JP2007277101A - Manufacturing method of 2,3,6,7,10,11-hexahydroxytriphenylene - Google Patents

Manufacturing method of 2,3,6,7,10,11-hexahydroxytriphenylene Download PDF

Info

Publication number
JP2007277101A
JP2007277101A JP2006101482A JP2006101482A JP2007277101A JP 2007277101 A JP2007277101 A JP 2007277101A JP 2006101482 A JP2006101482 A JP 2006101482A JP 2006101482 A JP2006101482 A JP 2006101482A JP 2007277101 A JP2007277101 A JP 2007277101A
Authority
JP
Japan
Prior art keywords
reaction
hexahydroxytriphenylene
group
hydrogen
groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006101482A
Other languages
Japanese (ja)
Inventor
Kyuhei Kitao
久平 北尾
Ikuo Takahashi
郁夫 高橋
Yukitsugu Maeda
幸嗣 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP2006101482A priority Critical patent/JP2007277101A/en
Publication of JP2007277101A publication Critical patent/JP2007277101A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for industrially efficiently manufacturing 2,3,6,7,10,11-hexahydroxytriphenylene. <P>SOLUTION: 2,3,6,7,10,11-Hexahydroxytriphenylene is manufactured by causing a compound having groups -OR (wherein R's may be the same or different and are each hydrogen or a hydrocarbon group and all R's are not simultaneously hydrogen) replaced in positions 2, 3, 6, 7, 10 and 11 of triphenylene to react with hydrogen iodide while distilling by-produced low-boiling components out of the system. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、液晶、その他機能性有機材料の合成中間原料等として有用な2,3,6,7,10,11−ヘキサヒドロキシトリフェニレンの製造方法に関する。   The present invention relates to a method for producing 2,3,6,7,10,11-hexahydroxytriphenylene which is useful as an intermediate raw material for synthesis of liquid crystals and other functional organic materials.

2,3,6,7,10,11−ヘキサヒドロキシトリフェニレンの合成法としては、2,3,6,7,10,11−ヘキサメトキシトリフェニレンなどのアルキル保護された2,3,6,7,10,11−ヘキサヒドロキシトリフェニレン誘導体を脱アルキル化する方法が一般的であり、脱アルキル化剤として、三臭化ホウ素(例えば非特許文献1)や臭化水素(例えば特許文献1や非特許文献2)が用いられてきた。しかし、臭化水素を用いる方法は臭化水素の反応性が低いため、反応時間が22時間程度必要である。三臭化ホウ素は反応性は高いものの、腐食性が大きく、また空気中の水分で分解するなど、取扱性に問題がある。   As a synthesis method of 2,3,6,7,10,11-hexahydroxytriphenylene, 2,3,6,7,10,11-hexamethoxytriphenylene and other alkyl-protected 2,3,6,7, A method of dealkylating a 10,11-hexahydroxytriphenylene derivative is common, and as a dealkylating agent, boron tribromide (for example, Non-Patent Document 1) or hydrogen bromide (for example, Patent Document 1 or Non-Patent Document). 2) has been used. However, the method using hydrogen bromide requires a reaction time of about 22 hours because the reactivity of hydrogen bromide is low. Although boron tribromide is highly reactive, it is highly corrosive and has problems in handling such as being decomposed by moisture in the air.

このような問題を解決する方法として、脱アルキル化剤としてヨウ化水素を用いる方法が提案されている(例えば特許文献2)。この方法によれば、反応時間が4時間まで短縮されているが、工業的方法としては未だ十分満足できるものではない。   As a method for solving such a problem, a method using hydrogen iodide as a dealkylating agent has been proposed (for example, Patent Document 2). According to this method, the reaction time is shortened to 4 hours, but it is not yet satisfactory as an industrial method.

一方、トリスアルキレンジオキシトリフェニレンをハロゲン化合物の存在下にハロゲン化し、生成したトリスジハロゲノアルキレンジオキシトリフェニレンを加水分解して脱アルキレン化する方法が報告されている(例えば特許文献3)。しかし、この方法では、ハロゲン化合物として、毒物である三塩化リンや五塩化リン、毒性や腐食性が高い塩化するフリルや塩素を使用する必要があるため、取り扱い上の問題から工業的に好適な方法とは言い難い。   On the other hand, a method has been reported in which trisalkylenedioxytriphenylene is halogenated in the presence of a halogen compound, and the resulting trisdihalogenoalkylenedioxytriphenylene is hydrolyzed and dealkylenated (for example, Patent Document 3). However, this method requires the use of poisonous phosphorus trichloride or phosphorus pentachloride, furyl chloride or chlorine, which is highly toxic or corrosive, as a halogen compound. It's hard to say how.

アルキル保護された2,3,6,7,10,11−ヘキサヒドロキシトリフェニレン誘導体を、酸存在下、マイクロ波を照射することで脱アルキル化を行う方法が報告されている(例えば特許文献4)。しかし、この方法では、マイクロ波照射設備を要するため、工業的な製造方法には適していない。   A method for dealkylating an alkyl-protected 2,3,6,7,10,11-hexahydroxytriphenylene derivative by irradiating microwaves in the presence of an acid has been reported (for example, Patent Document 4). . However, since this method requires microwave irradiation equipment, it is not suitable for an industrial manufacturing method.

イスラエル特許第70572A1号明細書Israel Patent No. 70572A1 Specification 特許第3594662号公報Japanese Patent No. 3594662 特開2005−314335号公報JP 2005-314335 A 国際公開第02/002486号パンフレットInternational Publication No. 02/002486 Pamphlet J.MATER.CHEM.,1992,2,1261J. et al. MATER. CHEM. , 1992, 2, 1261 Synthesis,1997,11,1285Synthesis, 1997, 11, 1285.

本発明の目的は、2,3,6,7,10,11−ヘキサヒドロキシトリフェニレンを工業的に効率よく製造する方法を提供することにある。   An object of the present invention is to provide a method for industrially and efficiently producing 2,3,6,7,10,11-hexahydroxytriphenylene.

本発明者らは、上記目的を達成するため鋭意検討した結果、ヒドロキシル基を特定の基で保護した2,3,6,7,10,11−ヘキサヒドロキシトリフェニレンとヨウ化水素とを、副生する低沸点成分を積極的に系外に留去しながら反応させると、2,3,6,7,10,11−ヘキサヒドロキシトリフェニレンが短時間で効率よく生成することを見出し、本発明を完成した。   As a result of intensive studies to achieve the above object, the inventors of the present invention produced 2,3,6,7,10,11-hexahydroxytriphenylene having a hydroxyl group protected with a specific group and hydrogen iodide as a by-product. And found that 2,3,6,7,10,11-hexahydroxytriphenylene is efficiently produced in a short time when the reaction is carried out while actively distilling off the low-boiling components out of the system. did.

すなわち、本発明は、下記式(1)

Figure 2007277101
(式中、R1、R2、R3、R4、R5、R6は、同一又は異なって、水素原子又は置換基を有していてもよい炭素数1〜12の炭化水素基を示し、互いに隣り合った基同士が一体となり又は結合して、隣接する2つの酸素原子及びベンゼン環の2つの炭素原子とともに5〜7員の環を形成してもよい。但し、R1、R2、R3、R4、R5、R6のすべてが水素原子であることはない)
で表される化合物とヨウ化水素とを、副生する低沸点成分を系外に留去しながら反応させて、下記式(2)
Figure 2007277101
で表される2,3,6,7,10,11−ヘキサヒドロキシトリフェニレンを得ることを特徴とする2,3,6,7,10,11−ヘキサヒドロキシトリフェニレンの製造方法を提供する。 That is, the present invention provides the following formula (1):
Figure 2007277101
(In the formula, R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are the same or different and each represents a hydrogen atom or a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent. The groups adjacent to each other may be combined or bonded together to form a 5- to 7-membered ring together with two adjacent oxygen atoms and two carbon atoms of the benzene ring, provided that R 1 , R 2 , R 3 , R 4 , R 5 , R 6 are not all hydrogen atoms)
Is reacted with hydrogen iodide while distilling off by-product low-boiling components out of the system.
Figure 2007277101
A process for producing 2,3,6,7,10,11-hexahydroxytriphenylene, characterized in that 2,3,6,7,10,11-hexahydroxytriphenylene represented by formula (1) is obtained.

前記R1、R2、R3、R4、R5、R6は、同一又は異なって、水素原子又はメチル基であるのが特に好ましい。 R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are the same or different and are particularly preferably a hydrogen atom or a methyl group.

本発明によれば、取り扱いやすい原料から2,3,6,7,10,11−ヘキサヒドロキシトリフェニレンが短時間で収率良く生成する。そのため、2,3,6,7,10,11−ヘキサヒドロキシトリフェニレンを工業的に効率よく製造できる。   According to the present invention, 2,3,6,7,10,11-hexahydroxytriphenylene is produced with good yield in a short time from an easy-to-handle raw material. Therefore, 2,3,6,7,10,11-hexahydroxytriphenylene can be produced industrially efficiently.

本発明では、前記式(1)で表される化合物とヨウ化水素とを、副生する低沸点成分を系外に留去しながら反応させて、式(2)で表される2,3,6,7,10,11−ヘキサヒドロトリフェニレンを得る。式(1)中、R1、R2、R3、R4、R5、R6は、同一又は異なって、水素原子又は置換基を有していてもよい炭素数1〜12の炭化水素基を示し、互いに隣り合った基同士が一体となり又は結合して、隣接する2つの酸素原子及びベンゼン環の2つの炭素原子とともに5〜7員の環を形成してもよい。但し、R1、R2、R3、R4、R5、R6のすべてが水素原子であることはない。 In the present invention, the compound represented by the formula (1) and hydrogen iodide are reacted while distilling out low-boiling components produced as a by-product out of the system, and 2, 3 represented by the formula (2). , 6,7,10,11-hexahydrotriphenylene. In formula (1), R 1 , R 2 , R 3 , R 4 , R 5 , R 6 are the same or different and each is a hydrocarbon having 1 to 12 carbon atoms which may have a hydrogen atom or a substituent. And a group adjacent to each other may be combined or bonded to form a 5- to 7-membered ring together with two adjacent oxygen atoms and two carbon atoms of the benzene ring. However, not all of R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are hydrogen atoms.

前記炭素数1〜12の炭化水素基としては、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、s−ブチル、t−ブチル、ペンチル、ヘキシル、オクチル、デシル、ドデシル基などの直鎖状又は分岐鎖状の脂肪族炭化水素基(アルキル基、アルケニル基又はアルキニル基);シクロペンチル、シクロヘキシル基などの脂環式炭化水素基;フェニル、ナフチル基などの芳香族炭化水素基;これらが複数個結合した基(例えば、ベンジル、2−フェニルエチル基などのアラルキル基等)などが挙げられる。これらの中でも、炭素数1〜8の脂肪族炭化水素基(アルキル基等)又は炭素数7〜12のアラルキル基が好ましく、特に炭素数1〜4のアルキル基(とりわけメチル基)が好ましい。   Examples of the hydrocarbon group having 1 to 12 carbon atoms include linear chains such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, t-butyl, pentyl, hexyl, octyl, decyl, and dodecyl groups. Or a branched aliphatic hydrocarbon group (alkyl group, alkenyl group or alkynyl group); an alicyclic hydrocarbon group such as cyclopentyl or cyclohexyl group; an aromatic hydrocarbon group such as phenyl or naphthyl group; Bonded groups (for example, aralkyl groups such as benzyl and 2-phenylethyl groups) and the like can be mentioned. Among these, a C1-C8 aliphatic hydrocarbon group (alkyl group etc.) or a C7-C12 aralkyl group is preferable, and especially a C1-C4 alkyl group (especially methyl group) is preferable.

前記炭化水素基が有していてもよい置換基としては、例えば、ハロゲン原子(フッ素、塩素、臭素、ヨウ素原子)、ヒドロキシル基、置換オキシ基(メトキシ、エトキシ基等のアルコキシ基;アセチルオキシ基等のアシルオキシ基など)、カルボキシル基、置換オキシカルボニル基(メトキシカルボニル基等のアルコキシカルボニル基など)、オキソ基、ニトロ基、シアノ基、無置換又は置換アミノ基などが挙げられる。   Examples of the substituent that the hydrocarbon group may have include, for example, a halogen atom (fluorine, chlorine, bromine, iodine atom), a hydroxyl group, a substituted oxy group (alkoxy group such as methoxy and ethoxy group; acetyloxy group) Etc.), carboxyl groups, substituted oxycarbonyl groups (alkoxycarbonyl groups such as methoxycarbonyl groups), oxo groups, nitro groups, cyano groups, unsubstituted or substituted amino groups, and the like.

1、R2、R3、R4、R5、R6の互いに隣り合った基同士が一体となり又は結合して、隣接する2つの酸素原子及びベンゼン環の2つの炭素原子とともに5〜7員の環を形成する場合の該一体となり又は結合した基としては、メチレン基、エチレン基、プロピレン基などが挙げられる。 Adjacent groups of R 1 , R 2 , R 3 , R 4 , R 5 , R 6 are combined or bonded together to form 5-7 together with two adjacent oxygen atoms and two carbon atoms of the benzene ring. Examples of the unitary or bonded group in the case of forming a member ring include a methylene group, an ethylene group, and a propylene group.

式(1)で表される化合物の代表的な例として、例えば、2,3,6,7,10,11−ヘキサメトキシトリフェニレン、2,3,6,7,10,11−ヘキサエトキシトリフェニレンなどのR1、R2、R3、R4、R5、R6がすべて炭化水素基(特にアルキル基)である化合物;2,3−,6,7−,10,11−トリスメチレンジオキシトリフェニレン、2,3−,6,7−,10,11−トリスエチレンジオキシトリフェニレンなどのR1とR2、R3とR4、R5とR6がそれぞれ一体となり又は結合して、隣接する2つの酸素原子及びベンゼン環の2つの炭素原子とともに5〜7員の環を形成している化合物;2,6,10−トリヒドロキシ−3,7,11−トリメトキシトリフェニレン、2,6,11−トリヒドロキシ−3,7,10−トリメトキシトリフェニレン、2,6,10−トリエトキシ−3,7,11−トリヒドロキシトリフェニレン、2,6,11−トリエトキシ−3,7,10−トリヒドロキシトリフェニレンなどのトリアルコキシトリヒドロキシトリフェニレン化合物などが挙げられる。 Representative examples of the compound represented by the formula (1) include, for example, 2,3,6,7,10,11-hexamethoxytriphenylene, 2,3,6,7,10,11-hexaethoxytriphenylene and the like. R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are all hydrocarbon groups (particularly alkyl groups); 2,3-, 6,7-, 10,11-trismethylenedioxy R 1 and R 2 , R 3 and R 4 , R 5 and R 6 such as triphenylene, 2,3-, 6,7-, 10,11-trisethylenedioxytriphenylene, or R 5 and R 6 are combined or bonded to each other. A compound forming a 5- to 7-membered ring with two oxygen atoms and two carbon atoms of the benzene ring; 2,6,10-trihydroxy-3,7,11-trimethoxytriphenylene, 2,6, 11-trihydroxy-3,7 Trialkoxytrihydroxytriphenylene compounds such as 2,6,10-triethoxy-3,7,11-trihydroxytriphenylene, 2,6,11-triethoxy-3,7,10-trihydroxytriphenylene Etc.

反応に用いられるヨウ化水素は、ヨウ化水素ガスを反応溶媒に吸収させて用いてもよく、ヨウ化水素ガスの水溶液(ヨウ化水素酸)を用いてもよい。ヨウ化水素ガスを反応溶媒に吸収させて用いる場合、ヨウ化水素濃度は2重量%以上が好ましく、反応溶媒に飽和するまで吸収させて用いるのがさらに好ましい。ヨウ化水素酸を用いる場合、その濃度は、例えば5重量%以上、好ましくは20重量%以上、さらに好ましくは47重量%以上である。   Hydrogen iodide used for the reaction may be used by absorbing hydrogen iodide gas in a reaction solvent, or an aqueous solution of hydrogen iodide gas (hydroiodic acid) may be used. When hydrogen iodide gas is absorbed in the reaction solvent and used, the hydrogen iodide concentration is preferably 2% by weight or more, and more preferably absorbed and used until the reaction solvent is saturated. When hydroiodic acid is used, the concentration is, for example, 5% by weight or more, preferably 20% by weight or more, and more preferably 47% by weight or more.

反応溶媒としては、反応を損なわないような溶媒であればよく、例えば、水;メタノール、エタノールなどのアルコール;クロロベンゼン、o−ジクロロベンゼンなどのハロゲン化炭化水素;トルエン、キシレンなどの芳香族炭化水素;酢酸、プロピオン酸などのカルボン酸、メタンスルホン酸などのスルホン酸類等の有機酸;これらの混合液などが挙げられる。これらの中でも、水、クロロベンゼン、キシレン、有機酸などがさらに好ましい。特に好ましい溶媒は有機酸類で、酢酸が最も好ましい。また、ヨウ化水素酸を用いる場合、無水酢酸を添加してヨウ化水素酸中の水を酢酸に変換して、原料や生成物の溶解度を高めてもよい。   The reaction solvent may be any solvent that does not impair the reaction. For example, water; alcohols such as methanol and ethanol; halogenated hydrocarbons such as chlorobenzene and o-dichlorobenzene; aromatic hydrocarbons such as toluene and xylene An organic acid such as a carboxylic acid such as acetic acid or propionic acid, or a sulfonic acid such as methanesulfonic acid, or a mixture thereof. Of these, water, chlorobenzene, xylene, organic acids and the like are more preferable. Particularly preferred solvents are organic acids, most preferably acetic acid. When hydroiodic acid is used, acetic anhydride may be added to convert water in hydroiodic acid into acetic acid to increase the solubility of raw materials and products.

式(1)で表される化合物の反応器への仕込量は、反応成分及び反応溶媒の全仕込量に対して、例えば、0.2〜30重量%、好ましくは0.3〜6重量%である。この割合が小さすぎると生産効率が低下しやすくなり、大きくなりすぎると、前記R1、R2、R3、R4、R5、R6における炭化水素基が一部残存した状態で析出し、目的化合物の純度が低下しやすくなる。 The amount of the compound represented by formula (1) charged to the reactor is, for example, 0.2 to 30% by weight, preferably 0.3 to 6% by weight, based on the total amount of the reaction components and the reaction solvent. It is. If this ratio is too small, the production efficiency tends to decrease, and if it is too large, the hydrocarbon groups in R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are partly precipitated. , The purity of the target compound tends to decrease.

反応温度は、式(1)で表される化合物の種類によっても異なるが、一般に0〜200℃、好ましくは90〜150℃程度である。反応は生成物の酸化を防ぐため、窒素やアルゴン等の不活性ガス雰囲気下で行うことが望ましい。   The reaction temperature varies depending on the type of the compound represented by the formula (1), but is generally 0 to 200 ° C, preferably about 90 to 150 ° C. The reaction is desirably performed in an inert gas atmosphere such as nitrogen or argon in order to prevent oxidation of the product.

本発明の重要な特徴は、反応で副生する低沸点成分を系外に留去させながら反応を行う点にある。反応で副生する低沸点成分は、通常、前記R1、R2、R3、R4、R5、R6における置換基を有していてもよい炭素数1〜12の炭化水素基に対応するヨウ素化炭化水素である。例えば、置換基を有していてもよい炭素数1〜12の炭化水素基がメチル基である場合にはヨウ化メチルであり、前記炭化水素基がエチル基である場合にはヨウ化エチルである。このように、反応で副生する低沸点成分を強制的に系外に留去すると、平衡が生成物側に傾くためか、反応速度を著しく促進させることができ、反応時間を大幅に短縮させることができる。例えば、反応時間0.5〜1.5時間程度で反応が終了する。反応を還流下で行うと、反応速度が極めて遅く、目的化合物を短時間で収率よく製造することができない。 An important feature of the present invention is that the reaction is carried out while distilling out low-boiling components produced as a by-product in the reaction. The low boiling point component by-produced in the reaction is usually a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent in R 1 , R 2 , R 3 , R 4 , R 5 and R 6 . The corresponding iodinated hydrocarbon. For example, when the hydrocarbon group having 1 to 12 carbon atoms which may have a substituent is a methyl group, it is methyl iodide, and when the hydrocarbon group is an ethyl group, it is ethyl iodide. is there. In this way, if the low-boiling components produced as a by-product in the reaction are forcibly distilled out of the system, the reaction rate can be remarkably accelerated and the reaction time can be greatly shortened, probably because the equilibrium is inclined to the product side. be able to. For example, the reaction is completed in about 0.5 to 1.5 hours of reaction time. When the reaction is carried out under reflux, the reaction rate is extremely slow, and the target compound cannot be produced in a high yield in a short time.

反応に用いる装置には、反応器と前記低沸点成分を系外に留去する装置とを組み合わせて用いる。低沸点成分を留去する装置としては、留出液を系外に排出する管を備えた蒸留塔や蒸留フラスコのほか、ディーンスターク装置などを用いることができる。   The apparatus used for the reaction is a combination of a reactor and an apparatus for distilling out the low-boiling components out of the system. As a device for distilling off the low-boiling components, a Dean-Stark device or the like can be used in addition to a distillation tower or distillation flask equipped with a tube for discharging the distillate out of the system.

留去する低沸点成分は、操作性等の点から、常圧下35℃〜45℃の範囲内で留出する成分、特にヨウ化メチルであるのが好ましい。したがって、前記R1、R2、R3、R4、R5、R6における置換基を有していてもよい炭素数1〜12の炭化水素基としてはメチル基が特に好ましい。 The low boiling point component to be distilled off is preferably a component that is distilled within a range of 35 ° C. to 45 ° C. under normal pressure, particularly methyl iodide, from the viewpoint of operability and the like. Accordingly, a methyl group is particularly preferable as the hydrocarbon group having 1 to 12 carbon atoms which may have a substituent in R 1 , R 2 , R 3 , R 4 , R 5 and R 6 .

反応終了後、反応生成物は、例えば、濾過、濃縮、蒸留、抽出、晶析、再結晶、カラムクロマトグラフィーなどの分離手段により分離精製できる。例えば、反応終了後の反応混合液を冷却した後水を添加して(又は、水を添加した後冷却して)生成物を晶析し、析出した固体を濾過し、適当な洗浄液で洗浄した後、例えば減圧下で乾燥することにより目的化合物を得ることができる。前記洗浄液としては、特に制限はないが、水と水溶性有機溶媒(例えば、アセトニトリル、メタノール、エタノール、アセトンなど)とを用いて洗浄するのが好ましい。この場合、水で洗浄した後水溶性有機溶媒で洗浄してもよく、水と水溶性有機溶媒の混合液で洗浄してもよい。   After completion of the reaction, the reaction product can be separated and purified by separation means such as filtration, concentration, distillation, extraction, crystallization, recrystallization, column chromatography and the like. For example, after cooling the reaction mixture after completion of the reaction, water is added (or water is added and then cooled) to crystallize the product, and the precipitated solid is filtered and washed with an appropriate washing solution. Thereafter, the target compound can be obtained, for example, by drying under reduced pressure. Although there is no restriction | limiting in particular as said washing | cleaning liquid, It is preferable to wash | clean using water and a water-soluble organic solvent (for example, acetonitrile, methanol, ethanol, acetone, etc.). In this case, it may be washed with water and then with a water-soluble organic solvent, or with a mixed solution of water and a water-soluble organic solvent.

以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。目的化合物の純度は高速液体クロマトグラフィー(HPLC)分析により求めた。分析条件は下記の通りである。
カラム:YMC J’sphere ODS−M80(4.6×250mm)
検出条件:UV 210nm
溶離液:0.1重量%リン酸水溶液(A液)/アセトニトリル(B液)
流量:1.0mL/分
グラジエント条件:分析時間(A液/B液(v/v));0分(70/30)−5分(70/30)−20分(30/70)−30分(30/70)
Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples. The purity of the target compound was determined by high performance liquid chromatography (HPLC) analysis. The analysis conditions are as follows.
Column: YMC J'sphere ODS-M80 (4.6 × 250 mm)
Detection condition: UV 210nm
Eluent: 0.1% by weight phosphoric acid aqueous solution (A solution) / acetonitrile (B solution)
Flow rate: 1.0 mL / min Gradient condition: Analysis time (A liquid / B liquid (v / v)); 0 minute (70/30) -5 minutes (70/30) -20 minutes (30/70) -30 Minute (30/70)

実施例1
ディーンスターク装置を備えた反応器に57重量%ヨウ化水素水溶液39gと酢酸19gの混合液を入れ、窒素雰囲気下で、2,3,6,7,10,11−ヘキサメトキシトリフェニレン4gを加えて懸濁させ、無水酢酸30gを65℃以下の温度を保ちつつ滴下した。混合物を昇温すると、105℃付近で反応液は均一な溶液となり、低沸点成分の留出が始まった。留出液は系外に排出した。低沸点成分の留出が終わるまで1時間を要した。このときの反応液の温度は最終的に110℃であり、留出液の重量は1.3gであった。低沸点成分の留出温度は38℃から42℃の範囲であり、得られた低沸点成分は1H−NMR分析により、水を含んだヨウ化メチルであることが確認された。留出終了後、反応混合液を30℃まで冷却し、これに水50gを滴下した。10℃で1時間撹拌後、析出した固体を濾過回収し、水50g、アセトニトリル50gで順次洗浄し、減圧下、40℃で乾燥し、目的とする2,3,6,7,10,11−ヘキサヒドロキシトリフェニレンを3.0g、収率94%、純度97%で得た。
Example 1
In a reactor equipped with a Dean-Stark apparatus, a mixed solution of 39 g of 57% by weight aqueous hydrogen iodide and 19 g of acetic acid was added, and 4 g of 2,3,6,7,10,11-hexamethoxytriphenylene was added under a nitrogen atmosphere. The suspension was suspended, and 30 g of acetic anhydride was added dropwise while maintaining the temperature at 65 ° C. or lower. When the temperature of the mixture was raised, the reaction solution became a homogeneous solution at around 105 ° C., and distillation of the low-boiling components began. The distillate was discharged out of the system. It took 1 hour until the distillation of the low boiling point components was completed. The temperature of the reaction solution at this time was finally 110 ° C., and the weight of the distillate was 1.3 g. The distillation temperature of the low boiling point component was in the range of 38 ° C. to 42 ° C., and the obtained low boiling point component was confirmed to be methyl iodide containing water by 1 H-NMR analysis. After completion of the distillation, the reaction mixture was cooled to 30 ° C., and 50 g of water was added dropwise thereto. After stirring at 10 ° C. for 1 hour, the precipitated solid was collected by filtration, washed successively with 50 g of water and 50 g of acetonitrile, dried at 40 ° C. under reduced pressure, and the desired 2,3,6,7,10,11- Hexahydroxytriphenylene (3.0 g) was obtained with a yield of 94% and a purity of 97%.

実施例2
ディーンスターク装置を備えた反応器に57重量%ヨウ化水素水溶液44gと酢酸128gの混合液を入れ、窒素雰囲気下で、2,3,6,7,10,11−ヘキサメトキシトリフェニレン4gを加えて懸濁させ、無水酢酸34gを65℃以下の温度を保ちつつ滴下した。混合物を昇温すると、105℃付近で反応液は均一な溶液となり、低沸点成分の留出が始まった。留出液は系外に排出した。低沸点成分の留出が終わるまで1時間を要した。このときの反応液の温度は最終的に110℃であり、低沸点成分の留出温度は38℃から42℃の範囲であった。留出終了後、反応混合液を30℃まで冷却し、これに水100gを滴下した。10℃で1時間撹拌後、析出した固体を濾過回収し、水100g、アセトニトリル50gで順次洗浄し、減圧下、40℃で乾燥し、目的とする2,3,6,7,10,11−ヘキサヒドロキシトリフェニレンを2.9g、収率92%、純度98%で得た。
Example 2
In a reactor equipped with a Dean-Stark apparatus, a mixed solution of 44 g of 57 wt% hydrogen iodide aqueous solution and 128 g of acetic acid was added, and 4 g of 2,3,6,7,10,11-hexamethoxytriphenylene was added under a nitrogen atmosphere. The suspension was suspended, and 34 g of acetic anhydride was added dropwise while maintaining the temperature at 65 ° C. or lower. When the temperature of the mixture was raised, the reaction solution became a homogeneous solution at around 105 ° C., and distillation of the low-boiling components began. The distillate was discharged out of the system. It took 1 hour until the distillation of the low boiling point components was completed. The temperature of the reaction solution at this time was finally 110 ° C., and the distillation temperature of the low boiling point component was in the range of 38 ° C. to 42 ° C. After completion of the distillation, the reaction mixture was cooled to 30 ° C., and 100 g of water was added dropwise thereto. After stirring at 10 ° C. for 1 hour, the precipitated solid was collected by filtration, washed successively with 100 g of water and 50 g of acetonitrile, dried at 40 ° C. under reduced pressure, and the desired 2,3,6,7,10,11- 2.9 g of hexahydroxytriphenylene was obtained with a yield of 92% and a purity of 98%.

実施例3
ディーンスターク装置を備えた反応器に57重量%ヨウ化水素水溶液190gと酢酸206gの混合液を入れ、窒素雰囲気下で、2,3,6,7,10,11−ヘキサメトキシトリフェニレン4gを加えて懸濁させ、混合物を昇温すると、106℃付近で反応液は均一な溶液となり、低沸点成分の留出が始まった。留出液は系外に排出した。低沸点成分の留出が終わるまで1時間を要した。このときの反応液の温度は最終的に110℃であり、低沸点成分の留出温度は37℃から43℃の範囲であった。留出終了後の処理を実施例1と同様に行い、目的とする2,3,6,7,10,11−ヘキサヒドロキシトリフェニレンを2.7g、収率85%、純度98%で得た。
Example 3
In a reactor equipped with a Dean-Stark apparatus, a mixture of 190 g of a 57 wt% hydrogen iodide aqueous solution and 206 g of acetic acid was added, and 4 g of 2,3,6,7,10,11-hexamethoxytriphenylene was added under a nitrogen atmosphere. When the mixture was suspended and the temperature of the mixture was raised, the reaction solution became a homogeneous solution at around 106 ° C., and distillation of the low boiling point component began. The distillate was discharged out of the system. It took 1 hour until the distillation of the low boiling point components was completed. The temperature of the reaction solution at this time was finally 110 ° C., and the distillation temperature of the low boiling point component was in the range of 37 ° C. to 43 ° C. The treatment after completion of the distillation was carried out in the same manner as in Example 1, and 2.7 g of the intended 2,3,6,7,10,11-hexahydroxytriphenylene was obtained in a yield of 85% and a purity of 98%.

比較例1
還流装置を備えた反応器に57重量%ヨウ化水素水溶液40gと酢酸19gの混合液を入れ、窒素雰囲気下で、2,3,6,7,10,11−ヘキサメトキシトリフェニレン4gを加えて懸濁させ、無水酢酸30gを70℃以下の温度を保ちつつ滴下した。混合物を昇温し2時間加熱還流した後、水50gを滴下した。内温10℃まで冷却し、1時間撹拌後、析出物を濾過回収し、アセトニトリルで洗浄し、乾燥して2.6gの固体を得た。この固体を分析したところ、2,3,6,7,10,11−ヘキサヒドロキシトリフェニレンの純度は46%であった。
Comparative Example 1
In a reactor equipped with a reflux apparatus, a mixed solution of 40 g of a 57 wt% aqueous solution of hydrogen iodide and 19 g of acetic acid was added, and 4 g of 2,3,6,7,10,11-hexamethoxytriphenylene was added under a nitrogen atmosphere. The mixture was made turbid, and 30 g of acetic anhydride was added dropwise while maintaining the temperature at 70 ° C. or lower. The mixture was heated to reflux for 2 hours, and 50 g of water was added dropwise. After cooling to an internal temperature of 10 ° C. and stirring for 1 hour, the precipitate was collected by filtration, washed with acetonitrile, and dried to obtain 2.6 g of a solid. When this solid was analyzed, the purity of 2,3,6,7,10,11-hexahydroxytriphenylene was 46%.

比較例2
還流装置を備えた反応器に57重量%ヨウ化水素水溶液95gと酢酸102gの混合液を入れ、窒素雰囲気下で、2,3,6,7,10,11−ヘキサメトキシトリフェニレン4gを加えて懸濁させ、昇温した。96℃付近で反応液は均一な溶液となり、沸騰が始まった。2時間加熱還流した後、30℃まで冷却し、水100gを滴下した。10℃で1時間撹拌後、析出した固体を濾過回収し、水100g、アセトニトリル50gで洗浄し、減圧下、40℃で乾燥して3.0gの固体を得た。この固体を分析したところ、2,3,6,7,10,11−ヘキサヒドロキシトリフェニレンの純度は30%であった。
Comparative Example 2
In a reactor equipped with a reflux apparatus, a mixture of 95 g of a 57 wt% aqueous solution of hydrogen iodide and 102 g of acetic acid was added, and 4 g of 2,3,6,7,10,11-hexamethoxytriphenylene was added under a nitrogen atmosphere. Turbid and warmed. The reaction solution became a homogeneous solution at around 96 ° C., and boiling started. After heating under reflux for 2 hours, the mixture was cooled to 30 ° C., and 100 g of water was added dropwise. After stirring at 10 ° C. for 1 hour, the precipitated solid was collected by filtration, washed with 100 g of water and 50 g of acetonitrile, and dried at 40 ° C. under reduced pressure to obtain 3.0 g of a solid. When this solid was analyzed, the purity of 2,3,6,7,10,11-hexahydroxytriphenylene was 30%.

Claims (2)

下記式(1)
Figure 2007277101
(式中、R1、R2、R3、R4、R5、R6は、同一又は異なって、水素原子又は置換基を有していてもよい炭素数1〜12の炭化水素基を示し、互いに隣り合った基同士が一体となり又は結合して、隣接する2つの酸素原子及びベンゼン環の2つの炭素原子とともに5〜7員の環を形成してもよい。但し、R1、R2、R3、R4、R5、R6のすべてが水素原子であることはない)
で表される化合物とヨウ化水素とを、副生する低沸点成分を系外に留去しながら反応させて、下記式(2)
Figure 2007277101
で表される2,3,6,7,10,11−ヘキサヒドロキシトリフェニレンを得ることを特徴とする2,3,6,7,10,11−ヘキサヒドロキシトリフェニレンの製造方法。
Following formula (1)
Figure 2007277101
(In the formula, R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are the same or different and each represents a hydrogen atom or a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent. The groups adjacent to each other may be combined or bonded together to form a 5- to 7-membered ring together with two adjacent oxygen atoms and two carbon atoms of the benzene ring, provided that R 1 , R 2 , R 3 , R 4 , R 5 , R 6 are not all hydrogen atoms)
Is reacted with hydrogen iodide while distilling off by-product low-boiling components out of the system.
Figure 2007277101
A process for producing 2,3,6,7,10,11-hexahydroxytriphenylene represented by the formula:
1、R2、R3、R4、R5、R6が、同一又は異なって、水素原子又はメチル基である請求項1記載の2,3,6,7,10,11−ヘキサヒドロキシトリフェニレンの製造方法。
R 1, R 2, R 3 , R 4, R 5, R 6 are the same or different, according to claim 1, wherein a hydrogen atom or a methyl group 2,3,6,7,10,11 hexa hydroxy A method for producing triphenylene.
JP2006101482A 2006-04-03 2006-04-03 Manufacturing method of 2,3,6,7,10,11-hexahydroxytriphenylene Pending JP2007277101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006101482A JP2007277101A (en) 2006-04-03 2006-04-03 Manufacturing method of 2,3,6,7,10,11-hexahydroxytriphenylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006101482A JP2007277101A (en) 2006-04-03 2006-04-03 Manufacturing method of 2,3,6,7,10,11-hexahydroxytriphenylene

Publications (1)

Publication Number Publication Date
JP2007277101A true JP2007277101A (en) 2007-10-25

Family

ID=38678937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006101482A Pending JP2007277101A (en) 2006-04-03 2006-04-03 Manufacturing method of 2,3,6,7,10,11-hexahydroxytriphenylene

Country Status (1)

Country Link
JP (1) JP2007277101A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103073397A (en) * 2013-01-28 2013-05-01 王胜华 Preparation method of 2,3,6,7,10,11-hexahydroxy triphenylene

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103073397A (en) * 2013-01-28 2013-05-01 王胜华 Preparation method of 2,3,6,7,10,11-hexahydroxy triphenylene

Similar Documents

Publication Publication Date Title
JP2002193887A (en) Method for producing iodonium salt compound
JP2007277101A (en) Manufacturing method of 2,3,6,7,10,11-hexahydroxytriphenylene
JP2005104964A (en) Method for purifying adamantyl ester
JP5432605B2 (en) Method for producing aromatic carboxylic dianhydride having ester group
JP4801661B2 (en) Method for acetylating 5-amino-2,4,6-triiodoisophthalic acid derivative
CA2709715C (en) Process for the preparation of diacerein
KR101856566B1 (en) New preparation method of 4&#39;-Hydroxy-4-biphenylcarboxylic acid
JP3291987B2 (en) Purification method of O, S-dimethyl-N-acetylphosphoramidothioate
JP3594662B2 (en) Method for producing hexahydroxytriphenylene
RU2314301C2 (en) Method of producing and cleaning pyromellitic anhydrite
EP2155653B1 (en) Process for preparing alkyl alkoxybenzoates in one step
JP5878842B2 (en) Process for producing 2,3,6,7,10,11-hexahydroxytriphenylenes
JP3152771B2 (en) Method for producing maleimide
JP4493805B2 (en) Method for producing high-purity benzoic acid derivative
JP2015137230A (en) METHOD FOR PRODUCING NORBORNANE-2-SPIRO-α-CYCLOALKANONE-α&#39;-SPIRO-2&#39;&#39;-NORBORNANE-5,5&#39;&#39;,6,6&#39;&#39;-TETRACARBOXYLIC ACID AND ESTERS THEREOF
JP6518512B2 (en) Purification method of 4-hydroxybenzoic acid long chain ester
CH616424A5 (en)
WO2013015203A1 (en) Isopropyl 3-chloro-4-methylbenzoate and method for producing same
JP4143295B2 (en) Method for producing 9,9-disubstituted-2,3,6,7-xanthenetetracarboxylic dianhydride
JP2010184904A (en) Method for producing acetic acid compound
JP2011068586A (en) Method for producing 3-nitrophthalic acid
JP2011207797A (en) Method for producing piperonal
WO2008078340A1 (en) Process for the separation of 4-bromomethyl-2&#39;-substituted biphenyls from 4,4,-dibromomethyl-2&#39;-substituted biphenyls
JPH01163154A (en) Production of tetrahydrophthalimide based compound, intermediate thereof and production of said intermediate
KR20180101396A (en) Process for producing acid halide solution and process for producing monoester compound