JP2007275964A - Method for cutting metal piece - Google Patents

Method for cutting metal piece Download PDF

Info

Publication number
JP2007275964A
JP2007275964A JP2006108057A JP2006108057A JP2007275964A JP 2007275964 A JP2007275964 A JP 2007275964A JP 2006108057 A JP2006108057 A JP 2006108057A JP 2006108057 A JP2006108057 A JP 2006108057A JP 2007275964 A JP2007275964 A JP 2007275964A
Authority
JP
Japan
Prior art keywords
cutting
slab
metal piece
cutter device
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006108057A
Other languages
Japanese (ja)
Other versions
JP4800089B2 (en
Inventor
Hirofumi Nakajima
裕文 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006108057A priority Critical patent/JP4800089B2/en
Publication of JP2007275964A publication Critical patent/JP2007275964A/en
Application granted granted Critical
Publication of JP4800089B2 publication Critical patent/JP4800089B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for cutting a continuously cast piece by a gas cutter device, which can automatically detect abnormal cutting in an early state and, upon the occurrence of abnormal cutting, can realize recutting by detecting whether cutting quality is acceptable or unacceptable. <P>SOLUTION: A continuously cast piece is cut by a gas cutter device 10 from its upper surface side. In this case, the lower part of the cast piece is photographed with an image pickup device 20 at a position of a predetermined cut distance from a cut start position, and the photographed image is processed to detect whether or not flame from the gas cutter device 10 is present. When the flame is present, a judgment means 40 makes a judgment that cutting quality is acceptable. On the other hand, when the flame is absent, the judgment means 40 makes a judgment that the cutting quality is unacceptable. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は,機械切断以外のガス等のカッター装置を用いて金属片を切断する際に,切断異常を自動的に検出可能な金属片の切断方法に関する。金属片としては,特に,鋼の他,アルミニウムや銅等のような融点の比較的高く板厚の厚い材料の切断に好適であり,さらに,連続鋳造された高温の金属片の半製品をカッター装置を用いて切断する場合に特に好適である。   The present invention relates to a metal piece cutting method capable of automatically detecting a cutting abnormality when a metal piece is cut using a cutter device such as gas other than mechanical cutting. As a metal piece, it is particularly suitable for cutting steel and other materials with relatively high melting points such as aluminum and copper, and a semi-finished high-temperature metal piece that has been continuously cast. It is particularly suitable when cutting with an apparatus.

連続鋳造設備で製造される鋼に代表されるスラブやブルーム等の金属片(以下,「鋳片」という)は,連続鋳造設備の最終工程において,通常,ガストーチを有するガスカッター装置等により所定長さに切断される。このようなガスカッター装置による切断は,切り込み失敗等の切断異常が発生した場合の処置が遅れると,鋳造速度低下による生産量の低下や,最悪の場合には,鋳造停止(腹ごもり)のトラブルに繋がる可能性もあるため,切断状況を監視して,切断異常を迅速に検出する必要がある。   Metal pieces such as slabs and blooms (hereinafter referred to as “slabs”) typified by steel produced by continuous casting equipment are usually set to a predetermined length by a gas cutter device having a gas torch in the final process of the continuous casting equipment. It will be severed. Cutting with such a gas cutter device causes a reduction in production due to a reduction in casting speed, or, in the worst case, casting stoppage (stagnation) if a cutting error such as a cutting failure occurs. Since it may lead to troubles, it is necessary to monitor the cutting status and quickly detect cutting abnormalities.

かかる切断状況の監視をオペレータの目視により行うと,長時間の連続鋳造においてはオペレータの負担が大きい。また,現状では,切断状況の監視は,他の業務を行うオペレータが併行して実施する場合が多く,実質的には十分な監視ができない状況にある。   When such a cutting state is monitored by an operator's visual observation, the burden on the operator is large in long-time continuous casting. In addition, at present, monitoring of the disconnection state is often performed concurrently with an operator who performs other work, and in reality, sufficient monitoring cannot be performed.

上述した事情から,連続鋳造中に鋳片の切断異常を自動で検出することができる技術が求められている。このような技術としては,例えば,連続鋳造材を斜め上方から工業用カメラで撮影し,この撮影画像を解析することにより,連続鋳造材の切断分離を検出する方法および装置がある(例えば,特許文献1を参照)。また,例えば,連続鋳造設備のガス切断機において,鋳片の上面側および下面側に光電検出器を設置し,この光電検出器により鋳片の切り残しを検出する装置がある(例えば,特許文献2を参照)。   In view of the circumstances described above, there is a need for a technology that can automatically detect abnormal cutting of a slab during continuous casting. As such a technique, for example, there is a method and an apparatus for detecting cutting separation of a continuous cast material by photographing the continuous cast material with an industrial camera from obliquely above and analyzing the captured image (for example, patents). Reference 1). In addition, for example, in a gas cutting machine of a continuous casting facility, there is a device in which photoelectric detectors are installed on the upper surface side and the lower surface side of a slab, and the uncut portion of the slab is detected by this photoelectric detector (for example, patent document) 2).

特開平2−274355号公報JP-A-2-274355 特開昭59−150650号公報JP 59-150650 A

しかしながら,上記特許文献1に記載の方法および装置は鋳片の切り離しを検出するものである一方で,切断異常の主要因は切り込み失敗によるものがほとんどである。さらに,切り離し失敗を検出したとしても,その後に切り離しが失敗した箇所を再切断することは操業上不可能であるだけでなく,切り離し失敗を放置すると,フレームが鋳片によって跳ね返りガスカッター装置の破損に繋がる,という問題があった。そのため,切り離し完了まで待たずに,切り込みが正常かどうかを検出することにより,切断異常を早期に検出する必要がある。このように,切断異常を早期に検出する必要があるが,特許文献1に記載の方法は,切断後に発生する上流側鋳片と下流側鋳片との間の隙間の有無を検出する方法であるため,切り込み失敗のように鋳片の切断前の状況を検出することはできない。   However, while the method and apparatus described in Patent Document 1 detect slab detachment, the main cause of abnormal cutting is mostly due to failure of cutting. Furthermore, even if a disconnection failure is detected, it is not only impossible to re-cut the part where the disconnection has failed after that. If the disconnection failure is left unattended, the frame will rebound by the slab and the gas cutter device will be damaged. There was a problem of being connected to. For this reason, it is necessary to detect the disconnection abnormality at an early stage by detecting whether the cutting is normal without waiting for the completion of the separation. Thus, although it is necessary to detect abnormal cutting at an early stage, the method described in Patent Document 1 is a method for detecting the presence or absence of a gap between the upstream slab and the downstream slab generated after cutting. For this reason, it is not possible to detect the situation before cutting of the slab, such as incision failure.

また,上記特許文献2に記載の装置では,光電検出器がガストーチから吹き出したフレームに近接して設置されるため,スパッタ(火花)による誤検知や光電検出器等の設備故障が発生するおそれがある,という問題があった。   Further, in the apparatus described in Patent Document 2, since the photoelectric detector is installed in the vicinity of the frame blown out from the gas torch, there is a possibility that erroneous detection due to spatter (spark) or equipment failure of the photoelectric detector may occur. There was a problem of being.

そこで,本発明は,このような問題に鑑みてなされたもので,鋼等の金属片をガス等のカッター装置により切断する金属片の切断方法において,切り込みの正常/失敗を検出することにより,切断異常を早期に自動検出可能とするとともに,切断異常の場合には再切断可能とすることを目的とする。   Therefore, the present invention has been made in view of such problems, and in the metal piece cutting method for cutting metal pieces such as steel with a cutter device such as gas, by detecting the normality / failure of the cutting, The purpose is to enable automatic detection of cutting abnormalities at an early stage and to enable recutting in the event of cutting abnormalities.

本発明者らは,金属片の切り込み開始から所定距離を切り込んだ時点での金属片下部を撮影し,ガスカッター装置のフレームの有無を検出することで,正常に切り込みが入っているかどうかを判断し,切り込み失敗時は再度カッターの切り込み開始作業を行うことにより,上記課題を解決できることを見出し,この知見に基づいて本発明を完成するに至った。   The inventors of the present invention have taken a picture of the lower part of the metal piece at the time when a predetermined distance has been cut from the start of the cutting of the metal piece and detected the presence or absence of the frame of the gas cutter device to determine whether or not the cut has been made normally. Then, when the cutting has failed, it has been found that the above problem can be solved by performing the cutting start operation of the cutter again, and the present invention has been completed based on this knowledge.

すなわち,本発明の要旨とするところは,以下の通りである。
(1)金属片を該金属片の上面側からガスカッター装置により切断する際に,切り込み開始位置から所定距離を切り込んだ位置で撮像装置により前記金属片の下部を撮影し,撮影された画像を処理することにより前記ガスカッター装置からのフレームの有無を検出し,フレーム有りと検出された場合には判定手段が切り込み正常と判定し,フレーム無しと検出された場合には前記判定手段が切り込み異常と判定することを特徴とする,金属片の切断方法。
(2)前記判定手段が切り込み異常と判定した場合に,前記ガスカッター装置を少なくとも前記切り込み開始位置まで復帰させ,再び前記金属片の切り込みを開始することを特徴とする,(1)に記載の金属片の切断方法。
(3)前記撮像装置による撮影位置は,前記金属片の幅,前記切り込み開始位置,前記金属片の移動速度および前記ガスカッター装置の切断速度に関する情報から決定されることを特徴とする,(1)または(2)に記載の金属片の切断方法。
(4)前記所定距離は,前記ガスカッター装置からのフレームの前記金属片の幅方向の長さよりも大きく,かつ,切り込みを失敗した場合に再び前記金属片の切り込みを開始することが可能な距離であることを特徴とする,(1)〜(3)のいずれかに記載の金属片の切断方法。
(5)前記所定距離は,100mm以上であることを特徴とする,(1)〜(4)のいずれかに記載の金属片の切断方法。
That is, the gist of the present invention is as follows.
(1) When a metal piece is cut from the upper surface side of the metal piece by a gas cutter device, the lower part of the metal piece is photographed by an imaging device at a position where a predetermined distance has been cut from the cutting start position. By processing, the presence or absence of a frame from the gas cutter device is detected. When it is detected that there is a frame, the determination means determines that the cutting is normal, and when it is detected that there is no frame, the determination means determines that the cutting is abnormal. A method of cutting a metal piece, characterized in that
(2) When the determination means determines that the cutting is abnormal, the gas cutter device is returned to at least the cutting start position, and the cutting of the metal piece is started again. How to cut metal pieces.
(3) The photographing position by the imaging device is determined from information on the width of the metal piece, the cutting start position, the moving speed of the metal piece, and the cutting speed of the gas cutter device. ) Or (2).
(4) The predetermined distance is larger than the length in the width direction of the metal piece of the frame from the gas cutter device, and the distance at which the cutting of the metal piece can be started again when the cutting fails. The metal piece cutting method according to any one of (1) to (3), characterized in that:
(5) The metal piece cutting method according to any one of (1) to (4), wherein the predetermined distance is 100 mm or more.

本発明によれば,鋼等の金属片をガス等のカッター装置により切断する金属片の切断方法において,切り込みの正常/失敗を検出することにより,切断異常を早期に自動検出することが可能であるとともに,切断異常の場合には再切断を行うことが可能である。したがって,本発明によれば,金属片の移動速度の低下による生産量の低下や,鋼等の連続鋳造では,鋳造停止(腹ごもり)のような最悪のトラブルを防止することができる。   According to the present invention, in a metal piece cutting method in which a metal piece such as steel is cut by a cutter device such as a gas, it is possible to automatically detect a cutting abnormality early by detecting normality / failure of the cutting. At the same time, it is possible to perform re-cutting in the case of cutting abnormality. Therefore, according to the present invention, it is possible to prevent the worst troubles such as casting stoppage (stomach weight) in the decrease in the production amount due to the decrease in the moving speed of the metal piece and the continuous casting of steel or the like.

以下に添付図面を参照しながら,連続鋳造される鋼の鋳片を例に挙げて,本発明の好適な実施の形態について詳細に説明する。なお,本明細書及び図面において,実質的に同一の機能構成を有する構成要素については,同一の符号を付することにより重複説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings, taking a steel slab continuously cast as an example. In the present specification and drawings, components having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.

(本発明の一実施形態におけるガスカッター装置の構成)
まず,図1に基づいて,本発明の一実施形態に係る鋳片Sの切断方法に用いられる連続鋳造設備1の構成について説明する。なお,図1は,本実施形態に係る鋳片Sの切断方法に用いられる連続鋳造設備1の構成を示す上面図である。
(Configuration of gas cutter device in one embodiment of the present invention)
First, based on FIG. 1, the structure of the continuous casting equipment 1 used for the cutting method of the slab S which concerns on one Embodiment of this invention is demonstrated. In addition, FIG. 1 is a top view which shows the structure of the continuous casting equipment 1 used for the cutting method of the slab S which concerns on this embodiment.

図1に示すように,連続鋳造設備1は,ガスカッター装置10と,本実施形態に係る撮像装置の一例としての切り込み監視カメラ20と,画像処理部30と,判定部40と,制御部50と,を主に備える。以下,各構成要素について順に説明する。   As illustrated in FIG. 1, the continuous casting facility 1 includes a gas cutter device 10, a cutting monitoring camera 20 as an example of an imaging device according to the present embodiment, an image processing unit 30, a determination unit 40, and a control unit 50. And mainly. Hereinafter, each component will be described in order.

ガスカッター装置10は,本実施形態に係る鋳片の切断方法おいて,連続鋳造される鋳片Sをその上面側から切断し,移動機構100と,切断手段200と,横行機構300と,を主に備える。   The gas cutter device 10 cuts the continuously cast slab S from the upper surface side in the slab cutting method according to the present embodiment, and includes a moving mechanism 100, a cutting means 200, and a traversing mechanism 300. Prepare mainly.

移動機構100は,ガスカッター装置10を,ロール5の回転により搬送される鋳片Sと同期させて鋳片Sの搬送方向Cに移動させる。この移動機構100は,ガスカッター装置10の移動速度を鋳片Sの鋳造速度と同期させるために,鋳片Sを挟持するクランプ(詳細は後述)等を有しており,ガスカッター装置10は,クランプにより鋳片Sを挟持したまま,鋳片Sの切断開始位置Pから切断終了位置(図示せず)まで,鋳片Sと一緒に搬送レール140上を移動する。鋳片Sの切断が終了すると,移動機構100は,クランプを鋳片Sから離反させた後に,後述する切断手段200が鋳片Sに接触しないようにして,ガスカッター装置10を切断開始位置Pまで復帰させる。   The moving mechanism 100 moves the gas cutter device 10 in the conveyance direction C of the slab S in synchronization with the slab S conveyed by the rotation of the roll 5. The moving mechanism 100 includes a clamp (details will be described later) that sandwich the slab S in order to synchronize the moving speed of the gas cutter apparatus 10 with the casting speed of the slab S. The slab S is clamped and moved on the transport rail 140 together with the slab S from the cutting start position P of the slab S to a cutting end position (not shown). When the cutting of the slab S is completed, the moving mechanism 100 moves the clamp from the slab S, and then prevents the cutting means 200 described later from coming into contact with the slab S so that the gas cutter device 10 is moved to the cutting start position P. Return until.

切断手段200は,例えば,鋳片Sの幅方向に沿って2つ設けられており,ガスカッター装置10が切断開始位置Pから切断終了位置まで移動する間に,2つの切断手段200が,それぞれ,鋳片Sの幅方向左右両端側から中央に向かって移動しながら,ガストーチから鋳片Sの上面に向かってガスを吹き出し,そのフレームの熱により鋳片Sを所定長さに切断する。   For example, two cutting means 200 are provided along the width direction of the slab S. While the gas cutter device 10 moves from the cutting start position P to the cutting end position, the two cutting means 200 are respectively Then, gas is blown from the gas torch toward the upper surface of the slab S while moving from the left and right ends in the width direction of the slab S toward the center, and the slab S is cut into a predetermined length by the heat of the frame.

横行機構300は,切断手段200を鋳片Sの幅方向に横行自在に支持する。この横行機構300は,ガスカッター装置10が切断開始位置Pに位置すると,切断手段200を鋳片Sの幅方向両端側から中央に向かって横行させ始め,鋳片Sの切断が終了すると,切断手段200を退避位置(例えば,鋳片Sの端部より若干外側の位置)まで復帰させる。あるいは,切断手段200による鋳片Sの切り込みが失敗した場合にも,切断手段200を退避位置まで復帰させる。   The traversing mechanism 300 supports the cutting means 200 so as to traverse in the width direction of the slab S. When the gas cutter device 10 is positioned at the cutting start position P, the traversing mechanism 300 starts to traverse the cutting means 200 from both ends in the width direction of the slab S toward the center. The means 200 is returned to the retracted position (for example, a position slightly outside the end of the slab S). Alternatively, even when the cutting means 200 fails to cut the slab S, the cutting means 200 is returned to the retracted position.

なお,上述した移動機構100,切断手段200および横行機構300の詳細については後述する。   The details of the moving mechanism 100, the cutting means 200, and the traversing mechanism 300 described above will be described later.

切り込み監視カメラ20は,鋳片Sの搬送方向C下流側において,鋳片Sの切断位置から離隔した位置に例えば左右各1台ずつ設置される。この切り込み監視カメラ20は,鋳片Sの切り込み開始位置Pから所定距離を切り込んだ時点で,鋳片Sの斜め上方から鋳片Sの下部を撮影する。このような切り込み監視カメラ20としては,例えば,CCDやCMOSなどの撮像素子を備えるデジタルカメラなどを使用することができる。   The incision monitoring camera 20 is installed, for example, one each on the left and right sides at a position separated from the cutting position of the slab S on the downstream side in the conveyance direction C of the slab S. The incision monitoring camera 20 photographs a lower portion of the slab S from an obliquely upper side of the slab S when a predetermined distance is cut from the incision start position P of the slab S. As such an incision monitoring camera 20, for example, a digital camera equipped with an image sensor such as a CCD or a CMOS can be used.

画像処理部30は,切り込み監視カメラ20により撮影された画像を処理し,ガスカッター装置10のガストーチから吹き出されたガスのフレームの有無を検出する。上記画像処理の方法としては,例えば,切り込み監視カメラ20により撮影された画像から,鋳片Sの切り込み開始位置Pから所定距離を切り込んだ位置(撮影位置)Qにおける画像データを抽出し,抽出された画像データを二値化処理し,輝度の高い領域が有るか否かを検出することにより,撮影位置Qにおけるフレームの有無を検出することができる。   The image processing unit 30 processes the image taken by the incision monitoring camera 20 and detects the presence or absence of a flame of gas blown from the gas torch of the gas cutter device 10. As the image processing method, for example, image data at a position (photographing position) Q at a predetermined distance from the incision start position P of the slab S is extracted from an image photographed by the incision monitoring camera 20 and extracted. The presence or absence of a frame at the photographing position Q can be detected by binarizing the obtained image data and detecting whether or not there is a region with high luminance.

判定部40は,画像処理部30によりフレーム有りと検出された場合には,ガスカッター装置10による切り込み正常と判定し,フレーム無しと検出された場合には,ガスカッター装置10による切り込み失敗と判定する。   The determination unit 40 determines that the cutting by the gas cutter device 10 is normal when the image processing unit 30 detects that there is a frame, and determines that the cutting by the gas cutter device 10 has failed when it is detected that there is no frame. To do.

制御部50は,判定部40から切り込み正常または切り込み失敗との判定結果に関する情報を受け取り,ガスカッター装置10の動作を制御する。具体的には,制御部50は,判定部40から切り込み正常との情報を受け取った場合には,鋳片Sの切断終了後,次の鋳片Sの切断に備えるために,ガスカッター装置10を初めの待機位置まで移動させるように制御する。一方,制御部50は,判定部40から切り込み失敗との情報を受け取った場合には,直ちに切断手段200を切り込み開始位置Pまで復帰させ,再び鋳片Sの切り込みを開始するように制御する。   The control unit 50 receives information on the determination result of normal cutting or unsuccessful cutting from the determination unit 40 and controls the operation of the gas cutter device 10. Specifically, when the control unit 50 receives information from the determination unit 40 that the cutting is normal, the gas cutter device 10 prepares for the next slab S cutting after the slab S has been cut. Is controlled to move to the initial standby position. On the other hand, when receiving information indicating that the cutting has failed from the determination unit 40, the control unit 50 immediately returns the cutting means 200 to the cutting start position P and controls to start cutting the slab S again.

以上,本実施形態に係る鋳片の切断方法に用いられる連続鋳造設備1の全体構成について説明したが,次に,図2に基づいて,本実施形態におけるガスカッター装置10の構成についてさらに詳細に説明する。なお,図2は,本実施形態に係る鋳片Sの切断方法に用いられるガスカッター装置10の構成を示す図であり,(a)は上面図,(b)は正面図である。   The overall configuration of the continuous casting equipment 1 used in the slab cutting method according to the present embodiment has been described above. Next, the configuration of the gas cutter device 10 according to the present embodiment will be described in more detail with reference to FIG. explain. 2A and 2B are diagrams showing the configuration of the gas cutter device 10 used in the method for cutting the slab S according to the present embodiment, wherein FIG. 2A is a top view and FIG. 2B is a front view.

上述したように,ガスカッター装置10は,移動機構100と,切断手段200と,横行機構300とを備えるが,以下,これらの詳細について説明する。   As described above, the gas cutter device 10 includes the moving mechanism 100, the cutting means 200, and the traversing mechanism 300. These details will be described below.

移動機構100は,図2(a)および図2(b)に示すように,クランプ機構110と,前側走行機構120と,後側走行機構130とを有する。   As shown in FIGS. 2A and 2B, the moving mechanism 100 includes a clamp mechanism 110, a front traveling mechanism 120, and a rear traveling mechanism 130.

クランプ機構110は,主に,クランプアーム112と,クランプシリンダ114と,クランプ支持基台116と,から構成される。クランプアーム112とクランプシリンダ114は,例えば,ロール5上を搬送される鋳片Sの幅方向に左右対称に2つずつ設けられている。   The clamp mechanism 110 mainly includes a clamp arm 112, a clamp cylinder 114, and a clamp support base 116. For example, two clamp arms 112 and two clamp cylinders 114 are provided symmetrically in the width direction of the slab S conveyed on the roll 5.

また,クランプアーム112は,クランプシリンダ114のピストンの往復移動により,図2(b)に示すように,クランプ軸112aを中心として回動可能に構成されている。このクランプアーム112は,クランプシリンダ114のピストンが鋳片Sの両端部側に移動することにより,クランプ軸112aを中心に鋳片Sの中心側に回動し,鋳片Sをその幅方向両端側から挟持することができる。このとき,鋳片Sには,クランプアーム112の先端部に設けられた当接部112bが当接する。一方,クランプアーム112を鋳片Sから離反させるときには,クランプシリンダ114のピストンが鋳片Sの中心側に移動することにより,クランプアーム112が鋳片Sの両端部側に回動し,鋳片Sから離反する。また,クランプ支持基台116は,クランプアーム112およびクランプシリンダ114を支持する。   The clamp arm 112 is configured to be rotatable about the clamp shaft 112a as shown in FIG. 2 (b) by reciprocating movement of the piston of the clamp cylinder 114. The clamp arm 112 rotates to the center side of the slab S around the clamp shaft 112a when the piston of the clamp cylinder 114 moves to both ends of the slab S, and the slab S is moved to both ends in the width direction. Can be clamped from the side. At this time, the slab S comes into contact with a contact portion 112 b provided at the tip of the clamp arm 112. On the other hand, when the clamp arm 112 is moved away from the slab S, the piston of the clamp cylinder 114 moves to the center side of the slab S, so that the clamp arm 112 rotates to both ends of the slab S, and the slab Get away from S. The clamp support base 116 supports the clamp arm 112 and the clamp cylinder 114.

前側走行機構120は,搬送レール140上を走行可能なように,鋳片Sの幅方向に左右対称に2つ配置された走行車輪122と,2つの走行車輪122を連結するシャフト123とから構成される。この前側走行機構120には,後述する後側走行機構130とは異なり,駆動機構は設けられていない。   The front traveling mechanism 120 is configured by two traveling wheels 122 arranged symmetrically in the width direction of the slab S so as to be able to travel on the transport rail 140 and a shaft 123 connecting the two traveling wheels 122. Is done. Unlike the rear traveling mechanism 130 described later, the front traveling mechanism 120 is not provided with a drive mechanism.

後側走行機構130は,搬送レール140上を走行可能なように,鋳片Sの幅方向に左右対称に2つ配置された走行車輪132と,2つの走行車輪132を連結するシャフト133と,走行車輪132を駆動させるための走行モータ134と,走行モータ134の回転駆動力をシャフト133に伝達するクラッチ136と,シャフト133に伝達される走行モータ134の回転駆動力を制御する減速機138と,からなる。   The rear traveling mechanism 130 has two traveling wheels 132 arranged symmetrically in the width direction of the slab S so as to be able to travel on the transport rail 140, a shaft 133 connecting the two traveling wheels 132, A travel motor 134 for driving the travel wheels 132, a clutch 136 that transmits the rotational drive force of the travel motor 134 to the shaft 133, and a speed reducer 138 that controls the rotational drive force of the travel motor 134 transmitted to the shaft 133, , Consist of

鋳片Sの切断中においては,クラッチ136を切った状態となっており,走行モータ134の回転駆動力はシャフト133には伝達されない。この場合には,クランプアーム112が鋳片Sを挟持したまま,鋳片Sの搬送に同期してガスカッター装置10が移動する。一方,鋳片Sの切断が終了したとき,あるいは,鋳片Sの切り込みが失敗したときには,クランプアーム112が鋳片Sから離反し,クラッチ136を繋げた状態とする。これにより,走行モータ134の回転駆動力がシャフト133に伝達され,この回転駆動力を利用してガスカッター装置10が待機位置または切り込み開始位置Pに移動する。このときのガスカッター装置10の移動速度は,減速機138により制御される。すなわち,本実施形態における走行モータ134,クラッチ136および減速機138からなる駆動機構は,鋳片Sの切断が行われていない場合において,ガスカッター装置10の鋳片Sの搬送方向上流側への移動のみに使用される。なお,上記駆動機構は,必ずしも後側走行機構130にのみ設けられていなくてもよく,前側走行機構120のみ,あるいは,前側走行機構120と後側走行機構130の双方に設けられていてもよい。   During the cutting of the slab S, the clutch 136 is disengaged, and the rotational driving force of the travel motor 134 is not transmitted to the shaft 133. In this case, the gas cutter device 10 moves in synchronization with the conveyance of the slab S while the clamp arm 112 holds the slab S. On the other hand, when the cutting of the slab S is completed or when the cutting of the slab S fails, the clamp arm 112 is separated from the slab S and the clutch 136 is engaged. As a result, the rotational driving force of the traveling motor 134 is transmitted to the shaft 133, and the gas cutter device 10 moves to the standby position or the cutting start position P using this rotational driving force. The moving speed of the gas cutter device 10 at this time is controlled by the speed reducer 138. That is, the drive mechanism including the travel motor 134, the clutch 136, and the speed reducer 138 in the present embodiment moves the slab S to the upstream side in the transport direction of the slab S when the slab S is not cut. Used for movement only. The drive mechanism is not necessarily provided only in the rear traveling mechanism 130, and may be provided only in the front traveling mechanism 120 or in both the front traveling mechanism 120 and the rear traveling mechanism 130. .

切断手段200は,図2(a)および図2(b)に示すように,カッター本体部210と,カッター本体部210の下部に設けられたガストーチ212とを備える。鋳片Sを切断する際には,ガストーチ212から吹き出したガスのフレームFの熱により鋳片Sを溶融させながら,ガストーチ212を鋳片Sの幅方向に移動させ,これにより,鋳片Sを所定長さに切断することができる。   As shown in FIGS. 2A and 2B, the cutting means 200 includes a cutter main body 210 and a gas torch 212 provided below the cutter main body 210. When cutting the slab S, the gas torch 212 is moved in the width direction of the slab S while the slab S is melted by the heat of the gas frame F blown from the gas torch 212, thereby It can be cut to a predetermined length.

横行機構300は,図2(a)および図2(b)に示すように,切断手段200を鋳片Sの幅方向に沿って移動可能に支持するカッター支持基台310と,カッター支持基台310に設けられ切断手段200の移動をガイドする横行レール320と,カッター本体部210に設けられ横行レール320上を走行する横行車輪332と,横行車輪332を駆動させるための横行モータ334と,横行モータ334の回転駆動力を制御する減速機336と,からなる。   2A and 2B, the traversing mechanism 300 includes a cutter support base 310 that supports the cutting means 200 movably along the width direction of the slab S, and a cutter support base. A traverse rail 320 provided in 310 for guiding the movement of the cutting means 200, a traverse wheel 332 provided on the cutter main body 210 and traveling on the traverse rail 320, a traverse motor 334 for driving the traverse wheel 332, and traverse A speed reducer 336 that controls the rotational driving force of the motor 334.

横行車輪332は,1つの切断手段200に対して,横行レール320を上下両側から挟むように各2つずつ計4つ設けられており,横行モータ334の回転駆動力を横行車輪332に伝達することにより,横行車輪332が横行レール320上を走行する。これにより,切断手段200が横行レール320に沿って鋳片Sの幅方向に移動することができる。このとき,切断手段200の横行速度は,減速機336により制御される。   A total of four traversing wheels 332 are provided for each of the cutting means 200 so that the traversing rails 320 are sandwiched from both the upper and lower sides, and the rotational driving force of the traversing motor 334 is transmitted to the traversing wheels 332. As a result, the traversing wheel 332 travels on the traversing rail 320. Thereby, the cutting means 200 can move in the width direction of the slab S along the traverse rail 320. At this time, the traversing speed of the cutting means 200 is controlled by the speed reducer 336.

(本発明の一実施形態に係る鋳片の切断方法)
以上,図2に基づいて,本実施形態におけるガスカッター装置10の構成について説明したが,次に,図3に基づいて,上記ガスカッター装置10を用いた本発明の一実施形態に係る鋳片Sの切断方法について説明する。なお,図3は,本実施形態に係る鋳片Sの切断方法を示すフローチャートである。
(Cut cutting method according to an embodiment of the present invention)
As described above, the configuration of the gas cutter device 10 in the present embodiment has been described based on FIG. 2. Next, the slab according to the embodiment of the present invention using the gas cutter device 10 is described based on FIG. A method for cutting S will be described. FIG. 3 is a flowchart showing a method for cutting the slab S according to the present embodiment.

本実施形態に係る鋳片Sの切断方法は,連続鋳造される鋳片Sをその上面側からガスカッター装置10により切断する際に,切り込みが正常か失敗かを自動的に検出するものである。以下,その詳細について説明する。   The method for cutting the slab S according to the present embodiment automatically detects whether the incision is normal or unsuccessful when the continuously cast slab S is cut from the upper surface side by the gas cutter device 10. . The details will be described below.

初めに,搬送される鋳片S(例えば,スラブ)が切り込み開始位置に到達する手前で,図2に示したクランプアーム112により,鋳片Sを挟持する。クランプアーム112が鋳片Sを挟持したまま,ガスカッター装置10が鋳片Sと同期して移動し,所定の切り込み開始位置に到達すると,ガスカッター装置10の切断手段200が鋳片Sの幅方向中央部に向かって移動し始め,切り込みを開始する(ステップS102)。次いで,鋳片Sの端部から所定距離切り込んだ時点で(ステップS104),切り込み監視カメラ20により鋳片Sの下部を撮影する(ステップS106)。   First, the slab S is clamped by the clamp arm 112 shown in FIG. 2 before the slab S to be conveyed (for example, slab) reaches the cutting start position. When the gas cutter device 10 moves in synchronism with the slab S while the clamp arm 112 holds the slab S and reaches a predetermined incision start position, the cutting means 200 of the gas cutter device 10 determines the width of the slab S. It starts to move toward the center of the direction and starts cutting (step S102). Next, when a predetermined distance is cut from the end of the slab S (step S104), the lower part of the slab S is photographed by the cutting monitoring camera 20 (step S106).

ここで,切り込み監視カメラ20により鋳片Sの下部を撮影する撮影位置Qは,上位計算機から入手される,鋳片Sの幅,切り込み開始位置P,鋳片Sの鋳造速度(搬送速度),および鋳片Sの切断速度(ガスカッター装置10の切断手段200の横行速度)等に関する情報から決定される。具体的には,例えば,撮影位置Qの鋳片S搬送方向の位置Yおよび撮影位置Qの鋳片S幅方向の位置Xを,下記式(1)および(2)により算出することができる。   Here, the photographing position Q for photographing the lower part of the slab S by the incision monitoring camera 20 is obtained from the host computer, the width of the slab S, the incision start position P, the casting speed (conveying speed) of the slab S, And the information regarding the cutting speed of the slab S (the traversing speed of the cutting means 200 of the gas cutter device 10) and the like. Specifically, for example, the position Y of the shooting position Q in the slab S conveying direction and the position X of the shooting position Q in the width direction of the slab S can be calculated by the following equations (1) and (2).

Y=(切り込み開始から撮影ポイントまでの距離)÷(切断速度)×(鋳造速度)
・・・(1)
X=(鋳片Sの幅)−(切り込み開始から撮影ポイントまでの距離)
・・・(2)
Y = (distance from start of cutting to shooting point) ÷ (cutting speed) × (casting speed)
... (1)
X = (width of slab S) − (distance from start of cutting to shooting point)
... (2)

なお,式(1)および(2)において,「切り込み開始から撮影ポイントまでの距離」とは,上記「所定距離」のことである。   In the expressions (1) and (2), the “distance from the start of cutting to the shooting point” is the “predetermined distance”.

このように,撮影位置を予め決定しておくのは,切断手段200のガストーチ212の位置を正しく把握しておかないと,鋳片Sの上面に存在するフレームを誤検出したり,撮影された画像を抽出する位置のずれによるフレームの未検出が発生したりする場合があるためである。   In this way, the photographing position is determined in advance if the position of the gas torch 212 of the cutting means 200 is not correctly grasped, and the frame existing on the upper surface of the slab S is erroneously detected or photographed. This is because undetected frames may occur due to a shift in the position where the image is extracted.

また,上記「所定距離」とは,切り込み失敗の誤検出が生じず,かつ,切り込みを失敗した場合に再び鋳片Sの切り込みを開始することが可能な距離のことをいう。すなわち,切り込み開始直後に鋳片Sを撮影した場合には,切り込みが正常か失敗かに関係なく,ガストーチ212からのフレームが鋳片Sの下部に到達しており,これを誤検出してしまうため,切り込み失敗時において,確実にフレームが鋳片Sの下部に到達しない位置まで切断手段200が切り進んだ時点で撮影する必要がある。   In addition, the “predetermined distance” refers to a distance in which the erroneous detection of the cutting failure does not occur and the cutting of the slab S can be started again when the cutting fails. That is, when the slab S is photographed immediately after the start of cutting, the frame from the gas torch 212 reaches the lower part of the slab S regardless of whether the cutting is normal or unsuccessful, and this is erroneously detected. Therefore, it is necessary to take an image when the cutting means 200 advances to a position where the frame does not reliably reach the lower part of the slab S when the cutting has failed.

ここで,切断手段200の切り込み位置と切り込み失敗時の誤検出の発生率との関係について,本発明者らが検討した結果を図4に示す。なお,図4は,切り込み位置と切り込み失敗誤検出率との関係の一例を示すグラフである。   Here, FIG. 4 shows the result of the study by the present inventors on the relationship between the cutting position of the cutting means 200 and the occurrence rate of erroneous detection at the time of cutting failure. FIG. 4 is a graph showing an example of the relationship between the cutting position and the cutting failure error detection rate.

図4に示すように,切り込み位置が切り込み開始位置から50mmの時点までは,100%誤検出してしまい,50mmを超えた時点から次第に誤検出率が低下し,切断手段200が少なくとも100mm以上切り込んだ時点では,誤検出率が0%になるという結果が得られた。これは,フレームの幅とほぼ同じ100mm程度であり,上述したように,切り込み位置がフレームの幅を超えない範囲では,切り込みが正常か失敗かに関係なく,フレームが鋳片Sの下部に到達することに起因するためと考えられる。このことから,上記「所定距離」としては,少なくとも100mm以上であることが好ましい。   As shown in FIG. 4, when the cutting position is 50 mm from the cutting start position, 100% erroneous detection occurs, and when the cutting position exceeds 50 mm, the false detection rate gradually decreases, and the cutting means 200 cuts at least 100 mm or more. At that time, the result was that the false detection rate was 0%. This is about 100 mm which is almost the same as the width of the frame. As described above, the frame reaches the lower part of the slab S regardless of whether the cutting is normal or unsuccessful as long as the cutting position does not exceed the width of the frame. This is thought to be due to the fact that Therefore, the “predetermined distance” is preferably at least 100 mm.

一方,所定距離が長すぎる場合,すなわち,撮影が切り込み開始時点から考えて遅すぎる場合は,鋳片Sの切り込みが失敗し,再度切り込みを開始したとしても,鋳片Sの切断が終了しない場合があるため,好ましくない。   On the other hand, when the predetermined distance is too long, that is, when the shooting is too late from the start of cutting, the cutting of the slab S fails and the cutting of the slab S does not end even if the cutting is started again. This is not preferable.

再び,図3に基づいて,本実施形態に係る鋳片Sの切断方法についての説明を続ける。上述したようにして,切り込み監視カメラ20により撮影された画像は,画像処理部30により処理される(ステップS108)。このような画像処理としては,例えば,上述したように,切り込み監視カメラ20により撮影された画像から,鋳片Sの切り込み開始位置Pから所定距離を切り込んだ位置(撮影位置)Qにおける画像データを抽出し,抽出された画像データを二値化処理する方法がある。   Again, based on FIG. 3, the description about the cutting method of the slab S which concerns on this embodiment is continued. As described above, the image captured by the incision monitoring camera 20 is processed by the image processing unit 30 (step S108). As such image processing, for example, as described above, image data at a position (capturing position) Q obtained by cutting a predetermined distance from the cutting start position P of the slab S from the image captured by the cutting monitoring camera 20 is used. There is a method of extracting and binarizing the extracted image data.

さらに,ステップS108で二値化処理された画像データから輝度の高い領域が有るか否かを検出することにより,撮影位置Qにおける鋳片Sの下部(底面側)のフレームの有無の検出を行い(ステップS110),判定手段40がフレーム有りまたはフレーム無しの判定を行う(ステップS112)。なお,フレームは輝度が高いので,二値化のしきい値を上げることでハレーション等の外乱光の影響をほとんど受けないようにすることができる。   Further, by detecting whether or not there is a high brightness area from the image data binarized in step S108, the presence or absence of a frame below the slab S (bottom side) at the shooting position Q is detected. (Step S110), the determination means 40 determines whether there is a frame or no frame (Step S112). Since the frame has high luminance, it is possible to make it hardly affected by disturbance light such as halation by raising the threshold for binarization.

その結果,判定手段40が切り込み正常(成功)と判定した場合には(ステップS114),制御手段50が,判定手段40から切り込み正常との情報を受け取り,鋳片Sの切断終了後,切断手段200を一旦鋳片Sと接触しないように,鋳片Sの略中央部から端部側の元の位置(搬送レール140付近)へ待避させ,次いで,切断手段200を鋳造方向(搬送方向Cと反対向き)の待機位置まで戻し,鋳片Sが切断すべき所定の長さに達した後に,ガスカッター装置10を鋳片S端面の切断開始位置Pまで復帰させ,1回の鋳片Sの切断が終了する。   As a result, when the determining means 40 determines that the cutting is normal (successful) (step S114), the control means 50 receives information indicating that the cutting is normal from the determining means 40, and after the slab S has been cut, the cutting means 200 is temporarily retracted from the substantially central portion of the slab S to the original position (near the transport rail 140) on the end side so as not to contact the slab S, and then the cutting means 200 is moved in the casting direction (the transport direction C and After returning to the standby position in the opposite direction and the slab S reaches a predetermined length to be cut, the gas cutter device 10 is returned to the cutting start position P on the end face of the slab S, and Cutting ends.

一方,判定手段40が切り込み失敗(異常)と判定した場合には(ステップS116),制御手段50が,判定手段40から切り込み失敗との情報を受け取り,切断手段200を鋳片Sの端部側の切り込み開始位置へ復帰させた後に(ステップS118),再び鋳片Sの切り込みを開始する(ステップS102)ように制御する。その後は,上述したようなステップS102〜S118までのステップを繰り返す。   On the other hand, when the determination means 40 determines that the cutting has failed (abnormal) (step S116), the control means 50 receives information about the cutting failure from the determination means 40, and the cutting means 200 is moved to the end side of the slab S. After returning to the incision start position (step S118), control is performed so that incision of the slab S is started again (step S102). Thereafter, the steps from S102 to S118 as described above are repeated.

ここで,図5に基づいて,鋳片Sの切り込みが成功した場合と失敗した場合のフレームFの状態について説明する。なお,図5(a)は,鋳片Sの切り込みが成功した場合のフレームFの状態を示す説明図であり,図5(b)は,鋳片Sの切り込みが失敗した場合のフレームFの状態を示す説明図である。   Here, based on FIG. 5, the state of the frame F when the cutting of the slab S is successful and when it is unsuccessful will be described. 5A is an explanatory diagram showing the state of the frame F when the slab S has been successfully cut, and FIG. 5B shows the state of the frame F when the slab S has failed to be cut. It is explanatory drawing which shows a state.

図5(a)に示すように,鋳片Sの切り込みが成功した場合には,切り込み開始から所定距離切り進んだ時点(切り込み監視カメラ20により撮影する時点)で,ガストーチ212からのフレームFが鋳片Sの下部に抜けた状態となり,この鋳片Sの下部に抜けたフレームFが検出されることにより,切り込みが成功と判定される。一方,図5(b)に示すように,鋳片Sの切り込みが失敗した場合には,切り込み開始から所定距離切り進んだ時点で,ガストーチ212からのフレームFは鋳片Sの下部には抜けず,鋳片Sの下部にフレームFが検出されず,切り込みが失敗と判定される。   As shown in FIG. 5 (a), when the slab S has been successfully cut, the frame F from the gas torch 212 is displayed at the time when a predetermined distance has been cut from the start of cutting (at the time of shooting by the cutting monitoring camera 20). When the slab S is in the state of being pulled out and the frame F that has been pulled out under the slab S is detected, the cutting is determined to be successful. On the other hand, as shown in FIG. 5B, when the slab S has failed to be cut, the frame F from the gas torch 212 is pulled out to the lower part of the slab S at the time when a predetermined distance has been advanced from the start of cutting. Therefore, the frame F is not detected below the slab S, and it is determined that the cutting has failed.

(本発明の一実施形態に係る鋳片の切断の具体例)
次に,図6および図7に基づいて,本実施形態に係る鋳片Sの切断方法を適用した場合の具体例について説明する。なお,図6は,本実施形態に係る鋳片Sの切断方法を適用し,鋳片Sの切り込みが1回で成功した場合を示す説明図であり,図7は,本実施形態に係る鋳片Sの切断方法を適用し,鋳片Sの切り込みが失敗し,再度切り込みを行った場合を示す説明図である。
(Specific example of slab cutting according to an embodiment of the present invention)
Next, based on FIG. 6 and FIG. 7, the specific example at the time of applying the cutting method of the slab S which concerns on this embodiment is demonstrated. FIG. 6 is an explanatory diagram showing a case where the cutting method of the slab S according to the present embodiment is applied and the slab S is successfully cut once, and FIG. 7 is a diagram of the casting slab according to the present embodiment. It is explanatory drawing which shows the case where the cutting method of the piece S is applied, the cutting of the slab S fails, and it cuts again.

図6および図7には,鋳片S(例えば,スラブ)の移動距離(mm),ガストーチ212の位置の推移およびガストーチ212の移動に要した時間(秒)を示しており,以下に示す具体例においては,操業条件を,鋳片Sの幅が1900mm,ガスカッター装置10の走行距離許容値が6000mm(ガスカッター装置10は搬送方向Cに6m以上移動できず,この許容値を超えた場合は切断を途中で中止しなければならない),鋳造速度が1.5m/分の条件で行った。また,以下の説明では,説明の便宜上,左側の切断手段200を例に挙げて説明する。   6 and 7 show the moving distance (mm) of the slab S (for example, slab), the transition of the position of the gas torch 212, and the time (seconds) required to move the gas torch 212. In the example, the operating conditions are as follows: the width of the slab S is 1900 mm, and the allowable travel distance of the gas cutter device 10 is 6000 mm (the gas cutter device 10 cannot move more than 6 m in the transport direction C and exceeds this allowable value) Cutting must be stopped in the middle), and the casting speed was 1.5 m / min. In the following description, the left cutting means 200 will be described as an example for convenience of explanation.

初めに,図6に基づいて,鋳片Sの切り込みが1回で成功した場合について説明する。図6に示すように,切り込み開始位置(ガストーチ212の位置は,図のA点)から,100mm切り込んだ時点で(ガストーチ212の位置は,図のB点),鋳片Sの下部を撮影した。このとき,鋳片Sは250mm移動し,切り込み開始から10秒経過していた。撮影の結果,鋳片Sの下部にフレームが検出され,切り込み成功と判定されたので,そのまま鋳片Sの切断を続けた。その後,切り込み開始位置から鋳片Sの幅方向に950mmの位置(ガストーチ212の位置は,図のC点)まで切り進んだ。ガストーチ212がB点からC点まで移動する間に,鋳片Sは2200mm移動し,88秒の時間を要した。この時点で鋳片Sの切断が終了したため,ガストーチ212(切断手段200)を鋳片Sの端部付近の切断開始位置まで復帰させた(ガストーチ212の位置は,図のD点)。このガストーチ212の復帰に要した時間は98秒であり,この間に鋳片Sは2450mm移動した。その後さらに,ガスカッター装置10本体を元の切り込み開始位置まで復帰させた(ガストーチ212の位置は,図のE点)。このガスカッター装置10の復帰に要した時間は20秒であり,この間に鋳片Sは500mm移動した。   First, a case where the slab S has been successfully cut once will be described with reference to FIG. As shown in FIG. 6, when the cutting start position (the position of the gas torch 212 is point A in the figure) and 100 mm has been cut (the position of the gas torch 212 is point B in the figure), the lower part of the slab S was photographed. . At this time, the slab S moved 250 mm, and 10 seconds had passed since the start of cutting. As a result of photographing, a frame was detected below the slab S, and it was determined that the cutting was successful. After that, cutting progressed from the cutting start position to a position of 950 mm in the width direction of the slab S (the position of the gas torch 212 is point C in the figure). While the gas torch 212 moved from the point B to the point C, the slab S moved 2200 mm and required a time of 88 seconds. Since the cutting of the slab S is completed at this point, the gas torch 212 (cutting means 200) is returned to the cutting start position near the end of the slab S (the position of the gas torch 212 is point D in the figure). The time required for returning the gas torch 212 was 98 seconds, during which the slab S moved 2450 mm. Thereafter, the main body of the gas cutter device 10 was returned to the original cutting start position (the position of the gas torch 212 is point E in the figure). The time required for the return of the gas cutter device 10 was 20 seconds, during which the slab S moved by 500 mm.

以上のように,鋳片Sの切り込みが1回で成功した場合において,1回の鋳片Sの切断に要した時間は,合計で216秒≒3.6分であった。また,この間に鋳片Sが移動した距離は,5.4m(=鋳造速度1.5m/分×216秒)であり,ガスカッター装置10の走行距離許容値である6.0m(6000mm)以内であった。   As described above, when the slab S was successfully cut once, the total time required for cutting the slab S was 216 seconds≈3.6 minutes. In addition, the distance that the slab S moves during this time is 5.4 m (= casting speed 1.5 m / min × 216 seconds), which is within 6.0 m (6000 mm), which is the allowable travel distance of the gas cutter device 10. Met.

次に,図7に基づいて,鋳片Sの切り込みが失敗し,再度切り込みを行った場合(2回目で成功)について説明する。図7に示すように,切り込み開始位置(ガストーチ212の位置は,図のA点)から,100mm切り込んだ時点で(ガストーチ212の位置は,図のB点),鋳片Sの下部を撮影した。このとき,鋳片Sは250mm移動し,切り込み開始から10秒経過していた。撮影の結果,鋳片Sの下部にフレームが検出されず,切り込み失敗と判定されたので,ガストーチ212(切断手段200)を一旦鋳片Sの端部付近の切断開始位置まで復帰させた(ガストーチ212の位置は,図のC点)。このガストーチ212の復帰に要した時間は10秒であり,この間に鋳片Sは250mm移動した。   Next, based on FIG. 7, the case where the slab S has failed to be cut and the slab is cut again (success in the second time) will be described. As shown in FIG. 7, the lower part of the slab S was photographed when 100 mm was cut from the cutting start position (the position of the gas torch 212 is point A in the figure) (the position of the gas torch 212 is point B in the figure). . At this time, the slab S moved 250 mm, and 10 seconds had passed since the start of cutting. As a result of photographing, the frame was not detected below the slab S and it was determined that the cutting failed, so the gas torch 212 (cutting means 200) was once returned to the cutting start position near the end of the slab S (gas torch). The position 212 is point C in the figure). The time required for returning the gas torch 212 was 10 seconds, during which the slab S moved 250 mm.

ガストーチ212を復帰させた後,再び鋳片Sの切り込みを開始し,再度100mm切り込んだ時点で(ガストーチ212の位置は,図のD点),鋳片Sの下部を再び撮影した。再切り込み開始から要した時間は,初めの切り込みと同様に10秒であり,この間に鋳片Sは250mm移動した。撮影の結果,今度は,鋳片Sの下部にフレームが検出され,切り込み成功と判定されたので,そのまま鋳片Sの切断を続けた。その後,切り込み開始位置から鋳片Sの幅方向に950mmの位置(ガストーチ212の位置は,図のE点)まで切り進んだ。ガストーチ212がD点からE点まで移動する間に,鋳片Sは2200mm移動し,88秒の時間を要した。この時点で鋳片Sの切断が終了したため,ガストーチ212(切断手段200)を鋳片Sの端部付近の切断開始位置まで復帰させた(ガストーチ212の位置は,図のF点)。このガストーチ212の復帰に要した時間は98秒であり,この間に鋳片Sは2450mm移動した。その後さらに,ガスカッター装置10本体を元の切り込み開始位置まで復帰させた(ガストーチ212の位置は,図のG点)。このガスカッター装置10の復帰に要した時間は22秒であり,この間に鋳片Sは約500mm移動した。   After returning the gas torch 212, the slab S started to be cut again, and when the slab was cut again by 100 mm (the position of the gas torch 212 is point D in the figure), the lower part of the slab S was photographed again. The time required from the start of re-cutting was 10 seconds as in the case of the first cutting, and the slab S moved 250 mm during this time. As a result of photographing, a frame was detected below the slab S and it was determined that the cutting was successful, so the slab S was continued to be cut. After that, cutting progressed from the cutting start position to a position of 950 mm in the width direction of the slab S (the position of the gas torch 212 is point E in the figure). While the gas torch 212 moved from the point D to the point E, the slab S moved 2200 mm and required a time of 88 seconds. Since the cutting of the slab S is completed at this point, the gas torch 212 (cutting means 200) is returned to the cutting start position near the end of the slab S (the position of the gas torch 212 is point F in the figure). The time required for returning the gas torch 212 was 98 seconds, during which the slab S moved 2450 mm. Thereafter, the main body of the gas cutter device 10 was returned to the original cutting start position (the position of the gas torch 212 is point G in the figure). The time required for the return of the gas cutter device 10 was 22 seconds, during which the slab S moved about 500 mm.

以上のように,鋳片Sの切り込みが失敗し,再度切り込みを行った場合(2回目で成功)において,1回の鋳片Sの切断に要した時間は,合計で238秒≒3.9分であった。また,この間に鋳片Sが移動した距離は,5.9m(=鋳造速度1.5m/分×238秒)であり,ガスカッター装置10の走行距離許容値である6.0m(6000mm)以内であった。このことから,鋳片Sの切り込みが失敗した場合でも,鋳片Sの鋳造を停止することなく,連続して鋳片Sの切断を行うことができることがわかった。   As described above, when the incision of the slab S fails and the incision is performed again (success in the second time), the total time required for cutting the slab S is 238 seconds≈3.9. Minutes. In addition, the distance that the slab S moved during this period is 5.9 m (= casting speed 1.5 m / min × 238 seconds), which is within 6.0 m (6000 mm), which is the allowable travel distance of the gas cutter device 10. Met. From this, it was found that even when the incision of the slab S fails, the slab S can be continuously cut without stopping the casting of the slab S.

さらに,鋳片Sの切り込みが失敗し再度鋳片Sの切り込みを行った場合でも,1回で鋳片Sの切り込みが成功した場合と比べて,約0.3分(22秒)の時間を余計に要しただけで,1回の切断に要する時間がほとんど変わらないことがわかった。このことから,鋳片Sの切り込みの正常/失敗を判断して,迅速に再度鋳片Sの切り込みを行うことにより,鋳片Sの切り込みが失敗した場合でも,ほとんど時間のロスをすることなく,鋳片Sの切断を行うことができることがわかった。   Furthermore, even if the incision of the slab S fails and the incision of the slab S is performed again, it takes about 0.3 minutes (22 seconds) as compared with the case where the incision of the slab S is successful once. It was found that the time required for one cutting hardly changed even if it took extra. From this, the normal / failure of the incision of the slab S is judged, and the slab S is quickly incised again, so that even if the incision of the slab S fails, almost no time is lost. It has been found that the slab S can be cut.

以上の結果から,本発明に係る金属片の切断方法によれば,切断異常を早期に自動検出することが可能であるとともに,切断異常の場合には再切断を行うことが可能であり,これにより,金属片の移動速度の低下による生産量の低下や,鋼等の連続鋳造では,鋳造停止(腹ごもり)のような最悪のトラブルを防止することができることが示唆された。   From the above results, according to the cutting method of the metal piece according to the present invention, it is possible to automatically detect a cutting abnormality at an early stage and to perform recutting in the case of a cutting abnormality. This suggests that it is possible to prevent the worst troubles such as casting stoppage (stagnation) in continuous production of steel, etc. due to a decrease in the moving speed of the metal pieces.

以上,添付図面を参照しながら本発明の好適な実施形態について説明したが,本発明はかかる例に限定されないことは言うまでもない。当業者であれば,特許請求の範囲に記載された範疇内において,各種の変更例または修正例に想到し得ることは明らかであり,それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to this example. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

例えば,上述した実施形態においては,金属片として連続鋳造される鋼の鋳片を例に挙げて説明したが,本発明に係る金属片としては,連続鋳造鋳片には限られず,例えば,アルミニウムや銅等のような融点の比較的高く板厚の厚い材料であってもよい。   For example, in the embodiment described above, the steel slab continuously cast as the metal piece has been described as an example. However, the metal piece according to the present invention is not limited to the continuous cast slab, for example, aluminum Alternatively, a material having a relatively high melting point and a thick plate such as copper may be used.

また,上述した実施形態においては,移動機構として搬送レール140上を走行車輪122が走行する構成について説明したが,本発明に係る鋳片の切断方法に使用するガスカッター装置の移動機構としては,上記の構成には限られない。   In the above-described embodiment, the configuration in which the traveling wheel 122 travels on the transport rail 140 as the moving mechanism has been described. However, as the moving mechanism of the gas cutter device used in the slab cutting method according to the present invention, It is not restricted to said structure.

また,例えば,上述した実施形態においては,切断手段200の横行機構として横行レール320の上下を挟むようにして横行車輪332が設けられる構成について説明したが,本発明に係る鋳片の切断方法に使用する切断手段の横行機構としては,上記の構成には限られない。   Further, for example, in the above-described embodiment, the configuration in which the traversing wheel 332 is provided so as to sandwich the upper and lower sides of the traversing rail 320 as the traversing mechanism of the cutting means 200 has been described. The traversing mechanism of the cutting means is not limited to the above configuration.

また,例えば,上述した実施形態においては,鋳片Sの切断方法を図3に示したフローチャートに基づいて,ステップS102〜S116の工程に分けて説明したが,本発明に係る鋳片の切断方法においては,上記の各工程が明確に区別されるわけではない。   Further, for example, in the above-described embodiment, the method for cutting the slab S has been described in steps S102 to S116 based on the flowchart shown in FIG. 3, but the method for cutting the slab according to the present invention is described. In, the above steps are not clearly distinguished.

本発明の一実施形態に係る鋳片の切断方法に用いられる連続鋳造設備の構成を示す上面図である。It is a top view which shows the structure of the continuous casting equipment used for the cutting method of the slab which concerns on one Embodiment of this invention. 同実施形態に係る鋳片の切断方法に用いられるガスカッター装置の構成を示す図であり,(a)は上面図,(b)は正面図である。It is a figure which shows the structure of the gas cutter apparatus used for the cutting method of the slab which concerns on the embodiment, (a) is a top view, (b) is a front view. 本発明の一実施形態に係る鋳片の切断方法を示すフローチャートである。It is a flowchart which shows the cutting method of the slab which concerns on one Embodiment of this invention. 切り込み位置と切り込み失敗誤検出率との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between a cutting position and a cutting failure error detection rate. (a)は,鋳片の切り込みが成功した場合のフレームの状態を示す説明図であり,(b)は,鋳片の切り込みが失敗した場合のフレームの状態を示す説明図である。(A) is explanatory drawing which shows the state of a frame when the cutting of a slab is successful, (b) is explanatory drawing which shows the state of the frame when the cutting of a slab fails. 本発明の一実施形態に係る鋳片の切断方法を適用し,鋳片の切り込みが1回で成功した場合を示す説明図である。It is explanatory drawing which shows the case where the cutting method of the slab which concerns on one Embodiment of this invention is applied, and the cutting of a slab succeeds once. 本発明の一実施形態に係る鋳片の切断方法を適用し,鋳片の切り込みが失敗し,再度切り込みを行った場合を示す説明図である。It is explanatory drawing which shows the case where the cutting method of the slab which concerns on one Embodiment of this invention is applied, the cutting of a slab fails, and it cuts again.

符号の説明Explanation of symbols

1 連続鋳造機
10 ガスカッター装置
20 切り込み監視カメラ(撮像装置)
30 画像処理部
40 判定部
50 制御部
100 移動機構
110 クランプ機構
112 クランプアーム
114 クランプシリンダ
116 クランプ支持基台
120 前側走行機構
122 走行車輪
123 シャフト
130 後側走行機構
132 走行車輪
133 シャフト
134 走行モータ
136 クラッチ
138 減速機
140 搬送レール
200 切断手段
210 カッター本体
212 ガストーチ
300 横行機構
310 カッター支持基台
320 横行レール
332 横行車輪
334 横行モータ
1 Continuous casting machine 10 Gas cutter device 20 Cutting monitoring camera (imaging device)
DESCRIPTION OF SYMBOLS 30 Image processing part 40 Determination part 50 Control part 100 Movement mechanism 110 Clamp mechanism 112 Clamp arm 114 Clamp cylinder 116 Clamp support base 120 Front side traveling mechanism 122 Traveling wheel 123 Shaft 130 Rear side traveling mechanism 132 Traveling wheel 133 Shaft 134 Traveling motor 136 Clutch 138 Reducer 140 Transport rail 200 Cutting means 210 Cutter body 212 Gas torch 300 Traverse mechanism 310 Cutter support base 320 Traverse rail 332 Traverse wheel 334 Traverse motor

Claims (5)

金属片を該金属片の上面側からガスカッター装置により切断する際に,切り込み開始位置から所定距離を切り込んだ位置で撮像装置により前記金属片の下部を撮影し,撮影された画像を処理することにより前記ガスカッター装置からのフレームの有無を検出し,フレーム有りと検出された場合には判定手段が切り込み正常と判定し,フレーム無しと検出された場合には前記判定手段が切り込み異常と判定することを特徴とする,金属片の切断方法。   When the metal piece is cut from the upper surface side of the metal piece by the gas cutter device, the lower part of the metal piece is photographed by the imaging device at a position cut a predetermined distance from the cutting start position, and the photographed image is processed. To detect the presence or absence of a frame from the gas cutter device. When it is detected that there is a frame, the determination means determines that the cutting is normal, and when it is detected that there is no frame, the determination means determines that the cutting is abnormal. A method for cutting metal pieces. 前記判定手段が切り込み異常と判定した場合に,前記ガスカッター装置を少なくとも前記切り込み開始位置まで復帰させ,再び前記金属片の切り込みを開始することを特徴とする,請求項1に記載の金属片の切断方法。   2. The metal piece according to claim 1, wherein when the determination unit determines that the cutting is abnormal, the gas cutter device is returned to at least the cutting start position and starts cutting the metal piece again. 3. Cutting method. 前記撮像装置による撮影位置は,前記金属片の幅,前記切り込み開始位置,前記金属片の移動速度および前記ガスカッター装置の切断速度に関する情報から決定されることを特徴とする,請求項1または2に記載の金属片の切断方法。   The photographing position by the imaging device is determined from information on the width of the metal piece, the cutting start position, the moving speed of the metal piece, and the cutting speed of the gas cutter device. The cutting method of the metal piece of description. 前記所定距離は,前記ガスカッター装置からのフレームの前記金属片の幅方向の長さよりも大きく,かつ,切り込みを失敗した場合に再び前記金属片の切り込みを開始することが可能な距離であることを特徴とする,請求項1〜3のいずれかに記載の金属片の切断方法。   The predetermined distance is larger than the length of the metal piece in the width direction of the frame from the gas cutter device, and when the cutting fails, the metal piece can be started again. The cutting method of the metal piece in any one of Claims 1-3 characterized by these. 前記所定距離は,100mm以上であることを特徴とする,請求項1〜4のいずれかに記載の金属片の切断方法。


The metal piece cutting method according to claim 1, wherein the predetermined distance is 100 mm or more.


JP2006108057A 2006-04-10 2006-04-10 How to cut metal pieces Active JP4800089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006108057A JP4800089B2 (en) 2006-04-10 2006-04-10 How to cut metal pieces

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006108057A JP4800089B2 (en) 2006-04-10 2006-04-10 How to cut metal pieces

Publications (2)

Publication Number Publication Date
JP2007275964A true JP2007275964A (en) 2007-10-25
JP4800089B2 JP4800089B2 (en) 2011-10-26

Family

ID=38677996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006108057A Active JP4800089B2 (en) 2006-04-10 2006-04-10 How to cut metal pieces

Country Status (1)

Country Link
JP (1) JP4800089B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009106946A (en) * 2007-10-26 2009-05-21 Nippon Steel Corp Method for determining abnormal cutting and method for cutting off continuously cast slab
CN109202980A (en) * 2018-11-26 2019-01-15 杭州中允科技有限公司 A kind of gasket groover

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58163560A (en) * 1982-03-23 1983-09-28 Toshiba Corp Device for preventing failure in cutting of ingot
JPS58202960A (en) * 1982-05-20 1983-11-26 Sumitomo Heavy Ind Ltd Gas cutting method for continuous casting machine and gas cutter for embodiment of said method
JPS59150650A (en) * 1983-02-01 1984-08-28 Toshiba Corp Device for preventing failure in cutting billet
JPH0952158A (en) * 1995-08-09 1997-02-25 Sumitomo Metal Ind Ltd Method for controlling cut-off of continuous cast slab and device therefor
JPH09150262A (en) * 1995-11-29 1997-06-10 Kawasaki Steel Corp Cutting control of cast slab

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58163560A (en) * 1982-03-23 1983-09-28 Toshiba Corp Device for preventing failure in cutting of ingot
JPS58202960A (en) * 1982-05-20 1983-11-26 Sumitomo Heavy Ind Ltd Gas cutting method for continuous casting machine and gas cutter for embodiment of said method
JPS59150650A (en) * 1983-02-01 1984-08-28 Toshiba Corp Device for preventing failure in cutting billet
JPH0952158A (en) * 1995-08-09 1997-02-25 Sumitomo Metal Ind Ltd Method for controlling cut-off of continuous cast slab and device therefor
JPH09150262A (en) * 1995-11-29 1997-06-10 Kawasaki Steel Corp Cutting control of cast slab

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009106946A (en) * 2007-10-26 2009-05-21 Nippon Steel Corp Method for determining abnormal cutting and method for cutting off continuously cast slab
CN109202980A (en) * 2018-11-26 2019-01-15 杭州中允科技有限公司 A kind of gasket groover

Also Published As

Publication number Publication date
JP4800089B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
JP5845659B2 (en) Intruder detection method, intruder detector, and robot system
JP4800089B2 (en) How to cut metal pieces
KR20130095794A (en) Method and device for the surface inspection of strip pieces
KR102120848B1 (en) Device for removing burr and control method of the same
JPH08150453A (en) Method for cutting off continuously cast slab
JP5053037B2 (en) Cutting abnormality judgment method and continuous casting slab cutting method
JPH09150262A (en) Cutting control of cast slab
JPH05249051A (en) Detecting apparatus of imperfection of solvent of ingot bloom
KR20010054958A (en) Device and its method for on-line measurement of bar warp using CCD camera in roughing mill
JP7468476B2 (en) Method and apparatus for tracking cast slabs
JP2002033600A (en) Component detection method and component mounting machine
JPH05261553A (en) Method for monitoring bead freed part in welded shape steel
JP2005138127A (en) Method for automatically stopping cutting by detecting adhesion of foreign matter on cold shearing edge using image processing
KR20150074197A (en) Steel plate blanking system and method
KR100883750B1 (en) Apparatus and method for prevention of miss roll
JPH0448547B2 (en)
JP3402545B2 (en) Method and apparatus for controlling cutting of continuous cast slab
KR20090012261U (en) Apparatus for controlling run out roller table
JP5888097B2 (en) Cable winding abnormality detection device and cable winding abnormality detection method
JP2002263730A (en) Operation method of apparatus for continuously manufacturing steel tube
TW202404712A (en) Equipment for cutting steel strips, cold rolling equipment, method for cutting steel strips, and method for producing steel strips
JP2885388B2 (en) Centering method for joining strips
JPH08150471A (en) Hot scarfing control device
JPH08327051A (en) Monitoring method for torch cut-off
KR101501319B1 (en) Laminating apparatus and manufacturing method of electrode memger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110627

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4800089

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350