JP2007261986A - Method for producing furandicarboxylic acid (fdca) - Google Patents

Method for producing furandicarboxylic acid (fdca) Download PDF

Info

Publication number
JP2007261986A
JP2007261986A JP2006088310A JP2006088310A JP2007261986A JP 2007261986 A JP2007261986 A JP 2007261986A JP 2006088310 A JP2006088310 A JP 2006088310A JP 2006088310 A JP2006088310 A JP 2006088310A JP 2007261986 A JP2007261986 A JP 2007261986A
Authority
JP
Japan
Prior art keywords
alkali
producing
dff
furandicarboxylic acid
diformylfuran
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006088310A
Other languages
Japanese (ja)
Other versions
JP5006561B2 (en
Inventor
Takenobu Kono
岳信 河野
Hirohide Matsuhisa
裕英 松久
Toshinari Miura
俊成 三浦
Hirokazu Kakinuma
宏和 柿沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006088310A priority Critical patent/JP5006561B2/en
Publication of JP2007261986A publication Critical patent/JP2007261986A/en
Application granted granted Critical
Publication of JP5006561B2 publication Critical patent/JP5006561B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing FDCA by which the amount of a used catalyst can be reduced, the energy consumption can be reduced by a mild condition, the FDCA can be produced from diformylfuran (DFF), and the technique is enriched. <P>SOLUTION: The FDCA is produced by feeding the DFF, water, a metal oxide catalyst, an alkali, and air or oxygen to oxidize the DFF. One or more of hydroxides of alkali metals and hydroxides of alkaline earth metals are used as the alkali, and silver oxide and copper oxide are used as the metal oxide catalyst. The reaction is preferably carried out at ≥1°C and ≤50°C. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、穏やかな条件で、効率よく、高収率でフランジカルボン酸を得ることができるフランジカルボン酸の製造方法に関する。   The present invention relates to a method for producing furandicarboxylic acid, which can obtain furandicarboxylic acid efficiently at a high yield under mild conditions.

フランジカルボン酸(FDCA)、特に、フラン−2,5−ジカルボン酸は医薬、農薬、殺虫剤、抗菌剤、香料、その他各種の分野の中間体として利用価値が高い。FDCAの合成方法としては、ジホルミルフラン(DFF)を酸化する方法が知られている。   Flanged carboxylic acid (FDCA), in particular, furan-2,5-dicarboxylic acid, has high utility value as an intermediate in pharmaceuticals, agricultural chemicals, insecticides, antibacterial agents, fragrances, and other various fields. As a method for synthesizing FDCA, a method for oxidizing diformylfuran (DFF) is known.

DFFを酸化してFDCAを合成する方法としては、具体的には、DFF0.4gと酸化銀0.9gとを共存させ、90〜95℃で15分程度、攪拌する方法が報告されている(非特許文献1)。また、酸化銅-酸化銀触媒を用いて、水酸化ナトリウム水溶液中でフルフラールを55℃において酸素酸化し、フランカルボン酸を86〜90%の収率で得る方法が報告されている(非特許文献2)。   As a method for synthesizing FDCA by oxidizing DFF, specifically, a method in which 0.4 g of DFF and 0.9 g of silver oxide coexist and stirred at 90 to 95 ° C. for about 15 minutes has been reported ( Non-patent document 1). In addition, a method has been reported in which furfural is oxidized with oxygen at 55 ° C. in a sodium hydroxide aqueous solution using a copper oxide-silver oxide catalyst to obtain furancarboxylic acid in a yield of 86 to 90% (non-patent document). 2).

しかしながら、非特許文献1に記載される製法においては、酸化銀触媒の使用量が多量であり、温度が90℃以上必要であること、FDCAの収率は80%程度であることなどから、工業的製造に適用するにはエネルギー消費量が多く、触媒費用等コスト面でも問題がある。また、非特許文献2に記載される製法は、1官能基を酸化する方法であり、また温度が55℃必要で、エネルギー消費量のより一層の低減を図る必要がある。
El−Hajj,T.Bull.Soc.Chim.Fr.1987,855−860 第四版実験化学講座23、有機合成V、酸化反応、P415
However, in the production method described in Non-Patent Document 1, the amount of silver oxide catalyst used is large, the temperature is required to be 90 ° C. or higher, and the yield of FDCA is about 80%. When applied to industrial production, the amount of energy consumed is large, and there are problems in terms of costs such as catalyst costs. In addition, the production method described in Non-Patent Document 2 is a method of oxidizing one functional group, requires a temperature of 55 ° C., and needs to further reduce energy consumption.
El-Hajj, T .; Bull. Soc. Chim. Fr. 1987, 855-860 Fourth Edition Experimental Chemistry Course 23, Organic Synthesis V, Oxidation Reaction, P415

本発明の課題は、触媒の使用量の減少を図り、穏やかな条件で、エネルギー消費量の低減を図り、DFFから定量的にFDCAを製造することができるFDCAの製造方法を提供し、技術の豊富化を図ることができるFDCAの製造方法を提供することにある。   An object of the present invention is to provide a method for producing FDCA that can reduce the amount of catalyst used, reduce energy consumption under mild conditions, and produce FDCA quantitatively from DFF. An object of the present invention is to provide a method of manufacturing FDCA that can be enriched.

本発明者らは、穏やかな条件により、DFFを酸化してFDCAを製造する方法について鋭意研究した。その結果、アルカリ存在下で、DFFに、水、金属酸化物触媒、空気または酸素を供給することにより、50℃以下の温度で、触媒の使用量を少量にしてもDFFの酸化反応が進行し、高収率でFDCAを得ることができることを見い出した。かかる知見に基づき、本発明を完成するに至った。   The present inventors have intensively studied a method for producing FDCA by oxidizing DFF under mild conditions. As a result, by supplying water, metal oxide catalyst, air or oxygen to the DFF in the presence of alkali, the oxidation reaction of the DFF proceeds at a temperature of 50 ° C. or less even if the amount of the catalyst used is small. It has been found that FDCA can be obtained in high yield. Based on this knowledge, the present invention has been completed.

すなわち、本発明は、ジホルミルフランと、水と、金属酸化物触媒と、アルカリと、空気または酸素とを供給して、ジホルミルフランを酸化することを特徴とするフランジカルボン酸の製造方法に関する。   That is, the present invention relates to a process for producing furandicarboxylic acid, characterized in that diformylfuran, water, metal oxide catalyst, alkali, air or oxygen are supplied to oxidize diformylfuran. .

また、本発明は、ジホルミルフラン水溶液に、金属酸化物触媒と、アルカリと、空気または酸素とを供給して、ジホミルフランを酸化することを特徴とするフランジカルボン酸の製造方法に関する。   The present invention also relates to a method for producing furandicarboxylic acid, which comprises oxidizing a diformylfuran by supplying a metal oxide catalyst, an alkali, and air or oxygen to a diformylfuran aqueous solution.

本発明のフランジカルボン酸の製造方法は、触媒の使用量の減少を図り、穏やかな条件で、エネルギー消費量の低減を図り、DFFから定量的にFDCAを製造することができるFDCAの製造方法を提供し、技術の豊富化を図ることができる。   The method for producing furandicarboxylic acid of the present invention is a method for producing FDCA capable of reducing the amount of catalyst used, reducing energy consumption under mild conditions, and producing FDCA quantitatively from DFF. It can be provided to enrich the technology.

本発明のフランジカルボン酸の製造方法は、ジホルミルフランと、水と、金属酸化物触媒と、アルカリと、空気または酸素とを供給して、ジホルミルフランを酸化することを特徴とする。   The method for producing furandicarboxylic acid according to the present invention is characterized in that diformylfuran is oxidized by supplying diformylfuran, water, a metal oxide catalyst, an alkali, and air or oxygen.

本発明のフランジカルボン酸の製造方法に用いるDFFとしては、2,5−ジホルミルフランが、反応性に優れ、中間体としての利用範囲が広く、好ましい。DFFは、セルロース、澱粉などの六糖類などの多糖類、ショ糖、マルトース、セロビオース、ラクトースなどの少糖類、フルクトース、グルコースなどの単糖類等の糖類の脱水反応によって得られる5−ヒドロキシメチルフルフラールを酸化して得ることができる。DFFは固体の状態で使用することもでき、また、水などの媒体に分散・溶解して使用することもできる。   As the DFF used in the method for producing furandicarboxylic acid of the present invention, 2,5-diformylfuran is preferable because of its excellent reactivity and wide range of use as an intermediate. DFF is 5-hydroxymethylfurfural obtained by dehydration reaction of polysaccharides such as hexasaccharides such as cellulose and starch, oligosaccharides such as sucrose, maltose, cellobiose and lactose, and monosaccharides such as fructose and glucose. It can be obtained by oxidation. DFF can be used in a solid state, or can be used after being dispersed and dissolved in a medium such as water.

DFFの原料中の含有量としては、0.1質量%以上20.0質量%以下であることが好ましい。ここで原料とは、ジホルミルフランと、水と、金属酸化物触媒と、アルカリとを含むものをいう。DFFの原料中の含有量が0.1質量%以上であれば、得られるFDCA濃度が高く、回収が容易であり、20.0質量%以下であれば、FDCAへの酸化反応が効率よく進行する。   As content in the raw material of DFF, it is preferable that they are 0.1 mass% or more and 20.0 mass% or less. Here, the raw material means a material containing diformyl furan, water, a metal oxide catalyst, and an alkali. If the content of DFF in the raw material is 0.1% by mass or more, the resulting FDCA concentration is high and easy to recover, and if it is 20.0% by mass or less, the oxidation reaction to FDCA proceeds efficiently. To do.

また、DFFは予め水に分散・溶解して用いることができる。この場合、水分散・溶解液のDFFの濃度はDFFが均一に溶解するほどの量を用いることが好ましい。この水の使用量は原料中の水に含まれる。   Moreover, DFF can be dispersed and dissolved in water in advance. In this case, it is preferable to use the amount of DFF in the aqueous dispersion / dissolution so that the DFF is uniformly dissolved. The amount of water used is included in the water in the raw material.

本発明のフランジカルボン酸の製造方法に用いる金属酸化物触媒としては、例えば、酸化銀、酸化銅などの金属酸化物を挙げることができ、これらを組み合わせて使用することが好ましい。金属酸化物触媒として、米国特許3326944(1967)実施例2に準じた方法で調製したものを好ましいものとして挙げることができる。具体的には、硫酸銅と硝酸銀の混合溶液に水酸化ナトリウム水溶液を加え、析出する酸化銅・酸化銀の混合物を用いることができる。   As a metal oxide catalyst used for the manufacturing method of furandicarboxylic acid of this invention, metal oxides, such as silver oxide and copper oxide, can be mentioned, for example, It is preferable to use combining these. As a metal oxide catalyst, what was prepared by the method according to US Patent 3326944 (1967) Example 2 can be mentioned as a preferable thing. Specifically, a sodium hydroxide aqueous solution is added to a mixed solution of copper sulfate and silver nitrate, and a mixture of precipitated copper oxide and silver oxide can be used.

上記金属酸化物触媒の使用量としては、DFFに対して1.0質量%以上100質量%以下の範囲が好ましい。金属酸化物触媒の使用量がDFFに対して1.0質量%以上であれば、FDCAを効率よく製造することができ、100質量%以下であれば経済的な観点から好ましい。   As the usage-amount of the said metal oxide catalyst, the range of 1.0 mass% or more and 100 mass% or less is preferable with respect to DFF. If the amount of the metal oxide catalyst used is 1.0% by mass or more with respect to DFF, FDCA can be produced efficiently, and if it is 100% by mass or less, it is preferable from an economical viewpoint.

本発明のフランジカルボン酸の製造方法に用いるアルカリとしては、例えば、アルカリ金属の水酸化物、またはアルカリ土類金属の水酸化物を挙げることができる。アルカリ金属の水酸化物としては、具体的には、水酸化ナトリウム、水酸化カリウム等、また、アルカリ土類金属の水酸化物としては、水酸化カルシウム、水酸化バリウム等を挙げることができ、これらは1種または2種以上を組み合わせて使用することができる。   Examples of the alkali used in the method for producing furandicarboxylic acid of the present invention include an alkali metal hydroxide and an alkaline earth metal hydroxide. Specific examples of the alkali metal hydroxide include sodium hydroxide and potassium hydroxide, and examples of the alkaline earth metal hydroxide include calcium hydroxide and barium hydroxide. These can be used alone or in combination of two or more.

上記アルカリの使用量としては、DFFに対して3.0モル当量以上20.0モル当量以下であることが好ましい。アルカリの使用量がDFFに対して3.0モル当量以上であれば、FDCAを効率よく製造することができ、20.0モル当量以下であれば、経済的な観点から好ましい。   The amount of the alkali used is preferably 3.0 to 20.0 molar equivalents relative to DFF. If the usage-amount of an alkali is 3.0 molar equivalent or more with respect to DFF, FDCA can be manufactured efficiently and if it is 20.0 molar equivalent or less, it is preferable from an economical viewpoint.

本発明のフランジカルボン酸の製造方法として、上記DFF、水、金属酸化物触媒、アルカリと共に供給する空気または酸素は、バブリングにより供給することができる。空気に含まれる酸素、または酸素ガスにより、アルカリ性水溶媒中で金属酸化物触媒存在下、DFFの酸化反応を容易に進行させることができる。   As the method for producing furandicarboxylic acid of the present invention, the air or oxygen supplied together with the DFF, water, metal oxide catalyst, and alkali can be supplied by bubbling. Oxygen contained in the air or oxygen gas allows the DFF oxidation reaction to proceed easily in the presence of a metal oxide catalyst in an alkaline water solvent.

これらの各原料の供給順番としては、いずれであってもよいが、例えば、金属酸化物触媒とアルカリとを含有した水媒体に空気または酸素のバブリングを行い、これにDFFの水溶液を攪拌しつつ滴下することができる。また、金属酸化物触媒を含有する水媒体に空気または酸素のバブリングを行い、これにDFFとアルカリとを含有する水媒体を滴下することができる。また、DFF、金属酸化物触媒、アルカリを水に同時に添加して混合し、空気または酸素のバブリングを行うこともできる。   Any of these raw materials may be supplied in any order. For example, air or oxygen is bubbled into an aqueous medium containing a metal oxide catalyst and an alkali, and an aqueous solution of DFF is stirred. Can be dripped. In addition, air or oxygen can be bubbled into an aqueous medium containing a metal oxide catalyst, and an aqueous medium containing DFF and alkali can be added dropwise thereto. Further, DFF, a metal oxide catalyst, and alkali can be simultaneously added to water and mixed to perform bubbling of air or oxygen.

かかるDFFの酸化反応は、1℃から50℃で行うことが好ましい。酸化反応温度が1℃以上であれば、FDCAを効率よく製造することができ、50℃以下であれば、DFFが熱により分解されるのを抑制することができる。副生成物のヒドロキシメチルフランカルボン酸(HMFA)の生成を抑制し、効率よくFDCAを製造できることに加え、エネルギー消費量を最小限とすることができるため、室温で行うことが、より好ましい。   The oxidation reaction of DFF is preferably performed at 1 ° C to 50 ° C. If the oxidation reaction temperature is 1 ° C. or higher, FDCA can be produced efficiently, and if it is 50 ° C. or lower, DFF can be prevented from being decomposed by heat. It is more preferable to carry out at room temperature because the production of by-product hydroxymethylfurancarboxylic acid (HMFA) can be suppressed and FDCA can be efficiently produced, and energy consumption can be minimized.

このようなフランジカルボン酸の製造方法により製造されるフランジカルボン酸としては、フラン−2,5−ジカルボン酸であることが、中間体として有用性に富むことから好ましい。   The furan carboxylic acid produced by such a method for producing furan carboxylic acid is preferably furan-2,5-dicarboxylic acid because it is highly useful as an intermediate.

以下に、本発明のフランジカルボン酸の製造方法を具体的に詳細に説明するが、本発明の技術的範囲はこれらに限定されるものではない。   Although the manufacturing method of the furandicarboxylic acid of this invention is demonstrated concretely below in detail, the technical scope of this invention is not limited to these.

[金属酸化物触媒の合成]
攪拌棒、温度計、ジムロート冷却管、玉栓を装着した5Lの四つロフラスコに、CuSO4・5H2O400gとイオン交換水2Lとを仕込み、攪拌しながらマントルヒーターにより70℃に昇温した。1Lの三角フラスコにAgNO380gとイオン交換水500mLとを添加し、スターラーで攪拌し溶解させ、溶解したAgNO3水溶液をできるだけ素早く上記四つ口フラスコに添加した。四つロフラスコの温度が一旦70℃より下がるので、70℃に戻し安定したのを確認した。白色結晶が析出した。別に1L三角フラスコに、水酸化ナトリウム200gとイオン交換水500mLとを添加し、発熱を注意しながら攪拌し溶解した。溶解した水酸化ナトリウム水溶液を温度が下がらないように保温した。100mL滴下ロートを用い、保温している水酸化ナトリウム水溶液を60分間かけて、四つ口フラスコにゆっくり滴下した。四つ口フラスコ内の水溶液は徐々に茶黒色に着色した。水酸化ナトリウム水溶液滴下後70℃で30分間攪拌を継続して行った。室温まで冷却し、ブフナーロートと吸引瓶を用いてアスピレーターで吸引濾過した。イオン交換水で数回掛け洗浄を行い、酸化銀酸化銅触媒を得た。酸化銀酸化銅触媒はウエット状態のままサンプル瓶に保管し、使用した。
[Synthesis of metal oxide catalysts]
400 g CuSO 4 .5H 2 O and 2 L ion-exchanged water were charged into a 5 L four-neck flask equipped with a stir bar, thermometer, Dimroth condenser, and ball plug, and heated to 70 ° C. with a mantle heater while stirring. To a 1 L Erlenmeyer flask, 80 g of AgNO 3 and 500 mL of ion exchange water were added, stirred and dissolved with a stirrer, and the dissolved AgNO 3 aqueous solution was added to the four-necked flask as quickly as possible. Since the temperature of the four-flask was once lowered from 70 ° C, it was confirmed that the temperature was returned to 70 ° C and stabilized. White crystals precipitated. Separately, 200 g of sodium hydroxide and 500 mL of ion-exchanged water were added to a 1 L Erlenmeyer flask, and dissolved by stirring with careful attention to heat generation. The dissolved aqueous sodium hydroxide solution was kept warm so that the temperature did not drop. Using a 100 mL dropping funnel, a heated sodium hydroxide aqueous solution was slowly added dropwise to the four-necked flask over 60 minutes. The aqueous solution in the four-necked flask was gradually colored brown black. After dropwise addition of the aqueous sodium hydroxide solution, stirring was continued at 70 ° C. for 30 minutes. The mixture was cooled to room temperature, and suction filtered with an aspirator using a Buchner funnel and a suction bottle. It was washed several times with ion-exchanged water to obtain a silver oxide copper oxide catalyst. The silver oxide copper oxide catalyst was stored in a sample bottle in a wet state and used.

[実施例1]
水5.7gに酸化銀酸化銅触媒を0.124g添加し、攪拌しつつ2L/分の量の空気をバブリングした。また2,5−DFF0.124gを、水5.7gに溶解し、2,5−DFFに対して5.2モル当量の水酸化ナトリウムを添加した。この2,5−DFFのアルカリ溶液を酸化銀酸化銅触媒分散溶液に30分間滴下した。このとき溶液中の温度は25℃であった。滴下終了後、10分間攪拌を継続した。
[Example 1]
0.124 g of silver oxide copper oxide catalyst was added to 5.7 g of water, and 2 L / min of air was bubbled with stirring. Further, 0.124 g of 2,5-DFF was dissolved in 5.7 g of water, and 5.2 molar equivalent of sodium hydroxide was added to 2,5-DFF. This alkaline solution of 2,5-DFF was added dropwise to the silver oxide copper oxide catalyst dispersion for 30 minutes. At this time, the temperature in the solution was 25 ° C. After completion of the dropping, stirring was continued for 10 minutes.

反応液の分析を高速液体クロマトグラフィー(HPLC)を用いて行った。フラン−2,5−ジカルボン酸の収率は100%であった。結果を表1に示す。   The reaction solution was analyzed using high performance liquid chromatography (HPLC). The yield of furan-2,5-dicarboxylic acid was 100%. The results are shown in Table 1.

[実施例2]
2,5−DFF0.124gと2,5−DFFに対して5.2モル当量の水酸化ナトリウムと酸化銀酸化銅触媒0.124gを水11.4gに添加し、攪拌しながら2L/分の量の空気をバブリングした。このとき溶液中の温度は25℃であった。バブリングを60分行った。
[Example 2]
0.124 g of 2,5-DFF and 0.124 g of sodium hydroxide and 0.124 g of silver oxide copper oxide catalyst with respect to 2,5-DFF were added to 11.4 g of water and stirred at 2 L / min. An amount of air was bubbled. At this time, the temperature in the solution was 25 ° C. Bubbling was performed for 60 minutes.

反応液の分析をHPLCを用いて行った。フラン−2,5−ジカルボン酸の収率は75.9%、5−ヒドロキシメチルフラン−2−カルボン酸の収率は24.1%であった。   The reaction solution was analyzed using HPLC. The yield of furan-2,5-dicarboxylic acid was 75.9%, and the yield of 5-hydroxymethylfuran-2-carboxylic acid was 24.1%.

その後、バブリングを継続し合計で840分行い、同様にしてHPLCによる分析を行った。フラン−2,5−ジカルボン酸の収率は77.5%、5−ヒドロキシメチルフラン−2−カルボン酸の収率は22.5%であった。結果を表2に示す。   Thereafter, bubbling was continued for a total of 840 minutes, and analysis by HPLC was performed in the same manner. The yield of furan-2,5-dicarboxylic acid was 77.5%, and the yield of 5-hydroxymethylfuran-2-carboxylic acid was 22.5%. The results are shown in Table 2.

[比較例1]
酸化銀酸化銅触媒を使用しない他は、実施例2と同様に行った。バブリングの開始後40分経過した時点で、反応液の分析をHPLCを用いて行った。2−カルボキシ−5−ホルミルフラン(CFF)と5−ヒドロキシメチルフルフラール(5−HMF)の生成が確認されたが、フラン−2,5−ジカルボン酸は全く確認できなかった。
[Comparative Example 1]
The same procedure as in Example 2 was performed except that the silver oxide copper oxide catalyst was not used. When 40 minutes had passed after the start of bubbling, the reaction solution was analyzed using HPLC. Although formation of 2-carboxy-5-formylfuran (CFF) and 5-hydroxymethylfurfural (5-HMF) was confirmed, furan-2,5-dicarboxylic acid was not confirmed at all.

その後、バブリングを継続し合計で780分行ったが、FDCAの生成は見られなかった。   Thereafter, bubbling was continued for a total of 780 minutes, but no FDCA formation was observed.

[比較例2]
2,5−DFF0.124gと2,5−DFFに対して1.3モル当量の水酸化ナトリウムと酸化銀酸化銅触媒0.124gを水11.4gに添加し、攪拌しながら2L/分の量の空気をバブリングした。このとき溶液中の温度は25℃であった。バブリングの開始後40分経過した時点で、反応液の分析をHPLCを用いて行った。フラン−2,5−ジカルボン酸の収率は10.3%、2−カルボキシ−5−ホルミルフラン(CFF)の収率は64.7%、5−ヒドロキシメチルフルフラール(5−HMF)の収率は7.6%であった。その後、バブリングを継続し合計で90分行ったが、FDCAの生成率は大きな向上は見られなかった。結果を表4に示す。
[Comparative Example 2]
0.124 g of 2,5-DFF and 1.3 molar equivalents of sodium hydroxide and 0.124 g of silver oxide copper oxide catalyst with respect to 2,5-DFF were added to 11.4 g of water, and 2 L / min with stirring. An amount of air was bubbled. At this time, the temperature in the solution was 25 ° C. When 40 minutes had passed after the start of bubbling, the reaction solution was analyzed using HPLC. The yield of furan-2,5-dicarboxylic acid was 10.3%, the yield of 2-carboxy-5-formylfuran (CFF) was 64.7%, and the yield of 5-hydroxymethylfurfural (5-HMF). Was 7.6%. Thereafter, bubbling was continued for a total of 90 minutes, but no significant improvement was observed in the production rate of FDCA. The results are shown in Table 4.

Figure 2007261986
Figure 2007261986

Figure 2007261986
Figure 2007261986

Figure 2007261986
Figure 2007261986

Figure 2007261986
Figure 2007261986

Claims (9)

ジホルミルフランと、水と、金属酸化物触媒と、アルカリと、空気または酸素とを供給して、ジホルミルフランを酸化することを特徴とするフランジカルボン酸の製造方法。   A method for producing furancarboxylic acid, which comprises oxidizing diformylfuran by supplying diformylfuran, water, a metal oxide catalyst, an alkali, air or oxygen. ジホルミルフラン水溶液に、金属酸化物触媒と、アルカリと、空気または酸素とを供給して、ジホミルフランを酸化することを特徴とするフランジカルボン酸の製造方法。   A method for producing furandicarboxylic acid, comprising supplying a metal oxide catalyst, an alkali, and air or oxygen to a diformylfuran aqueous solution to oxidize diformylfuran. アルカリとして、アルカリ金属の水酸化物およびアルカリ土類金属の水酸化物のいずれか1種または2種以上を用いることを特徴とする請求項1または2記載のフランジカルボン酸の製造方法。   The method for producing furandicarboxylic acid according to claim 1 or 2, wherein any one or more of alkali metal hydroxides and alkaline earth metal hydroxides are used as the alkali. アルカリとして、水酸化ナトリウム、水酸化カリウム、水酸化カルシウムおよび水酸化バリウムから選ばれるいずれか1種または2種以上を用いることを特徴とする請求項1または2記載のフランジカルボン酸の製造方法。   The method for producing furandicarboxylic acid according to claim 1 or 2, wherein any one or more selected from sodium hydroxide, potassium hydroxide, calcium hydroxide and barium hydroxide is used as the alkali. アルカリを、ジホルミルフランの3.0モル当量以上20.0モル当量以下の範囲で使用することを特徴とする請求項1から4のいずれか記載のフランジカルボン酸の製造方法。   The method for producing furandicarboxylic acid according to any one of claims 1 to 4, wherein the alkali is used in a range of 3.0 to 20.0 molar equivalents of diformylfuran. 金属酸化物触媒として、酸化銀と酸化銅とを用いることを特徴とする請求項1から5のいずれか記載のフランジカルボン酸の製造方法。   6. The method for producing flange carboxylic acid according to claim 1, wherein silver oxide and copper oxide are used as the metal oxide catalyst. 金属酸化物触媒を、ジホルミルフランに対して1.0質量%以上100質量%以下の範囲で使用することを特徴とする請求項1から6のいずれか記載のフランジカルボン酸の製造方法。   The method for producing furandicarboxylic acid according to any one of claims 1 to 6, wherein the metal oxide catalyst is used in a range of 1.0 to 100 mass% with respect to diformylfuran. ジホルミルフランを、原料全体に対して0.1質量%以上20.0質量%以下の範囲で使用することを特徴とする請求項1から7のいずれか記載のフランジカルボン酸の製造方法。   The method for producing furandicarboxylic acid according to any one of claims 1 to 7, wherein diformyl furan is used in a range of 0.1% by mass or more and 20.0% by mass or less based on the whole raw material. 1℃以上50℃以下の温度で行うことを特徴とする請求項1から8のいずれか記載のフランジカルボン酸の製造方法。


The method for producing furandicarboxylic acid according to any one of claims 1 to 8, wherein the method is performed at a temperature of 1 ° C or higher and 50 ° C or lower.


JP2006088310A 2006-03-28 2006-03-28 Method for producing furandicarboxylic acid Active JP5006561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006088310A JP5006561B2 (en) 2006-03-28 2006-03-28 Method for producing furandicarboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006088310A JP5006561B2 (en) 2006-03-28 2006-03-28 Method for producing furandicarboxylic acid

Publications (2)

Publication Number Publication Date
JP2007261986A true JP2007261986A (en) 2007-10-11
JP5006561B2 JP5006561B2 (en) 2012-08-22

Family

ID=38635332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006088310A Active JP5006561B2 (en) 2006-03-28 2006-03-28 Method for producing furandicarboxylic acid

Country Status (1)

Country Link
JP (1) JP5006561B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2400508A1 (en) 2007-10-05 2011-12-28 Shin-Etsu Polymer Co. Ltd. conductive polymer solution, conductive coating film and input device
JP2013534219A (en) * 2010-08-06 2013-09-02 ノバモント・ソシエタ・ペル・アチオニ Method for synthesizing 2,5-furandicarboxylic acid
US8748479B2 (en) 2012-06-22 2014-06-10 Eastman Chemical Company Process for purifying crude furan 2,5-dicarboxylic acid using hydrogenation
US8772513B2 (en) 2012-08-30 2014-07-08 Eastman Chemical Company Oxidation process to produce a crude dry carboxylic acid product
US8791278B2 (en) 2011-05-24 2014-07-29 Eastman Chemical Company Oxidation process to produce a crude and/or purified carboxylic acid product
US8791277B2 (en) 2011-05-24 2014-07-29 Eastman Chemical Company Oxidation process to produce a crude and/or purified carboxylic acid product
US8796477B2 (en) 2011-05-24 2014-08-05 Eastman Chemical Company Oxidation process to produce a crude and/or purified carboxylic acid product
US8809556B2 (en) 2012-07-20 2014-08-19 Eastman Chemical Company Oxidation process to produce a purified carboxylic acid product via solvent displacement and post oxidation
US8846960B2 (en) 2011-05-24 2014-09-30 Eastman Chemical Company Oxidation process to produce a crude and/or purified carboxylic acid product
US8916720B2 (en) 2012-11-20 2014-12-23 Eastman Chemical Company Process for producing dry purified furan-2,5-dicarboxylic acid with oxidation off-gas treatment
US8916719B2 (en) 2012-11-20 2014-12-23 Eastman Chemical Company Process for producing dry purified furan-2,5-dicarboxylic acid with oxidation off-gas treatment
US8969404B2 (en) 2012-06-22 2015-03-03 Eastman Chemical Company Purifying crude furan 2,5-dicarboxylic acid by hydrogenation
US9029580B2 (en) 2012-07-20 2015-05-12 Eastman Chemical Company Oxidation process to produce a purified carboxylic acid product via solvent displacement and post oxidation
US9156805B2 (en) 2012-11-20 2015-10-13 Eastman Chemical Company Oxidative purification method for producing purified dry furan-2,5-dicarboxylic acid
US9199958B2 (en) 2011-05-24 2015-12-01 Eastman Chemical Company Oxidation process to produce a crude and/or purified carboxylic acid product
US9504994B2 (en) 2014-05-08 2016-11-29 Eastman Chemical Company Furan-2,5-dicarboxylic acid purge process
US9943834B2 (en) 2014-05-08 2018-04-17 Eastman Chemical Company Furan-2,5-dicarboxylic acid purge process
CN113121477A (en) * 2021-06-02 2021-07-16 宁波国生科技有限公司 Preparation method of 2, 5-tetrahydrofuran dicarboxylic acid

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3326944A (en) * 1964-03-09 1967-06-20 Atlas Chem Ind Method of producing dehydromucic acid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3326944A (en) * 1964-03-09 1967-06-20 Atlas Chem Ind Method of producing dehydromucic acid

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2400508A1 (en) 2007-10-05 2011-12-28 Shin-Etsu Polymer Co. Ltd. conductive polymer solution, conductive coating film and input device
JP2013534219A (en) * 2010-08-06 2013-09-02 ノバモント・ソシエタ・ペル・アチオニ Method for synthesizing 2,5-furandicarboxylic acid
US9199958B2 (en) 2011-05-24 2015-12-01 Eastman Chemical Company Oxidation process to produce a crude and/or purified carboxylic acid product
US8791278B2 (en) 2011-05-24 2014-07-29 Eastman Chemical Company Oxidation process to produce a crude and/or purified carboxylic acid product
US8791277B2 (en) 2011-05-24 2014-07-29 Eastman Chemical Company Oxidation process to produce a crude and/or purified carboxylic acid product
US8796477B2 (en) 2011-05-24 2014-08-05 Eastman Chemical Company Oxidation process to produce a crude and/or purified carboxylic acid product
US8846960B2 (en) 2011-05-24 2014-09-30 Eastman Chemical Company Oxidation process to produce a crude and/or purified carboxylic acid product
US10350584B2 (en) 2011-05-24 2019-07-16 Eastman Chemical Company Furan-2,5-dicarboxylic acid purge process
US9428480B2 (en) 2011-05-24 2016-08-30 Eastman Chemical Company Oxidation process to produce a crude and/or purified carboxylic acid product
US8748479B2 (en) 2012-06-22 2014-06-10 Eastman Chemical Company Process for purifying crude furan 2,5-dicarboxylic acid using hydrogenation
US9458122B2 (en) 2012-06-22 2016-10-04 Eastman Chemical Company Process for purifying crude furan 2,5-dicarboxylic acid using hydrogenation
US8969404B2 (en) 2012-06-22 2015-03-03 Eastman Chemical Company Purifying crude furan 2,5-dicarboxylic acid by hydrogenation
US9249118B2 (en) 2012-06-22 2016-02-02 Eastman Chemical Company Purifying crude furan 2,5-dicarboxylic acid by hydrogenation
US9156806B2 (en) 2012-06-22 2015-10-13 Eastman Chemical Company Process for purifying crude furan 2,5-dicarboxylic acid using hydrogenation
US8809556B2 (en) 2012-07-20 2014-08-19 Eastman Chemical Company Oxidation process to produce a purified carboxylic acid product via solvent displacement and post oxidation
US9676740B2 (en) 2012-07-20 2017-06-13 Eastman Chemical Company Oxidation process to produce a purified carboxylic acid product via solvent displacement and post oxidation
US9029580B2 (en) 2012-07-20 2015-05-12 Eastman Chemical Company Oxidation process to produce a purified carboxylic acid product via solvent displacement and post oxidation
US9266850B2 (en) 2012-07-20 2016-02-23 Eastman Chemical Company Oxidation process to produce a purified carboxylic acid product via solvent displacement and post oxidation
US10011579B2 (en) 2012-07-20 2018-07-03 Eastman Chemical Company Oxidation process to produce a purified carboxylic acid product via solvent displacement and post oxidation
US9206149B2 (en) 2012-08-30 2015-12-08 Eastman Chemical Company Oxidation process to produce a crude dry carboxylic acid product
US8772513B2 (en) 2012-08-30 2014-07-08 Eastman Chemical Company Oxidation process to produce a crude dry carboxylic acid product
US9156805B2 (en) 2012-11-20 2015-10-13 Eastman Chemical Company Oxidative purification method for producing purified dry furan-2,5-dicarboxylic acid
US8916719B2 (en) 2012-11-20 2014-12-23 Eastman Chemical Company Process for producing dry purified furan-2,5-dicarboxylic acid with oxidation off-gas treatment
US8916720B2 (en) 2012-11-20 2014-12-23 Eastman Chemical Company Process for producing dry purified furan-2,5-dicarboxylic acid with oxidation off-gas treatment
US9573120B2 (en) 2014-05-08 2017-02-21 Eastman Chemical Company Furan-2,5-dicarboxylic acid purge process
US9604202B2 (en) 2014-05-08 2017-03-28 Eastman Chemical Company Furan-2,5-dicarboxylic acid purge process
US9504994B2 (en) 2014-05-08 2016-11-29 Eastman Chemical Company Furan-2,5-dicarboxylic acid purge process
US9943834B2 (en) 2014-05-08 2018-04-17 Eastman Chemical Company Furan-2,5-dicarboxylic acid purge process
CN113121477A (en) * 2021-06-02 2021-07-16 宁波国生科技有限公司 Preparation method of 2, 5-tetrahydrofuran dicarboxylic acid

Also Published As

Publication number Publication date
JP5006561B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
JP5006561B2 (en) Method for producing furandicarboxylic acid
JP4804187B2 (en) Method for producing furan-2,5-dicarboxylic acid
CN110102350B (en) Catalyst for oxidative synthesis of 2, 5-furandicarboxylic acid and preparation method and application thereof
CN104557639B (en) Method of preparing 2-nitro-4-methylsulfonyl benzoic acid
JP2009001519A (en) Method for producing 2,5-furandicarboxylic acid
CN101786948B (en) Method for preparing 1-(4-chlorphenyl)-2-cyclopropyl-1-acetone
CN108368076A (en) Prepare 2,5- furandicarboxylic acids(FDCA)Method
KR20150063059A (en) Method for synthesising 2,5-furandicarboxylic acid from a composition containing furan-2,5-dialdehyde
CN108675942A (en) A kind of preparation method of aromatic nitrile compounds
CN103086964A (en) Preparation method of 6-bromine-2-pyridine methyl formate
CN106117169B (en) A kind of synthetic method of 2,5- furandicarboxylic acids
CN106631825A (en) Preparation method of 3,3,5,5-tetramethyl benzidine
CN104003934B (en) The synthesis of the fluoro-2-pyridine carboxylic acid of the chloro-3-of 6-
JP2005200340A (en) Method for producing monocarboxylic acid
CN106749071A (en) A kind of preparation method of the tetrazine compound of aromatics 1,2,4,5
CN105936630A (en) Synthesis method of 2,5-furan dicarboxylic acid
CN104556150B (en) A kind of by the method for Fenton reagent synthesis metal cyanides
JP2009029751A (en) Production method of 2,5-furandicarboxylic acid
CN103787990B (en) A kind of preparation method of 5-Methylpyrazine-2-carboxylic acid
CN100513376C (en) Process for producing adipic acid
CN105032400B (en) A kind of preparation method of graphene-supported metal oxide catalyst
CN107759515A (en) A kind of synthetic method of the fluorine pyridine of 2 amino 4
JP2017124366A (en) Catalyst for ammonia decomposition and manufacturing method of hydrogen using catalyst
CN112939893A (en) Synthesis method of 4- (4-aminophenyl) -3-morpholinone
CN105949108B (en) A kind of 3- (4- Methoxv-phenylsulfanvls) -1- methyl -- the preparation method of 1H- pyrrole-2,5-diones compounds

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5006561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3