol novolac, alkylphenol novolac, and aralkyl. Polyhydric phenols such as phenol novolak, triazine ring-containing novolak phenol, biphenyl aralkyl phenol, naphthalene aralkyl phenol, trisphenyl methane, tetrakis phenyl ethane and their alkyl esters, hydrazides such as adipic acid dihydrazide, sebacic acid dihydrazide, imidazole Compounds and salts thereof, dicyandiamide, aminobenzoic acid esters, diethylenetriamine, triethylenetetramine, tetraethylene Ntamin, meta-xylene diamine; and aliphatic amines such as isophorone diamine, and the like are not limited to. If necessary, 3- (3,4-dichlorodiphenyl) -1,1-dimethylurea, 3- (4-chlorophenyl) -1,1-dimethylurea, 3-phenyl-1,1-dimethylurea, imidazole Further, accelerators such as boron trifluoride monoethylamine complex and boron trichloride monoethyl complex can be used in combination.

本発明の炭素繊維プリプレグに使用する炭素繊維としては、PAN系炭素繊維、ピッチ系炭素繊維、レーヨン系炭素繊維が挙げられ、これらのなかではPAN系炭素繊維、ピッチ系炭素繊維が好ましい。   Examples of the carbon fiber used in the carbon fiber prepreg of the present invention include PAN-based carbon fiber, pitch-based carbon fiber, and rayon-based carbon fiber. Among these, PAN-based carbon fiber and pitch-based carbon fiber are preferable.

本発明の炭素繊維プリプレグを製造する方法は特に制限はなく、先ず、例えばリン含有エポキシ樹脂(A)と非リン含有エポキシ樹脂(B)、フェノキシ樹脂(E)を攪拌により均一に混合後、エポキシ樹脂硬化剤成分(C)を添加して均一に混合しマトリックス樹脂組成物とする。成形後のボイドの発生を少なくする目的で、攪拌時しながら真空脱気する方法が好ましく採用される。その後、炭素繊維にマトリックス樹脂組成物を含浸して炭素繊維プリプレグとすることができる。またプリプレグの形態としてはヤーンプリプレグ、シートプリプレグが挙げられ、シートプリプレグとしては一方向プリプレグ、二方向プリプレグ、不織布プリプレグが挙げられる。   The method for producing the carbon fiber prepreg of the present invention is not particularly limited. First, for example, a phosphorus-containing epoxy resin (A), a non-phosphorus-containing epoxy resin (B), and a phenoxy resin (E) are uniformly mixed by stirring, and then an epoxy A resin curing agent component (C) is added and mixed uniformly to obtain a matrix resin composition. For the purpose of reducing the generation of voids after molding, a method of vacuum degassing while stirring is preferably employed. Thereafter, carbon fiber can be impregnated with a matrix resin composition to obtain a carbon fiber prepreg. Examples of the prepreg include yarn prepreg and sheet prepreg. Examples of the sheet prepreg include unidirectional prepreg, bidirectional prepreg, and non-woven prepreg.

本発明の炭素繊維プリプレグ中のリン含有量は0.4〜5.0重量%が好ましい。0.4重量%以下では難燃性が得られず、5.0重量%を超えるとコスト高となり経済性が低下する。本発明ではリン源として一般式(1)又は(2)のリン化合物を使用し、その後のエポキシ樹脂との反応でも、リン原子の損失は起らないので、(1)又は(2)のリン含有量から最終炭素繊維プリプレグ中のリン含有量が簡単な計算により求める事ができる。
因みに一般式(6)のHCA−HQのリン含有量は9.57重量%、一般式(7)のHCA−NQは8.27重量%、一般式(5)のHCAは14.4重量%である。
The phosphorus content in the carbon fiber prepreg of the present invention is preferably 0.4 to 5.0% by weight. If it is 0.4% by weight or less, flame retardancy cannot be obtained, and if it exceeds 5.0% by weight, the cost is increased and the economic efficiency is lowered. In the present invention, the phosphorus compound of the general formula (1) or (2) is used as the phosphorus source, and loss of phosphorus atoms does not occur even in the subsequent reaction with the epoxy resin. Therefore, the phosphorus of (1) or (2) The phosphorus content in the final carbon fiber prepreg can be determined from the content by simple calculation.
Incidentally, the phosphorus content of the HCA-HQ of the general formula (6) is 9.57% by weight, the HCA-NQ of the general formula (7) is 8.27% by weight, and the HCA of the general formula (5) is 14.4% by weight. It is.

本発明の炭素繊維プリプレグを硬化することにより得られる種々の炭素繊維強化複合材料も本発明の提供するものである。成形方法としては特に制限されるものではなく、プレス成形法、シートワインディング法、オートクレーブ成形法等によって行うことができる。   Various carbon fiber reinforced composite materials obtained by curing the carbon fiber prepreg of the present invention are also provided by the present invention. The molding method is not particularly limited, and can be performed by a press molding method, a sheet winding method, an autoclave molding method, or the like.

また、本発明難燃性炭素繊維複合材料は、フィラメントワインディング法またはプルトリュージョン法またはレジントランスファーモールディング法により成形、硬化させることによりプリプレグを経由しないで炭素繊維強化複合材料を得る方法も本発明の提供するものである。   In addition, the flame retardant carbon fiber composite material of the present invention is a method of obtaining a carbon fiber reinforced composite material without passing through a prepreg by molding and curing by a filament winding method, a pultrusion method, or a resin transfer molding method. It is to provide.

本発明の炭素繊維強化複合材料は、3mmの厚みに成形した時の難燃性がUL−94に規定するV−0、V―1及びV−2のものを得ることができる。   The carbon fiber reinforced composite material of the present invention can obtain V-0, V-1 and V-2 whose flame retardancy when molded to a thickness of 3 mm is defined in UL-94.

〔実施例〕
次に実施例及び比較例にて本発明を具体的に説明するが、本発明は実施例のみに制限されるものではない。尚、実施例、比較例の「部」は重量部を意味する。また、エポキシ当量の測定法はJIS K−7236、プリプレグ中のマトリックス樹脂含有量の測定法はJIS K―7071、繊維体積含有率はJIS H-7401、引張り強度の測定はJIS K-7113に準じた。
〔Example〕
EXAMPLES Next, although an Example and a comparative example demonstrate this invention concretely, this invention is not restrict | limited only to an Example. In the examples and comparative examples, “parts” means parts by weight. Moreover, the measurement method of epoxy equivalent is JIS K-7236, the measurement method of the matrix resin content in the prepreg is JIS K-7071, the fiber volume content is JIS H-7401, and the measurement of tensile strength is according to JIS K-7113. It was.

〔合成例1〕 リン含有エポキシ樹脂(A−1)の合成
攪拌装置、温度計、窒素導入管、コンデンサーを装備したガラス製セパラブルフラスコに、エポトートYDF−170(ビスフェノールF型エポキシ樹脂、エポキシ当量168g/eq 東都化成株式会社製)796.1部、HCA(三光化学株式会社)133.9部、HCA−NQ70.0部及びトリフェニルホスフィン0.15部を仕込み、窒素雰囲気下、攪拌しながら160℃まで昇温して4時間反応を行った。反応後、冷却して抜き出し、エポキシ当量267.1g/eq、リン含有量2.50重量%の常温で液状のリン含有エポキシ樹脂(A−1)を得た。
[Synthesis Example 1] Synthesis of Phosphorus-Containing Epoxy Resin (A-1) A glass separable flask equipped with a stirrer, thermometer, nitrogen inlet tube and condenser was added to Epototo YDF-170 (bisphenol F type epoxy resin, epoxy equivalent). 168 g / eq Toto Kasei Co., Ltd.) 796.1 parts, HCA (Sanko Chemical Co., Ltd.) 133.9 parts, HCA-NQ 70.0 parts and triphenylphosphine 0.15 parts are charged with stirring in a nitrogen atmosphere. The temperature was raised to 160 ° C. and the reaction was carried out for 4 hours. After the reaction, the mixture was cooled and extracted to obtain a phosphorus-containing epoxy resin (A-1) that was liquid at room temperature with an epoxy equivalent of 267.1 g / eq and a phosphorus content of 2.50% by weight.

〔合成例2〕 リン含有エポキシ樹脂(A−2)の合成
合成例1と同じ反応装置にエポトートYDF−8170(ビスフェノールF型エポキシ樹脂、エポキシ当量158g/eq 東都化成株式会社製)286部、エポトートYDPN−638(フェノールノボラック型エポキシ樹脂、エポキシ当量168g/eq 東都化成株式会社製)429部、HCA−NQ71部、HCA(三光化学株式会社)214部及びトリフェニルホスフィン0.3部を仕込み、窒素雰囲気下、攪拌しながら160℃まで昇温して5時間反応を行った。反応後、冷却して抜き出し、エポキシ当量350g/eq、リン含有量3.66重量%の常温で半固形状のリン含有エポキシ樹脂(A−2)を得た。
[Synthesis Example 2] Synthesis of Phosphorus-Containing Epoxy Resin (A-2) In the same reactor as in Synthesis Example 1, 286 parts of Epototo YDF-8170 (bisphenol F type epoxy resin, epoxy equivalent 158 g / eq, manufactured by Toto Kasei Co., Ltd.), Epototo YDPN-638 (phenol novolac type epoxy resin, epoxy equivalent 168 g / eq, manufactured by Tohto Kasei Co., Ltd.) 429 parts, HCA-NQ 71 parts, HCA (Sanko Chemical Co., Ltd.) 214 parts and triphenylphosphine 0.3 part were charged, nitrogen While stirring, the temperature was raised to 160 ° C. and the reaction was carried out for 5 hours. After the reaction, it was cooled and extracted to obtain a semi-solid phosphorus-containing epoxy resin (A-2) at room temperature having an epoxy equivalent of 350 g / eq and a phosphorus content of 3.66% by weight.

〔合成例3〕リン含有エポキシ樹脂(A−3)の合成
合成例1と同じ反応装置にエポトートYD―128(ビスフェノールA型エポキシ樹脂、 エポキシ当量187g/eq 東都化成株式会社製)267部、エポトートYDPN−638 429部、HCA−HQ(三光化学株式会社)133部、HCA200部及びトリフェニルホスフィン0.43部を仕込み、攪拌しながら160℃まで昇温して6時間反応を行った。反応後、冷却して抜き出し、エポキシ当量520g/eq、リン含有量4.16重量%の常温で固形状のリン含有エポキシ樹脂(A―3)を得た。
[Synthesis Example 3] Synthesis of Phosphorus-Containing Epoxy Resin (A-3) In the same reactor as Synthesis Example 1, 267 parts of Epototo YD-128 (bisphenol A type epoxy resin, epoxy equivalent 187 g / eq, manufactured by Tohto Kasei Co., Ltd.), Epototo 429 parts of YDPN-638, 133 parts of HCA-HQ (Sanko Chemical Co., Ltd.), 200 parts of HCA and 0.43 part of triphenylphosphine were charged, and the temperature was raised to 160 ° C. with stirring, and the reaction was performed for 6 hours. After the reaction, the mixture was cooled and extracted to obtain a phosphorus-containing epoxy resin (A-3) that was solid at room temperature with an epoxy equivalent of 520 g / eq and a phosphorus content of 4.16 wt%.

リン含有エポキシ樹脂(A−1)81部、エポトートYDF―170(B―2)19部、ジシアンジアミド(以下DICYと略記する)4部及び3−(3,4−ジクロロジフェニル)−1,1−ジメチルウレア(以下DCMUと略記する)3部を加熱ニーダーに入れて加熱混合し、リン含有量1.89重量%のマトリックス樹脂(R−1)を得た。
次に市販の高強度炭素繊維(T700 引張強さ4.8GPa、引張弾性率235GPa 東レ株式会社製)を一方向に引き揃えた後に、(R−1)を加熱溶融し、圧力を加えて含浸させマトリックス樹脂含有率35%の一方向炭素繊維プリプレグ(P−1)を得た。
(P−1)を長さ30cm、幅30cmに裁断したものを繊維方向が同一になるように17枚積層して積層体を形成し、リリースクロスを重ねた後、ブリーダークロスを重ね、更にブリーダークロスを重ね、ナイロンパックで包み、成形用スタックを形成した。この形成用スタックを130℃、1時間の条件下でオートクレーブ成形して厚み2mm、繊維体積含有率60%の炭素繊維複合材料を得た。曲げ強度は1.56GPa、曲げ弾性率は125GPaであった。
また、(P−1)を25枚重ね同様にスタック形成、硬化を行い長さ127mm、幅12.7mm、厚み3mmに切り出した試験片を用いたUL−94の垂直燃焼試験による判定はV−0であった。
81 parts of phosphorus-containing epoxy resin (A-1), 19 parts of epototo YDF-170 (B-2), 4 parts of dicyandiamide (hereinafter abbreviated as DICY) and 3- (3,4-dichlorodiphenyl) -1,1- 3 parts of dimethyl urea (hereinafter abbreviated as DCMU) was placed in a heating kneader and mixed by heating to obtain a matrix resin (R-1) having a phosphorus content of 1.89% by weight.
Next, after aligning commercially available high-strength carbon fiber (T700 tensile strength 4.8 GPa, tensile elastic modulus 235 GPa Toray Co., Ltd.) in one direction, (R-1) is heated and melted, and pressure is applied to impregnate. A unidirectional carbon fiber prepreg (P-1) having a matrix resin content of 35% was obtained.
17 pieces of (P-1) cut to a length of 30 cm and a width of 30 cm are laminated so as to have the same fiber direction to form a laminate, and after a release cloth is overlaid, a bleeder cloth is overlaid, and further a bleeder The cloth was stacked and wrapped in a nylon pack to form a molding stack. This forming stack was autoclaved at 130 ° C. for 1 hour to obtain a carbon fiber composite material having a thickness of 2 mm and a fiber volume content of 60%. The bending strength was 1.56 GPa and the flexural modulus was 125 GPa.
In addition, the determination by the vertical combustion test of UL-94 using a test piece cut out to a length of 127 mm, a width of 12.7 mm, and a thickness of 3 mm by stacking and curing (P-1) in the same manner as 25 stacks is V- 0.

リン含有エポキシ樹脂(A−2)30部、エポトートYD−128(B−1) 60部、フェノトートYP−50S(E―1)(ビスフェノールA型フェノキシ樹脂)10部を加熱ニーダーに入れ加熱混合した。更にDICY4部、DCMU3部を添加して混合し、リン含有量1.01重量%のマトリックス樹脂(R−2)を得た。
以下実施例1と同様にスタック形成、オートクレーブ成形を行い曲げ強度試験片、燃焼試験片を得た。曲げ強度は1.65GPa、曲げ弾性率は130GPa、燃焼性判定はUL―94 V−1であった。
30 parts of phosphorus-containing epoxy resin (A-2), 60 parts of Epototo YD-128 (B-1), 10 parts of phenototo YP-50S (E-1) (bisphenol A type phenoxy resin) are placed in a heating kneader and mixed by heating. did. Further, 4 parts of DICY and 3 parts of DCMU were added and mixed to obtain a matrix resin (R-2) having a phosphorus content of 1.01% by weight.
Thereafter, stack formation and autoclave molding were performed in the same manner as in Example 1 to obtain a bending strength test piece and a combustion test piece. The bending strength was 1.65 GPa, the flexural modulus was 130 GPa, and the flammability determination was UL-94 V-1.

リン含有エポキシ樹脂(A−3)40部、YDF−170(B−2) 50部、YDPN―638(B−3)10部を加熱ニーダーに入れ加熱混合した。更にDICY 4部、DCMU 4部を添加して混合しリン含有量1.54重量%のマトリックス樹脂(R−3)を得た。
以下実施例1と同様にスタック形成、オートクレーブ成形を行い曲げ強度試験片、燃焼試験片を得た。曲げ強度は1.55GPa、曲げ弾性率は121GPa、燃焼性判定はUL−94でV−0であった。
40 parts of phosphorus-containing epoxy resin (A-3), 50 parts of YDF-170 (B-2) and 10 parts of YDPN-638 (B-3) were placed in a heating kneader and mixed by heating. Further, 4 parts of DICY and 4 parts of DCMU were added and mixed to obtain a matrix resin (R-3) having a phosphorus content of 1.54% by weight.
Thereafter, stack formation and autoclave molding were performed in the same manner as in Example 1 to obtain a bending strength test piece and a combustion test piece. The bending strength was 1.55 GPa, the flexural modulus was 121 GPa, and the flammability determination was UL-0 and V-0.

〔比較例1〕
リン含有エポキシ樹脂(A−1)の代わりに、エポキシ樹脂をYDF−170(B―2) 100部とした以外は実施例1と同様の操作を行いマトリックス樹脂(R−4)を得た。また、実施例1と同様にスタック形成、オートクレーブ成形を行い曲げ強度試験片、燃焼試験片を得た。曲げ強度は曲げ強度は1.42GPa、曲げ弾性率は145GPa、燃焼性試験では燃焼した。
(Comparative Example 1)
A matrix resin (R-4) was obtained in the same manner as in Example 1, except that 100 parts of YDF-170 (B-2) was used instead of the phosphorus-containing epoxy resin (A-1). Further, in the same manner as in Example 1, stack formation and autoclave molding were performed to obtain a bending strength test piece and a combustion test piece. Regarding the bending strength, the bending strength was 1.42 GPa, the bending elastic modulus was 145 GPa, and burning occurred in the flammability test.

〔比較例2〕
リン含有エポキシ樹脂(A−2)30部の代わりにYDF−170(B−2) 15部、YDF−2001(B−4)(ビスフェノールF型固形エポキシ樹脂、エポキシ当量475g/eq)15部とした以外は実施例2と同様の操作を行いエポキシ樹脂組成物(R−5)を得た。以下同様にスタック形成、オートクレーブ成形を行い試験片を得た。曲げ強度は1.58GPa、曲げ弾性率は135GPa、燃焼性試験では燃焼した。
[Comparative Example 2]
15 parts of YDF-170 (B-2) instead of 30 parts of phosphorus-containing epoxy resin (A-2), 15 parts of YDF-2001 (B-4) (bisphenol F-type solid epoxy resin, epoxy equivalent 475 g / eq) Except having been performed, operation similar to Example 2 was performed and the epoxy resin composition (R-5) was obtained. Thereafter, stack formation and autoclave molding were similarly performed to obtain test pieces. The bending strength was 1.58 GPa, the flexural modulus was 135 GPa, and it burned in the flammability test.

〔比較例3〕
リン含有エポキシ樹脂(A−3)40部の代わりにエポトートYD−011(B−5)(ビスフェノールA型固形エポキシ樹脂、エポキシ当量=475g/eq 東都化成株式会社製)とした以外は実施例3と同様の操作を行いマトリックス樹脂(R−6)を得た。以下同様にスタック形成、オートクレーブ成形を行い試験片を得た。曲げ強度は1.52GPa、曲げ弾性率は123GPa、燃焼性試験では燃焼した。
(Comparative Example 3)
Example 3 except that 40 parts of phosphorus-containing epoxy resin (A-3) was replaced with Epototo YD-011 (B-5) (bisphenol A type solid epoxy resin, epoxy equivalent = 475 g / eq, manufactured by Toto Kasei Co., Ltd.) The matrix resin (R-6) was obtained by performing the same operation as. Thereafter, stack formation and autoclave molding were similarly performed to obtain test pieces. The bending strength was 1.52 GPa, the flexural modulus was 123 GPa, and it burned in the flammability test.

Claims (8)

リン含有エポキシ樹脂(A)、非リン含有エポキシ樹脂(B)、エポキシ樹脂硬化剤(C)を必須成分とするマトリックス樹脂と炭素繊維(D)から構成される炭素繊維強化複合材料であって、(A)(B)(C)を必須成分とするマトリックス樹脂中のリン含有量が0.4〜5.0重量%であって、(A)のリン含有エポキシ樹脂が一般式(1)又は(2)で表される少なくとも1種のリン含有化合物と、エポキシ樹脂との反応物であることを特徴とする難燃性炭素繊維強化複材料。
Figure 2007291227

(式中R、RはC〜C12の脂肪族炭化水素基、アリール基、置換アリール基であり、互いに結合して環状構造を形成していても良い。nは0又は1。)
Figure 2007291227

(式中R、RはC〜C12の脂肪族炭化水素基、アリール基、置換アリール基であり、互いに結合して環状構造を形成していても良い。mは0又は1。式中Xは一般式(3)又は一般式(4)を示す。)
Figure 2007291227
(式中RはC〜Cの炭化水素基であり、qは0〜3の整数。)
Figure 2007291227
(式中RはC〜Cの炭化水素基であり、rは0〜5の整数。)
A carbon fiber reinforced composite material composed of a matrix resin and a carbon fiber (D) containing a phosphorus-containing epoxy resin (A), a non-phosphorus-containing epoxy resin (B), and an epoxy resin curing agent (C) as essential components, (A) (B) The phosphorus content in the matrix resin containing (C) as an essential component is 0.4 to 5.0% by weight, and the phosphorus-containing epoxy resin (A) is represented by the general formula (1) or A flame retardant carbon fiber reinforced composite material which is a reaction product of at least one phosphorus-containing compound represented by (2) and an epoxy resin.
Figure 2007291227

(Wherein R 1 and R 2 are a C 1 to C 12 aliphatic hydrocarbon group, aryl group, and substituted aryl group, and may be bonded to each other to form a cyclic structure. N is 0 or 1. )
Figure 2007291227

(Wherein R 3 and R 4 are a C 1 to C 12 aliphatic hydrocarbon group, aryl group, and substituted aryl group, and may be bonded to each other to form a cyclic structure. M is 0 or 1. In the formula, X represents the general formula (3) or the general formula (4).
Figure 2007291227
(In the formula, R 5 is a C 1 to C 6 hydrocarbon group, and q is an integer of 0 to 3.)
Figure 2007291227
(In the formula, R 6 is a C 1 to C 6 hydrocarbon group, and r is an integer of 0 to 5.)
成形、硬化手段がフィラメントワインディング法、プルトリュージョン法又はレジントランスファーモールディング法である請求項1記載の難燃性炭素繊維強化複合材料。 2. The flame retardant carbon fiber reinforced composite material according to claim 1, wherein the molding and curing means is a filament winding method, a pultrusion method or a resin transfer molding method. リン含有エポキシ樹脂(A)のエポキシ当量が160〜2000g/eqであり、且つ、リン含有量が0.5〜7.0重量%である請求項1または請求項2記載の難燃性炭素繊維強化複合材料。 The flame retardant carbon fiber according to claim 1 or 2, wherein the epoxy equivalent of the phosphorus-containing epoxy resin (A) is 160 to 2000 g / eq, and the phosphorus content is 0.5 to 7.0 wt%. Reinforced composite material. マトリックス樹脂中のリン含有エポキシ樹脂(A)の含有比率が25〜95重量%である請求項1〜3の何れかの項記載の難燃性炭素繊維強化複合材料。 The flame retardant carbon fiber reinforced composite material according to any one of claims 1 to 3, wherein the content ratio of the phosphorus-containing epoxy resin (A) in the matrix resin is 25 to 95 wt%. マトリックス樹脂中にフェノキシ樹脂(E)を含有比率が0〜20重量%配合することを特徴とする請求項1〜4の何れかの項記載の難燃性炭素繊維強化複合材料。 The flame retardant carbon fiber reinforced composite material according to any one of claims 1 to 4, wherein a phenoxy resin (E) is blended in the matrix resin in an amount of 0 to 20 wt%. 3mmの厚さの試験片としたときの燃焼性がUL−94でV−0またはV−1またはV−2である請求項1〜5の何れかの項記載の難燃性炭素繊維強化複合材料。 The flame-retardant carbon fiber reinforced composite according to any one of claims 1 to 5, wherein the flammability when a specimen having a thickness of 3 mm is UL-94 is V-0, V-1 or V-2. material. リン含有エポキシ樹脂(A)、非リン含有エポキシ樹脂(B)、エポキシ樹脂硬化剤(C)、炭素繊維(D)から構成され、(A)(B)(C)を必須成分とするマトリックス樹脂中のリン含有量が0.4〜5.0重量%であり、(A)のリン含有エポキシ樹脂が請求項1記載の一般式(1)又は(2)で表される少なくとも1種のリン含有化合物とエポキシ樹脂との反応物であることを特徴とするマトリックス樹脂を含浸してなる難燃性炭素繊維プリプレグ。 Matrix resin composed of phosphorus-containing epoxy resin (A), non-phosphorus-containing epoxy resin (B), epoxy resin curing agent (C), and carbon fiber (D), with (A), (B), and (C) as essential components The phosphorus content is 0.4 to 5.0 wt%, and the phosphorus-containing epoxy resin (A) is at least one phosphorus represented by the general formula (1) or (2) according to claim 1 A flame retardant carbon fiber prepreg impregnated with a matrix resin, which is a reaction product of a contained compound and an epoxy resin. 請求項7記載の難燃性炭素繊維プリプレグを硬化させて得られる難燃性炭素繊維強化複合材料。
A flame retardant carbon fiber reinforced composite material obtained by curing the flame retardant carbon fiber prepreg according to claim 7.
JP2006120425A 2006-04-25 2006-04-25 Flame-retardant carbon fiber reinforced composite Pending JP2007291227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006120425A JP2007291227A (en) 2006-04-25 2006-04-25 Flame-retardant carbon fiber reinforced composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006120425A JP2007291227A (en) 2006-04-25 2006-04-25 Flame-retardant carbon fiber reinforced composite

Publications (1)

Publication Number Publication Date
JP2007291227A true JP2007291227A (en) 2007-11-08

Family

ID=38762170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006120425A Pending JP2007291227A (en) 2006-04-25 2006-04-25 Flame-retardant carbon fiber reinforced composite

Country Status (1)

Country Link
JP (1) JP2007291227A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010077263A (en) * 2008-09-25 2010-04-08 Panasonic Electric Works Co Ltd Epoxy resin composition for prepreg, prepreg, and multilayer printed wiring board
JP2010100802A (en) * 2008-09-24 2010-05-06 Sekisui Chem Co Ltd Epoxy-based resin composition, sheet-like molded product, prepreg, cured product, laminated plate, and multilayer laminated plate
JP2010248379A (en) * 2009-04-16 2010-11-04 Mitsubishi Rayon Co Ltd Prepreg for press molding, and method for producing molded article using the same
WO2011055850A1 (en) * 2009-11-05 2011-05-12 新日鐵化学株式会社 Phosphorus-containing epoxy resin, resin composition and fire-resistant cured product thereof
JP2012233133A (en) * 2011-05-09 2012-11-29 Yokohama Rubber Co Ltd:The Epoxy resin composition for fiber-reinforced composite material
JP5614280B2 (en) * 2009-03-25 2014-10-29 東レ株式会社 Epoxy resin composition, prepreg, carbon fiber reinforced composite material, and electronic / electrical component casing
US11319406B2 (en) * 2017-11-14 2022-05-03 Eneos Corporation Prepreg, fiber-reinforced composite material, and molded article
WO2023157507A1 (en) * 2022-02-16 2023-08-24 東レ株式会社 Prepreg, fiber-reinforced composite material, tubular body made of fiber-reinforced composite material, golf club shaft, and fishing rod

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH083335A (en) * 1994-06-21 1996-01-09 Toray Ind Inc Unidirectional carbon fiber prepreg stabilized in shape and its production
JP2001288247A (en) * 2000-04-06 2001-10-16 Matsushita Electric Works Ltd Phosphorus-containing epoxy resin composition, flame- retardant resin sheet using its phosphorus-containing epoxy resin, metal foil applied with resin, prepreg and laminated board, and multilayered board
JP2001302823A (en) * 2000-04-24 2001-10-31 Nippon Mitsubishi Oil Corp Resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composite material
JP2002012739A (en) * 2000-06-29 2002-01-15 Nippon Kayaku Co Ltd Flame-retardant epoxy resin composition and use thereof
JP2002220435A (en) * 2001-01-26 2002-08-09 Matsushita Electric Works Ltd Phosphorus-containing epoxy resin composition, prepreg, resin-coated metal foil, adhesive sheet, laminated board and multilayer board, phosphorus-containing epoxy resin varnish for coating, phosphorus-containing epoxy resin sealing material, phosphorus-containing epoxy resin casting material and phosphorus-containing epoxy resin varnish for immersion
JP2002249552A (en) * 2001-02-23 2002-09-06 Matsushita Electric Works Ltd Phosphorus-containing epoxy resin composition, resin sheet, metal foil having resin, prepreg, laminate, and multilayer board
JP2002249540A (en) * 2001-02-23 2002-09-06 Toto Kasei Co Ltd Phosphorus-containing epoxy resin composition
JP2003147102A (en) * 2001-11-13 2003-05-21 Toray Ind Inc Prepreg and tubular body made of fiber-reinforced composite material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH083335A (en) * 1994-06-21 1996-01-09 Toray Ind Inc Unidirectional carbon fiber prepreg stabilized in shape and its production
JP2001288247A (en) * 2000-04-06 2001-10-16 Matsushita Electric Works Ltd Phosphorus-containing epoxy resin composition, flame- retardant resin sheet using its phosphorus-containing epoxy resin, metal foil applied with resin, prepreg and laminated board, and multilayered board
JP2001302823A (en) * 2000-04-24 2001-10-31 Nippon Mitsubishi Oil Corp Resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composite material
JP2002012739A (en) * 2000-06-29 2002-01-15 Nippon Kayaku Co Ltd Flame-retardant epoxy resin composition and use thereof
JP2002220435A (en) * 2001-01-26 2002-08-09 Matsushita Electric Works Ltd Phosphorus-containing epoxy resin composition, prepreg, resin-coated metal foil, adhesive sheet, laminated board and multilayer board, phosphorus-containing epoxy resin varnish for coating, phosphorus-containing epoxy resin sealing material, phosphorus-containing epoxy resin casting material and phosphorus-containing epoxy resin varnish for immersion
JP2002249552A (en) * 2001-02-23 2002-09-06 Matsushita Electric Works Ltd Phosphorus-containing epoxy resin composition, resin sheet, metal foil having resin, prepreg, laminate, and multilayer board
JP2002249540A (en) * 2001-02-23 2002-09-06 Toto Kasei Co Ltd Phosphorus-containing epoxy resin composition
JP2003147102A (en) * 2001-11-13 2003-05-21 Toray Ind Inc Prepreg and tubular body made of fiber-reinforced composite material

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010100802A (en) * 2008-09-24 2010-05-06 Sekisui Chem Co Ltd Epoxy-based resin composition, sheet-like molded product, prepreg, cured product, laminated plate, and multilayer laminated plate
JP2010077263A (en) * 2008-09-25 2010-04-08 Panasonic Electric Works Co Ltd Epoxy resin composition for prepreg, prepreg, and multilayer printed wiring board
JP5614280B2 (en) * 2009-03-25 2014-10-29 東レ株式会社 Epoxy resin composition, prepreg, carbon fiber reinforced composite material, and electronic / electrical component casing
JP2010248379A (en) * 2009-04-16 2010-11-04 Mitsubishi Rayon Co Ltd Prepreg for press molding, and method for producing molded article using the same
WO2011055850A1 (en) * 2009-11-05 2011-05-12 新日鐵化学株式会社 Phosphorus-containing epoxy resin, resin composition and fire-resistant cured product thereof
EP2708567A1 (en) 2011-05-09 2014-03-19 The Yokohama Rubber Co., Ltd. Epoxy resin composition for fiber-reinforced composite material
CN103517934A (en) * 2011-05-09 2014-01-15 横滨橡胶株式会社 Epoxy resin composition for fiber-reinforced composite material
JP2012233133A (en) * 2011-05-09 2012-11-29 Yokohama Rubber Co Ltd:The Epoxy resin composition for fiber-reinforced composite material
EP2708567A4 (en) * 2011-05-09 2015-03-25 Yokohama Rubber Co Ltd Epoxy resin composition for fiber-reinforced composite material
EP2708567B1 (en) 2011-05-09 2016-04-06 The Yokohama Rubber Co., Ltd. Epoxy resin composition for fiber-reinforced composite material
US9353256B2 (en) 2011-05-09 2016-05-31 The Yokohama Rubber Co., Ltd. Epoxy resin composition for fiber-reinforced composite material
TWI551618B (en) * 2011-05-09 2016-10-01 Yokohama Rubber Co Ltd Reinforced composites for fiber reinforced composites
US11319406B2 (en) * 2017-11-14 2022-05-03 Eneos Corporation Prepreg, fiber-reinforced composite material, and molded article
WO2023157507A1 (en) * 2022-02-16 2023-08-24 東レ株式会社 Prepreg, fiber-reinforced composite material, tubular body made of fiber-reinforced composite material, golf club shaft, and fishing rod

Similar Documents

Publication Publication Date Title
JP6390755B2 (en) Carbon fiber reinforced composite materials and structures
US10364347B2 (en) Epoxy resin composition, prepreg, fiber-reinforced composite material, and housing for electrical or electronic equipment
JP2007291227A (en) Flame-retardant carbon fiber reinforced composite
JP5720118B2 (en) Epoxy resin composition, prepreg and fiber reinforced composite material
JP3092009B2 (en) Flame retardant and thermosetting flame-retardant resin composition containing the flame retardant
JP5954516B1 (en) Epoxy resin composition, cured product, fiber reinforced composite material, fiber reinforced resin molded product, and method for producing fiber reinforced resin molded product
JP4986627B2 (en) Heat resistant composite material
US11319435B2 (en) Heat-curable resin composition, prepreg, and fiber-reinforced composite material
JP6825757B1 (en) Epoxy resin composition, cured product, fiber reinforced composite material, prepreg and tow prepreg
JP2017002202A (en) Epoxy resin composition, molded article, prepreg, fiber reinforced composite material and structure
JP6769540B2 (en) Epoxy resin composition, curable resin composition and fiber reinforced composite material
JP2007302746A (en) Phosphorus-containing modified epoxy resin, flame retardant matrix resin composition, prepreg and composite material
JP2011148938A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JP6923090B2 (en) Curable composition, cured product, fiber reinforced composite material, molded product and its manufacturing method
JP6957896B2 (en) Epoxy resin compositions, prepregs and fiber reinforced composites
JP6897887B2 (en) Two-component curable epoxy resin composition, cured product, fiber-reinforced composite material and molded product
JP5297607B2 (en) RESIN COMPOSITION FOR FIBER-REINFORCED COMPOSITE MATERIAL, PROCESS FOR PRODUCING THE SAME AND COMPOSITE MATERIAL INTERMEDIATE
WO2021095534A1 (en) Curable composition, cured object, fiber-reinforced composite material, and molded article and production method therefor
JP6780318B2 (en) Curable composition and fiber reinforced composite material
JP6780317B2 (en) Curable composition and fiber reinforced composite material
JP2020164671A (en) Binder resin composition, preform, and fiber-reinforced composite material and method for producing fiber-reinforced composite material
WO2019098201A1 (en) Prepreg, fiber-reinforced composite material, and molded article
JP5039625B2 (en) Resin composition for composite material intermediate material
JP4163433B2 (en) Heat resistant adhesive
WO2022039104A1 (en) Epoxy resin composition and cured product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090417

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110805

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120131