JP2007277417A - Polyolefin-based reprocessed cross-linked foam and method for producing the same - Google Patents

Polyolefin-based reprocessed cross-linked foam and method for producing the same Download PDF

Info

Publication number
JP2007277417A
JP2007277417A JP2006105987A JP2006105987A JP2007277417A JP 2007277417 A JP2007277417 A JP 2007277417A JP 2006105987 A JP2006105987 A JP 2006105987A JP 2006105987 A JP2006105987 A JP 2006105987A JP 2007277417 A JP2007277417 A JP 2007277417A
Authority
JP
Japan
Prior art keywords
polyolefin
resin
foam
linked
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006105987A
Other languages
Japanese (ja)
Inventor
Muneaki Tsukada
宗暁 塚田
Motoi Naito
基 内藤
Hideki Murayama
秀樹 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2006105987A priority Critical patent/JP2007277417A/en
Publication of JP2007277417A publication Critical patent/JP2007277417A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high quality cross-linked foam excellent in mechanical characteristics with a resin obtained by reprocessing a cross-linked polyolefin-based resin or foam. <P>SOLUTION: This polyolefin-based reprocessed resin cross-linked foam is characterized by comprising a resin composition obtained by compounding polytetrafluoroethylene with a polyolefin-based resin (B) containing at least a polyolefin-based resin cross-linked reprocessed product (A). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はポリオレフィン系樹脂架橋発泡体にポリオレフィン系樹脂架橋物を熱可塑化した再生物を配合する再生樹脂架橋発泡体およびその製造方法に関するものである。   The present invention relates to a recycled resin cross-linked foam obtained by blending a polyolefin resin cross-linked foam with a regenerated product obtained by thermoplasticizing a polyolefin resin cross-linked product, and a method for producing the same.

近年、企業の生産活動において排出される廃棄物は法律による規制強化がなされ、廃棄物削減活動が推進されている。廃棄物削減において効果的な方法が再利用であり、究極的には製品製造時発生する廃棄物を再度製品に還元することが理想である。ポリオレフィン系架橋発泡体においても、このような検討は過去から成され、架橋ポリエチレンを500μm以下まで粉砕した後、高密度ポリエチレン、もしくは直鎖状低密度ポリエチレン80〜60重量%と粉砕した架橋ポリエチレン20〜40重量%とを混合、ペレタイズし、再利用可能な樹脂組成物を得る方法が開示されているが(特許文献1参照)、均一に架橋構造を崩壊することが困難であり、架橋発泡体に再利用した場合、部分的に残存した架橋構造部が表面不良や気泡構造の不均一といった問題を生じる原因となり良好な架橋発泡体が得られない問題がある。また、ポリオレフィン架橋材を架橋切断剤とともに加熱し、前記架橋結合を架橋切断剤により切断し成形可能な熱可塑性樹脂に再生する方法が開示されているが(特許文献2参照)、再度架橋発泡体を製造するために必要なMRRをコントロールすることが困難であり、架橋発泡体に適したMFRの樹脂に再生することが困難な問題がある。また、部分的に架橋したポリエチレンを220 〜420 ℃の温度、及び37Kw・h/kg以上の比エネルギーで溶融状態にて練成する方法で得られた再生樹脂とポリエチレン樹脂を混合し再利用する方法が開示されているが(特許文献3参照)、この方法では高温化で高剪断力を与えるため、架橋したポリエチレンの分子鎖をランダムに切断するため低分子領域の成分が増加し、このため再加工時の分離滞積や著しい物性低下が生じる問題がある。
特開平09−157467号公報 特開平10−086152号公報 特開平05−98089号公報
In recent years, the waste discharged in the production activities of companies has been strengthened by regulations, and waste reduction activities have been promoted. Reuse is an effective method for reducing waste. Ultimately, it is ideal that waste generated during product manufacture is reduced again to the product. Such studies have also been made in the past in polyolefin-based crosslinked foams, and after pulverizing the crosslinked polyethylene to 500 μm or less, the crosslinked polyethylene 20 is pulverized to 80 to 60% by weight of high-density polyethylene or linear low-density polyethylene. A method of mixing and pelletizing -40% by weight to obtain a reusable resin composition is disclosed (see Patent Document 1), but it is difficult to uniformly collapse the crosslinked structure, and the crosslinked foamed body When it is reused, there is a problem that a partially crosslinked structure part causes problems such as surface failure and non-uniform cell structure, and a good crosslinked foam cannot be obtained. Further, a method is disclosed in which a polyolefin cross-linking material is heated together with a cross-linking cutting agent, and the cross-linking bond is cut with the cross-linking cutting agent to regenerate into a moldable thermoplastic resin (see Patent Document 2). There is a problem that it is difficult to control the MRR required for producing the resin, and it is difficult to regenerate the MFR resin suitable for the crosslinked foam. In addition, recycled resin and polyethylene resin obtained by a method of kneading partially crosslinked polyethylene in a molten state at a temperature of 220 to 420 ° C. and a specific energy of 37 Kw · h / kg or more are reused. Although a method has been disclosed (see Patent Document 3), in this method, a high shear force is applied at a high temperature. Therefore, the molecular chain of the crosslinked polyethylene is randomly cut, and thus the components in the low molecular region increase. There is a problem that separation accumulation and remarkable physical property deterioration occur during rework.
Japanese Patent Laid-Open No. 09-157467 Japanese Patent Laid-Open No. 10-086152 JP 05-98089 A

本発明は、かかる従来技術の背景に鑑み、架橋ポリオレフィン系樹脂や発泡体を再生した樹脂を用いて外観上、機械的特性上に優れた高品位の架橋発泡体を提供することにある。   In view of the background of the prior art, the present invention is to provide a high-quality crosslinked foam excellent in appearance and mechanical properties using a crosslinked polyolefin resin or a resin obtained by regenerating a foam.

本発明はかかる課題を解決するために、次の手段を採用するものである。即ち、
少なくともポリオレフィン系樹脂架橋再生物(A)を含むポリオレフィン系樹脂(B)に、ポリテトラフルオロエチレンを配合した樹脂組成物からなることを特徴とするポリオレフィン系再生樹脂架橋発泡体である。
The present invention employs the following means in order to solve such problems. That is,
A polyolefin-based regenerated resin crosslinked foam comprising a resin composition in which polytetrafluoroethylene is blended with a polyolefin-based resin (B) containing at least a polyolefin-based resin crosslinked regenerated product (A).

本発明の樹脂組成物を用いることで外観上、機械的特性上に優れた高品位ポリオレフィン系再生樹脂架橋発泡体とすることが可能であり、これによりマテリアルリサイクルが可能となり、工業的価値も大である。   By using the resin composition of the present invention, it is possible to obtain a high-quality polyolefin-based recycled resin crosslinked foam excellent in appearance and mechanical properties, which enables material recycling and has great industrial value. It is.

本発明の再生樹脂架橋発泡体に用いるポリオレフィン系樹脂架橋再生物(A)とはポリオレフィン系樹脂架橋組成物、ポリオレフィン系樹脂架橋発泡体の少なくともいずれかを熱可塑化したものからなり、かかるポリオレフィン系樹脂架橋組成物、ポリオレフィン系樹脂架橋発泡体とは例えばポリオレフィン系架橋発泡体の製造過程で発生する架橋を施した樹脂組成物や発泡体等の製品に含まれない廃材等である。   The polyolefin resin cross-linked regenerated product (A) used in the regenerated resin cross-linked foam of the present invention comprises a polyolefin resin cross-linked composition or a polyolefin resin cross-linked foam obtained by thermoplasticizing such a polyolefin resin cross-linked foam. The resin cross-linked composition and the polyolefin-based resin cross-linked foam are, for example, a waste material not included in a product such as a resin composition or a foam subjected to cross-linking generated in the production process of the polyolefin-based cross-linked foam.

ポリオレフィン系樹脂架橋再生物(A)の製造方法は特に限定されないが、例えばポリオレフィン系樹脂架橋組成物やポリオレフィン系樹脂架橋発泡体を単軸押出機、2軸押出機等の押出機を用い、樹脂融点以上の温度で1回以上好ましくは2回以上押出し架橋構造を破壊して樹脂再生物とする方法が例示される。   The method for producing the polyolefin resin cross-linked recycled material (A) is not particularly limited. For example, the polyolefin resin cross-linked composition or the polyolefin resin cross-linked foam may be obtained by using an extruder such as a single screw extruder or a twin screw extruder. Examples thereof include a method of extruding the crosslinked structure at a temperature equal to or higher than the melting point once or more preferably twice or more to obtain a resin regenerated product.

ポリオレフィン系樹脂架橋組成物やポリオレフィン架橋発泡体のゲル分率は樹脂再生物とする時の製造方法に関与し、ゲル分率が低いほど加熱温度を低く設定することが可能であり、また押出回数を少なくすることができるため、再生樹脂の物性低下を抑えることが可能となる。かかるゲル分率は1〜80%が好ましく更には5〜60%が好ましい。ゲル分率が1%未満であれば架橋発泡体を製造することは困難であり架橋発泡体の廃材として発生することはなく、また未架橋樹脂と同等の樹脂特性を有しするため本発明を用いる必要はない。一方、ゲル分率が80%を超える場合であれば樹脂再生物とする時の加工温度を高温化する必要や押出回数を増加する必要があり、温度や剪断による樹脂の劣化が著しくなる場合があり、ポリオレフィン系再生樹脂架橋発泡体とした際に外観不良や機械的特性が低下する場合がある。   The gel fraction of the polyolefin resin cross-linked composition or polyolefin cross-linked foam is related to the production method when the resin is regenerated, and the lower the gel fraction, the lower the heating temperature can be set. Therefore, it is possible to suppress a decrease in physical properties of the recycled resin. The gel fraction is preferably 1 to 80%, more preferably 5 to 60%. If the gel fraction is less than 1%, it is difficult to produce a crosslinked foam, and it is not generated as a waste material of the crosslinked foam, and has the same resin characteristics as an uncrosslinked resin. There is no need to use it. On the other hand, if the gel fraction exceeds 80%, it is necessary to increase the processing temperature when the resin is regenerated, or to increase the number of extrusions, and the deterioration of the resin due to temperature or shear may become significant. In addition, when a polyolefin-based recycled resin cross-linked foam is used, poor appearance and mechanical properties may be deteriorated.

ここで示すゲル分率とは細かく裁断したポリオレフィン系樹脂架橋組成物やポリオレフィン架橋発泡体0.1gを100メッシュの金網に入れ、金網を攪拌しながら130℃のテトラリン中で3時間抽出した残量物をアセトンで洗浄し、120℃の熱風オーブンで1時間乾燥した抽出残量を次式により求めたものである。   The gel fraction shown here is the remaining amount of finely cut polyolefin resin cross-linked composition or 0.1 g of polyolefin cross-linked foam in a 100-mesh wire mesh and extracted in tetralin at 130 ° C. for 3 hours while stirring the wire mesh. The remaining amount of the extract obtained by washing the product with acetone and drying it in a hot air oven at 120 ° C. for 1 hour is obtained by the following formula.

ゲル分率=〔(0.1−抽出残量)/0.1〕×100 (%)
樹脂再生物のメルトフローレート(以下MFRと記す。)は主に押出回数で調整することができ、押出回数を多くするとMFRを大きくすることができる。
Gel fraction = [(0.1−remaining amount of extraction) /0.1] × 100 (%)
The melt flow rate (hereinafter referred to as MFR) of the resin regenerated product can be adjusted mainly by the number of extrusions, and the MFR can be increased by increasing the number of extrusions.

上記方法にて得られる樹脂再生物のMFRは0.5〜30g/10分が必要である。MFRが0.5g/10分未満であると再生樹脂架橋発泡体を製造する際、押出機等で溶融混練したとき熱分解型化学発泡剤の分解頻度が著しく多くなるため良好な再生樹脂架橋発泡体が得られない場合があり、一方、30g/10分を越えると押出機等で熱分解型化学発泡剤の分解なく溶融混練することは可能であるが、樹脂の溶融粘度が低いため加熱発泡時、発泡ガスの逃散や気泡膜破れのため良好な発泡体とならない場合がある。ここで示すMFRとはポリオレフィン系樹脂がポリエチレン系樹脂の場合はJIS K−6922−2に、ポリプロピレン系樹脂を含む場合はJIS K−6921−2準じた測定方法で測定したものである。   The MFR of the resin reclaim obtained by the above method needs to be 0.5-30 g / 10 min. When the MFR is less than 0.5 g / 10 min, when the regenerated resin crosslinked foam is produced, the decomposition frequency of the pyrolytic chemical foaming agent is remarkably increased when melt-kneaded with an extruder or the like, so that the regenerated resin crosslinked foam is excellent. On the other hand, if it exceeds 30 g / 10 min, it is possible to melt and knead without decomposition of the pyrolytic chemical foaming agent with an extruder or the like, but heat foaming because the melt viscosity of the resin is low Occasionally, the foam may not be a good foam due to the escape of the foaming gas and the bubble film tearing. The MFR shown here is measured by a measuring method according to JIS K-6922-2 when the polyolefin resin is a polyethylene resin, and measured according to JIS K-6921-2 when the polypropylene resin is included.

ポリオレフィン系樹脂架橋組成物やポリオレフィン系樹脂架橋発泡体を効率的に押出機へ投入する前加工として粉砕機や破砕機等で粉末状やチップ状に加工する方法、減容機等を用い気体を除去する方法を用いても良い。   As a pre-process for efficiently introducing a polyolefin resin cross-linked composition or a polyolefin resin cross-linked foam into an extruder, a gas is produced by using a pulverizer or a crusher to process it into powder or chips, a volume reduction machine, etc. A removing method may be used.

単軸押出機、2軸押出機等の押出機は特に限定されないが、可塑化処理中に発生する揮発成分を除去するため、真空ベント等の脱気設備を設置することが好ましく、また押出機スクリューの長さ(L)/直径(D)比は特に制限はない。   Extruders such as single-screw extruders and twin-screw extruders are not particularly limited, but it is preferable to install deaeration equipment such as a vacuum vent in order to remove volatile components generated during the plasticizing process. The length (L) / diameter (D) ratio of the screw is not particularly limited.

上記方法にて得られたポリオレフィン系樹脂架橋再生物(A)において、架橋構造を破壊し再度溶融成形可能な状態であることを示す指標としてポリオレフィン系樹脂架橋再生物(A)のゲル分率を測定することが好ましい。再度溶融成形可能なゲル分率は5%以下が好ましく、更に1%以下が好ましい。ゲル分率が5%を超えると、ポリオレフィン系再生樹脂架橋発泡体を製造する際、加熱し各種加工を行うときに残存架橋の影響で高粘度の樹脂が存在し、溶融不良や未溶融物などの影響による押出機等での吐出不良や、加工不良、出来上がった製品の外観不良などの問題が発生する場合がある。   In the polyolefin resin cross-linked regenerated product (A) obtained by the above method, the gel fraction of the polyolefin resin cross-linked regenerated product (A) is used as an index indicating that the cross-linked structure is destroyed and melt-molded again. It is preferable to measure. The gel fraction that can be melt-molded again is preferably 5% or less, more preferably 1% or less. When the gel fraction exceeds 5%, when manufacturing polyolefin-based recycled resin cross-linked foams, high-viscosity resin exists due to the effects of residual cross-links when heated and processed, resulting in poor melting or unmelted materials. There are cases where problems such as ejection failure in an extruder, processing failure, and poor appearance of the finished product may occur due to the influence of the above.

上記方法で得られるポリオレフィン系樹脂架橋再生物(A)は高温下の押出機等で高い剪断により長鎖分岐が切断されやすく、低分子量成分が増加した樹脂となる特徴があり、この低分子量成分は、再生樹脂架橋発泡体を製造する際に良好な発泡体とならない場合がある。例えばT型口金を用いて発泡性長尺シートに成形加工する場合、T型口金先端に樹脂の低分子量成分が徐々に滞積し、これが発泡性長尺シートに付着して外観不良を発生させる場合があり、また、加熱し発泡体に成形する加工の場合、発泡前シートや発泡体の溶融張力不足による搬送不良や発泡ガスの逃散、気泡膜破れ等の製造不良や外観不良等が発生する場合がある。   The polyolefin resin cross-linked regenerated product (A) obtained by the above method is characterized in that a long chain branch is easily cut by a high shear in an extruder or the like at a high temperature and becomes a resin with an increased low molecular weight component. May not be a good foam when producing a recycled resin crosslinked foam. For example, when forming into a foamable long sheet using a T-type base, a low molecular weight component of the resin gradually stagnates at the tip of the T-type base, and this adheres to the foamable long sheet and causes an appearance defect. In addition, in the case of processing to be heated and molded into a foam, defective manufacturing or appearance defects such as poor conveyance due to insufficient melt tension of the pre-foam sheet or foam, escape of foam gas, and bubble film tearing may occur. There is a case.

上記のような問題を解決するためにはポリテトラフルオロエチレンの配合が必要であり、加工機器等の金属との摩擦抵抗軽減や溶融混練加工、発泡加工等の加熱加工時の溶融張力付与等加工特性を向上することができ、また、発泡体を加熱した時の垂れ下がり軽減等の発泡体特性を向上することができる。   In order to solve the above problems, it is necessary to blend polytetrafluoroethylene, reducing frictional resistance with metals such as processing equipment, melting kneading, processing such as applying melt tension during heat processing such as foaming The properties can be improved, and the foam properties such as sag reduction when the foam is heated can be improved.

本発明の再生樹脂架橋発泡体に用いるポリテトラフルオロエチレンとは、特に限定されないが、例えばモールディングパウダー状、ディスパージョン状、ファインパウダー状などが例示され、特にポリテトラフルオロエチレンのフィブリル化した繊維状の網目構造を、効率的かつ均一に分散するようポリオレフィン系樹脂に混合するには粉末体であることが好ましく、電子顕微鏡による測定において1次粒子の平均粒子径が0.05〜1μmであり、該1次粒子径の範囲内において、2次粒子の平均粒子径がレーザー粒度分布計の測定によって1000μm以下であることが好ましい。さらにはポリオレフィン系樹脂との分散性を向上させるように、例えばアクリル系樹脂で変性させた粉末体がより好ましい。上記2次粒子の平均粒子径1000μmを超えると、ポリオレフィン系樹脂中のポリテトラフルオルエチレンに不均一分散部分が見られ、ポリテトラフルオロエチレンの添加量によっては充分な粘度付与効果が得られない場合がある。   The polytetrafluoroethylene used in the recycled resin crosslinked foam of the present invention is not particularly limited, and examples thereof include molding powders, dispersions, fine powders, and the like, and in particular, fibrillated fiber of polytetrafluoroethylene. The network structure is preferably a powder to be mixed with the polyolefin-based resin so as to disperse efficiently and uniformly, and the average particle diameter of primary particles in the measurement by an electron microscope is 0.05 to 1 μm. Within the range of the primary particle size, the average particle size of the secondary particles is preferably 1000 μm or less as measured by a laser particle size distribution meter. Furthermore, a powder body modified with, for example, an acrylic resin so as to improve dispersibility with the polyolefin resin is more preferable. When the average particle diameter of the secondary particles exceeds 1000 μm, a non-uniformly dispersed portion is observed in polytetrafluoroethylene in the polyolefin resin, and a sufficient viscosity imparting effect cannot be obtained depending on the amount of polytetrafluoroethylene added. There is a case.

ポリテトラフルオロエチレンの添加量は少なくともポリオレフィン系樹脂架橋再生物(A)を含むポリオレフィン系樹脂(B)100重量部に対し0.01〜5重量部の範囲が必要である。ポリテトラフルオロエチレンの添加量が0.01重量部未満であれば金属との摩擦抵抗軽減や溶融張力付与等の加工特性を十分得られず、良好な再生樹脂架橋発泡体を製造できない場合があり、一方、5重量部を越えると溶融張力が過剰となり発泡ガス逃散による発泡不足や発泡ガス圧増加による気泡崩壊等が発生し良好な再生樹脂架橋発泡体が得られない場合がある。   The addition amount of polytetrafluoroethylene needs to be in the range of 0.01 to 5 parts by weight with respect to 100 parts by weight of the polyolefin resin (B) including at least the polyolefin resin crosslinked regenerated product (A). If the amount of polytetrafluoroethylene added is less than 0.01 parts by weight, processing characteristics such as reduction of frictional resistance with metal and application of melt tension may not be sufficiently obtained, and a good recycled resin crosslinked foam may not be produced. On the other hand, when the amount exceeds 5 parts by weight, the melt tension becomes excessive, and foaming is insufficient due to escape of foaming gas, or bubble collapse due to an increase in foaming gas pressure occurs, so that a good recycled resin crosslinked foam may not be obtained.

本発明の再生樹脂架橋発泡体に用いるポリオレフィン系樹脂(B)とは、オレフィン系炭化水素の重合体または共重合体である。ポリオレフィン系樹脂としては特に限定されないが、例えばエチレン−酢酸ビニル共重合体、エチレン−エチルアクリレート共重合体、エチレン−ジエン共重合体、エチレン−プロピレン−ジエン3元共重合体、エチレン−オクテン共重合体、低密度ポリエチレン、エチレンと炭素数が4〜12のα−オレフィンとを共重合した直鎖状のポリエチレン、高密度ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、オレフィン系熱可塑性エラストマー等が例示され、それぞれ単独あるいは2種類以上を組み合わせて使用することができる。エチレンに共重合させるα−オレフィンについては特に限定されないが、たとえばプロピレン、1−ブテン、1−ペンテン、3,3−ジメチル−1−ブテン、4−メチル−1−ペンテン、4,4−ジメチル−1−ペンテン、1−デセン、1−ドデセン、1−テトラデセン、1−オクタデセン等が好ましい。   The polyolefin resin (B) used in the recycled resin crosslinked foam of the present invention is an olefin hydrocarbon polymer or copolymer. The polyolefin resin is not particularly limited. For example, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, ethylene-diene copolymer, ethylene-propylene-diene terpolymer, ethylene-octene copolymer Examples include coalescence, low density polyethylene, linear polyethylene copolymerized with ethylene and α-olefin having 4 to 12 carbon atoms, high density polyethylene, polypropylene, ethylene-propylene copolymer, olefin-based thermoplastic elastomer, etc. Each can be used alone or in combination of two or more. The α-olefin copolymerized with ethylene is not particularly limited. For example, propylene, 1-butene, 1-pentene, 3,3-dimethyl-1-butene, 4-methyl-1-pentene, 4,4-dimethyl- 1-pentene, 1-decene, 1-dodecene, 1-tetradecene, 1-octadecene and the like are preferable.

ポリオレフィン系樹脂(B)には例えばエチレンを主鎖とするポリエチレン系樹脂あるいはその共重合体などとプロピレンを主鎖とするポリプロピレン系樹脂あるいはその共重合体などがあり、MFRの測定温度は主に主鎖を形成する成分や融点に関連している。ポリオレフィン系樹脂(B)に使用する融点が100〜140℃の範囲であるエチレンを主鎖とするポリエチレン系樹脂あるいはその共重合体などは190℃で測定したMFRにおいて0.5〜30g/10分であることが好ましく、さらに、1〜10g/10分であることが好ましい。MFRが0.5g/10分未満であると再生樹脂架橋発泡体を製造する際、押出機等で溶融混練したとき熱分解型化学発泡剤の分解頻度が著しく多くなるため良好な再生樹脂架橋発泡体が得られない場合があり、一方、30g/10分を越えると押出機等で熱分解型化学発泡剤の分解なく溶融混練することは可能であるが、樹脂の溶融粘度が低いため加熱発泡時、発泡ガスの逃散や気泡膜破れのため良好な発泡体とならない場合がある。また、ポリオレフィン系樹脂(B)に使用する融点が130℃〜160℃の範囲であるプロピレンを主鎖とするポリプロピレン系樹脂あるいはその共重合体などは230℃で測定したMFRにおいて0.5〜30g/10分であることが好ましく、さらに、1〜10g/10分であることが好ましい。MFRが0.5g/10分未満であると再生樹脂架橋発泡体を製造する際、押出機等で溶融混練したとき熱分解型化学発泡剤の分解頻度が著しく多くなるため良好な再生樹脂架橋発泡体が得られない場合があり、一方、30g/10分を越えると押出機等で熱分解型化学発泡剤の分解なく溶融混練することは可能であるが、樹脂の溶融粘度が低いため加熱発泡時、発泡ガスの逃散や気泡膜破れのため良好な発泡体とならない場合がある。ここで示すMFRとはJIS K−6922−2及びJIS K−6921−2に準じた測定方法で測定したものである。   The polyolefin resin (B) includes, for example, a polyethylene resin having a main chain of ethylene or a copolymer thereof and a polypropylene resin having a main chain of propylene or a copolymer thereof. The measurement temperature of MFR is mainly It is related to the component that forms the main chain and the melting point. A polyethylene resin having a main chain of ethylene or a copolymer thereof having a melting point of 100 to 140 ° C. used for the polyolefin resin (B) is 0.5 to 30 g / 10 min in MFR measured at 190 ° C. It is preferable that it is 1-10 g / 10min. When the MFR is less than 0.5 g / 10 min, when the regenerated resin crosslinked foam is produced, the decomposition frequency of the pyrolytic chemical foaming agent is remarkably increased when melt-kneaded with an extruder or the like, so that the regenerated resin crosslinked foam is excellent. On the other hand, if it exceeds 30 g / 10 min, it is possible to melt and knead without decomposition of the pyrolytic chemical foaming agent with an extruder or the like, but heat foaming because the melt viscosity of the resin is low Occasionally, the foam may not be a good foam due to the escape of the foaming gas and the bubble film tearing. In addition, a polypropylene resin having a main chain of propylene having a melting point of 130 ° C. to 160 ° C. or a copolymer thereof used in the polyolefin resin (B) is 0.5 to 30 g in MFR measured at 230 ° C. / 10 minutes, preferably 1 to 10 g / 10 minutes. When the MFR is less than 0.5 g / 10 min, when the regenerated resin crosslinked foam is produced, the decomposition frequency of the pyrolytic chemical foaming agent is remarkably increased when melt-kneaded with an extruder or the like, so that the regenerated resin crosslinked foam is excellent. On the other hand, if it exceeds 30 g / 10 min, it is possible to melt and knead without decomposition of the pyrolytic chemical foaming agent with an extruder or the like, but heat foaming because the melt viscosity of the resin is low Occasionally, the foam may not be a good foam due to the escape of the foaming gas and the bubble film tearing. MFR shown here is measured by a measuring method according to JIS K-6922-2 and JIS K-6921-2.

ポリオレフィン系樹脂架橋再生物(A)とポリオレフィン系樹脂(B)の配合比(A/B)は0.05〜9の範囲が好ましく、さらに0.1〜1の範囲がより好ましい。配合比が0.05未満であると架橋発泡体製造時に発生する架橋樹脂や製品に含まれない架橋発泡体屑を架橋発泡体製造する際の再資源化に利用することなく廃棄する場合があり、本発明が解決しようとする課題を満足することが困難である。一方、配合比が9を超えるとポリオレフィン系樹脂架橋再生物製造時に長鎖分岐が切断され低分子量成分が増加する影響で発生する製造過程での滞積低分子成分による表面不良や溶融張力不足による発泡不良が発生する場合があり、また残存架橋の影響で高粘度の樹脂が存在し、製造過程での溶融不良による加工不良や未溶融物による外観不良の問題が発生する場合がある。   The blending ratio (A / B) of the polyolefin resin cross-linked regenerated product (A) and the polyolefin resin (B) is preferably in the range of 0.05 to 9, and more preferably in the range of 0.1 to 1. If the blending ratio is less than 0.05, the cross-linked resin generated during the production of the cross-linked foam and the cross-linked foam waste not contained in the product may be discarded without being used for recycling when the cross-linked foam is produced. It is difficult to satisfy the problems to be solved by the present invention. On the other hand, when the blending ratio exceeds 9, due to the influence of increasing low molecular weight components due to the cutting of long chain branches during the production of polyolefin resin cross-linked regenerated products, it is due to surface defects or insufficient melt tension due to stagnant low molecular components. Insufficient foaming may occur, and a high-viscosity resin exists due to the influence of residual cross-linking, and there may be a problem of poor processing due to poor melting in the manufacturing process and poor appearance due to unmelted material.

本発明の再生樹脂架橋発泡体に用いる熱分解型化学発泡剤は、熱を加えることで分解しガスを放出する化学発泡剤であれば特に限定するものではなく、例えば有機、無機系の各種があり、有機系にはアゾジカルボンアミド、N,N´−ジニトロソペンタメチレンテトラミン、P.P´−オキシベンゼンスルフォニルヒドラジドなど、無機系には重炭酸ナトリウム、炭酸アンモニウム、重炭酸アンモニウム、カルシウムアジドなどが例示され、それぞれ単独あるいは2種類以上を組み合わせて使用することができる。また必要に応じて熱分解型発泡剤の分解性を改善する尿素、脂肪酸の金属塩、亜鉛華等の発泡助剤を添加しても良い。
熱分解型化学発泡剤の添加量は加熱発泡し発泡体としたときの発泡倍率が2〜50倍の範囲、より好ましくは5〜40倍の範囲となるように調整することが好ましい。発泡倍率が2倍未満であると緩衝性、断熱性、軽量性などの発泡体の特徴が著しく損なわれる場合があり、発泡倍率が50倍を越える場合であれば該化学発泡剤の分解により大量に発生したガスの圧力が著しく大きくなり樹脂のガス保持力を上回ることで発泡ガスが逃散し良好な発泡体とならない場合がある。ここで示す発泡倍率とは、JIS K−6767に準じた測定方法で測定した見掛け密度の逆数を示す。
The thermal decomposable chemical foaming agent used in the recycled resin crosslinked foam of the present invention is not particularly limited as long as it is a chemical foaming agent that decomposes by releasing heat and releases a gas. For example, various organic and inorganic types can be used. And organic types include azodicarbonamide, N, N′-dinitrosopentamethylenetetramine, P.I. Examples of inorganic systems such as P′-oxybenzenesulfonyl hydrazide include sodium bicarbonate, ammonium carbonate, ammonium bicarbonate, calcium azide and the like, and each can be used alone or in combination of two or more. Moreover, you may add foaming adjuvants, such as urea which improves the decomposability | degradability of a thermal decomposition type foaming agent, the metal salt of a fatty acid, and zinc white as needed.
It is preferable to adjust the addition amount of the pyrolytic chemical foaming agent so that the expansion ratio when heated and foamed to obtain a foam is in the range of 2 to 50 times, more preferably in the range of 5 to 40 times. If the expansion ratio is less than 2 times, the characteristics of the foam such as buffering property, heat insulation and light weight may be significantly impaired. If the expansion ratio exceeds 50 times, the chemical foaming agent will be decomposed in large quantities. In some cases, the pressure of the generated gas is remarkably increased and exceeds the gas holding power of the resin, so that the foam gas escapes and a good foam is not obtained. The expansion ratio shown here indicates the reciprocal of the apparent density measured by a measuring method according to JIS K-6767.

本発明の再生樹脂架橋発泡体の架橋方法は、特に限定されないが、電離性放射線を照射し架橋させる電子線架橋法、ジクミルパ−オキサイド、ターシャリーブチルパ−ベンゾエ−ト、ジタ−シャリ−ブチルパ−オキサイド等の有機過酸化物を混練し発泡時に有機過酸化物を分解し架橋させる化学架橋法、シラン基を持つポリオレフィン系樹脂を混合し加熱水分と接触することで架橋させるシラン架橋法が例示され、特にゲル分率の調整が容易な電子線架橋法が好ましい。これらの架橋方法はそれぞれ単独あるいは2種類以上を組み合わせて使用することができる。また必要に応じ架橋特性を改善するジビニルベンゼン、トリメチロールプロパントリメタクリレート等の架橋助剤を用いても良い。   The cross-linking method of the recycled resin cross-linked foam of the present invention is not particularly limited, but is an electron beam cross-linking method in which ionizing radiation is applied for cross-linking, dicumyl peroxide, tertiary butyl perbenzoate, di-tert-butyl per Examples include chemical cross-linking methods in which organic peroxides such as oxide are kneaded and decomposed and cross-linked during foaming, and silane cross-linking methods in which a polyolefin resin having a silane group is mixed and cross-linked by contact with heated moisture. In particular, an electron beam crosslinking method in which the gel fraction can be easily adjusted is preferable. These crosslinking methods can be used alone or in combination of two or more. Moreover, you may use crosslinking adjuvants, such as divinylbenzene and a trimethylol propane trimethacrylate, which improve a crosslinking characteristic as needed.

再生樹脂架橋発泡体のゲル分率は、1〜80%が好ましいく、さらに10〜40%がより好ましい。ゲル分率が1%未満であれば再生樹脂架橋発泡体の加熱発泡時に樹脂の溶融粘度が低く、発泡ガスの逃散のため良好な発泡体とならない場合があり、一方、80%を越えると再生樹脂架橋発泡体の加熱発泡時に樹脂の溶融粘度が高く、発泡ガスの逃散や気泡膜破れのため良好な発泡体とならない場合がある。電離性放射線を照射するエネルギー、有機過酸化物の添加する量、樹脂中に含まれるシラン基の量や水分の接触条件などの諸条件は、ゲル分率が1〜80%の範囲であれば特に限定するものではない。   The gel fraction of the recycled resin crosslinked foam is preferably 1 to 80%, and more preferably 10 to 40%. If the gel fraction is less than 1%, the melt viscosity of the resin is low when the regenerated resin crosslinked foam is heated and foamed and may not be a good foam due to the escape of the foaming gas. When the resin-crosslinked foam is heated and foamed, the melt viscosity of the resin is high, and the foam may not be a good foam due to escape of foaming gas or bubble film tearing. Various conditions such as the energy to irradiate ionizing radiation, the amount of organic peroxide added, the amount of silane groups contained in the resin, and the contact condition of moisture are as long as the gel fraction is in the range of 1 to 80%. There is no particular limitation.

本発明の再生樹脂架橋発泡体は、必要に応じて例えば耐候剤、難燃剤、難燃助剤、分散剤、顔料、離型剤、充填剤、造核剤など公知の各種添加剤を添加しても良い。   The recycled resin crosslinked foam of the present invention may be added with various known additives such as a weathering agent, a flame retardant, a flame retardant aid, a dispersant, a pigment, a mold release agent, a filler, and a nucleating agent as necessary. May be.

本発明のポリオレフィン系再生樹脂架橋発泡体の製造方法は、ポリオレフィン系樹脂架橋再生物(A)とポリオレフィン系樹脂(B)をそれぞれ汎用の粉砕機を用い粉末化し、粉末状のポリオレフィン系樹脂架橋再生物(A)と粉末状のポリオレフィン系樹脂(B)、ポリテトラフルオロエチレン、熱分解型化学発泡剤や必要に応じた架橋助剤、添加剤などを汎用の粉体混合機で混合した後、ポリオレフィン系樹脂架橋再生物(A)とポリオレフィン系樹脂(B)中で最も高い樹脂成分の融点以上かつ熱分解型化学発泡剤の分解開始温度以下の温度範囲で汎用のT型口金を設置した押出機を用いて溶融混練し、発泡性長尺シートを製造する方法が例示できる。架橋方法として機過酸化物を分解し架橋させる化学架橋法を行う場合は粉体混合機で混合時に有機化酸化物を加え、ポリオレフィン系樹脂架橋再生物(A)とポリオレフィン系樹脂(B)中で最も高い樹脂成分の融点以上かつ熱分解型化学発泡剤の分解開始温度以下の温度範囲で、更に好ましくは有機化酸化物の熱分解による架橋反応が押出機を用いた溶融混練の流動性に影響しない温度範囲で汎用のT型口金を設置した押出機を用いて溶融混練し、発泡性長尺シートを製造する方法が例示できる。   The method for producing a polyolefin-based recycled resin cross-linked foam according to the present invention is to pulverize the polyolefin-based resin cross-linked regenerated product (A) and the polyolefin-based resin (B) using a general-purpose pulverizer, respectively. After mixing biological (A) and powdered polyolefin resin (B), polytetrafluoroethylene, thermal decomposition type chemical foaming agent, crosslinking aids as necessary, additives, etc. with a general-purpose powder mixer, Extrusion in which a general-purpose T-type die is installed in a temperature range above the melting point of the highest resin component in the polyolefin resin cross-linked recycled product (A) and polyolefin resin (B) and below the decomposition start temperature of the thermal decomposition chemical foaming agent. An example is a method of producing a foamable long sheet by melt-kneading using a machine. In the case of performing a chemical cross-linking method in which the peroxide is decomposed and cross-linked as a cross-linking method, an organic oxide is added at the time of mixing with a powder mixer, and the polyolefin resin cross-linked regenerated product (A) and the polyolefin resin (B) are mixed. In the temperature range above the melting point of the highest resin component and below the decomposition start temperature of the pyrolytic chemical foaming agent, more preferably, the crosslinking reaction by thermal decomposition of the organic oxide improves the fluidity of melt kneading using an extruder. An example is a method of producing a foamable long sheet by melt-kneading using an extruder provided with a general-purpose T-shaped die in a temperature range that does not affect.

ここで示す融点とは、示差走査熱量分析で測定したDSC曲線から得られるものであり、この測定方法は次に示すとおりである。   The melting point shown here is obtained from a DSC curve measured by differential scanning calorimetry, and this measuring method is as follows.

示差走査熱量分析装置を用い、−50℃から200℃の間で10℃/分の速度で昇温し、5分間保持した後200℃から−50℃の間で10℃/分の速度で降温し、更に5分間保持した後−50℃から200℃の間で10℃/分の速度で昇温した2度目の昇温で得られたDSC曲線の結晶融解ピーク温度を融点とする。   Using a differential scanning calorimeter, the temperature was increased from -50 ° C to 200 ° C at a rate of 10 ° C / min, held for 5 minutes, and then decreased from 200 ° C to -50 ° C at a rate of 10 ° C / min. Then, after holding for 5 minutes, the melting point is the crystal melting peak temperature of the DSC curve obtained by the second temperature increase from −50 ° C. to 200 ° C. at a rate of 10 ° C./min.

また、ここで示す熱分解型化学発泡剤の分解開始温度の測定方法は次の方法により求められる。該化学発泡剤の試料1gをポリエチレンフィルムに採取し、これを試験管の中に入れて流動パラフィン10mlを加え、この試験管を流動パラフィン浴中に浸漬しガスビュレットに接続したガス誘導管に接続する。その後、流動パラフィン浴を25から250℃の間に2℃/分の速度で昇温し、1分ごとにビュレットに導入されたガス量を測定する。予め測定した該試料を含まない空気の膨張量を差し引いて求めた曲線を熱分解型化学発泡剤の分解曲線とする。これより得られた熱分解型化学発泡剤の分解曲線で、ガス発生が認められた点を分解開始点とする。   Moreover, the measuring method of the decomposition start temperature of the thermal decomposition type chemical foaming agent shown here is calculated | required by the following method. Take a 1g sample of the chemical foaming agent on a polyethylene film, put it in a test tube, add 10ml of liquid paraffin, and connect this test tube to a gas induction tube immersed in a liquid paraffin bath and connected to a gas burette. To do. Thereafter, the liquid paraffin bath is heated at a rate of 2 ° C./min between 25 and 250 ° C., and the amount of gas introduced into the burette is measured every minute. A curve obtained by subtracting the amount of expansion of air that does not contain the sample measured in advance is taken as the decomposition curve of the pyrolytic chemical foaming agent. The point at which gas generation is observed in the decomposition curve of the thermal decomposition type chemical foaming agent obtained from this is taken as the decomposition start point.

架橋方法は例えば電子線架橋法やシラン架橋法のように発泡性長尺シートを製造した後に行う場合、上記の製造方法で製造した発泡性長尺シートに、電子線架橋法であれば電離性放射線を照射し架橋させる方法、シラン架橋法であればジブチルスズジラウレート等のシラノール縮合触媒および水の存在下でシロキサン縮合反応によってシラン架橋させる方法が例示される。   When the cross-linking method is carried out after producing a foamable long sheet such as an electron beam cross-linking method or a silane cross-linking method, the foamable long sheet produced by the above production method is ionizable if it is an electron beam cross-linking method. Examples of the crosslinking method include irradiation with radiation and the silane crosslinking method include a silane crosslinking reaction by a siloxane condensation reaction in the presence of a silanol condensation catalyst such as dibutyltin dilaurate and water.

加熱発泡方法は例えば架橋した発泡性長尺シートを加熱発泡機に供給し、常圧雰囲気で連続的に行われるのが好ましい。加熱発泡のより具体的方法の例としては、金網ベルトコンベア上で熱風および赤外線ヒーターで加熱して発泡させる方法、シートを上部から懸垂し、赤外線ヒーターおよび熱風で加熱して発泡させる方法あるいは加熱溶融ソルト等の液状熱媒の上に浮遊させて上部から赤外線ヒーターまたは熱風で加熱して発泡させる方法等が例示され、熱分解型化学発泡剤の分解開始温度以上に加熱し発泡させた後、ポリオレフィン系再生樹脂架橋発泡体を得る。   The heating foaming method is preferably carried out continuously in a normal pressure atmosphere by supplying, for example, a cross-linked foamable long sheet to a heating foaming machine. Examples of a more specific method of heating and foaming include a method of foaming by heating with hot air and an infrared heater on a wire mesh belt conveyor, a method of suspending a sheet from the top, and heating and foaming with an infrared heater and hot air, or heat melting Examples include a method of foaming by floating on a liquid heat medium such as salt and heating from above with an infrared heater or hot air. After heating to a temperature higher than the decomposition start temperature of the pyrolytic chemical foaming agent, foaming is performed. A regenerated resin crosslinked foam is obtained.

以下、本発明を以下の実施例を用いて更により詳細に説明するが、以下の実施例は例示以外の目的にのみ用いられ、限定の目的で用いられるものではない。
本発明における評価基準は次の通りである。
Hereinafter, the present invention will be described in further detail using the following examples. However, the following examples are used only for purposes other than exemplification, and are not used for the purpose of limitation.
The evaluation criteria in the present invention are as follows.

シートの外観
シート表面に付着した樹脂組成物がなく、表面が凹凸のない平滑な面であり、シート内に気泡が混在しない状態を合格(○)と判定し、1項目でも合格しない項目があれば不合格(×)と判定する。
Appearance of the sheet There is no resin composition adhering to the surface of the sheet, the surface is a smooth surface with no irregularities, and a state where no bubbles are mixed in the sheet is judged as pass (○), and there is an item that does not pass even one item. It is judged as rejected (×).

なお上記シート表面に付着した樹脂組成物、表面が凹凸のない平滑な面は目視判定とし、シート内に気泡が混在しない状態はシート幅方向に両端部と中央部からサンプルを採取し、シート内部が観察できるようミクロトームで500μm以下にスライスしたサンプルを光源透過型拡大鏡を用い10倍以上の倍率で気泡混入有無を観察する。   In addition, the resin composition adhered to the surface of the sheet, a smooth surface with no unevenness is visually determined, and when no bubbles are mixed in the sheet, samples are taken from both ends and the center in the sheet width direction. A sample that is sliced to 500 μm or less with a microtome is observed using a light source transmission magnifier to observe the presence or absence of bubbles at a magnification of 10 times or more.

発泡体の気泡状態
発泡体の気泡中に粗大気泡が混入していない状態を合格(○)と判定し、粗大気泡が認められる状態を不合格(×)と判定する。
なお、気泡状態の観察は厚さ方向の面にインク等で気泡表面を着色して厚さ方向の面が全て残存するよう1mm以下にスライスしたサンプルを反射光型拡大鏡にて50倍に拡大し、厚さ方向とそれに直角に交わる基線を設け、基線寸法と基線内の気泡数を測定し基線寸法を気泡数で割った値を平均気泡径と定義し、該平均気泡径の10倍以上を粗大気泡と定義する。
Bubble state of foam A state where coarse bubbles are not mixed in the bubbles of the foam is determined as pass (◯), and a state where coarse bubbles are observed is determined as reject (x).
Note that the bubble state was observed by magnifying the surface of the bubble with ink or the like on the surface in the thickness direction and slicing the sample sliced to 1 mm or less so that all of the surface in the thickness direction remained with a reflected light type magnifier Then, a base line intersecting with the thickness direction and a right angle to it is provided, the base line dimension and the number of bubbles in the base line are measured, and the value obtained by dividing the base line dimension by the number of bubbles is defined as the average bubble diameter. Is defined as coarse bubbles.

発泡体の外観
発泡体の歪み、発泡ムラによる表面の凹凸、熱分解型化学発泡剤の分解ガス逃散孔が著しく目立たない状態を合格(○)と判定し、1項目でも合格しない項目があれば不合格(×)と判定する。
Appearance of the foam The distortion of the foam, unevenness of the surface due to uneven foaming, and the state where the decomposition gas escape holes of the pyrolytic chemical foaming agent are not noticeable are judged as acceptable (○). It is determined as a failure (x).

なお上記発泡体の歪み、表面の凹凸、ガス逃散孔は目視判定とする。   In addition, distortion of the said foam, surface unevenness | corrugation, and a gas escape hole shall be visually determined.

ポリオレフィン系樹脂架橋再生物の製造
ポリオレフィン系樹脂架橋再生物原料(a)
粉砕機を用い2mm以下に粉砕したMFRが3.6g/10分、密度が0.922g/cmの高圧法低密度ポリエチレン(東ソー株式会社製ペトロセン310)100重量部、熱分解型化学発泡剤アゾジカルボンアミド(永和化成工業株式会社製ビニホールAC#1)10重量部、酸化防止剤ペンタエリスリト−ルテトラキス[3-(3,5-ジ−tert-ブチル−4−ヒドロキシフェニル)プロピオネート](チバ・スペシャリティ・ケミカルズ株式会社製IRGANOX1010)0.3重量部をスーパーミキサーで混合し、熱分解型発泡剤が分解しない温度、すなわち140〜160℃に加熱した90φの単軸押出機でT型口金を用いて厚さ1.8mmのシート状に成形した後、70kGyの電子線を加速電圧800kVで照射し、架橋せしめた後、縦型熱風発泡装置に連続投入し、240℃で2〜3分加熱発泡した発泡体の廃材を押出機に入る大きさ約5mm粒径にクラッシャーで破砕した破砕体、ゲル分率36%
ポリオレフィン系樹脂架橋再生物原料(b)
粉砕機を用い2mm以下に粉砕したポリプロピレンにエチレンをランダム共重合したMFRが1.5g/10分のポリプロピレン系樹脂(日本ポリオレフィン株式会社製ジェイアロマーE420G)50重量部、粉砕機を用い2mm以下に粉砕したMFRが3.6g/10分、密度が0.922g/cmの高圧法低密度ポリエチレン(東ソー株式会社製ペトロセン310)50重量部、熱分解型化学発泡剤アゾジカルボンアミド(永和化成工業株式会社製ビニホールAC#3)10重量部、酸化防止剤オクタデシル−3−(3,5-ジ−tert-ブチル−4−ヒドロキシフェニル)プロピオネート(チバ・スペシャリティ・ケミカルズ株式会社製IRGANOX1076)0.5重量部、架橋助剤ジビニルベンゼン(新日鐵化学工業株式会社DVB−570)2.0重量部を用いてスーパーミキサーで混合し、熱分解型発泡剤が分解しない温度、すなわち150〜180℃に加熱した90φの異方向2軸押出機でT型口金を用いて厚さ1.5mmのシート状に成形した後、80kGyの電子線を加速電圧800kVで照射し、架橋せしめた後、縦型熱風発泡装置に連続投入し、240℃で3〜4分加熱発泡した発泡体の廃材を押出機に入る大きさ約5mm粒径にクラッシャーで破砕した破砕体、ゲル分率31%
ポリオレフィン系樹脂架橋再生物の製造方法
上記(a)または(b)のポリオレフィン系樹脂架橋再生物原料を単軸押出機(中部機械製作所(株)製、L/D=32、40mmφ、フルフライトスクリュー、押出機の機械効率係数0.9)のホッパーへ供給し、表1に示す温度、スクリュー回転数を設定し、ノズルから押出すことにより直径3mmの棒状のストランドを作り、これを長さ3mmにカッティングし、同様の作業を2回以上繰り返す方法。ポリオレフィン系樹脂架橋再生物原料(a)を用い上記方法で1回押出して得たポリオレフィン系樹脂架橋再生物を(a−1)、2回押出して得たポリオレフィン系樹脂架橋再生物を(a−2)、ポリオレフィン系樹脂架橋再生物原料(b)を用い上記方法で1回押出して得たポリオレフィン系樹脂架橋再生物を(b−1)、2回押出して得たポリオレフィン系樹脂架橋再生物を(b−2)とした。
Manufacture of polyolefin resin cross-linked reclaimed material Polyolefin resin cross-linked reclaimed material (a)
100 parts by weight of a high-pressure low-density polyethylene (Petrocene 310 manufactured by Tosoh Corporation) having an MFR of 3.6 g / 10 min and a density of 0.922 g / cm 3 pulverized to 2 mm or less using a pulverizer, a pyrolytic chemical foaming agent 10 parts by weight of azodicarbonamide (Einawa Kasei Kogyo Co., Ltd., VINYHALL AC # 1), antioxidant pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] (Ciba・ IRGANOX1010 manufactured by Specialty Chemicals Co., Ltd.) A T-type die was mixed with a 90φ single screw extruder at a temperature at which 0.3 parts by weight was mixed with a super mixer and heated to a temperature at which the pyrolytic foaming agent was not decomposed, ie 140 to 160 ° C. After being used to form a sheet with a thickness of 1.8 mm, an electron beam of 70 kGy is irradiated at an acceleration voltage of 800 kV, After crushing, it is continuously put into a vertical hot-air foaming device, and the foam waste material foamed by heating at 240 ° C for 2-3 minutes is crushed by a crusher into a size of about 5 mm in size to enter the extruder, gel fraction 36%
Polyolefin-based resin cross-linked recycled material (b)
50 parts by weight of a polypropylene resin (J-Alomer E420G manufactured by Nippon Polyolefin Co., Ltd.) having an MFR of 1.5 g / 10 min. Obtained by random copolymerization of ethylene with polypropylene pulverized to 2 mm or less using a pulverizer, and 2 mm or less using a pulverizer 50 parts by weight of a high-pressure low-density polyethylene (Petrocene 310 manufactured by Tosoh Corporation) having a pulverized MFR of 3.6 g / 10 min and a density of 0.922 g / cm 3, a pyrolytic chemical foaming agent azodicarbonamide (Yewa Kasei Kogyo) 10 parts by weight of VINYHALL AC # 3 manufactured by Co., Ltd., antioxidant octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate (IRGANOX1076 manufactured by Ciba Specialty Chemicals Co., Ltd.) 0.5 Parts by weight, crosslinking aid divinylbenzene (Nippon Steel Chemical Co., Ltd.) DVB-570) Mixing with 2.0 parts by weight using a super mixer, and using a T-shaped die with a 90φ different-direction twin screw extruder heated to a temperature at which the pyrolytic foaming agent does not decompose, that is, 150 to 180 ° C. After being formed into a sheet with a thickness of 1.5 mm, 80 kGy electron beam is irradiated at an acceleration voltage of 800 kV and crosslinked, and then continuously fed into a vertical hot air foaming apparatus, and heated and foamed at 240 ° C. for 3 to 4 minutes. Crushed material obtained by crushing the foamed waste material into the extruder to a size of about 5 mm and a gel fraction of 31%
Manufacturing method of polyolefin resin cross-linked regenerated product The raw material of polyolefin resin cross-linked regenerated product of (a) or (b) above is a single screw extruder (manufactured by Chubu Machinery Co., Ltd., L / D = 32, 40 mmφ, full flight screw The machine is supplied to a hopper with a mechanical efficiency factor of 0.9), and the temperature and screw rotation speed shown in Table 1 are set. Extrusion from the nozzle creates a rod-like strand with a diameter of 3 mm, which is cut to a length of 3 mm. And repeat the same work more than once. (A-1) Polyolefin resin cross-linked regenerated product obtained by extruding polyolefin resin cross-linked regenerated material (a) once by the above method (a-1) Polyolefin resin cross-linked regenerated product obtained by extruding twice (a-) 2) Polyolefin resin cross-linked regenerated product obtained by extruding polyolefin resin cross-linked regenerated material (b) once by the above method (b-1) and polyolefin resin cross-linked regenerated product obtained by extruding twice. (B-2).

なお、表1中の押出機の温度設定点C〜Cは押出機のスクリューのホッパー側をC、ヘッド側をCとし、その間の等間隔点をC側からC、C・・・Cとした。また、Hはヘッド部である。 In Table 1, the temperature set points C 1 to C 6 of the extruder are C 1 on the hopper side of the screw of the extruder and C 6 on the head side, and the equidistant points between them are C 2 and C 2 from the C 1 side. 3 was ··· C 6. H is a head part.

Figure 2007277417
Figure 2007277417

ポリテトラフルオロエチレン含有混合粉体の製造
まず、ドデシルメタクリレート75部とメチルメタクリレート25部の混合液にアゾビスジメチルバレロニトリル0.1部を溶解させた。これにドデシルベンゼンスルホン酸ナトリウム2.0部と蒸留水300部の混合液を添加し、ホモミキサーにて10000rpmで4分間攪拌した後、ホモジナイザーに300kg/cm2 の圧力で2回通し、安定なドデシルメタクリレート/チルメタクリレート予備分散液を得た。これを撹拌機、コンデンサー、熱伝対、窒素導入口を備えたセパラブルフラスコに仕込み、窒素気流下で内温を80℃にて3時間攪拌してラジカル重合させ、ドデシルメタクリレート/メチルメタクリレート共重合体粒子分散液(以下P−1と称する。)を得た。
Production of polytetrafluoroethylene-containing mixed powder First, 0.1 part of azobisdimethylvaleronitrile was dissolved in a mixed liquid of 75 parts of dodecyl methacrylate and 25 parts of methyl methacrylate. A mixed solution of 2.0 parts of sodium dodecylbenzenesulfonate and 300 parts of distilled water was added thereto, and the mixture was stirred at 10000 rpm for 4 minutes with a homomixer. Then, the mixture was passed twice through the homogenizer at a pressure of 300 kg / cm 2 to stabilize the mixture. A dodecyl methacrylate / til methacrylate predispersion was obtained. This was charged into a separable flask equipped with a stirrer, condenser, thermocouple, and nitrogen inlet, and subjected to radical polymerization by stirring at an internal temperature of 80 ° C. for 3 hours under a nitrogen stream, so that dodecyl methacrylate / methyl methacrylate co-polymerized. A coalesced particle dispersion (hereinafter referred to as P-1) was obtained.

P−1の固形分濃度は25.1%で、粒子径分布は単一のピークを示し、重量平均粒子径は198nmであった。   The solid content concentration of P-1 was 25.1%, the particle size distribution showed a single peak, and the weight average particle size was 198 nm.

一方、ポリテトラフルオロエチレン系粒子分散液として旭ICIフロロポリマー社製フルオンAD396を用いた。AD396の固形分濃度は63.0%であり、ポリテトラフルオロエチレン100部に対して5部のポリオキシエチレンアルキリフェニルエーテルを含むものである。AD396の粒子径分布は単一のピークを示し、重量平均粒子径は290nmであった。   On the other hand, Asahi ICI fluoropolymer Co., Ltd. full-on AD396 was used as a polytetrafluoroethylene type particle dispersion. AD396 has a solid content concentration of 63.0% and contains 5 parts of polyoxyethylene alkylphenyl ether per 100 parts of polytetrafluoroethylene. The particle size distribution of AD396 showed a single peak, and the weight average particle size was 290 nm.

833部のAD396に蒸留水1167部を添加し、固形分濃度26.2%のポリテトラフルオロエチレン粒子分散液F−1を得た。F−1は25%のポリテトラフルオロエチレン粒子と1.2%のポリオキシエチレンノニルフェニルエーテルを含むものである。   1167 parts of distilled water was added to 833 parts of AD396 to obtain a polytetrafluoroethylene particle dispersion F-1 having a solid content concentration of 26.2%. F-1 contains 25% polytetrafluoroethylene particles and 1.2% polyoxyethylene nonylphenyl ether.

上記F−1を160部(ポリテトラフルオロエチレン40部)と159.4部のP−1(ドデシルメタクリレート/メチルメタクリレート共重合体40部)とを撹拌機、コンデンサー、熱伝対、窒素導入口を備えたセパラブルフラスコに仕込み、窒素気流下に室温で1時間攪拌した。その後、系内を80℃に昇温し、硫酸鉄0.001部、エチレンジアミン四酢酸二ナトリウム0.003部、ロンガリット塩0.24部、蒸留水10部の混合液を加えた後、メチルメタクリレート20部とt−ブチルパーオキサイド0.1部の混合液を30分かけて滴下し、滴下終了後、内温を80℃で1時間保持してラジカル重合を完了させた。一連の操作を通じて固形分の分離はみられず、均一な粒子分散液を得た。粒子分散液の固形分濃度は28.5%で、粒子径分布は比較的ブロードで重量平均粒子径は248nmであった。   160 parts of F-1 (polytetrafluoroethylene 40 parts) and 159.4 parts of P-1 (40 parts of dodecyl methacrylate / methyl methacrylate copolymer) were mixed with a stirrer, condenser, thermocouple, nitrogen inlet And stirred for 1 hour at room temperature under a nitrogen stream. Thereafter, the temperature in the system was raised to 80 ° C., and after adding a mixed solution of 0.001 part of iron sulfate, 0.003 part of disodium ethylenediaminetetraacetate, 0.24 part of Rongalite salt, and 10 parts of distilled water, methyl methacrylate was added. A mixed solution of 20 parts and 0.1 part of t-butyl peroxide was added dropwise over 30 minutes. After completion of the addition, the internal temperature was maintained at 80 ° C. for 1 hour to complete radical polymerization. Through the series of operations, no solid content was observed, and a uniform particle dispersion was obtained. The solid concentration of the particle dispersion was 28.5%, the particle size distribution was relatively broad, and the weight average particle size was 248 nm.

この粒子分散液349.7部を塩化カルシウム5部を含む75℃の熱水600部に投入し、固形分を分離させ、濾過、乾燥してポリテトラフルオロエチレン含有混合粉体97部を得た。
[実施例1]
粉砕機を用い2mm以下に粉砕したMFRが3.6g/10分、密度が0.922g/cmの高圧法低密度ポリエチレン(東ソー株式会社製ペトロセン310)70重量部、ポリオレフィン系樹脂架橋再生物(a−2)30重量部、ポリテトラフルオロエチレン含有混合粉体0.5重量部、熱分解型化学発泡剤アゾジカルボンアミド(永和化成工業株式会社製ビニホールAC#1)10重量部、酸化防止剤ペンタエリスリト−ルテトラキス[3-(3,5-ジ−tert-ブチル−4−ヒドロキシフェニル)プロピオネート](チバ・スペシャリティ・ケミカルズ株式会社製IRGANOX1010)0.3重量部をスーパーミキサーで混合し、熱分解型発泡剤が分解しない温度、すなわち140〜160℃に加熱した90φの単軸押出機でT型口金を用いて厚さ1.8mmのシート状に成形した後、60kGyの電子線を加速電圧800kVで照射し、架橋せしめた後、縦型熱風発泡装置に連続投入し、240℃で2〜3分加熱発泡しポリオレフィン系再生樹脂架橋発泡体を得た。該発泡体のシートの外観、発泡体の気泡状態、発泡体の外観を評価した結果を表2に示す。いずれの評価項目においても合格であった。
[実施例2]
粉砕機を用い2mm以下に粉砕したMFRが3.6g/10分、密度が0.922g/cmの高圧法低密度ポリエチレン(東ソー株式会社製ペトロセン310)20重量部、ポリオレフィン系樹脂架橋再生物(a−2)80重量部としたほかは実施例1と同様にポリオレフィン系再生樹脂架橋発泡体を得た。該発泡体のシートの外観、発泡体の気泡状態、発泡体の外観を評価した結果を表2に示す。いずれの評価項目においても合格であった。
[実施例3]
粉砕機を用い2mm以下に粉砕したポリプロピレンにエチレンをランダム共重合したMFRが1.5g/10分のポリプロピレン系樹脂(日本ポリオレフィン株式会社製ジェイアロマーE420G)35重量部、粉砕機を用い2mm以下に粉砕したMFRが3.6g/10分、密度が0.922g/cmの高圧法低密度ポリエチレン(東ソー株式会社製ペトロセン310)35重量部、ポリオレフィン系樹脂架橋再生物(b−2)30重量部、ポリテトラフルオロエチレン含有混合粉体1.0重量部、熱分解型化学発泡剤アゾジカルボンアミド(永和化成工業株式会社製ビニホールAC#3)10重量部、酸化防止剤オクタデシル−3−(3,5-ジ−tert-ブチル−4−ヒドロキシフェニル)プロピオネート(チバ・スペシャリティ・ケミカルズ株式会社製IRGANOX1076)0.5重量部、架橋助剤ジビニルベンゼン(新日鐵化学工業株式会社DVB−570)2.0重量部としたほかは実施例1と同様にポリオレフィン系再生樹脂架橋発泡体を得た。該発泡体のシートの外観、発泡体の気泡状態、発泡体の外観を評価した結果を表2に示す。いずれの評価項目においても合格であった。
[比較例1]
ポリテトラフルオロエチレン含有混合粉体を用いない以外は実施例1と同様にポリオレフィン系再生樹脂架橋発泡体を得た。該発泡体のシートの外観、発泡体の気泡状態、発泡体の外観を評価した結果を表2に示す。T型口金先端に滞積した組成物のシート付着が発生しシートの外観、発泡体の外観で不合格であった。
[比較例2]
ポリテトラフルオロエチレン含有混合粉体を20重量部とした以外は実施例1と同様にポリオレフィン系再生樹脂架橋発泡体を得た。該発泡体のシートの外観、発泡体の気泡状態、発泡体の外観を評価した結果を表2に示す。押出時に樹脂の溶融粘度が高く、剪断による発熱のため発泡剤が一部分解したためシートの外観、発泡体の気泡状態、発泡体の外観で不合格であった。
[比較例3]
ポリオレフィン系樹脂架橋再生物(a−2)の替わりにポリオレフィン系樹脂架橋再生物(a−1)を用いた以外は実施例1と同様にポリオレフィン系再生樹脂架橋発泡体を得た。該発泡体のシートの外観、発泡体の気泡状態、発泡体の外観を評価した結果を表2に示す。A−1のゲル分率が高い影響で溶融混練不良が発生し発泡体の気泡状態、発泡体の外観で不合格であった。
[比較例4]
ポリオレフィン系樹脂架橋再生物(b−2)の替わりにポリオレフィン系樹脂架橋再生物(b−1)を用いた以外は実施例3と同様にポリオレフィン系再生樹脂架橋発泡体を得た。該発泡体のシートの外観、発泡体の気泡状態、発泡体の外観を評価した結果を表2に示す。B−1のゲル分率が高い影響で溶融混練不良が発生し発泡体の気泡状態、発泡体の外観で不合格であった。
349.7 parts of this particle dispersion was added to 600 parts of 75 ° C. hot water containing 5 parts of calcium chloride, the solid content was separated, filtered and dried to obtain 97 parts of a polytetrafluoroethylene-containing mixed powder. .
[Example 1]
70 parts by weight of high-pressure low-density polyethylene (Petrocene 310 manufactured by Tosoh Corporation) having an MFR of 3.6 g / 10 min and a density of 0.922 g / cm 3 pulverized to 2 mm or less using a pulverizer; (A-2) 30 parts by weight, 0.5 parts by weight of polytetrafluoroethylene-containing mixed powder, 10 parts by weight of thermal decomposition chemical foaming agent azodicarbonamide (Vinole AC # 1 manufactured by Eiwa Chemical Industry Co., Ltd.), antioxidant 0.3 parts by weight of the agent pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] (IRGANOX1010 manufactured by Ciba Specialty Chemicals Co., Ltd.) was mixed with a super mixer. At a temperature at which the pyrolytic foaming agent does not decompose, that is, a 90φ single screw extruder heated to 140 to 160 ° C. After forming into a sheet with a thickness of 1.8 mm using a die, 60 kGy electron beam was irradiated at an acceleration voltage of 800 kV to crosslink, and then continuously fed into a vertical hot air foaming apparatus at 2-3 ° C. at 2 to 3 Foaming was performed for a few minutes to obtain a polyolefin-based recycled resin crosslinked foam. Table 2 shows the results of evaluating the appearance of the foam sheet, the foam state of the foam, and the appearance of the foam. All evaluation items were acceptable.
[Example 2]
20 parts by weight of high-pressure low-density polyethylene (Petrocene 310 manufactured by Tosoh Corporation) having an MFR of 3.6 g / 10 min and a density of 0.922 g / cm 3 pulverized to 2 mm or less using a pulverizer; (A-2) A polyolefin-based recycled resin crosslinked foam was obtained in the same manner as in Example 1 except that the amount was 80 parts by weight. Table 2 shows the results of evaluating the appearance of the foam sheet, the foam state of the foam, and the appearance of the foam. All evaluation items were acceptable.
[Example 3]
Polypropylene pulverized to 2 mm or less using a pulverizer and 35 parts by weight of a polypropylene resin (J-Alomer E420G manufactured by Nippon Polyolefin Co., Ltd.) having an MFR of 1.5 g / 10 min. 35 parts by weight of a high-pressure low-density polyethylene (Petrocene 310 manufactured by Tosoh Corporation) having a pulverized MFR of 3.6 g / 10 min and a density of 0.922 g / cm 3 , 30 parts by weight of a polyolefin resin cross-linked regenerated product (b-2) Parts, 1.0 part by weight of polytetrafluoroethylene-containing mixed powder, 10 parts by weight of pyrolytic chemical foaming agent azodicarbonamide (Binhole AC # 3 manufactured by Eiwa Kasei Kogyo Co., Ltd.), antioxidant octadecyl-3- (3 , 5-Di-tert-butyl-4-hydroxyphenyl) propionate (Ciba Specialty) IRGANOX 1076 manufactured by Micals Co., Ltd., and 0.5 parts by weight of crosslinking aid divinylbenzene (Nippon Steel Chemical Co., Ltd. DVB-570) 2.0 parts by weight Got the body. Table 2 shows the results of evaluating the appearance of the foam sheet, the foam state of the foam, and the appearance of the foam. All evaluation items were acceptable.
[Comparative Example 1]
A polyolefin-based recycled resin crosslinked foam was obtained in the same manner as in Example 1 except that the mixed powder containing polytetrafluoroethylene was not used. Table 2 shows the results of evaluating the appearance of the foam sheet, the foam state of the foam, and the appearance of the foam. Sheet adhesion of the composition stagnating at the tip of the T-type die occurred and the sheet appearance and foam appearance were unacceptable.
[Comparative Example 2]
A polyolefin-based recycled resin crosslinked foam was obtained in the same manner as in Example 1 except that the mixed powder containing polytetrafluoroethylene was 20 parts by weight. Table 2 shows the results of evaluating the appearance of the foam sheet, the foam state of the foam, and the appearance of the foam. The resin had a high melt viscosity at the time of extrusion, and the foaming agent was partially decomposed due to heat generated by shearing. Therefore, the appearance of the sheet, the foam state of the foam, and the appearance of the foam were unacceptable.
[Comparative Example 3]
A polyolefin regenerated resin cross-linked foam was obtained in the same manner as in Example 1 except that the polyolefin resin cross-linked regenerated product (a-1) was used instead of the polyolefin resin cross-linked regenerated product (a-2). Table 2 shows the results of evaluating the appearance of the foam sheet, the foam state of the foam, and the appearance of the foam. Due to the high gel fraction of A-1, melt kneading failure occurred, and the foam state of the foam and the appearance of the foam were unacceptable.
[Comparative Example 4]
A polyolefin regenerated resin cross-linked foam was obtained in the same manner as in Example 3, except that the polyolefin resin cross-linked regenerated product (b-1) was used instead of the polyolefin resin cross-linked regenerated product (b-2). Table 2 shows the results of evaluating the appearance of the foam sheet, the foam state of the foam, and the appearance of the foam. Due to the high gel fraction of B-1, a melt kneading failure occurred, and the foam state of the foam and the appearance of the foam were unacceptable.

Figure 2007277417
Figure 2007277417

以上述べたように、実施例に示した本発明によるポリオレフィン系再生樹脂架橋発泡体は少なくともMFRが0.5〜30g/10分であるポリオレフィン系樹脂架橋組成物および/またはポリオレフィン系樹脂架橋発泡体を熱可塑化したポリオレフィン系樹脂架橋再生物を含むポリオレフィン系樹脂100重量部に対し、ポリテトラフルオロエチレン0.01〜5重量部を配合することで得ることができる。   As described above, the polyolefin-based recycled resin crosslinked foam according to the present invention shown in the examples has a polyolefin-based resin crosslinked composition and / or a polyolefin-based resin crosslinked foam having an MFR of 0.5 to 30 g / 10 min. It can be obtained by blending 0.01 to 5 parts by weight of polytetrafluoroethylene with respect to 100 parts by weight of a polyolefin resin containing a polyolefin resin cross-linked regenerated product obtained by thermoplasticizing the resin.

Claims (8)

少なくともポリオレフィン系樹脂架橋再生物(A)を含むポリオレフィン系樹脂(B)に、ポリテトラフルオロエチレンを配合した樹脂組成物からなることを特徴とするポリオレフィン系再生樹脂架橋発泡体。 A polyolefin-based recycled resin crosslinked foam comprising a resin composition in which polytetrafluoroethylene is blended with a polyolefin-based resin (B) containing at least a polyolefin-based resin crosslinked reclaim (A). ポリオレフィン系樹脂架橋再生物(A)が、ポリオレフィン系樹脂架橋組成物、ポリオレフィン系樹脂架橋発泡体の少なくともいずれかを熱可塑化したものからなることを特徴とする請求項1に記載のポリオレフィン系再生樹脂架橋発泡体。 2. The polyolefin-based regeneration product according to claim 1, wherein the polyolefin-based resin crosslinked product (A) is obtained by thermoplasticizing at least one of a polyolefin-based resin crosslinked composition and a polyolefin-based resin crosslinked foam. Resin cross-linked foam. ポリオレフィン系樹脂架橋再生物(A)のメルトフローレート(MFR)が0.5〜30g/10分であることを特徴とする請求項1または2に記載のポリオレフィン系再生樹脂架橋発泡体。 The polyolefin-based regenerated resin cross-linked foam according to claim 1 or 2, wherein the polyolefin resin cross-linked regenerated product (A) has a melt flow rate (MFR) of 0.5 to 30 g / 10 min. ポリオレフィン系樹脂架橋再生物(A)を含むポリオレフィン系樹脂(B)100重量部に対し、ポリテトラフルオロエチレンを0.01〜5重量部配合した樹脂組成物からなることを特徴とする請求項1に記載のポリオレフィン系再生樹脂架橋発泡体。 2. A resin composition comprising 0.01 to 5 parts by weight of polytetrafluoroethylene with respect to 100 parts by weight of a polyolefin resin (B) containing a polyolefin resin cross-linked reclaimed product (A). The polyolefin-based recycled resin crosslinked foam described in 1. ポリオレフィン系樹脂架橋再生物(A)がゲル分率1〜80%であるポリオレフィン系樹脂架橋組成物を熱可塑化した樹脂からなることを特徴とする請求項2に記載のポリオレフィン系再生樹脂架橋発泡体。 The polyolefin-based regenerated resin cross-linked foam according to claim 2, wherein the regenerated polyolefin resin cross-linked product (A) comprises a resin obtained by thermoplasticizing a polyolefin resin cross-linked composition having a gel fraction of 1 to 80%. body. ポリオレフィン系樹脂架橋再生物(A)がゲル分率1〜80%であるポリオレフィン系樹脂架橋発泡体を熱可塑化した樹脂からなることを特徴とする請求項2に記載のポリオレフィン系再生樹脂架橋発泡体。 The polyolefin-based regenerated resin cross-linked foam according to claim 2, wherein the regenerated polyolefin resin cross-linked product (A) comprises a resin obtained by thermoplasticizing a polyolefin-based resin cross-linked foam having a gel fraction of 1 to 80%. body. ポリオレフィン系樹脂架橋再生物(A)とポリオレフィン系樹脂(B)の配合比(A/B)が0.05〜9の範囲であることを特徴とする請求項1から3のいずれかに記載のポリオレフィン系再生樹脂架橋発泡体。 The blending ratio (A / B) of the polyolefin resin cross-linked product (A) and the polyolefin resin (B) is in the range of 0.05 to 9, according to any one of claims 1 to 3. Polyolefin-based recycled resin cross-linked foam. (1)少なくともポリオレフィン系樹脂架橋再生物(A)を含むポリオレフィン系樹脂(B)、(2)ポリテトラフルオロエチレン、(3)熱分解型化学発泡剤を混合し、該ポリオレフィン系樹脂の融点以上かつ熱分解型化学発泡剤の分解開始温度以下で溶融混練して発泡性長尺シート状に成型し、架橋を施した該発泡性長尺シートを熱分解型化学発泡剤の分解開始温度以上の温度で加熱し発泡倍率2〜50倍の発泡体とすることを特徴とするポリオレフィン系再生樹脂架橋発泡体の製造方法。 (1) A polyolefin resin (B) containing at least a polyolefin resin cross-linked regenerated product (A), (2) polytetrafluoroethylene, and (3) a pyrolytic chemical foaming agent are mixed, and the melting point of the polyolefin resin or higher In addition, it is melt-kneaded at a temperature not higher than the decomposition start temperature of the thermally decomposable chemical foaming agent and molded into a foamable long sheet, and the crosslinkable foamable long sheet is not less than the decomposition start temperature of the heat decomposable chemical foaming agent. A method for producing a polyolefin-based recycled resin crosslinked foam, which is heated at a temperature to obtain a foam having a foaming ratio of 2 to 50 times.
JP2006105987A 2006-04-07 2006-04-07 Polyolefin-based reprocessed cross-linked foam and method for producing the same Pending JP2007277417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006105987A JP2007277417A (en) 2006-04-07 2006-04-07 Polyolefin-based reprocessed cross-linked foam and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006105987A JP2007277417A (en) 2006-04-07 2006-04-07 Polyolefin-based reprocessed cross-linked foam and method for producing the same

Publications (1)

Publication Number Publication Date
JP2007277417A true JP2007277417A (en) 2007-10-25

Family

ID=38679200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006105987A Pending JP2007277417A (en) 2006-04-07 2006-04-07 Polyolefin-based reprocessed cross-linked foam and method for producing the same

Country Status (1)

Country Link
JP (1) JP2007277417A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008275146A (en) * 2007-04-06 2008-11-13 Sekisui Chem Co Ltd Composite pipe and its manufacturing method
CN107405845A (en) * 2014-12-30 2017-11-28 东丽塑料美国股份有限公司 Carry out the multi-layer polyolefin foam structure and its manufacture method of the crosslinking of the coextrusion of the polyolefine material of self-loopa
US10384388B2 (en) 2014-12-30 2019-08-20 Toray Plastics (America), Inc. Coextruded, crosslinked multilayer polyolefin foam structures and methods of making the same
US10501598B2 (en) 2017-06-29 2019-12-10 Toray Plastics (America), Inc. Method of making coextruded, crosslinked multilayer polyolefin foam structures from recycled crosslinked polyolefin foam material
US10814590B2 (en) 2013-12-31 2020-10-27 Toray Plastics (America), Inc. Methods of producing foam structures from recycled metallized polyolefin material
US11007761B2 (en) 2017-03-31 2021-05-18 Toray Plastics (America), Inc. Method of making coextruded, cross-linked polyolefin foam with TPU cap layers
US11590730B2 (en) 2019-03-29 2023-02-28 Toray Plastics (America), Inc. Coextruded, crosslinked polyolefin foam with KEE cap layers
US11590677B2 (en) 2019-03-29 2023-02-28 Toray Plastics (America), Inc. Method of making coextruded, crosslinked polyolefin foam with KEE cap layers

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008275146A (en) * 2007-04-06 2008-11-13 Sekisui Chem Co Ltd Composite pipe and its manufacturing method
US10814590B2 (en) 2013-12-31 2020-10-27 Toray Plastics (America), Inc. Methods of producing foam structures from recycled metallized polyolefin material
CN107405845A (en) * 2014-12-30 2017-11-28 东丽塑料美国股份有限公司 Carry out the multi-layer polyolefin foam structure and its manufacture method of the crosslinking of the coextrusion of the polyolefine material of self-loopa
US10384388B2 (en) 2014-12-30 2019-08-20 Toray Plastics (America), Inc. Coextruded, crosslinked multilayer polyolefin foam structures and methods of making the same
CN111169028A (en) * 2014-12-30 2020-05-19 东丽塑料美国股份有限公司 Co-extruded crosslinked multilayer polyolefin foam structures from recycled polyolefin materials and methods of making the same
US11007761B2 (en) 2017-03-31 2021-05-18 Toray Plastics (America), Inc. Method of making coextruded, cross-linked polyolefin foam with TPU cap layers
US11628657B2 (en) 2017-03-31 2023-04-18 Toray Plastics (America), Inc. Method of making coextruded, cross-linked polyolefin foam with TPU cap layers
US10501598B2 (en) 2017-06-29 2019-12-10 Toray Plastics (America), Inc. Method of making coextruded, crosslinked multilayer polyolefin foam structures from recycled crosslinked polyolefin foam material
US11590730B2 (en) 2019-03-29 2023-02-28 Toray Plastics (America), Inc. Coextruded, crosslinked polyolefin foam with KEE cap layers
US11590677B2 (en) 2019-03-29 2023-02-28 Toray Plastics (America), Inc. Method of making coextruded, crosslinked polyolefin foam with KEE cap layers

Similar Documents

Publication Publication Date Title
JP2007277417A (en) Polyolefin-based reprocessed cross-linked foam and method for producing the same
EP0185012B1 (en) PROCESS FOR EXTRUDING FOAMED STYRENE POLYMERS WITH $g(a)-POLYOLEFIN ADDITIVES AND UTILIZING RECYCLED MATERIAL AND THE COMPOSITIONS FOR PROCESSING
KR102305355B1 (en) Method for the production of irradiation crosslinked polypropylene foam
JP6025827B2 (en) Method for producing resin foam and resin foam
JPH10506935A (en) Moldable thermoplastic polymer foam beads
JP5116448B2 (en) Open cell foam and method for producing the same
US11261317B2 (en) Process for foaming polyolefin compositions using a fluororesin as a nucleating agent
JP6211913B2 (en) Polyolefin resin expanded particles
JP2008156442A (en) Open cell foam and its manufacturing method
JP2009235161A (en) Regeneration method of crosslinked polyolefinic resin body
JP5179550B2 (en) Recycled resin-containing polyolefin resin foam composition and foam
JP2008194251A (en) Desk mat
JP2002275299A (en) Polyolefin resin composition having foaming ability, method for producing the same and method for producing foam structure using the same composition
JP2001081222A (en) Polyolefin resin crosslinked foam and its preparation
JP4688519B2 (en) Method for producing polyolefin resin foam
JP2021195482A (en) Method for producing resin recycled material
JPH07268121A (en) Polypropylene-based resin composition for expansion and expanded polypropylene-based resin sheet using the same
JPH07145259A (en) Production of cross-linked polypropylenic resin foamed sheet containing uniform air bubble
JP3588545B2 (en) Method for producing polyolefin resin foam
JP2016006142A (en) Resin composition and foam made thereof
JP4300901B2 (en) Polyolefin resin cross-linked foam
JP3311106B2 (en) Method for producing crosslinked polypropylene resin foam sheet
JP2007308560A (en) Polypropylene-based resin foamed particles and method for producing the same
JP5660676B2 (en) Method for producing recycled resin-containing polyolefin resin foam
JP2008239674A (en) Method for producing resin composition for polyolefin-based resin crosslinked foam