JP2007273163A - Method of manufacturing electrode catalyst powder for polymer electrolyte fuel cell - Google Patents

Method of manufacturing electrode catalyst powder for polymer electrolyte fuel cell Download PDF

Info

Publication number
JP2007273163A
JP2007273163A JP2006095105A JP2006095105A JP2007273163A JP 2007273163 A JP2007273163 A JP 2007273163A JP 2006095105 A JP2006095105 A JP 2006095105A JP 2006095105 A JP2006095105 A JP 2006095105A JP 2007273163 A JP2007273163 A JP 2007273163A
Authority
JP
Japan
Prior art keywords
platinum
fine particles
sol
zirconia
titania
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2006095105A
Other languages
Japanese (ja)
Inventor
Naoyuki Nishimura
直之 西村
Takaaki Makino
隆章 槇野
Koichi Izumiya
宏一 泉屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2006095105A priority Critical patent/JP2007273163A/en
Publication of JP2007273163A publication Critical patent/JP2007273163A/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing electrode catalyst powder for a polymer electrolyte fuel cell with electrode performance improved by producing metallic fine particles of a structure covering a surface of platinum fine particles with zirconia or titania, and using the metal fine particles as electrode catalyst. <P>SOLUTION: A cationic platinum complex is added in zirconia sol or titania sol, deposits generated as the sol turns into gel is put under thermally decomposing treatment in an oxidizing atmosphere, and then put under reduction treatment in a reduction atmosphere to cover a surface 1 of the platinum fine particles with zirconia or titania 3. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、自動車や通信機器等の移動体の電源、或いは家庭用の分散電源等に、その利用が期待される固体高分子形燃料電池の電極触媒粉末の製造方法に関する。   The present invention relates to a method for producing an electrode catalyst powder for a polymer electrolyte fuel cell, which is expected to be used for a power source of a mobile body such as an automobile or a communication device, or a distributed power source for home use.

従来、固体高分子形燃料電池用電極触媒として白金を主成分とする金属微粒子が多く用いられてきた。白金は高価であるため、白金の使用量を減らすべく白金に対する添加剤が研究されている。この添加剤として酸化ジルコニウムが良く知られている(特許文献1〜3)。   Conventionally, metal fine particles mainly composed of platinum have been used as electrode catalysts for polymer electrolyte fuel cells. Since platinum is expensive, additives for platinum have been studied to reduce the amount of platinum used. Zirconium oxide is well known as this additive (patent documents 1 to 3).

しかし、従来は酸化ジルコニウムの粉体を白金微粒子に混合することで添加していたことから、物理的な均一混合には限界があり、両者が一体化された状態の白金微粒子と酸化ジルコニウム粉体との接触面積が小さい範囲に止まり、充分な添加効果が得られず、電極性能の充分な改善が見られないという問題があった。   However, since zirconium oxide powder has been added by mixing platinum fine particles in the past, there is a limit to physical uniform mixing. Platinum fine particles and zirconium oxide powder in a state where both are integrated There is a problem that the contact area is limited to a small range, a sufficient addition effect cannot be obtained, and the electrode performance cannot be sufficiently improved.

特開平7−90111号公報Japanese Patent Laid-Open No. 7-90111 特開平10−55807号公報Japanese Patent Laid-Open No. 10-55807 特開2003−86192号公報JP 2003-86192 A

本発明の目的は、白金微粒子の表面をジルコニアまたはチタニアで覆った構造の金属微粒子を生成し、もってその金属微粒子を電極触媒として用いることで電極性能の向上を図れる固体高分子形燃料電池用電極触媒粉末の製造方法を提供することにある。   An object of the present invention is to produce a metal fine particle having a structure in which the surface of a platinum fine particle is covered with zirconia or titania, and by using the metal fine particle as an electrode catalyst, an electrode for a polymer electrolyte fuel cell capable of improving electrode performance It is providing the manufacturing method of catalyst powder.

上記課題を解決するため、本発明の第1の態様に係る固体高分子形燃料電池用電極触媒粉末の製造方法は、ジルコニアゾルまたはチタニアゾル中にカチオン性白金錯体を加え、ゾルがゲル化して生じる沈殿に対して酸化雰囲気中で加熱分解処理し、次いで還元雰囲気中で還元処理を行って、白金微粒子の表面をジルコニアまたはチタニアで覆うことを特徴とするものである。   In order to solve the above-mentioned problems, the method for producing an electrode catalyst powder for a polymer electrolyte fuel cell according to the first aspect of the present invention is produced by adding a cationic platinum complex to zirconia sol or titania sol and gelling the sol. The precipitate is subjected to heat decomposition treatment in an oxidizing atmosphere, and then subjected to a reduction treatment in a reducing atmosphere to cover the surface of the platinum fine particles with zirconia or titania.

ジルコニアゾルやチタニアゾルは、多価カチオンがその溶液中に存在すると、カチオンとゾルが相互作用し、カチオンを中心にしてゲル化が進行し、沈殿を形成する。すなわちカチオン性白金錯体を前記ゾル中に加えるとゲル化が進行して沈殿ができる。その沈殿は前記カチオンがジルコニアゾルやチタニアゾルと化学反応を起こして生成するため、白金金属は原子レベルに近い分散度で該沈殿中に存在する。すなわち、その沈殿の中は非常に微細な形で白金カチオンがゲル化した沈殿中に分散した状態である。   In the zirconia sol and titania sol, when a polyvalent cation is present in the solution, the cation and the sol interact with each other, and gelation proceeds with the cation as a center to form a precipitate. That is, when a cationic platinum complex is added to the sol, gelation proceeds and precipitation occurs. The precipitate is generated by the chemical reaction of the cation with zirconia sol or titania sol, so that platinum metal is present in the precipitate with a degree of dispersion close to the atomic level. That is, the precipitate is in a very fine form and dispersed in the precipitate in which the platinum cation is gelled.

この沈殿に対して酸化雰囲気中で加熱分解処理を施すことで、白金錯体を構成する配位子(白金の周囲に存在する物質)を除去し、ジルコニアゾル中の有機物を除去する。次いで、還元雰囲気中で還元処理を行うことで、前記白金カチオンが還元され、白金は微粒子化できる。すなわち、白金微粒子の表面がジルコニアまたはチタニアで密に被覆された状態の電極触媒用の金属微粒子が生成される。   By subjecting this precipitate to a thermal decomposition treatment in an oxidizing atmosphere, the ligands (substances present around the platinum) constituting the platinum complex are removed, and organic substances in the zirconia sol are removed. Next, by performing a reduction treatment in a reducing atmosphere, the platinum cation is reduced, and platinum can be made into fine particles. That is, metal fine particles for an electrode catalyst in a state where the surface of the platinum fine particles is densely coated with zirconia or titania are generated.

更に、一般に白金等の金属微粒子は単独では安定に存在することはできず、大気中では空気中の酸素と反応して粗大化する。しかし、本発明においては、ゲル化したジルコニアやチタニアがその表面に存在するので、前記金属微粒子は単独でも安定に存在できるようになる。その理由は、前記ジルコニアやチタニア中の格子を構成する酸素原子の持つ不対電子が金属微粒子の金属(白金)との間で配位結合を作ることにより、電子を放出する反応である酸化反応を防止し、もって金属微粒子を安定に存在させることを可能にするからと思われる。   Further, generally, metal fine particles such as platinum cannot exist stably alone, and in the atmosphere, they react with oxygen in the air and become coarse. However, in the present invention, since gelled zirconia and titania are present on the surface thereof, the metal fine particles can be present stably even alone. The reason is that the unpaired electrons of the oxygen atoms constituting the lattice in the zirconia or titania form a coordinate bond with the metal (platinum) of the metal fine particles, and thereby an oxidation reaction that releases electrons. It is thought that this makes it possible to prevent the metal fine particles from being present stably.

また、前記白金微粒子の表面に一体化して生成されたジルコニア等を構成する酸素原子は高活性である。本発明により製造された電極触媒用の金属微粒子は、白金微粒子の表面をゲル化したジルコニア等が被覆しているため、前記高活性の酸素原子を多く含む。この高活性な酸素原子が電極反応に寄与することにより、白金のみから成る電極触媒又はジルコニアやチタニアを単純に混合して製造した電極触媒と比較し、高い電極性能を発現する。   Further, oxygen atoms constituting zirconia and the like produced integrally with the surface of the platinum fine particles are highly active. The metal fine particles for an electrode catalyst produced according to the present invention are coated with zirconia gelated on the surface of platinum fine particles, and therefore contain a large amount of the highly active oxygen atoms. This highly active oxygen atom contributes to the electrode reaction, so that high electrode performance is exhibited as compared with an electrode catalyst made of only platinum or an electrode catalyst produced by simply mixing zirconia or titania.

以上説明したように、本発明によれば、ジルコニアゾルまたはチタニアゾルをカチオン性白金錯体の添加によってゲル化して生じる沈殿に対して、先ず酸化雰囲気中で加熱分解処理し、次いで還元雰囲気中で還元処理を行う。従って、白金カチオンが原子レベルの分散度でゲル化して成る沈殿中に存在する状態で、上記酸化処理および還元処理が施されるので、原子レベルで白金微粒子の表面をジルコニアまたはチタニアで覆うことができ、そのような金属微粒子を電極触媒として用いることで固体高分子形燃料電池の電極性能を向上させることができる。   As described above, according to the present invention, a precipitate formed by gelling zirconia sol or titania sol by adding a cationic platinum complex is first subjected to thermal decomposition treatment in an oxidizing atmosphere, and then reduced in a reducing atmosphere. I do. Therefore, since the oxidation treatment and the reduction treatment are performed in the state where the platinum cation is present in the precipitate formed by gelation at the atomic level of dispersion, it is possible to cover the surface of the platinum fine particles with zirconia or titania at the atomic level. The electrode performance of the polymer electrolyte fuel cell can be improved by using such metal fine particles as an electrode catalyst.

本発明の第2の態様に係る固体高分子形燃料電池用電極触媒粉末の製造方法は、前記第1の態様において、前記カチオン性白金錯体は、ジクロロテトラアンミン白金であることを特徴とするものである。
カチオン性白金錯体としてジクロロテトラアンミン白金を用いることにより、カチオンとゾルが相互作用し、カチオンを中心にしてゲル化が進行し、沈殿を形成する反応を効率的に行わせることができる。
The method for producing a polymer electrolyte fuel cell electrode catalyst powder according to a second aspect of the present invention is characterized in that, in the first aspect, the cationic platinum complex is dichlorotetraammine platinum. is there.
By using dichlorotetraammineplatinum as the cationic platinum complex, the cation and the sol interact with each other, the gelation proceeds with the cation as the center, and the reaction for forming a precipitate can be efficiently performed.

本発明の第3の態様に係る固体高分子形燃料電池用電極触媒粉末の製造方法は、前記第1の態様または第2の態様において、前記白金微粒子に対して、ジルコニウムまたはチタンの重量比率が0.1〜1となるように前記ジルコニアゾルまたはチタニアゾルとカチオン性白金錯体が混ぜられることを特徴とするものである。この重量比率の範囲で前記の如く混合することにより、有効な性能の改善が見られる。   The method for producing an electrode catalyst powder for a polymer electrolyte fuel cell according to a third aspect of the present invention, in the first aspect or the second aspect, has a weight ratio of zirconium or titanium to the platinum fine particles. The zirconia sol or titania sol and a cationic platinum complex are mixed so as to be 0.1 to 1. By mixing in this weight ratio range as described above, an effective performance improvement is observed.

本発明によれば、白金カチオンが原子レベルの分散度でゲル化して成る沈殿中に存在する状態で、酸化処理および還元処理が施されるので、原子レベルで白金微粒子の表面をジルコニアまたはチタニアで覆うことができ、そのような金属微粒子を電極触媒として用いることで固体高分子形燃料電池の電極性能を向上させることができる。   According to the present invention, the oxidation treatment and the reduction treatment are performed in a state where the platinum cation is present in the precipitate formed by gelation at the atomic level of dispersity. Therefore, the surface of the platinum fine particles is made of zirconia or titania at the atomic level. The electrode performance of the polymer electrolyte fuel cell can be improved by using such metal fine particles as an electrode catalyst.

本発明に係る固体高分子形燃料電池用電極触媒粉末の製造方法は、ジルコニアゾルまたはチタニアゾル中にカチオン性白金錯体を加え、ゾルがゲル化して生じる沈殿に対して酸化雰囲気中で加熱分解処理し、次いで還元雰囲気中で還元処理を行って、白金微粒子の表面をジルコニアまたはチタニアで覆うことを特徴とするものである。   The method for producing an electrode catalyst powder for a polymer electrolyte fuel cell according to the present invention comprises adding a cationic platinum complex to a zirconia sol or titania sol, and subjecting the precipitate formed by the gelation of the sol to a thermal decomposition treatment in an oxidizing atmosphere. Then, a reduction treatment is performed in a reducing atmosphere, and the surface of the platinum fine particles is covered with zirconia or titania.

ジルコニアゾルまたはチタニアゾルは、ジルコニア粒子またはチタニア粒子がゾル状態で存在するものであれば良く、特定のものに限定されない。ゾル状態を成しているコロイド粒子(ジルコニア粒子またはチタニア粒子)の粒径は2〜30nmの範囲が好ましい。   The zirconia sol or titania sol is not particularly limited as long as the zirconia particles or titania particles exist in a sol state. The particle size of colloidal particles (zirconia particles or titania particles) forming a sol state is preferably in the range of 2 to 30 nm.

なお、硝酸、硫酸、塩化物等をベースとしたオキシ塩、例えばオキシ硝酸ジルコニウムやオキシ硝酸チタン等の水溶液も、テトラメチルアンモニウムハイドロオキサイド等の有機アルカリを加えることで、同様に白金カチオン添加によって同様にカチオンを中心にしてゲル化が進行し、沈殿を形成するので、利用可能である。すなわち本明細書においては、ジルコニアゾルまたはチタニアゾルは、オキシ硝酸ジルコニウム、オキシ硝酸チタン、オキシ硫酸チタン等の水溶液も含む広い意味で使われている。   In addition, oxysalts based on nitric acid, sulfuric acid, chloride, etc., for example, aqueous solutions such as zirconium oxynitrate and titanium oxynitrate can be similarly added by adding platinum cation by adding an organic alkali such as tetramethylammonium hydroxide. In this case, gelation proceeds with a cation as a center, and a precipitate is formed. That is, in this specification, zirconia sol or titania sol is used in a broad sense including aqueous solutions of zirconium oxynitrate, titanium oxynitrate, titanium oxysulfate, and the like.

カチオン性白金錯体としては、具体的にはジクロロテトラアンミン白金を用いることにより、カチオンとゾルが相互作用し、カチオンを中心にしてゲル化が進行し、沈殿を形成する反応を効率的に行わせることができる。   Specifically, by using dichlorotetraammine platinum as the cationic platinum complex, the cation and the sol interact with each other, the gelation progresses around the cation, and the reaction that forms a precipitate is efficiently performed. Can do.

酸化雰囲気中での加熱分解処理は、使われる前記ゾルとカチオン性白金錯体の種類および組み合わせ等によって適宜設定されるが、前記沈殿を減圧ろ過等した後に300〜400℃の温度で、大気中にて加熱すればほとんどの種類に対して加熱分解処理を適切に進行させることができる。   The thermal decomposition treatment in an oxidizing atmosphere is appropriately set depending on the type and combination of the sol and the cationic platinum complex used, but after the precipitate is filtered under reduced pressure and the like at a temperature of 300 to 400 ° C. in the atmosphere. If heated, the thermal decomposition treatment can proceed appropriately for most types.

還元雰囲気中での還元処理は、同様に使われる前記ゾルとカチオン性白金錯体の種類および組み合わせ等によって適宜設定されるが、前記酸化分解処理後に水素雰囲気中で200〜300℃の温度で、還元処理すればほとんどの種類に対して該還元処理を適切に進行させることができる。   The reduction treatment in a reducing atmosphere is appropriately set according to the kind and combination of the sol and the cationic platinum complex used in the same manner. However, the reduction treatment is performed at a temperature of 200 to 300 ° C. in a hydrogen atmosphere after the oxidative decomposition treatment. If it processes, this reduction process can be appropriately advanced with respect to almost all kinds.

前記ジルコニアゾルまたはチタニアゾルとカチオン性白金錯体との混合割合は、前記白金微粒子に対して、ジルコニウムまたはチタンの重量比率が0.1〜1となるように、両者を混ぜるのがよい。この重量比率の範囲で前記の如く混合することにより、有効な性能の改善が見られる
図1は、本発明に係る方法によりジルコニア(ZrO)3又はチタニア(TiO)を白金微粒子1の表面を覆うように生成させた状態の断面図を示す。図2は比較例を示し、白金微粒子1が、大きなジルコニア粒子3の表面に付着した構造になっている。
The mixing ratio of the zirconia sol or titania sol and the cationic platinum complex is preferably such that the weight ratio of zirconium or titanium is 0.1 to 1 with respect to the platinum fine particles. By mixing as described above within the range of this weight ratio, improvement in effective performance can be seen. FIG. 1 shows the surface of the platinum fine particles 1 containing zirconia (ZrO 2 ) 3 or titania (TiO 2 ) by the method according to the present invention. Sectional drawing of the state produced | generated so that it may be covered is shown. FIG. 2 shows a comparative example in which the platinum fine particles 1 are attached to the surface of the large zirconia particles 3.

図1に示したように、本発明によれば、中心に白金微粒子1が存在し、その周囲に膜状にジルコニアまたはチタニア3が存在する。この構造は透過型電子顕微鏡を用いて観察を行った。倍率400万倍の透過像(明視野)においては中心白金微粒子1の像は黒く写り、周囲に存在するジルコニア等3の層は透過して薄く観察される。このことから周囲にジルコニア等3の層の存在を確認できる。   As shown in FIG. 1, according to the present invention, platinum fine particles 1 are present at the center, and zirconia or titania 3 is present in the form of a film around it. This structure was observed using a transmission electron microscope. In a transmission image (bright field) at a magnification of 4,000,000, the image of the central platinum fine particle 1 appears black, and the surrounding three layers of zirconia and the like are transmitted and observed thinly. From this, the presence of three layers such as zirconia can be confirmed.

また、有機物の介在の可能性については、熱分析装置(熱天秤/示差熱分析装置)を用いて、酸化雰囲気中(室温から400℃迄の間)において、発熱反応及び重量減が無いことを確認している。   In addition, regarding the possibility of the inclusion of organic matter, using a thermal analyzer (thermobalance / differential thermal analyzer), there should be no exothermic reaction and weight loss in an oxidizing atmosphere (between room temperature and 400 ° C). I have confirmed.

[実施例1]
ジルコニアゾル(市販の日産化学社製NZS-30A)を用い、これを0.374g容器に入れ、それにジクロロテトラアンミン白金1水和物の水溶液(添川理化化学株式会社製)0.8gを加える。すなわち、白金微粒子に対してジルコニウムの重量比率が0.25となるように混ぜる。
[Example 1]
Using zirconia sol (commercially available Nissan Chemical Co., Ltd. NZS-30A), this is put in a 0.374 g container, and 0.8 g of an aqueous solution of dichlorotetraammine platinum monohydrate (manufactured by Soekawa Rika Chemical Co., Ltd.) is added thereto. That is, mixing is performed so that the weight ratio of zirconium to platinum fine particles is 0.25.

更に、前記各成分を混ぜて生成する電極触媒の量に対して50wt%となるように、カーボン粒子(バルカン社製V-XC72、ライオン社製のEC-600JDでもよい)を加え、30分間程度撹拌する。これによりゲル化が進行する。   Furthermore, carbon particles (Vulcan V-XC72 or Lion EC-600JD may be used) are added for about 30 minutes so that it becomes 50 wt% with respect to the amount of the electrode catalyst produced by mixing the above components. Stir. As a result, gelation proceeds.

その後、減圧ろ過をした後、得られた粉末に対して300〜400℃で大気圧中で加熱分解処理を行い、その後に、水素雰囲気中で200〜300℃で還元処理を行い、白金微粒子の表面がジルコニアで覆われた構造の金属微粒子が担持されて成る電極触媒担持カーボンを得る。   Thereafter, after filtration under reduced pressure, the obtained powder is subjected to a thermal decomposition treatment at 300 to 400 ° C. in an atmospheric pressure, and then subjected to a reduction treatment at 200 to 300 ° C. in a hydrogen atmosphere, and Electrocatalyst-supported carbon obtained by supporting metal fine particles having a structure whose surface is covered with zirconia is obtained.

[実施例2]
チタニアゾル(テイカ社製TKS-202)を用い、これを0.258g容器に入れ、それにジクロロテトラアンミン白金1水和物の水溶液(添川理化化学株式会社製)0.8gを加える。すなわち、白金微粒子に対してチタンの重量比率が0.25となるように混ぜる。
[Example 2]
Using titania sol (TKS-202 manufactured by Teika), this is put in a 0.258 g container, and 0.8 g of an aqueous solution of dichlorotetraammine platinum monohydrate (manufactured by Soekawa Rika Chemical Co., Ltd.) is added thereto. That is, mixing is performed so that the weight ratio of titanium to platinum fine particles is 0.25.

更に、前記各成分を混ぜて生成する電極触媒の量に対して50wt%となるように、カーボン粒子(バルカン社製V-XC72、ライオン社製のEC-600JDでもよい)を加え、30分間程度撹拌する。これによりゲル化が進行する。   Furthermore, carbon particles (Vulcan V-XC72 or Lion EC-600JD may be used) are added for about 30 minutes so that it becomes 50 wt% with respect to the amount of the electrode catalyst produced by mixing the above components. Stir. As a result, gelation proceeds.

その後、減圧ろ過をした後、得られた粉末に対して300〜400℃で大気圧中で加熱分解処理を行い、その後に、水素雰囲気中で200〜300℃で還元処理を行い、白金微粒子の表面がチタニアで覆われた構造の金属微粒子が担持されて成る電極触媒担持カーボンを得る。   Thereafter, after filtration under reduced pressure, the obtained powder is subjected to a thermal decomposition treatment at 300 to 400 ° C. in an atmospheric pressure, and then subjected to a reduction treatment at 200 to 300 ° C. in a hydrogen atmosphere, and An electrocatalyst-supporting carbon is obtained in which metal fine particles having a structure covered with titania are supported.

[実施例3]
オキシ硝酸ジルコニウムを用い、これを0.152g容器に入れ、それにジクロロテトラアンミン白金1水和物の水溶液(添川理化化学株式会社製)0.8gを加える。すなわち、白金微粒子に対してジルコニウムの重量比率が0.25となるように混ぜる。
[Example 3]
Using zirconium oxynitrate, put it in a 0.152 g container, and add 0.8 g of an aqueous solution of dichlorotetraammine platinum monohydrate (manufactured by Soekawa Rika Chemical Co., Ltd.). That is, mixing is performed so that the weight ratio of zirconium to platinum fine particles is 0.25.

更に、前記各成分を混ぜて生成する電極触媒の量に対して50wt%となるように、カーボン粒子(バルカン社製V-XC72、ライオン社製のEC-600JDでもよい)を加え、30分間程度撹拌する。これによりゲル化が進行する。   Furthermore, carbon particles (Vulcan V-XC72 or Lion EC-600JD may be used) are added for about 30 minutes so that it becomes 50 wt% with respect to the amount of the electrode catalyst produced by mixing the above components. Stir. As a result, gelation proceeds.

その後、減圧ろ過をした後、得られた粉末に対して300〜400℃で大気圧中で加熱分解処理を行い、その後に、水素雰囲気中で200〜300℃で還元処理を行い、白金微粒子の表面がジルコニアで覆われた構造の金属微粒子が担持されて成る電極触媒担持カーボンを得る。   Thereafter, after filtration under reduced pressure, the obtained powder is subjected to a thermal decomposition treatment at 300 to 400 ° C. in an atmospheric pressure, and then subjected to a reduction treatment at 200 to 300 ° C. in a hydrogen atmosphere, and Electrocatalyst-supported carbon obtained by supporting metal fine particles having a structure whose surface is covered with zirconia is obtained.

[実施例4]
オキシ硫酸チタニウムを用い、これを0.11g容器に入れ、それにジクロロテトラアンミン白金1水和物の水溶液(添川理化化学株式会社製)0.8gを加える。すなわち、白金微粒子に対してチタンの重量比率が0.25となるように混ぜる。
[Example 4]
Using titanium oxysulfate, this is put into a 0.11 g container, and 0.8 g of an aqueous solution of dichlorotetraammine platinum monohydrate (manufactured by Soekawa Rika Chemical Co., Ltd.) is added thereto. That is, mixing is performed so that the weight ratio of titanium to platinum fine particles is 0.25.

更に、前記各成分を混ぜて生成する電極触媒の量に対して50wt%となるように、カーボン粒子(バルカン社製V-XC72、ライオン社製のEC-600JDでもよい)を加え、30分間程度撹拌する。これによりゲル化が進行する。   Furthermore, carbon particles (Vulcan V-XC72 or Lion EC-600JD may be used) are added for about 30 minutes so that it becomes 50 wt% with respect to the amount of the electrode catalyst produced by mixing the above components. Stir. As a result, gelation proceeds.

その後、減圧ろ過をした後、得られた粉末に対して300〜400℃で大気圧中で加熱分解処理を行い、その後に、水素雰囲気中で200〜300℃で還元処理を行い、白金微粒子の表面がチタニアで覆われた構造の金属微粒子が担持されて成る電極触媒担持カーボンを得る。   Thereafter, after filtration under reduced pressure, the obtained powder is subjected to a thermal decomposition treatment at 300 to 400 ° C. in an atmospheric pressure, and then subjected to a reduction treatment at 200 to 300 ° C. in a hydrogen atmosphere, and An electrocatalyst-supporting carbon is obtained in which metal fine particles having a structure covered with titania are supported.

[固体高分子形燃料電池]
得られた実施例1〜実施例4のそれぞれの電極触媒担持カーボンを秤量(最終配合比の10部)し、プラスチック容器にて水(同20部)と混合する。次に、超音波ホモジナイザー(島津製作所社製のUPS400:チタン合金チップ使用)にて撹拌してスラリー化する。その撹拌時間は10〜30分間の範囲で好ましくは30分間がよい。30分間以上撹拌しても効果は変わらなかった。
[Polymer fuel cell]
The obtained electrode catalyst-supporting carbons of Examples 1 to 4 were weighed (10 parts of the final blend ratio) and mixed with water (20 parts) in a plastic container. Next, the slurry is stirred by an ultrasonic homogenizer (UPS400 manufactured by Shimadzu Corp .: using titanium alloy chip) to form a slurry. The stirring time is in the range of 10 to 30 minutes, preferably 30 minutes. Stirring for 30 minutes or more did not change the effect.

前記スラリーにプロトン伝導性高分子として市販の5wt%ナフィオン(デュポン社の商標)溶液(同70部)を加え、スターラーにて撹拌する。これにより触媒ペーストが得られる。   A commercially available 5 wt% Nafion (trademark of DuPont) (70 parts) solution as a proton conductive polymer is added to the slurry and stirred with a stirrer. Thereby, a catalyst paste is obtained.

その後、2流体ノズルを用いて、空気圧3kg/cm、輸送速度5cc/min程度で、PTFE(ポリテトラフルオロエチレン)膜上に前記触媒ペーストを塗布する。塗布の後、50℃、30分間乾燥処理する。これにより、ガス拡散電極が得られる。 Thereafter, the catalyst paste is applied onto the PTFE (polytetrafluoroethylene) film at a pneumatic pressure of 3 kg / cm 2 and a transport speed of about 5 cc / min using a two-fluid nozzle. After the application, it is dried at 50 ° C. for 30 minutes. Thereby, a gas diffusion electrode is obtained.

そして、図3に示したように、市販されているパーフルオロスルホン酸系の陽イオン交換膜(デュポン社製 商品名:ナフィオン(Nafion)112 厚さ50μm)より成るプロトン伝導性の固体高分子電解質膜7の両側を前記構成のガス拡散電極8で挟み込み、ホットプレスを用い、140℃、200kgf/cm(19.6MPa)で10分間プレスすることにより、図4に示した膜電極接合体を形成した。図4において、符号9はPTFE膜を示す。この後、PTFE膜9は取り除かれる。 Then, as shown in FIG. 3, a proton conductive solid polymer electrolyte comprising a commercially available perfluorosulfonic acid cation exchange membrane (trade name: Nafion 112, thickness 50 μm, manufactured by DuPont). The membrane electrode assembly shown in FIG. 4 is obtained by sandwiching both sides of the membrane 7 with the gas diffusion electrode 8 having the above-described configuration and pressing it at 140 ° C. and 200 kgf / cm 2 (19.6 MPa) for 10 minutes using a hot press. Formed. In FIG. 4, reference numeral 9 denotes a PTFE membrane. Thereafter, the PTFE membrane 9 is removed.

この膜電極接合体をカーボンセパレータと集電体で挟み込んでプロトン伝導性の固体高分子電解質形燃料電池セルを作製した。
この燃料電池セルを、セル温度:80℃、燃料極(水素極)側に加湿水素(80℃の湯を通過させた水素ガス、水素流量:30cc/min)、酸素極(空気極)側に加湿酸素(78℃の湯を通過させた酸素ガス、酸素流量:30cc/min)、常圧環境下で日本ベル社製発電装置を用いて、発電試験を行った。その結果を表1と表2に示す。
The membrane electrode assembly was sandwiched between a carbon separator and a current collector to produce a proton conductive solid polymer electrolyte fuel cell.
This fuel battery cell has a cell temperature of 80 ° C., humidified hydrogen (hydrogen gas through which 80 ° C. hot water has passed, hydrogen flow rate: 30 cc / min) on the fuel electrode (hydrogen electrode) side, A power generation test was conducted using a power generation apparatus manufactured by Nippon Bell Co., Ltd. under humidified oxygen (oxygen gas passed through hot water at 78 ° C., oxygen flow rate: 30 cc / min) under normal pressure. The results are shown in Tables 1 and 2.

表1は実施例1のジルコニアについて白金微粒子に対するジルコニウムの重量比率xを変化させて製造した電極触媒についての発電試験結果であり、表2は実施例2のチタニアについての同様の発電試験結果である。電流密度(A/cm)が0.4、0.5、0.6、0.7に対する電圧の変化は、ジルコニアとチタニアのいずれもx=0.25のものが最も良い結果を示した。 Table 1 shows the power generation test results for the electrode catalyst manufactured by changing the weight ratio x of zirconium to platinum fine particles for the zirconia of Example 1, and Table 2 shows the same power generation test results for the titania of Example 2. . The change in voltage for current density (A / cm 2 ) of 0.4, 0.5, 0.6, and 0.7 showed the best results when both zirconia and titania were x = 0.25. .

Figure 2007273163
Figure 2007273163

Figure 2007273163
Figure 2007273163

本発明は、自動車や通信機器等の移動体の電源、或いは家庭用の分散電源等に、その利用が期待される固体高分子形燃料電池の電極触媒粉末の製造方法に利用可能である。   INDUSTRIAL APPLICABILITY The present invention can be used in a method for producing an electrode catalyst powder of a polymer electrolyte fuel cell, which is expected to be used for a power source of a mobile body such as an automobile or a communication device, or a distributed power source for home use.

本発明に係り、白金微粒子の表面にジルコニア又はチタニアが膜状に生成された状態を示す断面図である。It is sectional drawing which shows the state which concerns on this invention and the zirconia or titania was produced | generated by the film form on the surface of platinum fine particles. 比較例を示す斜視図である。It is a perspective view which shows a comparative example. 本発明に係る膜電極接合体の接合前の断面図を示す。Sectional drawing before joining of the membrane electrode assembly which concerns on this invention is shown. 本発明に係る膜電極接合体の接合状態の断面図を示す。Sectional drawing of the joining state of the membrane electrode assembly which concerns on this invention is shown.

符号の説明Explanation of symbols

1 白金等の金属微粒子
3 ジルコニア(又はチタニア)
7 固体高分子電解質膜
8 ガス拡散電極
9 PTFE膜
1 Metal fine particles such as platinum 3 Zirconia (or titania)
7 Solid polymer electrolyte membrane 8 Gas diffusion electrode 9 PTFE membrane

Claims (3)

ジルコニアゾルまたはチタニアゾル中にカチオン性白金錯体を加え、ゾルがゲル化して生じる沈殿に対して酸化雰囲気中で加熱分解処理し、次いで還元雰囲気中で還元処理を行って、白金微粒子の表面をジルコニアまたはチタニアで覆うことを特徴とする固体高分子形燃料電池用電極触媒粉末の製造方法。   A cationic platinum complex is added to the zirconia sol or titania sol, and the precipitate formed by the gelation of the sol is thermally decomposed in an oxidizing atmosphere, and then subjected to a reducing treatment in a reducing atmosphere. A method for producing an electrode catalyst powder for a polymer electrolyte fuel cell, characterized by covering with titania. 請求項1に記載の固体高分子形燃料電池用電極触媒粉末の製造方法において、前記カチオン性白金錯体は、ジクロロテトラアンミン白金であることを特徴とする固体高分子形燃料電池用電極触媒粉末の製造方法。   2. The method for producing an electrode catalyst powder for a polymer electrolyte fuel cell according to claim 1, wherein the cationic platinum complex is dichlorotetraammine platinum. Method. 請求項1または2に記載の固体高分子形燃料電池用電極触媒粉末の製造方法において、前記白金微粒子に対して、ジルコニウムまたはチタンの重量比率が0.1〜1となるように前記ジルコニアゾルまたはチタニアゾルとカチオン性白金錯体が混ぜられることを特徴とする固体高分子形燃料電池用電極触媒粉末の製造方法。   The method for producing an electrode catalyst powder for a polymer electrolyte fuel cell according to claim 1 or 2, wherein the zirconia sol or the titanium fine particle has a weight ratio of 0.1 to 1 with respect to the platinum fine particles. A method for producing an electrode catalyst powder for a polymer electrolyte fuel cell, wherein a titania sol and a cationic platinum complex are mixed.
JP2006095105A 2006-03-30 2006-03-30 Method of manufacturing electrode catalyst powder for polymer electrolyte fuel cell Abandoned JP2007273163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006095105A JP2007273163A (en) 2006-03-30 2006-03-30 Method of manufacturing electrode catalyst powder for polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006095105A JP2007273163A (en) 2006-03-30 2006-03-30 Method of manufacturing electrode catalyst powder for polymer electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JP2007273163A true JP2007273163A (en) 2007-10-18

Family

ID=38675772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006095105A Abandoned JP2007273163A (en) 2006-03-30 2006-03-30 Method of manufacturing electrode catalyst powder for polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP2007273163A (en)

Similar Documents

Publication Publication Date Title
JP5332429B2 (en) Electrocatalyst
JP4933770B2 (en) Fuel cell catalyst, production method thereof, membrane-electrode assembly including the same, and fuel cell system
JP4361738B2 (en) Fuel cells and other products containing modified carbon products
JP5294235B2 (en) Electrode material
Bharti et al. Surfactant assisted synthesis of Pt-Pd/MWCNT and evaluation as cathode catalyst for proton exchange membrane fuel cell
US20040161641A1 (en) Catalyst for cathode in fuel cell
KR101679809B1 (en) Preparation method of N-doped carbon-supported Pt catalyst and N-doped carbon-supported Pt catalyst using the same
WO2003061827A2 (en) Supported nanoparticle catalyst
WO2014033204A1 (en) Colloidal dispersions comprising precious metal particles and acidic ionomer components and methods of their manufacture and use
JP2005079099A (en) Polymeric nano-complex film, and fuel cell adopting the same
EP3342484A1 (en) Catalyst particle, electrode catalyst obtained by using same, electrolyte membrane-electrode assembly, and fuel cell
JP4969025B2 (en) Membrane electrode for fuel cell and fuel cell
JPWO2006114942A1 (en) Carbon particle, particle comprising platinum and ruthenium oxide and method for producing the same
TWI508774B (en) Production method for gold-supported carbon catalyst
JP2007273161A (en) Method of manufacturing electrode catalyst powder for polymer electrolyte fuel cell
US20160211530A1 (en) Caged Nanoparticle Electrocatalyst with High Stability and Gas Transport Property
JP6956851B2 (en) Electrode catalyst for fuel cells and fuel cells using them
Jung et al. Development of Highly Active and Stable Catalyst Supports and Platinum–Free Catalysts for PEM Fuel Cell
JP2005056746A (en) Method for manufacturing electrocatalyst for direct methanol fuel cells
JP2009543681A (en) Method for forming a supported nanoparticle catalyst
JP2007273163A (en) Method of manufacturing electrode catalyst powder for polymer electrolyte fuel cell
JP2013114901A (en) Manufacturing method for catalyst layer for fuel cell and catalyst layer for fuel cell
JP5948452B2 (en) Method for producing supported catalyst for fuel cell
Zheng et al. Synthesis, characterization, and electrochemical performance of nitrogen-modified Pt–Fe alloy nanoparticles supported on ordered mesoporous carbons
JP7468379B2 (en) Manufacturing method of alloy fine particle supported catalyst, electrode, fuel cell, manufacturing method of alloy fine particle, manufacturing method of membrane electrode assembly, and manufacturing method of fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080402

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20100928