JP2007288055A - Printed wiring board, and method of manufacturing same - Google Patents

Printed wiring board, and method of manufacturing same Download PDF

Info

Publication number
JP2007288055A
JP2007288055A JP2006115835A JP2006115835A JP2007288055A JP 2007288055 A JP2007288055 A JP 2007288055A JP 2006115835 A JP2006115835 A JP 2006115835A JP 2006115835 A JP2006115835 A JP 2006115835A JP 2007288055 A JP2007288055 A JP 2007288055A
Authority
JP
Japan
Prior art keywords
wiring board
printed wiring
layer
hole
cfrp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006115835A
Other languages
Japanese (ja)
Other versions
JP4907216B2 (en
Inventor
Sadao Sato
貞夫 佐藤
Yoshiaki Isobe
善朗 礒部
Sohei Samejima
壮平 鮫島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006115835A priority Critical patent/JP4907216B2/en
Publication of JP2007288055A publication Critical patent/JP2007288055A/en
Application granted granted Critical
Publication of JP4907216B2 publication Critical patent/JP4907216B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a printed wiring board which improves heat conductivity and heat radiation property, and improves reliability with respect to thermal stress or the like. <P>SOLUTION: A CFRP core layer 4 is provided which is configured by coating a CFRP core 1 constituted of a resin composition including a carbon fiber material with a resin insulating layer 2 containing aramid fibers. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、BGA(Ball Grid Array)実装、チップ実装、発熱部品の実装等を行う表面実装基板に好適なプリント配線板及びこのプリント配線板の製造方法に関するものである。   The present invention relates to a printed wiring board suitable for a surface mounting substrate for performing BGA (Ball Grid Array) mounting, chip mounting, heating component mounting, and the like, and a method of manufacturing the printed wiring board.

近年の電子機器に対する小型及び高性能化の要望に伴い電子部品の高密度実装が図られている。例えば、高密度実装を実現するものとしてBGA実装があるが、セラミックBGAパッケージでは、半導体集積回路の高集積化に伴ってピン数や発熱量が増加する傾向にある。   In recent years, electronic components have been mounted with high density in response to demands for smaller and higher performance electronic devices. For example, there is BGA mounting as a means for realizing high-density mounting, but in a ceramic BGA package, the number of pins and the amount of heat generation tend to increase as the semiconductor integrated circuit is highly integrated.

一般的なセラミックBGAパッケージを実装するプリント配線板は、X−Y方向で15〜17ppmの熱膨張係数を有する。これに対し、セラミックパッケージの熱膨張係数はおよそ7ppmと低い。このような熱膨張係数の差異は、電子機器の動作時における基板温度の上昇や熱ストレスが加わると、プリント配線板とパッケージとのはんだ接合部に応力を発生させる要因となる。   A printed wiring board on which a general ceramic BGA package is mounted has a thermal expansion coefficient of 15 to 17 ppm in the XY direction. On the other hand, the thermal expansion coefficient of the ceramic package is as low as about 7 ppm. Such a difference in coefficient of thermal expansion becomes a factor that generates stress at the solder joint between the printed wiring board and the package when a substrate temperature rise or thermal stress is applied during the operation of the electronic device.

この応力によりパッケージのはんだ接合部のボールにクラックや破断等が生じるのを防ぐためには、半導体集積回路の高集積化の要望に反してパッケージのピン数やサイズを抑える必要があった。   In order to prevent cracks and fractures from occurring in the balls of the solder joints of the package due to this stress, it is necessary to suppress the number of pins and the size of the package against the demand for higher integration of the semiconductor integrated circuit.

上述した不具合を解消しようとする従来の技術として、例えば特許文献1に開示される多層配線基板がある。特許文献1の多層配線基板では、カーボンファイバ材を包含するコア層の表裏にガラスクロスを包含する絶縁層を設けた積層構造を有している。このように、特許文献1は、基板側の低熱膨張率化を図ることにより、低熱膨張係数のパッケージ材との間における熱膨張係数の差異を低減している。   As a conventional technique for solving the above-described problems, for example, there is a multilayer wiring board disclosed in Patent Document 1. The multilayer wiring board of Patent Document 1 has a laminated structure in which an insulating layer including a glass cloth is provided on the front and back of a core layer including a carbon fiber material. As described above, Patent Document 1 reduces the difference in thermal expansion coefficient with the package material having a low thermal expansion coefficient by reducing the thermal expansion coefficient on the substrate side.

特開2004−87856号公報Japanese Patent Laid-Open No. 2004-87856

特許文献1において、コア層としてCFRP(Carbon Fiber Reinforced Plastic:炭素繊維強化プラスチック)基板を用いる場合、CFRPの熱膨張係数がほぼ0ppmであるのに対し、ガラスクロスを包含する絶縁層は13ppm程度の熱膨張係数であり、熱膨張係数の差がおよそ10ppm以上となる。   In Patent Document 1, when a CFRP (Carbon Fiber Reinforced Plastic) substrate is used as the core layer, the thermal expansion coefficient of CFRP is approximately 0 ppm, whereas the insulating layer including the glass cloth is approximately 13 ppm. It is a thermal expansion coefficient, and the difference in thermal expansion coefficient is approximately 10 ppm or more.

このため、この構造を有するプリント配線板を電子機器等に使用した場合、電子機器の動作時における基板温度の上昇や温度変化、熱ストレスを繰り返し受けると、熱膨張係数の差異に起因する応力により、CFRP基板とガラスクロスを含有する絶縁層との界面が剥離する場合がある。   For this reason, when a printed wiring board having this structure is used in an electronic device or the like, if the substrate temperature rises, changes in temperature, or is subjected to thermal stress repeatedly during operation of the electronic device, the stress caused by the difference in thermal expansion coefficient The interface between the CFRP substrate and the insulating layer containing glass cloth may be peeled off.

また、CFRP基板をコア層として積層基板を構成するにあたり、CFRP基板が低熱膨張係数であるので、CFRP基板の表裏面に設ける接着基材との間で熱膨張係数が大きく異なる場合、温度上昇により接着基材にクラックや剥離等が発生する場合がある。   Further, in configuring a laminated substrate using a CFRP substrate as a core layer, since the CFRP substrate has a low thermal expansion coefficient, if the thermal expansion coefficient differs greatly from the adhesive base material provided on the front and back surfaces of the CFRP substrate, Cracks or peeling may occur on the adhesive substrate.

さらに、CFRP基板のコア層(以下、CFRPコア部と称す)では、カーボンファイバ材が導電性を有するため、貫通スルーホールを設ける箇所に予めクリアランスを設け、クリアランス箇所を絶縁樹脂で穴埋めしなければならない。このとき、クリアランス箇所の壁面に被覆を施していないと、穴埋めした絶縁樹脂内にカーボンが飛散して混合され、絶縁低下をきたし電気絶縁性に不具合が生じる場合がある。   Furthermore, in the core layer of the CFRP substrate (hereinafter referred to as the CFRP core portion), since the carbon fiber material has conductivity, a clearance must be provided in advance at the location where the through-hole is provided, and the clearance location must be filled with an insulating resin. Don't be. At this time, if the wall surface of the clearance portion is not covered, carbon is scattered and mixed in the filled insulating resin, resulting in a decrease in insulation and a problem in electrical insulation.

また、CFRPコア部を銅張板にすると、CFRPコア部が低熱膨張であるのに対し、銅の熱膨張係数は17ppm程度と大きいため、温度上昇や温度変化、熱ストレスを受けると、CFRPコア部と銅箔層の界面、CFRPコア部のカーボン繊維界面、樹脂間等に剥離が発生する場合がある。   Also, when the CFRP core part is made of copper, the CFRP core part has a low thermal expansion, whereas the thermal expansion coefficient of copper is as large as about 17 ppm. Separation may occur at the interface between the part and the copper foil layer, the carbon fiber interface of the CFRP core part, between the resins, and the like.

さらに、CFRPコア部、パターン形成を施した内層コア材、及びガラスクロスを含有したプリプレグを重ねて加熱溶融することで製造したCFRP多層プリント配線板では、ガラスクロス絶縁層の熱膨張係数が13〜15ppmであるため、温度上昇や温度変化、熱ストレスを繰り返し受けると、CFRPコア部とガラスクロス絶縁層との間で剥離する場合がある。   Furthermore, in the CFRP multilayer printed wiring board manufactured by overlapping and heating and melting a prepreg containing a CFRP core part, a patterned inner layer core material, and a glass cloth, the thermal expansion coefficient of the glass cloth insulating layer is 13 to Since it is 15 ppm, it may peel off between a CFRP core part and a glass cloth insulating layer when a temperature rise, a temperature change, and thermal stress are repeatedly received.

この発明は、上記のような課題を解決するためになされたもので、熱伝導性及び放熱性に優れ、熱ストレス等に対する信頼性を向上させたプリント配線板及びこの製造方法を得ることを目的とする。   The present invention has been made to solve the above-described problems, and has an object to obtain a printed wiring board having excellent thermal conductivity and heat dissipation, and improved reliability against thermal stress, and a method for manufacturing the same. And

この発明に係るプリント配線板は、カーボンファイバ材を含む樹脂組成物からなるコア部を、アラミド繊維を含有する樹脂絶縁層で被覆してなるコア層を備えるものである。   The printed wiring board according to the present invention includes a core layer formed by coating a core portion made of a resin composition containing a carbon fiber material with a resin insulating layer containing an aramid fiber.

この発明によれば、コア部がカーボンファイバ材を含む樹脂組成物からなるので、低熱膨張であると共に熱伝導性及び放熱性に優れ、アラミド繊維を含有する樹脂絶縁層でコア部を被覆することで、コア部と絶縁層との熱膨張係数の差が緩和されて熱耐性が向上し、実装信頼性を向上させることができるという効果がある。   According to this invention, since the core portion is made of a resin composition containing a carbon fiber material, the core portion is coated with a resin insulating layer containing aramid fibers, which has low thermal expansion and excellent thermal conductivity and heat dissipation. Thus, there is an effect that the difference in thermal expansion coefficient between the core portion and the insulating layer is relaxed, the heat resistance is improved, and the mounting reliability can be improved.

実施の形態1.
図1は、この発明の実施の形態1によるプリント配線板の構造を概略的に示す断面図である。図1に示すプリント配線板は、アラミド繊維を含有するCFRPコア層(コア層)4の表裏面に、接着層6を介して、ブラインドビアホール7を有する積層基板(以降、BVH層と称す)(配線層)5を積層し、貫通スルーホール8を形成した構造を有する。
Embodiment 1 FIG.
1 is a cross-sectional view schematically showing a structure of a printed wiring board according to Embodiment 1 of the present invention. The printed wiring board shown in FIG. 1 has a laminated substrate (hereinafter referred to as a BVH layer) having blind via holes 7 on the front and back surfaces of a CFRP core layer (core layer) 4 containing an aramid fiber via an adhesive layer 6 (hereinafter referred to as a BVH layer). (Wiring layer) 5 is laminated, and a through-hole 8 is formed.

CFRPコア層4は、CFRPコア部(コア部)1に対しアラミド繊維を含む絶縁樹脂組成物を加熱溶融して接着することにより、アラミド繊維を含む樹脂絶縁層(以降、アラミド繊維絶縁層と称す)2によりCFRPコア部1が被覆された構造を有している。   The CFRP core layer 4 is a resin insulating layer containing aramid fibers (hereinafter referred to as an aramid fiber insulating layer) by heat melting and bonding an insulating resin composition containing aramid fibers to the CFRP core portion (core portion) 1. ) 2 to cover the CFRP core 1.

カーボンファイバ材を含む樹脂組成物であるCFRPコア部1は、例えば一方向性炭素繊維のプリプレグシートを複数枚適当な配向に重ねてプレス積層成形した積層成形物を用いる。このCFRPコア部1では、一方向性炭素繊維のプリプレグシートの重ね合わせる配向角度を変えることによって、熱伝導性、熱膨張係数、弾性率を変えることができる。また、アラミド繊維を含む絶縁樹脂組成物としては、例えばアラミド繊維の不織布にエポキシ樹脂を含浸したプリプレグが考えられる。   For the CFRP core portion 1 which is a resin composition containing a carbon fiber material, for example, a laminate molded product obtained by press lamination molding a plurality of unidirectional carbon fiber prepreg sheets in an appropriate orientation is used. In the CFRP core portion 1, the thermal conductivity, the thermal expansion coefficient, and the elastic modulus can be changed by changing the orientation angle at which the prepreg sheets of unidirectional carbon fibers are overlapped. Moreover, as an insulating resin composition containing an aramid fiber, the prepreg which impregnated the epoxy resin to the nonwoven fabric of the aramid fiber can be considered, for example.

CFRPコア層4において、CFRPコア部1の熱膨張係数がほぼ0ppmであるのに対し、アラミド繊維絶縁層2の熱膨張係数はおよそ6ppmであり、両者の熱膨張係数の差は6ppm程度である。また、特許文献1に開示される多層配線基板では、CFRPコア部を被覆するガラスクロス絶縁層の熱膨張係数が13〜15ppmである。従って、本実施の形態1では、コア部とこれを被覆する絶縁層との間における熱膨張係数の差がおよそ半分以下になっているのがわかる。   In the CFRP core layer 4, the thermal expansion coefficient of the CFRP core portion 1 is approximately 0 ppm, whereas the thermal expansion coefficient of the aramid fiber insulating layer 2 is approximately 6 ppm, and the difference between the thermal expansion coefficients of both is approximately 6 ppm. . Moreover, in the multilayer wiring board disclosed in Patent Document 1, the thermal expansion coefficient of the glass cloth insulating layer covering the CFRP core portion is 13 to 15 ppm. Therefore, in this Embodiment 1, it turns out that the difference of the thermal expansion coefficient between the core part and the insulating layer which covers this is about half or less.

このように、実施の形態1によるCFRPコア層4では、CFRPコア部と絶縁層の熱膨張係数の差が、従来と比較して大幅に緩和されることから、CFRPコア部の表裏面と絶縁層との間にクラックや剥離等が発生するのを軽減することができ、絶縁性能、実装信頼性を著しく向上させることができる。   As described above, in the CFRP core layer 4 according to the first embodiment, the difference between the thermal expansion coefficients of the CFRP core portion and the insulating layer is greatly reduced as compared with the conventional case. The occurrence of cracks and peeling between the layers can be reduced, and the insulation performance and mounting reliability can be significantly improved.

内層コア基板5aの表裏面には配線パターンとなる銅パターンが形成されており、その銅パターン上に接着層5bを介してさらに銅パターンが形成される。このように、BVH層5は、本実施の形態1によるプリント配線板の内層となる3層構造を有しており、さらに接着層6でブラインドされるブラインドビアホール7が形成されている。   A copper pattern serving as a wiring pattern is formed on the front and back surfaces of the inner layer core substrate 5a, and a copper pattern is further formed on the copper pattern via an adhesive layer 5b. As described above, the BVH layer 5 has a three-layer structure as an inner layer of the printed wiring board according to the first embodiment, and further, blind via holes 7 blinded by the adhesive layer 6 are formed.

また、貫通スルーホール8は、図1に示すようにプリント配線板の表面から裏面に貫通しており、CFRPコア層4に設けたクリアランス部3を通るように設けられる。クリアランス部3は、貫通スルーホール8と同軸にCFRPコア部1に設けられた貫通孔であり、貫通スルーホール8より大きい所定の径を有する。このようにクリアランス部3を通過するように貫通スルーホール8を設けるのは、CFRPコア部1に含有されるカーボンファイバが導電性を有するため、CFRPコア部1と貫通スルーホール8とが近すぎると短絡してしまうためである。   Further, as shown in FIG. 1, the through-hole 8 penetrates from the front surface to the back surface of the printed wiring board and is provided so as to pass through the clearance portion 3 provided in the CFRP core layer 4. The clearance portion 3 is a through hole provided in the CFRP core portion 1 coaxially with the through through hole 8 and has a predetermined diameter larger than that of the through through hole 8. The through-through hole 8 is provided so as to pass through the clearance portion 3 in this way because the carbon fiber contained in the CFRP core portion 1 has conductivity, so that the CFRP core portion 1 and the through-through hole 8 are too close. This is because they are short-circuited.

クリアランス部3としては、貫通スルーホール8に対する絶縁性が許容範囲となる間隔が必要であるが、積層ずれ等により貫通スルーホール8との間隔にばらつきが生じ、絶縁低下が起こらないように、ある程度の径が確保されていなければならない。また、クリアランス径が過剰に大きい場合、CFRPコア部1の低熱膨張性や熱伝導性が低下するので好ましくない。これらの条件を考慮すると、クリアランス部3のクリアランス径としては、貫通スルーホール径と比較して+0.5〜1.0mm程度大きい穴が好ましい。   The clearance portion 3 needs to have an interval in which the insulation with respect to the through-through hole 8 is within an allowable range. However, the clearance with the through-through hole 8 may vary to some extent due to stacking deviation or the like, and the insulation may not be lowered to some extent. The diameter must be secured. In addition, when the clearance diameter is excessively large, the low thermal expansion property and thermal conductivity of the CFRP core portion 1 are not preferable. In consideration of these conditions, the clearance diameter of the clearance portion 3 is preferably a hole that is about +0.5 to 1.0 mm larger than the through-through hole diameter.

次に実施の形態1によるプリント配線板の製造工程を説明する。
先ず、CFRPコア層4の製造工程を説明する。
図2は、図1中のCFRPコア層の製造工程を示す図であり、図2(a)に示す工程から図2(d)に示す工程へ製造が進む。なお、図2では、各工程での製造物を断面図で表している。図2(a)の工程に示すCFRP基板であるCFRPコア部1に対し、図2(b)の工程において、貫通スルーホール8を通過させるためのクリアランス部3となる貫通孔3aを形成する。例えば、NCボール盤を用い、貫通スルーホール8の径に対して+0.5〜1.0mm程度径の大きいドリルで貫通孔3aを開ける。
Next, the manufacturing process of the printed wiring board according to the first embodiment will be described.
First, the manufacturing process of the CFRP core layer 4 will be described.
FIG. 2 is a diagram showing a manufacturing process of the CFRP core layer in FIG. 1, and the manufacturing proceeds from the process shown in FIG. 2 (a) to the process shown in FIG. 2 (d). In addition, in FIG. 2, the product in each process is represented with sectional drawing. In the step of FIG. 2 (b), a through hole 3a serving as a clearance portion 3 for allowing the through through hole 8 to pass is formed in the CFRP core portion 1 which is a CFRP substrate shown in the step of FIG. 2 (a). For example, using an NC drilling machine, the through hole 3 a is opened with a drill having a diameter of about +0.5 to 1.0 mm with respect to the diameter of the through through hole 8.

図2(b)の工程でNCボール盤等によりCFRPコア部1を穴開けしたため、貫通孔3aの孔内壁面にはカーボンファイバの加工カスが付着している。
そこで、図2(c)の工程では、カーボンファイバの加工カスの飛散防止と貫通孔3a内の絶縁低下を防止するため、超音波洗浄等によりCFRPコア部1を洗浄し、特に貫通孔3aの内壁に付着した加工カスを取り除く。
Since the CFRP core portion 1 is drilled with an NC drilling machine or the like in the process of FIG. 2B, carbon fiber processing residue adheres to the inner wall surface of the through hole 3a.
Therefore, in the process of FIG. 2 (c), the CFRP core portion 1 is cleaned by ultrasonic cleaning or the like to prevent scattering of carbon fiber processing residue and insulation deterioration in the through hole 3a. Remove processing residue adhering to the inner wall.

続いて、貫通孔3aの孔内壁面から露出したカーボンファイバが貫通スルーホール8に接触しないようにするため、貫通孔3aに対して無電解銅、電解銅メッキを施し、貫通孔3aの孔内壁とスルーホールランド(開口周縁部)に銅厚10μm程度の銅パターンを形成する(図2(c)中の貫通孔3b)。   Subsequently, in order to prevent the carbon fiber exposed from the inner wall surface of the through hole 3a from coming into contact with the through hole 8, the electroless copper and electrolytic copper plating is applied to the through hole 3a, and the inner wall of the through hole 3a. Then, a copper pattern having a copper thickness of about 10 μm is formed on the through-hole land (periphery of the opening) (through hole 3b in FIG. 2C).

このように、CFRPコア部1の表裏面において貫通孔3aの孔内壁とスルーホールランドのみに銅パターンを形成するのは、CFRPコア部1と銅との熱膨張係数の差異に起因して、基板の温度上昇等により銅パターンにクラックや剥離等が発生するためである。従って、CFRPコア部1の表面に形成する銅メッキ部分は、最小限の範囲に抑える。   Thus, the reason why the copper pattern is formed only on the inner wall and the through-hole land of the through-hole 3a on the front and back surfaces of the CFRP core portion 1 is due to the difference in the thermal expansion coefficient between the CFRP core portion 1 and copper. This is because cracks, peeling, and the like occur in the copper pattern due to the temperature rise of the substrate. Therefore, the copper plating portion formed on the surface of the CFRP core portion 1 is suppressed to a minimum range.

例えば、CFRPコア部1の表面全体に銅メッキを施すと、CFRPコア部1の熱膨張係数がほぼ0ppmであるのに対し、銅の熱膨張係数は17ppm程度と大きく、CFRPコア部1と銅パターンとの熱膨張係数の差が大きい。このため、CFRPコア部1の表面全体に銅メッキを施すのは好ましくない。   For example, when copper plating is applied to the entire surface of the CFRP core portion 1, the thermal expansion coefficient of the CFRP core portion 1 is approximately 0 ppm, whereas the thermal expansion coefficient of copper is as large as about 17 ppm. The difference in thermal expansion coefficient from the pattern is large. For this reason, it is not preferable to apply copper plating to the entire surface of the CFRP core portion 1.

なお、銅メッキ厚さは5〜10μm程度が好ましい。これは、銅メッキ厚を厚くすると重量が重くなる上、貫通孔3bの径が小さくなり、最終的なクリアランス部3のクリアランス径が小さくなり、貫通スルーホール8との間の絶縁性が低下するからである。   The copper plating thickness is preferably about 5 to 10 μm. This is because when the copper plating thickness is increased, the weight is increased, the diameter of the through hole 3b is reduced, the clearance diameter of the final clearance portion 3 is reduced, and the insulation between the through hole 8 is lowered. Because.

また、銅メッキを施す代わりに、エポキシ樹脂をスプレイコートにより塗布して、貫通孔3aの孔内壁と開口周縁部にエポキシ塗膜を形成するようにしてもよい。この場合、エポキシ樹脂の膜厚としては、10μm以下で5μm程度が好ましい。これは、エポキシ樹脂の膜厚が10μm以上になると、エポキシ樹脂被膜内に気泡(ボイド)が発生して、クラックや剥離等を発生する要因となり得、好ましくないからである。   Moreover, you may make it apply | coat an epoxy resin by spray coating instead of performing copper plating, and to form an epoxy coating film in the hole inner wall and opening peripheral part of the through-hole 3a. In this case, the thickness of the epoxy resin is preferably 10 μm or less and about 5 μm. This is because when the thickness of the epoxy resin is 10 μm or more, bubbles (voids) are generated in the epoxy resin coating, which may cause cracks, peeling, and the like, which is not preferable.

図2(d)の工程では、CFRPコア部1の表裏面にアラミド繊維不織布を含有する絶縁層プリプレグを配置し、加熱溶融しつつ、CFRPコア部1の表裏側からプレスして積層成形することによりCFRPコア層4を形成する。
例えば、図2(c)の工程で貫通孔3bが形成されたCFRPコア部1の表裏面にアラミド繊維不織布にエポキシ樹脂を含浸したプリプレグを重ね、圧力6MPa、温度180℃で120分間積層成形加工を行う。これにより、貫通孔3b内にアラミド繊維不織布が充填され、貫通スルーホール8に対するクリアランス部3が形成される。
In the step of FIG. 2 (d), insulating layer prepregs containing an aramid fiber nonwoven fabric are arranged on the front and back surfaces of the CFRP core portion 1, and the layers are molded by pressing from the front and back sides of the CFRP core portion 1 while being heated and melted. Thus, the CFRP core layer 4 is formed.
For example, a prepreg impregnated with an epoxy resin in an aramid fiber nonwoven fabric is laminated on the front and back surfaces of the CFRP core portion 1 in which the through-holes 3b are formed in the process of FIG. I do. Thereby, the aramid fiber nonwoven fabric is filled in the through hole 3b, and the clearance part 3 for the through through hole 8 is formed.

このように、アラミド繊維不織布を充填することにより、クリアランス部3内の熱膨張係数が低下してCFRPコア部1との熱膨張係数の整合がとられ、クリアランス部3の内壁でクラックが発生するのを防止する。これにより、クリアランス部3の絶縁信頼性を著しく向上させることができる。   Thus, by filling the aramid fiber non-woven fabric, the thermal expansion coefficient in the clearance portion 3 is lowered, the thermal expansion coefficient is matched with the CFRP core portion 1, and cracks are generated on the inner wall of the clearance portion 3. To prevent. Thereby, the insulation reliability of the clearance part 3 can be improved remarkably.

上記積層形成の推奨条件としては、温度が175℃〜190℃、圧力が5MPa〜6MPa、加熱時間が90分〜120分程度が挙げられる。なお、プレス温度範囲より温度が低い、あるいはプレス成形時間範囲より時間が短い場合、成形樹脂の硬化不足が発生し、基板に部品を実装する際、基板の反り等の要因となり好ましくない。また、成形圧力範囲より圧力が低い場合、貫通孔3b内へのアラミド繊維不織布の充填が不十分となり、貫通孔3b内にボイドが残存する可能性があるため好ましくない。
このように、上記推奨条件は、発明者による本発明に至るまでの研究解析の結果として見出されたものであり、上記不具合のないCFRPコア層4を的確に形成できる臨界的意義を有する。
Recommended conditions for the above-mentioned lamination formation include a temperature of 175 ° C. to 190 ° C., a pressure of 5 MPa to 6 MPa, and a heating time of about 90 minutes to 120 minutes. In addition, when the temperature is lower than the press temperature range or shorter than the press molding time range, the molding resin is insufficiently cured, which is not preferable because it causes warpage of the substrate when mounting components on the substrate. Moreover, when the pressure is lower than the molding pressure range, the filling of the aramid fiber nonwoven fabric into the through holes 3b becomes insufficient, and voids may remain in the through holes 3b.
As described above, the recommended conditions are found as a result of research and analysis up to the present invention by the inventors, and have a critical meaning that the CFRP core layer 4 without the above defects can be accurately formed.

上述したように、本発明では、CFRPコア部1の表裏面にアラミド繊維を含有する絶縁層を配置することにより、従来のプリント配線板と比較して熱膨張係数の差が緩和され、CFRPコア部1のようなカーボンファイバ材を含むコア部を被覆する絶縁層にクラックや剥離等が発生するのを防止することができ、絶縁性能及び実装信頼性を著しく向上させることが可能である。   As described above, in the present invention, by disposing the insulating layers containing aramid fibers on the front and back surfaces of the CFRP core portion 1, the difference in thermal expansion coefficient is alleviated as compared with the conventional printed wiring board, and the CFRP core It is possible to prevent the occurrence of cracks, peeling, and the like in the insulating layer covering the core portion including the carbon fiber material such as the portion 1, and the insulating performance and the mounting reliability can be remarkably improved.

次に、BVH層5の製造工程を説明する。
図3は、図1中のBVH層の製造工程を示す図であり、3(a)に示す工程から図3(e)に示す工程へ製造が進む。なお、図3では各工程での製造物を断面図で表している。
図3(a)の工程に示す表裏面に銅箔が設けられた内層コア基板5aに対し、図3(b)の工程において、既存の写真製版技術等を用いて表裏面に配線パターンとなる銅パターンを形成する。
Next, the manufacturing process of the BVH layer 5 will be described.
FIG. 3 is a diagram showing a manufacturing process of the BVH layer in FIG. 1, and the manufacturing proceeds from the process shown in FIG. 3A to the process shown in FIG. In addition, in FIG. 3, the product in each process is represented with sectional drawing.
In contrast to the inner core substrate 5a in which the copper foil is provided on the front and back surfaces shown in the step of FIG. 3A, a wiring pattern is formed on the front and back surfaces using the existing photoengraving technique or the like in the step of FIG. 3B. A copper pattern is formed.

続いて、図3(c)の工程において、内層コア基板5aの銅パターンを酸化処理し、乾燥した後、表裏面の銅パターン上に絶縁層となる接着層5bを重ね、さらに銅箔5cをそれぞれ置いて真空プレスによる積層成形を行う。これにより、図3(c)に示すような内層コア基板5aの表裏面に接着層5b及び銅箔5cを有する積層基板が形成される。   Subsequently, in the step of FIG. 3C, the copper pattern of the inner core substrate 5a is oxidized and dried, and then the adhesive layer 5b serving as an insulating layer is stacked on the copper pattern on the front and back surfaces, and the copper foil 5c is further formed. Laminate molding is performed by vacuum press. Thereby, a laminated substrate having the adhesive layer 5b and the copper foil 5c on the front and back surfaces of the inner layer core substrate 5a as shown in FIG. 3C is formed.

図3(d)の工程では、上述の積層基板に対し、例えばNCボール盤を用いてブラインドビアホールを形成するための貫通孔7aを開ける。
この後、図3(e)の工程において、貫通孔7aを開けた積層基板に対し、デスミア処理を施して微小な加工カスを取り除き、無電解銅、電解銅メッキを施してブラインドビアホール(BVH)7を形成する。
次に、図1のプリント配線板を構成する際に内層側になる面に対して、既存の写真製版技術等を利用して銅パターン(内層パターン)を形成する。これにより、図3(e)に示すような内層となる面側に銅パターンが形成され、外表面(外層側の面)にはべたの銅箔が残るBVH層5が得られる。
In the step of FIG. 3D, a through-hole 7a for forming a blind via hole is opened in the above-described laminated substrate using, for example, an NC drilling machine.
Thereafter, in the step of FIG. 3 (e), the laminated substrate having the through holes 7a is subjected to desmear treatment to remove minute processing residue, and electroless copper and electrolytic copper plating are applied to blind via holes (BVH). 7 is formed.
Next, a copper pattern (inner layer pattern) is formed on the surface that becomes the inner layer side when the printed wiring board of FIG. As a result, a copper pattern is formed on the inner layer side as shown in FIG. 3E, and a solid copper foil remains on the outer surface (outer layer side surface).

上述のようにして作成されたCFRPコア層4とBVH層5を用い、図1に示すプリント配線板を作成する。
先ず、CFRPコア層4の表裏面に接着層6を重ね、その上にBVH層5をそれぞれ配置して真空プレスによる積層成形を施す。このとき、図3(e)の工程で銅パターンを形成した内層面が接着層6側となるように配置する。これにより、CFRPコア層4の表裏面に接着層6を介してBVH層5が積層した積層基板が形成される。
A printed wiring board shown in FIG. 1 is produced using the CFRP core layer 4 and the BVH layer 5 produced as described above.
First, the adhesive layer 6 is overlapped on the front and back surfaces of the CFRP core layer 4, and the BVH layer 5 is disposed on the adhesive layer 6, and is laminated by vacuum press. At this time, it arrange | positions so that the inner layer surface in which the copper pattern was formed in the process of FIG.3 (e) may become the contact bonding layer 6 side. Thereby, a laminated substrate in which the BVH layer 5 is laminated on the front and back surfaces of the CFRP core layer 4 via the adhesive layer 6 is formed.

次に、上記積層基板に対し、例えばNCボール盤を用いて、CFRPコア層4のクリアランス部3を通過するように表裏に貫通する貫通孔を開ける。この処理で生じた微小な加工カスをデスミア処理で取り除き、無電解銅、電解銅メッキを施して貫通スルーホール8を形成する。この後、BVH層5の外表面(外層側の面)に対し、既存の写真製版技術等を利用して所望の銅パターンを形成することにより、図1に断面で示すようなプリント配線板が得られる。   Next, a through-hole penetrating the front and back of the laminated substrate is formed so as to pass through the clearance portion 3 of the CFRP core layer 4 using an NC drilling machine, for example. The minute machining residue generated by this treatment is removed by desmear treatment, and electroless copper and electrolytic copper plating are applied to form a through-through hole 8. Thereafter, a desired copper pattern is formed on the outer surface of the BVH layer 5 (surface on the outer layer side) using an existing photoengraving technique or the like, whereby a printed wiring board as shown in cross section in FIG. 1 is obtained. can get.

以上のように、この実施の形態1によれば、CFRPコア部1がカーボンファイバ材を含む樹脂組成物からなるので、低熱膨張であると共に熱伝導性及び放熱性に優れ、アラミド繊維を含有する樹脂絶縁層2によってCFRPコア部1を被覆するので、CFRPコア部1と絶縁層2との熱膨張係数の差が緩和されて熱耐性が向上し、実装信頼性を向上させることができる。   As described above, according to the first embodiment, since the CFRP core portion 1 is made of a resin composition containing a carbon fiber material, it has low thermal expansion and excellent thermal conductivity and heat dissipation, and contains an aramid fiber. Since the CFRP core portion 1 is covered with the resin insulating layer 2, the difference in thermal expansion coefficient between the CFRP core portion 1 and the insulating layer 2 is relaxed, the heat resistance is improved, and the mounting reliability can be improved.

また、上記実施の形態1によれば、クリアランス部3の孔内壁面及び開口周縁部を銅薄膜や、絶縁樹脂薄膜で被覆するので、クリアランス部3の孔内壁面からカーボンファイバが露出することがなく、絶縁性を向上させることができる。   Further, according to the first embodiment, since the inner wall surface and the peripheral edge of the opening of the clearance portion 3 are covered with the copper thin film or the insulating resin thin film, the carbon fiber can be exposed from the inner wall surface of the clearance portion 3. Insulation can be improved.

この発明の実施の形態1によるプリント配線板の構造を概略的に示す断面図である。It is sectional drawing which shows roughly the structure of the printed wiring board by Embodiment 1 of this invention. 図1中のCFRPコア層の製造工程を示す図である。It is a figure which shows the manufacturing process of the CFRP core layer in FIG. 図1中のBVH層の製造工程を示す図である。It is a figure which shows the manufacturing process of the BVH layer in FIG.

符号の説明Explanation of symbols

1 CFRPコア部(コア部)、2 アラミド繊維絶縁層、3 クリアランス部、3a,3b,7a 貫通孔、4 CFRPコア層、5 BVH層(配線層)、5a 内層コア基板、5b,6 接着層、5c 銅箔、7 ブラインドビアホール、8 貫通スルーホール。   DESCRIPTION OF SYMBOLS 1 CFRP core part (core part), 2 Aramid fiber insulation layer, 3 Clearance part, 3a, 3b, 7a Through-hole, 4 CFRP core layer, 5 BVH layer (wiring layer), 5a Inner core substrate, 5b, 6 Adhesive layer 5c copper foil, 7 blind via holes, 8 through-holes.

Claims (8)

カーボンファイバ材を含む樹脂組成物からなるコア部を、アラミド繊維を含有する樹脂絶縁層で被覆してなるコア層を備えたプリント配線板。   A printed wiring board comprising a core layer formed by coating a core portion made of a resin composition containing a carbon fiber material with a resin insulating layer containing an aramid fiber. コア層上に積層され、少なくとも一つの層に配線パターンが形成された積層構造を有する配線層を備えたことを特徴とする請求項1記載のプリント配線板。   2. The printed wiring board according to claim 1, further comprising a wiring layer having a laminated structure laminated on a core layer and having a wiring pattern formed on at least one layer. 表裏面を貫通する貫通スルーホールを備えたことを特徴とする請求項1又は請求項2記載のプリント配線板。   The printed wiring board according to claim 1, further comprising a through-hole penetrating the front and back surfaces. 貫通スルーホールと同軸にコア部に設けられ、前記貫通スルーホールより大きい径を有するクリアランス部を備えたことを特徴とする請求項3記載のプリント配線板。   The printed wiring board according to claim 3, further comprising a clearance portion provided in a core portion coaxially with the through-through hole and having a diameter larger than that of the through-through hole. クリアランス部の孔内壁面及び開口周縁部を金属薄膜で被覆したことを特徴とする請求項4記載のプリント配線板。   5. The printed wiring board according to claim 4, wherein the inner wall surface of the clearance and the peripheral edge of the opening are covered with a metal thin film. クリアランス部の孔内壁面及び開口周縁部を絶縁樹脂薄膜で被覆したことを特徴とする請求項4記載のプリント配線板。   The printed wiring board according to claim 4, wherein the inner wall surface of the clearance and the peripheral edge of the opening are covered with an insulating resin thin film. クリアランス部の孔内にアラミド繊維を含有する絶縁樹脂を充填したことを特徴とする請求項3から請求項6のうちのいずれか1項記載のプリント配線板。   The printed wiring board according to any one of claims 3 to 6, wherein an insulating resin containing an aramid fiber is filled in the hole of the clearance portion. カーボンファイバ材を含む樹脂組成物からなるコア部を、アラミド繊維を含有する樹脂絶縁層で被覆してなるコア層を備えたプリント配線板の製造方法において、
前記コア部の基板表裏面にアラミド繊維を含有する樹脂組成物を配置し、温度175℃ないし190℃、圧力5MPaないし6MPa、加熱時間90分ないし120分の条件下で前記アラミド繊維を含有する樹脂組成物を溶融してプレス成形することで前記コア層を生成することを特徴とするプリント配線板の製造方法。
In the method of manufacturing a printed wiring board provided with a core layer formed by coating a core portion made of a resin composition containing a carbon fiber material with a resin insulating layer containing an aramid fiber,
Resin containing aramid fibers under conditions of temperature 175 ° C. to 190 ° C., pressure 5 MPa to 6 MPa, and heating time 90 minutes to 120 minutes by arranging a resin composition containing aramid fibers on the front and back surfaces of the substrate of the core portion A method for producing a printed wiring board, wherein the core layer is produced by melting and pressing the composition.
JP2006115835A 2006-04-19 2006-04-19 Printed wiring board and printed wiring board manufacturing method Active JP4907216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006115835A JP4907216B2 (en) 2006-04-19 2006-04-19 Printed wiring board and printed wiring board manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006115835A JP4907216B2 (en) 2006-04-19 2006-04-19 Printed wiring board and printed wiring board manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011269101A Division JP2012060162A (en) 2011-12-08 2011-12-08 Printed wiring board, and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2007288055A true JP2007288055A (en) 2007-11-01
JP4907216B2 JP4907216B2 (en) 2012-03-28

Family

ID=38759508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006115835A Active JP4907216B2 (en) 2006-04-19 2006-04-19 Printed wiring board and printed wiring board manufacturing method

Country Status (1)

Country Link
JP (1) JP4907216B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010058443A1 (en) * 2008-11-20 2010-05-27 富士通株式会社 Wiring board and method for producing wiring board
KR101102215B1 (en) * 2008-11-17 2012-01-05 신코 덴키 코교 가부시키가이샤 Circuit board and method of manufacturing the same
US8161636B2 (en) 2007-10-12 2012-04-24 Fujitsu Limited Circuit board and method of manufacturing the same
WO2012111503A1 (en) * 2011-02-16 2012-08-23 三菱重工業株式会社 Carbon-fiber-reinforced plastic structure
US8344260B2 (en) 2009-05-19 2013-01-01 Panasonic Corporation Multilayer wiring board
EP2542041A1 (en) * 2010-02-26 2013-01-02 Mitsubishi Electric Corporation Method of manufacturing printed circuit board and printed circuit board
TWI402173B (en) * 2008-11-17 2013-07-21 Fujitsu Ltd Circuit board and method of manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07249847A (en) * 1994-03-14 1995-09-26 Mitsubishi Electric Corp Low thermal expansion printed wiring board
JPH1187869A (en) * 1997-09-10 1999-03-30 Hitachi Ltd Printed circuit board and its manufacture
JP2000138453A (en) * 1998-10-29 2000-05-16 Shinko Electric Ind Co Ltd Wiring board
JP2002232102A (en) * 2001-01-31 2002-08-16 Ngk Spark Plug Co Ltd Circuit board
JP2004087856A (en) * 2002-08-27 2004-03-18 Fujitsu Ltd Multilayer wiring board
JP2005187301A (en) * 2003-12-26 2005-07-14 Nippon Oil Corp Carbon fiber-reinforced metal composite material and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07249847A (en) * 1994-03-14 1995-09-26 Mitsubishi Electric Corp Low thermal expansion printed wiring board
JPH1187869A (en) * 1997-09-10 1999-03-30 Hitachi Ltd Printed circuit board and its manufacture
JP2000138453A (en) * 1998-10-29 2000-05-16 Shinko Electric Ind Co Ltd Wiring board
JP2002232102A (en) * 2001-01-31 2002-08-16 Ngk Spark Plug Co Ltd Circuit board
JP2004087856A (en) * 2002-08-27 2004-03-18 Fujitsu Ltd Multilayer wiring board
JP2005187301A (en) * 2003-12-26 2005-07-14 Nippon Oil Corp Carbon fiber-reinforced metal composite material and its manufacturing method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8161636B2 (en) 2007-10-12 2012-04-24 Fujitsu Limited Circuit board and method of manufacturing the same
TWI402173B (en) * 2008-11-17 2013-07-21 Fujitsu Ltd Circuit board and method of manufacturing the same
KR101102215B1 (en) * 2008-11-17 2012-01-05 신코 덴키 코교 가부시키가이샤 Circuit board and method of manufacturing the same
KR101148628B1 (en) 2008-11-20 2012-05-25 후지쯔 가부시끼가이샤 Wiring board and method for producing wiring board
JP5170253B2 (en) * 2008-11-20 2013-03-27 富士通株式会社 Wiring board and method of manufacturing wiring board
WO2010058443A1 (en) * 2008-11-20 2010-05-27 富士通株式会社 Wiring board and method for producing wiring board
US8344260B2 (en) 2009-05-19 2013-01-01 Panasonic Corporation Multilayer wiring board
EP2542041A1 (en) * 2010-02-26 2013-01-02 Mitsubishi Electric Corporation Method of manufacturing printed circuit board and printed circuit board
EP2542041A4 (en) * 2010-02-26 2013-10-02 Mitsubishi Electric Corp Method of manufacturing printed circuit board and printed circuit board
US9532444B2 (en) 2010-02-26 2016-12-27 Mitsubishi Electric Corporation Method of manufacturing printed wiring board, and printed wiring board
WO2012111503A1 (en) * 2011-02-16 2012-08-23 三菱重工業株式会社 Carbon-fiber-reinforced plastic structure
JP2012169533A (en) * 2011-02-16 2012-09-06 Mitsubishi Heavy Ind Ltd Carbon fiber-reinforced plastic structure
US10357938B2 (en) 2011-02-16 2019-07-23 Mitsubishi Heavy Industries, Ltd. Carbon-fiber-reinforced plastic structure

Also Published As

Publication number Publication date
JP4907216B2 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
KR101102220B1 (en) PRINTED WIRING BOARD WITH BUlLT-IN SEMICONDUCTOR ELEMENT, AND PROCESS FOR PRODUCING THE SAME
JP6427817B2 (en) Printed circuit board and manufacturing method thereof
US10745819B2 (en) Printed wiring board, semiconductor package and method for manufacturing printed wiring board
US20100224397A1 (en) Wiring board and method for manufacturing the same
JP4907216B2 (en) Printed wiring board and printed wiring board manufacturing method
JP2006190928A (en) Bga package and its manufacturing method
JP2007059846A (en) Projecting and recessed multilayer circuit board module and its production process
KR100633850B1 (en) Method for manufacturing a substrate with cavity
JP2022553349A (en) circuit board
JP2009099619A (en) Core substrate and its manufacturing method
EP3351065A1 (en) Sacrificial structure with dummy core and two sections of separate material thereon for manufacturing component carriers
JP6599853B2 (en) Method of forming a laminated structure having plated through holes using a removable cover layer
US8525041B2 (en) Multilayer wiring board and method for manufacturing the same
JP2007288022A (en) Multilayer printed wiring board and its manufacturing method
KR20080114052A (en) Open-area making process of multi-layer printed circuit board using laser-cutting
EP3351066A1 (en) Component carriers sandwiching a sacrificial structure and having pure dielectric layers next to the sacrificial structure
KR101167422B1 (en) Carrier member and method of manufacturing PCB using the same
JP6846862B2 (en) Printed wiring board and its manufacturing method
KR101109287B1 (en) Printed circuit board with electronic components embedded therein and method for fabricating the same
KR101154605B1 (en) The printed circuit board and the method for manufacturing the same
WO2017046762A1 (en) Sacrificial structure comprising low-flow material for manufacturing component carriers
KR100651422B1 (en) Method for fabricating the multi layer using Layup Process
KR101089923B1 (en) Manufacturing method of printed circuit board
JP2008306227A (en) Uneveness shaped multilayer circuit board module and method of manufacturing the same
JP2012060162A (en) Printed wiring board, and method of manufacturing the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070920

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071228

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4907216

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250