JP2007265636A - Current collecting wire forming method of dye-sensitized solar cell and dye-sensitized solar cell - Google Patents

Current collecting wire forming method of dye-sensitized solar cell and dye-sensitized solar cell Download PDF

Info

Publication number
JP2007265636A
JP2007265636A JP2006085308A JP2006085308A JP2007265636A JP 2007265636 A JP2007265636 A JP 2007265636A JP 2006085308 A JP2006085308 A JP 2006085308A JP 2006085308 A JP2006085308 A JP 2006085308A JP 2007265636 A JP2007265636 A JP 2007265636A
Authority
JP
Japan
Prior art keywords
dye
current collector
solar cell
transparent electrode
sensitized solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006085308A
Other languages
Japanese (ja)
Inventor
Sei Kisaka
聖 木坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Jushi Corp
Original Assignee
Sekisui Jushi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Jushi Corp filed Critical Sekisui Jushi Corp
Priority to JP2006085308A priority Critical patent/JP2007265636A/en
Publication of JP2007265636A publication Critical patent/JP2007265636A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the current collecting wire forming method of a dye-sensitized solar cell capable of preventing the reverse flow of electrons from a transparent electrode even in a state that a power generation voltage is low, and to provide the dye-sensitized solar cell using the current collecting wire forming method. <P>SOLUTION: By forming a current collecting wire 1 with metal having a higher work function than that of an n-type semiconductor material forming a transparent electrode 2, an energy barrier called as a Shottkey barrier is generated between the metal forming the current collecting wire 1 and the n-type semiconductor forming the transparent electrode 2, and a state called as a rectifying contact in which, when the transparent electrode 2 is negative and the current collecting wire 1 is positive, a current is easy to flow and in a reverse state, a current is difficult to flow comes out, and thereby, the current collecting wire 1 capable of preventing the reverse flow of electrons from the transparent electrode 2 in a state that a voltage of generated power is low can be formed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、色素増感型太陽電池の電極上に配置され、電極の表面抵抗を低減させて変換効率を高める集電線の形成方法及びそれを用いた色素増感型太陽電池に関するものである。   The present invention relates to a method of forming a current collector that is disposed on an electrode of a dye-sensitized solar cell and increases the conversion efficiency by reducing the surface resistance of the electrode, and a dye-sensitized solar cell using the same.

色素増感型太陽電池の透明電極や陽極となる導電性被膜や半導体層からなる電極は、金属酸化物等の金属材料より電気抵抗の大きい材料を用いて形成されることから、色素増感型太陽電池の形成においては導電性被膜の表面に金属材料からなる集電線を設けて表面の電気抵抗を大幅に低減し、かつ光の透過量をそれ程低下させないようにすることで変換効率を高めることができる。   Since the transparent electrode of the dye-sensitized solar cell, the conductive film serving as the anode, and the electrode composed of the semiconductor layer are formed using a material having a higher electrical resistance than a metal material such as a metal oxide, the dye-sensitized type In the formation of solar cells, increase the conversion efficiency by providing a current collector made of a metal material on the surface of the conductive coating to greatly reduce the electrical resistance of the surface and not to reduce the amount of light transmission so much. Can do.

かかる集電線の形成方法としては、ガラス表面に設けられた透明導電膜の表面上に銀、クロム、ニッケルまたは金をスパッタしてシード層を設け、シード層上にドライレジストフィルムを貼り、露光、現像して、グリッドの平面形状のパターンを有するマスクを形成し、さらにベーキング、活性化処理を施したのち、マスクから露出しているシード層上にシード層を一方の電極として金メッキを施し、グリッドとなる金層を形成する。この後、残っているマスクを剥離、除去し、マスクの下に残ったシード層をエッチング除去し、全体を加熱してグリッドとなる金層と、金層の下にあるシード層の銀とを合金化してから、全体を洗浄するなどして透明導電膜の上に金属薄膜からなるグリッドを設ける光電変換素子用導電性ガラスの集電線の形成方法が開示されている(例えば特許文献1)。   As a method for forming such a current collector, a seed layer is formed by sputtering silver, chromium, nickel or gold on the surface of a transparent conductive film provided on the glass surface, a dry resist film is attached on the seed layer, exposure, After development, a mask having a grid pattern is formed, and after baking and activation, the seed layer exposed from the mask is gold-plated using one electrode as a grid. A gold layer is formed. Thereafter, the remaining mask is peeled off and removed, the seed layer remaining under the mask is removed by etching, the whole is heated, and the gold layer that becomes the grid and the silver of the seed layer under the gold layer are removed. A method for forming a current collecting wire of a conductive glass for a photoelectric conversion element in which a grid made of a metal thin film is provided on a transparent conductive film by, for example, washing the whole after alloying is disclosed (for example, Patent Document 1).

特開2003−203681号公報JP 2003-203681 A

しかしながら、特許文献1に記載のような従来の集電線形成方法では、導電性が高く、また電極上に形成するのが比較的容易である適当な金属を選択して集電線を形成しているものであり、かかる集電線では、光の照度が小さく色素増感型太陽電池の発電電圧が低い状態において、透明電極を形成しているITO(スズドープ酸化インジウム)やFTO(フッ素ドープ酸化錫)等のn型半導体材料に電子が逆流する恐れがあり、この逆流により発電効率が低下したり、また逆流を防止するために逆流防止ダイオード等の電流逆流防止手段を設けたりする必要があるものであった。   However, in the conventional method of forming a current collector as described in Patent Document 1, a current collector is formed by selecting an appropriate metal that has high conductivity and is relatively easy to form on the electrode. In such a current collector, ITO (tin-doped indium oxide), FTO (fluorine-doped tin oxide), etc., forming a transparent electrode in a state where the illuminance of light is small and the generated voltage of the dye-sensitized solar cell is low There is a risk that electrons will flow back into the n-type semiconductor material, and this backflow reduces power generation efficiency, and it is necessary to provide current backflow prevention means such as a backflow prevention diode to prevent backflow. It was.

本発明は上記の如き課題に鑑みてなされたものであり、発電電圧が低い状態においても、透明電極からの電子の逆流を防止できる色素増感型太陽電池の集電線形成方法、及びそれを用いた色素増感型太陽電池を提供せんとするものである。   The present invention has been made in view of the above problems, and a method of forming a current collector for a dye-sensitized solar cell capable of preventing the backflow of electrons from a transparent electrode even when the generated voltage is low. It is intended to provide a dye-sensitized solar cell.

上記目的を達成するため、本発明は以下のような構成としている。すなわち、本発明に係わる色素増感型太陽電池の集電線形成方法は、透明基板と、対向基板と、半導体材料に増感色素を担持させた光電極層と、電解質層と、前記透明基板に透明電極が、対向基板に対向電極が設けられ、少なくとも前記透明電極がn型半導体材料により形成され、該透明電極に金属製の集電線が電気的に接触されて設けられた色素増感型太陽電池の集電線形成方法であって、前記透明電極を形成するn型半導体材料より高い仕事関数の金属を選択して前記集電線を形成することを特徴とするものである。   In order to achieve the above object, the present invention is configured as follows. That is, a method of forming a current collector for a dye-sensitized solar cell according to the present invention includes a transparent substrate, a counter substrate, a photoelectrode layer having a sensitizing dye supported on a semiconductor material, an electrolyte layer, and the transparent substrate. A dye-sensitized solar in which a transparent electrode is provided with a counter electrode on a counter substrate, at least the transparent electrode is formed of an n-type semiconductor material, and a metal current collector is electrically in contact with the transparent electrode A method of forming a current collection line for a battery, wherein the current collection line is formed by selecting a metal having a work function higher than that of an n-type semiconductor material forming the transparent electrode.

本発明に係わる色素増感型太陽電池の集電線形成方法によれば、集電線を形成する金属を、透明電極を形成するn型半導体材料より高い仕事関数の金属を選択して形成することで、集電線を形成する金属と透明電極を形成するn型半導体との間にショットキー障壁と呼ばれるエネルギー障壁が生じ、透明電極が負、集電線が正の場合に電流が流れやすく、その逆では電流が流れにくい整流性接触と呼ばれる状態となることから、発電電圧が低い状態においても、透明電極からの電子の逆流を防止できる集電線を形成することができる。   According to the method for forming a current collector for a dye-sensitized solar cell according to the present invention, the metal for forming the current collector is formed by selecting a metal having a higher work function than the n-type semiconductor material for forming the transparent electrode. An energy barrier called a Schottky barrier occurs between the metal that forms the current collector and the n-type semiconductor that forms the transparent electrode, and current easily flows when the transparent electrode is negative and the current collector is positive, and vice versa. Since it becomes a state called a rectifying contact in which current does not easily flow, it is possible to form a current collector that can prevent backflow of electrons from the transparent electrode even when the generated voltage is low.

ここで仕事関数とは、金属や半導体の真空準位とフェルミ準位のエネルギー差を示すものである。図3において、(a)に示す如く金属Mとn型半導体Nとを接触前で真空準位Vとフェルミ準位E、Eとの差である仕事関数が金属Mでφ、n型半導体でφとして、φ>φとなる材料を選択した場合、その金属Mとn型半導体Nとを接触させると、n型半導体N内の電子eが金属M側に移動し、n型半導体Nにはイオン化したドナーDが残る。ここで金属Mの接触界面は負に帯電し、n型半導体N側には空乏層Kが生じるが、仕事関数がφm>φnとなされていることで、n型半導体Nにはショットキー障壁qVと呼ばれるエネルギー障壁が生じ、このショットキー障壁qVによって金属Mからn型半導体Nへの電子の移動が妨げられることで、色素増感型太陽電池が発生する発電電圧が低い状態であってもn型半導体である透明電極から、金属である集電線への電子の逆流が抑止されるようになされる。逆にφm<φnの場合には、ショットキー障壁qVが生じることのないオーム接触と呼ばれる状態となり、金属Mからn型半導体Nに容易に電子が逆流する状態となる。 Here, the work function indicates an energy difference between a vacuum level and a Fermi level of a metal or semiconductor. 3, the vacuum level before contacting the metal M and n-type semiconductor N as shown in (a) V and the Fermi level E F, with a work function which is the difference between E V metal M phi m, n When a material satisfying φ m > φ n is selected as φ n in the type semiconductor, when the metal M and the n-type semiconductor N are brought into contact with each other, electrons e in the n-type semiconductor N move to the metal M side, The ionized donor D remains in the n-type semiconductor N. Here, the contact interface of the metal M is negatively charged, and a depletion layer K is formed on the n-type semiconductor N side. However, the work function is set to φm> φn, so that the n-type semiconductor N has a Schottky barrier qV. An energy barrier called D is generated, and this Schottky barrier qV D prevents the movement of electrons from the metal M to the n-type semiconductor N, so that the generated voltage generated by the dye-sensitized solar cell is low. Also, the backflow of electrons from the transparent electrode, which is an n-type semiconductor, to the current collector, which is a metal, is suppressed. On the other hand, when φm <φn, a state called ohmic contact in which no Schottky barrier qV D is generated occurs, and electrons easily flow back from the metal M to the n-type semiconductor N.

また前記集電線を形成する金属は、Au、Ge、Ir、Ni、Os、Pd、Pt、Re、Rh、Ru、Se、Si、Teからなる群から選ばれた少なくとも1つであれば、金属の結晶構造の如何に関わらず集電線の仕事関数を高いものとすることができ好ましい。   The metal forming the current collecting line is at least one selected from the group consisting of Au, Ge, Ir, Ni, Os, Pd, Pt, Re, Rh, Ru, Se, Si, Te. It is preferable that the work function of the current collector can be increased regardless of the crystal structure.

また本発明に係わる色素増感型太陽電池の集電線形成方法は、透明基板と、対向基板と、半導体材料に増感色素を担持させた光電極層と、電解質層と、前記透明基板及び対向基板に設けられ、n型半導体材料からなる透明電極及び対向電極とを備え、少なくとも前記透明電極に金属製の集電線が電気的に接触されて設けられた色素増感型太陽電池の集電線形成方法であって、前記透明電極と集電線との間に接触層が介在され、前記透明電極を形成するn型半導体材料より高い仕事関数の材料を選択して前記接触層を形成することを特徴とするものである。   Further, the method for forming a current collecting line of a dye-sensitized solar cell according to the present invention includes a transparent substrate, a counter substrate, a photoelectrode layer having a sensitizing dye supported on a semiconductor material, an electrolyte layer, the transparent substrate, and a counter substrate. Forming a current collector for a dye-sensitized solar cell provided on a substrate, comprising a transparent electrode and a counter electrode made of an n-type semiconductor material, and provided with a metal current collector in electrical contact with at least the transparent electrode A method is provided, wherein a contact layer is interposed between the transparent electrode and the current collector, and a material having a work function higher than that of an n-type semiconductor material forming the transparent electrode is selected to form the contact layer. It is what.

本発明に係わる色素増感型太陽電池の集電線形成方法によれば、接触層を形成する金属を、透明電極を形成するn型半導体材料より高い仕事関数の金属を選択して形成することで、接触層を形成する金属と透明電極を形成するn型半導体との間にショットキー障壁と呼ばれるエネルギー障壁が生じ、透明電極が負、接触層が正の場合に電流が流れやすく、その逆では電流が流れにくい整流性接触と呼ばれる状態となることから、かかる接触層が透明電極と集電線との間に介在することで発電電圧が低い状態においても、透明電極からの電子の逆流を防止できる集電線を形成することができる。   According to the method of forming a current collecting line for a dye-sensitized solar cell according to the present invention, the metal forming the contact layer is formed by selecting a metal having a higher work function than the n-type semiconductor material forming the transparent electrode. An energy barrier called a Schottky barrier occurs between the metal that forms the contact layer and the n-type semiconductor that forms the transparent electrode, and current flows easily when the transparent electrode is negative and the contact layer is positive, and vice versa. Since it is in a state called rectifying contact in which current does not flow easily, the backflow of electrons from the transparent electrode can be prevented even when the generated voltage is low by interposing the contact layer between the transparent electrode and the current collector. A current collector can be formed.

また前記接触層を形成する金属は、Au、Ge、Ir、Ni、Os、Pd、Pt、Re、Rh、Ru、Se、Si、Teからなる群から選ばれた少なくとも1つであれば、金属の結晶構造の如何に関わらず集電線の仕事関数を高いものとすることができ好ましい。   Further, the metal forming the contact layer is at least one selected from the group consisting of Au, Ge, Ir, Ni, Os, Pd, Pt, Re, Rh, Ru, Se, Si, and Te. It is preferable that the work function of the current collector can be increased regardless of the crystal structure.

また本発明に係わる色素増感型太陽電池は、請求項1〜3のいずれかに記載の色素増感型太陽電池の集電線形成方法により作製された電極基板を用いて形成されていることを特徴とするものである。   Moreover, the dye-sensitized solar cell according to the present invention is formed using the electrode substrate produced by the method for forming a current collecting line of the dye-sensitized solar cell according to any one of claims 1 to 3. It is a feature.

本発明に係わる色素増感型太陽電池によれば、発電電圧が低い状態においても電子の逆流が防止されていることで、逆流により発電効率が低下したり、また逆流を防止するために逆流防止ダイオード等の電流逆流防止手段を設けたりする必要がなく、高い発電効率で電流逆流防止手段を設ける必要なく簡便な構成の色素増感型太陽電池を得ることができる。   According to the dye-sensitized solar cell according to the present invention, since the backflow of electrons is prevented even when the power generation voltage is low, the power generation efficiency is reduced due to the backflow, and the backflow prevention is performed to prevent backflow. It is not necessary to provide a current backflow prevention means such as a diode, and a dye-sensitized solar cell having a simple configuration can be obtained without the need to provide a current backflow prevention means with high power generation efficiency.

本発明に係わる色素増感型太陽電池の集電線形成方法によれば、集電線を形成する金属を、透明電極を形成するn型半導体材料より高い仕事関数の金属を選択して形成することで、集電線を形成する金属と透明電極を形成するn型半導体との間にショットキー障壁と呼ばれるエネルギー障壁が生じ、透明電極が負、集電線が正の場合に電流が流れやすく、その逆では電流が流れにくい整流性接触と呼ばれる状態となることから、発電電圧が低い状態においても、透明電極からの電子の逆流を防止できる集電線を形成することができる。   According to the method for forming a current collector for a dye-sensitized solar cell according to the present invention, the metal for forming the current collector is formed by selecting a metal having a higher work function than the n-type semiconductor material for forming the transparent electrode. An energy barrier called a Schottky barrier occurs between the metal that forms the current collector and the n-type semiconductor that forms the transparent electrode, and current easily flows when the transparent electrode is negative and the current collector is positive, and vice versa. Since it becomes a state called a rectifying contact in which current does not easily flow, it is possible to form a current collector that can prevent backflow of electrons from the transparent electrode even when the generated voltage is low.

また本発明に係わる色素増感型太陽電池の集電線形成方法によれば、接触層を形成する金属を、透明電極を形成するn型半導体材料より高い仕事関数の金属を選択して形成することで、接触層を形成する金属と透明電極を形成するn型半導体との間にショットキー障壁と呼ばれるエネルギー障壁が生じ、透明電極が負、接触層が正の場合に電流が流れやすく、その逆では電流が流れにくい整流性接触と呼ばれる状態となることから、かかる接触層が透明電極と集電線との間に介在することで発電電圧が低い状態においても、透明電極からの電子の逆流を防止できる集電線を形成することができる。   Further, according to the method of forming a current collecting line for a dye-sensitized solar cell according to the present invention, the metal forming the contact layer is formed by selecting a metal having a higher work function than the n-type semiconductor material forming the transparent electrode. Thus, an energy barrier called a Schottky barrier is generated between the metal forming the contact layer and the n-type semiconductor forming the transparent electrode, and current easily flows when the transparent electrode is negative and the contact layer is positive, and vice versa. In this case, the current flow is less likely to flow, so the contact layer is interposed between the transparent electrode and the current collector, preventing the backflow of electrons from the transparent electrode even when the generated voltage is low. A current collector that can be formed can be formed.

また本発明に係わる色素増感型太陽電池によれば、発電電圧が低い状態においても電子の逆流が防止されていることで、逆流により発電効率が低下したり、また逆流を防止するために逆流防止ダイオード等の電流逆流防止手段を設けたりする必要がなく、高い発電効率で電流逆流防止手段を設ける必要なく簡便な構成の色素増感型太陽電池を得ることができる。   Further, according to the dye-sensitized solar cell according to the present invention, the backflow of electrons is prevented even when the power generation voltage is low, so that the power generation efficiency is reduced due to the backflow, and the backflow is prevented to prevent backflow. It is not necessary to provide current backflow prevention means such as a prevention diode, and it is possible to obtain a dye-sensitized solar cell having a simple configuration without requiring current backflow prevention means with high power generation efficiency.

本発明に係わる最良の実施の形態について、図面に基づき以下に具体的に説明する。   BEST MODE FOR CARRYING OUT THE INVENTION The best embodiment according to the present invention will be specifically described below with reference to the drawings.

図1は、本発明に係わる色素増感型太陽電池の集電線形成方法が適用される色素増感型太陽電池の一例を示す縦断面図である。色素増感型太陽電池10は、透明基板31と対向基板32に導電性被膜からなる透明電極2及び対向電極4が各々形成され、透明電極2と対向電極4とが相対向して配置されると共に、透明基板31側に形成された透明電極2上には、薄膜の多孔質の半導体材料に増感色素を担持させた光電極層5が形成されており、光電極層3と対向電極4との間には、電解質溶液からなる電解質層6が設けられている。透明電極2上には集電線1が設けられており、集電線1は金属材料、透明電極2はn型半導体材料を用いて形成されている。   FIG. 1 is a longitudinal sectional view showing an example of a dye-sensitized solar cell to which the method of forming a current collector for a dye-sensitized solar cell according to the present invention is applied. In the dye-sensitized solar cell 10, the transparent electrode 2 and the counter electrode 4 made of a conductive film are formed on the transparent substrate 31 and the counter substrate 32, respectively, and the transparent electrode 2 and the counter electrode 4 are arranged to face each other. At the same time, on the transparent electrode 2 formed on the transparent substrate 31 side, a photoelectrode layer 5 in which a sensitizing dye is supported on a thin porous semiconductor material is formed, and the photoelectrode layer 3 and the counter electrode 4 are formed. Between the two, an electrolyte layer 6 made of an electrolyte solution is provided. A collector wire 1 is provided on the transparent electrode 2. The collector wire 1 is formed using a metal material, and the transparent electrode 2 is formed using an n-type semiconductor material.

ここで、集電線1を形成する金属材料は、透明電極2を形成するn型半導体材料よりも仕事関数の大きい材料を選択して形成されている。例えば、透明電極2を形成するのに最もよく用いられるn型半導体材料としてはITO(スズドープ酸化インジウム)が挙げられる。かかるITOを透明基板31に蒸着等して形成した導電性被膜上にめっきや導電性ペースト等により金属製の集電線1と形成するが、ITOの仕事関数は4.7〜4.8eVであることから、従来よく用いられてきている銀(仕事関数4.26eV)や銅(仕事関数4.65eV)では、集電線1から透明電極2へ電子が逆流する恐れがあった。以下の表1に示す如き仕事関数φmを有する金属材料を用いて集電線1を形成することで、上述の如く電子の逆流を抑制することができる。   Here, the metal material forming the current collector 1 is formed by selecting a material having a work function larger than that of the n-type semiconductor material forming the transparent electrode 2. For example, ITO (tin-doped indium oxide) is an example of an n-type semiconductor material that is most often used to form the transparent electrode 2. The ITO current collector is formed on the conductive film formed by vapor deposition or the like on the transparent substrate 31 with the metal current collector 1 by plating or conductive paste. The work function of ITO is 4.7 to 4.8 eV. For this reason, in silver (work function 4.26 eV) and copper (work function 4.65 eV) that are often used in the past, there is a possibility that electrons flow backward from the current collector 1 to the transparent electrode 2. By forming the current collector 1 using a metal material having a work function φm as shown in Table 1 below, the backflow of electrons can be suppressed as described above.

Figure 2007265636
Figure 2007265636

集電線1を形成する金属材料と、透明電極2を形成するn型半導体材料との仕事関数の差は大きいほど好ましいが、表1に示したものの内、仕事関数が多く且つ集電線1としての形成が容易であるAu、Ni、Pd、Se等をとりわけ好適に用いることができる。また形成した集電線1は、適宜保護材により被覆して電解質層による腐食等を防止するのが好ましい。   The larger the work function difference between the metal material forming the current collector 1 and the n-type semiconductor material forming the transparent electrode 2, the better. However, among those shown in Table 1, the work function is large and the current collector 1 Au, Ni, Pd, Se, etc., which can be easily formed, can be used particularly preferably. Moreover, it is preferable that the formed current collecting wire 1 is appropriately covered with a protective material to prevent corrosion or the like due to the electrolyte layer.

尚、本実施形態においては、透明電極2上に集電線1を形成しているが、集電線1を透明基板31上に設けておいて、集電線1上に透明電極2を設けるようにして集電線1を形成してもよい。   In this embodiment, the current collector 1 is formed on the transparent electrode 2. However, the current collector 1 is provided on the transparent substrate 31 and the transparent electrode 2 is provided on the current collector 1. The current collector 1 may be formed.

図2は、本発明に係わる色素増感型太陽電池の集電線形成方法が適用される色素増感型太陽電池の、他の例を示すもので、集電線付近の詳細を示す縦断面図である。透明電極2上に集電線1が形成されているが、集電線1と透明電極2との間には接触層11が設けられている。集電線1と透明電極2とは直接電気的に接触されておらず、接触層11を介していることで、集電線1を適宜の導電性材料から形成した場合であっても、接触層11を形成する金属材料のみを、透明電極2を形成するn型半導体材料より大きい仕事関数としておくことで、集電線1から透明電極2への電子の逆流を防止することができる。かかる構成とすることで、n型半導体材料より仕事関数の大きい金属材料は一般にコストの高いものであるが、断面積の小さい接触層11のみに用いて断面積の比較的大きい集電線1には比較的コストの低いものを用いてコストを低減することができる。また集電線1に、n型半導体材料より仕事関数は小さいが電気抵抗の低い銀や銅等の材料を用いることができ、高い集電効率と電子の逆流防止とを両立させることができる。   FIG. 2 shows another example of a dye-sensitized solar cell to which the dye-sensitized solar cell current collector forming method according to the present invention is applied. is there. Although the current collector 1 is formed on the transparent electrode 2, a contact layer 11 is provided between the current collector 1 and the transparent electrode 2. The current collector 1 and the transparent electrode 2 are not in direct electrical contact with each other, and the contact layer 11 is interposed between the contact layer 11 even when the current collector 1 is formed of an appropriate conductive material. By setting only the metal material that forms the material to a work function larger than that of the n-type semiconductor material that forms the transparent electrode 2, the backflow of electrons from the current collector 1 to the transparent electrode 2 can be prevented. With such a configuration, a metal material having a work function larger than that of the n-type semiconductor material is generally high in cost, but the current collector 1 having a relatively large cross-sectional area is used only for the contact layer 11 having a small cross-sectional area. Cost can be reduced by using a relatively low cost. In addition, a material such as silver or copper having a work function smaller than that of the n-type semiconductor material but having a low electric resistance can be used for the current collecting wire 1, and both high current collecting efficiency and prevention of backflow of electrons can be achieved.

接触層11を形成する金属材料は、仕事関数が透明電極を形成するn型半導体材料より大きいものであれば特に限定されるものではないが、上述の、図1における実施形態において示した金属材料をとりわけ好適に用いることができる。また、本実施形態においては、透明電極2上に集電線1を形成しているが、集電線1を透明基板31上に設けておいて、集電線1上に透明電極2を設けるようにして集電線1を形成してもよい。   The metal material for forming the contact layer 11 is not particularly limited as long as the work function is larger than that of the n-type semiconductor material for forming the transparent electrode. However, the metal material shown in the embodiment in FIG. Can be used particularly preferably. In the present embodiment, the current collector 1 is formed on the transparent electrode 2. However, the current collector 1 is provided on the transparent substrate 31, and the transparent electrode 2 is provided on the current collector 1. The current collector 1 may be formed.

本発明に係わる色素増感型太陽電池の集電線形成方法が適用される色素増感型太陽電池の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows an example of the dye-sensitized solar cell to which the current collector formation method of the dye-sensitized solar cell concerning this invention is applied. 本発明に係わる色素増感型太陽電池の集電線形成方法が適用される色素増感型太陽電池の、他の例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the other example of the dye-sensitized solar cell to which the current collector formation method of the dye-sensitized solar cell concerning this invention is applied. 金属とn型半導体の仕事関数の差により生じるショットキー障壁を説明する説明図である。It is explanatory drawing explaining the Schottky barrier produced by the difference of the work function of a metal and an n-type semiconductor.

符号の説明Explanation of symbols

1 集電線
11 接触層
2 透明電極
31 透明基板
32 対向基板
4 対向電極
5 光電極層
6 電解質層
10 色素増感型太陽電池
DESCRIPTION OF SYMBOLS 1 Current collector 11 Contact layer 2 Transparent electrode 31 Transparent substrate 32 Counter substrate 4 Counter electrode 5 Photoelectrode layer 6 Electrolyte layer 10 Dye-sensitized solar cell

Claims (5)

透明基板と、対向基板と、半導体材料に増感色素を担持させた光電極層と、電解質層と、前記透明基板に透明電極が、対向基板に対向電極が設けられ、少なくとも前記透明電極がn型半導体材料により形成され、該透明電極に金属製の集電線が電気的に接触されて設けられた色素増感型太陽電池の集電線形成方法であって、前記透明電極を形成するn型半導体材料より高い仕事関数の金属を選択して前記集電線を形成することを特徴とする色素増感型太陽電池の集電線形成方法。 A transparent substrate; a counter substrate; a photoelectrode layer having a sensitizing dye supported on a semiconductor material; an electrolyte layer; a transparent electrode on the transparent substrate; a counter electrode on the counter substrate; and at least the transparent electrode having n A method for forming a current collector for a dye-sensitized solar cell, which is formed of a type semiconductor material and is provided by bringing a metal current collector into electrical contact with the transparent electrode, the n-type semiconductor forming the transparent electrode A method of forming a current collector for a dye-sensitized solar cell, wherein a metal having a higher work function than a material is selected to form the current collector. 前記集電線を形成する金属は、Au、Ge、Ir、Ni、Os、Pd、Pt、Re、Rh、Ru、Se、Si、Teからなる群から選ばれた少なくとも1つであることを特徴とする請求項1に記載の色素増感型太陽電池の集電線形成方法。 The metal forming the current collector is at least one selected from the group consisting of Au, Ge, Ir, Ni, Os, Pd, Pt, Re, Rh, Ru, Se, Si, and Te. The method for forming a current collector for a dye-sensitized solar cell according to claim 1. 透明基板と、対向基板と、半導体材料に増感色素を担持させた光電極層と、電解質層と、前記透明基板及び対向基板に設けられ、n型半導体材料からなる透明電極及び対向電極とを備え、少なくとも前記透明電極に金属製の集電線が電気的に接触されて設けられた色素増感型太陽電池の集電線形成方法であって、前記透明電極と集電線との間に接触層が介在され、前記透明電極を形成するn型半導体材料より高い仕事関数の材料を選択して前記接触層を形成することを特徴とする色素増感型太陽電池の集電線形成方法。 A transparent substrate, a counter substrate, a photoelectrode layer in which a sensitizing dye is supported on a semiconductor material, an electrolyte layer, and a transparent electrode and a counter electrode provided on the transparent substrate and the counter substrate and made of an n-type semiconductor material. A dye-sensitized solar cell current collector formation method in which a metal current collector is electrically contacted with at least the transparent electrode, and a contact layer is provided between the transparent electrode and the current collector A method for forming a current collector for a dye-sensitized solar cell, wherein the contact layer is formed by selecting a material having a higher work function than an n-type semiconductor material that is interposed to form the transparent electrode. 前記接触層を形成する金属は、Au、Ge、Ir、Ni、Os、Pd、Pt、Re、Rh、Ru、Se、Si、Teからなる群から選ばれた少なくとも1つであることを特徴とする請求項1に記載の色素増感型太陽電池の集電線形成方法。 The metal forming the contact layer is at least one selected from the group consisting of Au, Ge, Ir, Ni, Os, Pd, Pt, Re, Rh, Ru, Se, Si, and Te. The method for forming a current collector for a dye-sensitized solar cell according to claim 1. 色素増感型太陽電池は、請求項1〜4のいずれかに記載の色素増感型太陽電池の集電線形成方法により作製された電極基板を用いて形成されていることを特徴とする
The dye-sensitized solar cell is formed by using an electrode substrate manufactured by the method for forming a current collector for a dye-sensitized solar cell according to any one of claims 1 to 4.
JP2006085308A 2006-03-27 2006-03-27 Current collecting wire forming method of dye-sensitized solar cell and dye-sensitized solar cell Pending JP2007265636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006085308A JP2007265636A (en) 2006-03-27 2006-03-27 Current collecting wire forming method of dye-sensitized solar cell and dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006085308A JP2007265636A (en) 2006-03-27 2006-03-27 Current collecting wire forming method of dye-sensitized solar cell and dye-sensitized solar cell

Publications (1)

Publication Number Publication Date
JP2007265636A true JP2007265636A (en) 2007-10-11

Family

ID=38638437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006085308A Pending JP2007265636A (en) 2006-03-27 2006-03-27 Current collecting wire forming method of dye-sensitized solar cell and dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP2007265636A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010140936A (en) * 2008-12-09 2010-06-24 Sanyo Electric Co Ltd Photovoltaic device and manufacturing method thereof
US9035171B2 (en) 2011-09-07 2015-05-19 Hyundai Motor Company Dye-sensitized solar cell
JP2020035915A (en) * 2018-08-30 2020-03-05 日本放送協会 Photoelectric conversion film, imaging apparatus, and photoelectric conversion element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005078857A (en) * 2003-08-28 2005-03-24 Fujikura Ltd Electrode substrate, photoelectric conversion element, and dye-sensitized solar cell
JP2005340710A (en) * 2004-05-31 2005-12-08 Toppan Printing Co Ltd Dye-sensitized solar cell and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005078857A (en) * 2003-08-28 2005-03-24 Fujikura Ltd Electrode substrate, photoelectric conversion element, and dye-sensitized solar cell
JP2005340710A (en) * 2004-05-31 2005-12-08 Toppan Printing Co Ltd Dye-sensitized solar cell and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010140936A (en) * 2008-12-09 2010-06-24 Sanyo Electric Co Ltd Photovoltaic device and manufacturing method thereof
US9035171B2 (en) 2011-09-07 2015-05-19 Hyundai Motor Company Dye-sensitized solar cell
JP2020035915A (en) * 2018-08-30 2020-03-05 日本放送協会 Photoelectric conversion film, imaging apparatus, and photoelectric conversion element
JP7164996B2 (en) 2018-08-30 2022-11-02 日本放送協会 Photoelectric conversion film, imaging device, photoelectric conversion device, method for manufacturing imaging device, and method for manufacturing photoelectric conversion device

Similar Documents

Publication Publication Date Title
US9773928B2 (en) Solar cell with electroplated metal grid
US9502590B2 (en) Photovoltaic devices with electroplated metal grids
KR100993511B1 (en) Solar cell and manufacturing method of the same
US20170194516A1 (en) Advanced design of metallic grid in photovoltaic structures
JP5174635B2 (en) Solar cell element
JP2002217430A (en) P-n junction solar battery
JP2004128267A (en) Conductive glass substrate for photoelectric conversion element and method for manufacturing the same
TW201225325A (en) Solar cell and manufacturing method thereof
US20080054259A1 (en) Semiconductor Component with an Electric Contact Arranged on at Least One Surface
JP2005268239A (en) Photoelectric converter
JP2007265636A (en) Current collecting wire forming method of dye-sensitized solar cell and dye-sensitized solar cell
EP2511961A1 (en) Device for generating photovoltaic power and method for manufacturing same
JP5248471B2 (en) Photovoltaic device and method of manufacturing the same
TW201340361A (en) Solar cell and method of manufacturing a solar cell
US10998457B2 (en) Contacts for a photovoltaic cell with two active surfaces
JP2015198141A (en) Method of manufacturing solar battery
JP2017045818A (en) Back electrode type solar battery cell and method of manufacturing the same
KR101055980B1 (en) Thin film type solar cell and method for manufacturing thereof
JP5406434B2 (en) Method for producing dye-sensitized solar cell
CN210200742U (en) Solar cell
CN102832263A (en) Solar cell having back surface field structures and manufacturing method thereof
KR101358513B1 (en) Structure for improving adhesive strength in solar cell with plated electrode and method thereof
JP5935047B2 (en) SOLAR CELL, SOLAR CELL MODULE, AND SOLAR CELL MANUFACTURING METHOD
JP6191995B2 (en) Solar cell module
JP2005101432A (en) Photovoltaic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120612