JP2007261857A - Method for manufacturing titanium oxide precursor and method for manufacturing titanium oxide - Google Patents

Method for manufacturing titanium oxide precursor and method for manufacturing titanium oxide Download PDF

Info

Publication number
JP2007261857A
JP2007261857A JP2006088006A JP2006088006A JP2007261857A JP 2007261857 A JP2007261857 A JP 2007261857A JP 2006088006 A JP2006088006 A JP 2006088006A JP 2006088006 A JP2006088006 A JP 2006088006A JP 2007261857 A JP2007261857 A JP 2007261857A
Authority
JP
Japan
Prior art keywords
titanium
titanium oxide
oxide precursor
drying
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006088006A
Other languages
Japanese (ja)
Inventor
Akinori Okusako
顕仙 奥迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2006088006A priority Critical patent/JP2007261857A/en
Publication of JP2007261857A publication Critical patent/JP2007261857A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a titanium oxide precursor for manufacturing titanium oxide which can be easily processed into fine particles and has high photocatalyst activity by irradiation with visible rays without especially using an expensive device, and to provide a method for manufacturing titanium oxide using the precursor. <P>SOLUTION: The method for manufacturing a titanium oxide precursor includes a mixing and reaction step to mix/react an acidic aqueous solution of a titanium compound with a base to prepare titanium oxide precursor slurry, a step of filtering the reaction product obtained by the mixing and reaction step, and a step of drying the filtration residue obtained by the filtration step. The drying step is carried out by preheating the filtration residue in an atmosphere having the maximum dew point of 50°C or lower in a dry atmosphere and at a temperature of 70°C or lower, and normally drying at a temperature from 200°C to 300°C. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は酸化チタン前駆体の製造方法および酸化チタンの製造方法に関し、詳細には、光触媒作用を示す高比表面積かつ高活性である酸化チタン前駆体の製造方法および酸化チタンの製造方法に関する。   The present invention relates to a method for producing a titanium oxide precursor and a method for producing titanium oxide, and in particular, to a method for producing a titanium oxide precursor and a titanium oxide precursor having a high specific surface area and high activity exhibiting a photocatalytic action.

従来からの紫外線照射による光触媒に代えて、可視光線の照射によっても、触媒作用を示す光触媒が発見され、この光触媒の製造方法として各種提案がなされている。例えば、特許文献1には酸化チタンを水素プラズマ処理または希ガス類元素プラズマ処理することによって、光触媒を得る方法が記載されている。しかし、この方法では、真空容器を備えた高価な特定のプラズマ処理装置が必要になり、操作も煩雑になるといった問題がある。   Instead of the conventional photocatalyst by ultraviolet irradiation, a photocatalyst exhibiting catalytic action was also discovered by irradiation with visible light, and various proposals have been made as methods for producing this photocatalyst. For example, Patent Document 1 describes a method of obtaining a photocatalyst by subjecting titanium oxide to hydrogen plasma treatment or rare gas element plasma treatment. However, this method has a problem that an expensive specific plasma processing apparatus including a vacuum vessel is required and the operation becomes complicated.

そのため最近では、真空容器を備えた特定の装置を用いることなく、酸化チタン光触媒を簡易に製造する方法が提案されている。例えば、テトライソプロポキシチタンを加水分解して得られる生成物を、アンモニアガス中で熱処理した後、空気中で焼成する方法(特許文献2)、テトライソプロポキシチタンを加水分解して得られる生成物を、アンモニア水に浸漬した後、焼成する方法(特許文献3)、オキシ蓚酸チタンアンモニウムを焼成する方法(特許文献4)、水酸化チタンを硫酸アンモニア存在下で焼成する方法(特許文献5)、水酸化チタンをアンモニアガス雰囲気下で焼成する方法(特許文献6)、塩化チタン、オキシ塩化チタン、硫酸チタン、オキシ硫酸チタンのようなチタン化合物と特定量のアンモニアを混合し、得られた生成物を焼成する方法(特許文献7)等である。   Therefore, recently, a method for easily producing a titanium oxide photocatalyst has been proposed without using a specific apparatus equipped with a vacuum vessel. For example, a product obtained by hydrolyzing tetraisopropoxytitanium, heat-treating in ammonia gas and then firing in air (Patent Document 2), product obtained by hydrolyzing tetraisopropoxytitanium Is immersed in ammonia water and then calcined (Patent Document 3), titanium ammonium oxalate is calcined (Patent Document 4), titanium hydroxide is calcined in the presence of ammonia sulfate (Patent Document 5), A method in which titanium hydroxide is calcined in an ammonia gas atmosphere (Patent Document 6), a titanium compound such as titanium chloride, titanium oxychloride, titanium sulfate, titanium oxysulfate and a specific amount of ammonia are mixed, and the product obtained And the like (Patent Document 7).

特許文献7に記載されている方法によれば、可視光線の照射に対して高い光触媒作用を示す酸化チタンが得られることが記載されている。   According to the method described in Patent Document 7, it is described that titanium oxide having a high photocatalytic action against visible light irradiation can be obtained.

WO00/10706号公報WO00 / 10706 Publication 特開2001−278625号公報JP 2001-278625 A 特開2001−278626号公報JP 2001-278626 A 特開2001−278627号公報JP 2001-278627 A 特開2001−302241号公報JP 2001-302241 A 特開2001−354422号公報JP 2001-354422 A 特開2002−47012号公報JP 2002-47012 A

しかしながら、酸化チタンを溶媒に分散させたコーティング液を用いて膜形成するとき、膜を薄くできること、また膜の機械的物性を向上させられることから、酸化チタンの微粒子化が要望されるようになっているが、上記従来技術の方法では、酸化チタンを微粒子化させることが困難であり、改良の余地がある。   However, when a film is formed using a coating liquid in which titanium oxide is dispersed in a solvent, the film can be thinned and the mechanical properties of the film can be improved. However, it is difficult to make titanium oxide fine particles by the above prior art method, and there is room for improvement.

そこで、本発明の目的は、上記従来技術の問題点に鑑みて、殊更高価な装置を用いることなく、微粒子化が容易で可視光線の照射による光触媒活性が高い酸化チタンを製造するための酸化チタン前躯体の製造方法およびこれを用いた酸化チタンの製造方法を提供することにある。   Accordingly, in view of the above-mentioned problems of the prior art, an object of the present invention is to produce titanium oxide for producing titanium oxide that can be easily formed into fine particles and has high photocatalytic activity by irradiation with visible light, without using a particularly expensive apparatus. An object of the present invention is to provide a method for producing a precursor and a method for producing titanium oxide using the same.

上記課題は、各請求項記載の発明により達成される。すなわち、本発明に係る酸化チタン前躯体の製造方法の特徴構成は、チタン化合物の酸性水溶液と塩基とを混合・反応させて酸化チタン前躯体スラリーとする混合反応工程と、混合反応工程により得られた反応生成物をろ過する工程と、ろ過工程により得られたろ過残渣を乾燥する工程とを有していて、前記乾燥工程を、乾燥雰囲気の最大露点が50℃以下の雰囲気で、70℃以下の温度で予備乾燥した後、200℃以上かつ300℃以下の温度で本乾燥することにより行うことにある。   The above-mentioned subject is achieved by the invention described in each claim. That is, the characteristic configuration of the method for producing a titanium oxide precursor according to the present invention is obtained by a mixing reaction step in which an acidic aqueous solution of a titanium compound and a base are mixed and reacted to form a titanium oxide precursor slurry, and a mixing reaction step. A step of filtering the reaction product and a step of drying the filtration residue obtained by the filtration step, and the drying step is performed in an atmosphere having a maximum dew point of 50 ° C. or less in a dry atmosphere and 70 ° C. or less. The preliminary drying is performed at a temperature of 200 ° C. and 300 ° C. after the preliminary drying.

この構成によれば、酸化チタン前躯体中の窒素原子を逃散させることなく十分に乾燥でき、焼成によって、微粒子化が容易で可視光線の照射による光触媒活性が高く、しかもBET比表面積が70m2/g以上となる微粒子状のアナターゼ型酸化チタン光触媒体を生成することができる。ここに、酸化チタン前駆体とは、アナターゼ型酸化チタン以外の酸素含有チタン化合物(非晶質を含む)であって、310〜500℃の空気中で焼成したときに、組成式TiO2で示される酸化チタン光触媒体となり得る化合物をいう。 According to this configuration, the nitrogen atoms in the titanium oxide precursor can be sufficiently dried without escaping, and by baking, the particles can be easily made fine, the photocatalytic activity by irradiation with visible light is high, and the BET specific surface area is 70 m 2 / A particulate anatase-type titanium oxide photocatalyst having a particle size of g or more can be produced. Here, the titanium oxide precursor is an oxygen-containing titanium compound (including amorphous) other than anatase-type titanium oxide, and is represented by a composition formula TiO 2 when fired in air at 310 to 500 ° C. A compound that can be a titanium oxide photocatalyst.

この場合、乾燥雰囲気の最大露点が50℃を超えて乾燥すると、反応生成物中の窒素が散逸し易くなり、焼成後のアナターゼ型酸化チタンの可視光線による光触媒活性が低くなり、また、70℃を超える温度で予備乾燥した場合も同様となる。本乾燥は、200℃未満であると、乾燥が十分に進行せず、300℃を超えて加熱・乾燥すると、反応生成物中の窒素が散逸し易くなり、焼成後のアナターゼ型酸化チタンの可視光線による光触媒活性が低くなると共に、微粒子化し難くなって好ましくない。   In this case, when the maximum dew point of the dry atmosphere exceeds 50 ° C., nitrogen in the reaction product is easily dissipated, and the photocatalytic activity of the anatase-type titanium oxide after calcination is reduced by visible light, and 70 ° C. The same applies when pre-dried at a temperature exceeding. If the main drying is less than 200 ° C., the drying does not proceed sufficiently. If the heating / drying exceeds 300 ° C., nitrogen in the reaction product is easily dissipated, and the anatase-type titanium oxide after firing is visible. This is not preferable because the photocatalytic activity due to light is lowered and it is difficult to form fine particles.

その結果、殊更高価な装置を用いることなく、微粒子化が容易で可視光線の照射による光触媒活性が高い酸化チタンを製造するための酸化チタン前躯体の製造方法を提供することができた。   As a result, it was possible to provide a method for producing a titanium oxide precursor for producing titanium oxide that can be easily made into fine particles and has high photocatalytic activity by irradiation with visible light, without using a particularly expensive apparatus.

前記反応生成物が、チタン水酸化物またはチタン過酸化物であることが好ましい。   The reaction product is preferably titanium hydroxide or titanium peroxide.

この構成によれば、乾燥後の酸化チタン前駆体を310〜500℃の空気中で焼成したとき、確実に組成式TiO2で示される酸化チタン光触媒体となり易い。 According to this arrangement, when fired titanium oxide precursor after drying at from 310 to 500 ° C. in air, it tends reliably titanium oxide photocatalyst represented by the composition formula TiO 2.

前記反応生成物が非晶質であることが好ましい。   The reaction product is preferably amorphous.

この構成によれば、酸化チタン前駆体を310〜500℃の空気中で焼成したとき、焼成後に一層確実に微粒子化できる。つまり、上記温度による焼成により、非晶質からアナターゼ型結晶に転移する際、微粒子化が顕著に進行する。   According to this structure, when a titanium oxide precursor is baked in the air of 310-500 degreeC, it can pulverize more reliably after baking. That is, the fine particles are remarkably progressed when the transition from the amorphous state to the anatase type crystal is performed by the firing at the above temperature.

前記チタン化合物の酸性水溶液に過酸化水素を混合し、これに塩基を65℃以下で反応させることが好ましい。   It is preferable to mix hydrogen peroxide with an acidic aqueous solution of the titanium compound and to react with the base at 65 ° C. or lower.

この構成によれば、チタン化合物に対する過酸化水素による加水分解が効率よく進行し、酸化チタン前躯体を構成するチタン過酸化物を得ることができる。反応温度としては、好ましくは60℃以下、より好ましくは55℃以下である。   According to this configuration, the titanium compound is hydrolyzed with hydrogen peroxide efficiently, and a titanium peroxide constituting the titanium oxide precursor can be obtained. The reaction temperature is preferably 60 ° C. or lower, more preferably 55 ° C. or lower.

前記チタン化合物と混合される過酸化水素の量は、チタン化合物のチタンに対して通常0.1モル倍以上5モル倍以下であることが好ましい。   It is preferable that the amount of hydrogen peroxide mixed with the titanium compound is usually 0.1 mol times or more and 5 mol times or less with respect to titanium of the titanium compound.

過酸化水素の量は多いほど、最終的に得られる酸化チタンの粒子径が小さくなるので好ましいが、過酸化水素が5モル倍を超えると、焼成して得られる酸化チタンの光触媒活性が低下することがある。より好ましくは、1モル倍以上、5モル倍以下である。   A larger amount of hydrogen peroxide is preferable because the particle diameter of the finally obtained titanium oxide becomes smaller. However, when the hydrogen peroxide exceeds 5 mol times, the photocatalytic activity of the titanium oxide obtained by firing is lowered. Sometimes. More preferably, they are 1 mol times or more and 5 mol times or less.

前記チタン化合物が、塩化チタン、オキシ塩化チタン、硫酸チタン、オキシ硫酸チタンから選ばれたものであることが好ましい。   The titanium compound is preferably selected from titanium chloride, titanium oxychloride, titanium sulfate, and titanium oxysulfate.

この構成によれば、これらチタン化合物により形成された酸化チタン前躯体を310〜500℃に焼成すると、確実にアナターゼ型酸化チタンを生成することができる。   According to this configuration, when the titanium oxide precursor formed of these titanium compounds is baked at 310 to 500 ° C., anatase-type titanium oxide can be reliably generated.

また、本発明に係る酸化チタンの製造方法の特徴構成は、請求項1〜6のいずれか1項記載の酸化チタン前駆体の製造方法により製造された酸化チタン前躯体を、310〜500℃に焼成することにある。   Moreover, the characteristic structure of the manufacturing method of the titanium oxide which concerns on this invention is the titanium oxide precursor manufactured by the manufacturing method of the titanium oxide precursor of any one of Claims 1-6 at 310-500 degreeC. There is in firing.

この構成によれば、殊更高価な装置を用いることなく、微粒子化が容易で可視光線の照射による光触媒活性が高い酸化チタンを製造する方法を提供することができる。   According to this configuration, it is possible to provide a method for producing titanium oxide that can be easily formed into fine particles and has high photocatalytic activity by irradiation with visible light without using a particularly expensive apparatus.

以下、本発明の実施形態を詳細に説明する。本実施形態に係る酸化チタン前駆体の製造方法は、少なくとも酸素含有チタン化合物の酸性水溶液から原料錯体を生成し、これと塩基とを混合・反応させて、水酸化チタンを主成分とした酸化チタン前躯体スラリーとする混合反応工程、該酸化チタン前躯体スラリーをろ過するろ過工程、このろ過工程により得られたろ過残渣である酸化チタン前躯体を必要に応じて洗浄する洗浄工程、乾燥工程、必要に応じて解砕する工程、及び焼成工程を有する。チタン化合物水溶液に、過酸化水素などの発泡成分を混合することも好ましい。   Hereinafter, embodiments of the present invention will be described in detail. The method for producing a titanium oxide precursor according to the present embodiment includes producing a raw material complex from an acidic aqueous solution of at least an oxygen-containing titanium compound, and mixing and reacting this with a base to form titanium oxide mainly composed of titanium hydroxide. A mixing reaction step for preparing a precursor slurry, a filtration step for filtering the titanium oxide precursor slurry, a washing step for cleaning the titanium oxide precursor, which is a filtration residue obtained by this filtration step, a drying step, and a necessity The process of crushing according to and the baking process are included. It is also preferable to mix a foaming component such as hydrogen peroxide into the titanium compound aqueous solution.

本実施形態では、乾燥工程として、予備乾燥およびこれに続く本乾燥を行うことを特徴としている。すなわち、酸化チタン前駆体を露点50℃以下の雰囲気、70℃以下の温度で予備乾燥し、その後200℃以上かつ300℃以下で本乾燥することにより、高活性な酸化チタンを製造可能な酸化チタン前躯体を得るものである。かかる乾燥工程を採用することにより、酸化チタン前躯体中の窒素原子を逃散させることなく、焼成によって、微粒子化が容易で可視光線の照射による光触媒活性が高いアナターゼ型酸化チタン光触媒体を生成することができる。   This embodiment is characterized in that preliminary drying and subsequent main drying are performed as the drying step. That is, the titanium oxide precursor can be pre-dried in an atmosphere with a dew point of 50 ° C. or lower and a temperature of 70 ° C. or lower, and then main dried at 200 ° C. or higher and 300 ° C. or lower to produce a highly active titanium oxide. You get the precursor. By adopting such a drying process, an anatase-type titanium oxide photocatalyst can be produced by firing without escaping nitrogen atoms in the titanium oxide precursor, which can be easily atomized and has high photocatalytic activity by irradiation with visible light. Can do.

この酸化チタン前駆体は、アナターゼ型酸化チタン以外の酸素含有チタン化合物(非晶質を含む)であって、310〜500℃の空気中で焼成したときに、組成式TiO2で示される酸化チタン光触媒体となり得る化合物、具体的には、例えば、チタン水酸化物、チタン過酸化物のような酸素含有無機チタン化合物である。 This titanium oxide precursor is an oxygen-containing titanium compound (including amorphous) other than anatase-type titanium oxide, and titanium oxide represented by the composition formula TiO 2 when fired in air at 310 to 500 ° C. A compound that can be a photocatalyst, specifically, an oxygen-containing inorganic titanium compound such as titanium hydroxide or titanium peroxide.

チタン水酸化物の具体例としては、Ti(OH)2、Ti(OH)3、Ti(OH)4、TiO(OH)2で示されるものが挙げられる。また、チタン過酸化物としては、水酸化チタンのTi−O−H結合の一部がTi−O−O結合に代わっているもの、酸化チタンのTi−O結合の一部がTi−O−O結合に代わっているもの、またはこれらの混合物、例えば、式(1)で示されるものが挙げられる。 Specific examples of the titanium hydroxide include Ti (OH) 2 , Ti (OH) 3 , Ti (OH) 4 , and TiO (OH) 2 . In addition, as the titanium peroxide, a part of the Ti—O—H bond of titanium hydroxide is replaced with a Ti—O—O bond, and a part of the Ti—O bond of titanium oxide is Ti—O—. The thing replaced with O coupling | bonding, or these mixtures, for example, what is shown by Formula (1) is mentioned.

Ti(O2xy(OH)z (1)
〔式(1)中、0<x<4、0≦y<2、0≦z<4。〕
酸化チタン前駆体は、これらのうち1種であってもよいし、これらの混合物であってもよい。
Ti (O 2 ) x O y (OH) z (1)
[In Formula (1), 0 <x <4, 0 <= y <2, 0 <= z <4. ]
One of these may be sufficient as a titanium oxide precursor, and these mixtures may be sufficient as it.

さらに、本製造法で得られる酸化チタンは、BET比表面積が70m2/g以上であることが好まし。BET比表面積が小さいことは、一次粒子径が大きいことを示す。逆に、BET比表面積が大きいことは、一次粒子径が小さいことを示し、高活性な酸化チタン光触媒体であると同時に、微細で分散性に優れる粒子状の酸化チタン光触媒体となり得る。 Further, the titanium oxide obtained by this production method preferably has a BET specific surface area of 70 m 2 / g or more. A small BET specific surface area indicates a large primary particle size. Conversely, a large BET specific surface area indicates that the primary particle diameter is small, and it can be a highly active titanium oxide photocatalyst and a particulate titanium oxide photocatalyst that is fine and excellent in dispersibility.

乾燥は、雰囲気を露点50℃以下に調節することができれば風乾でもよく、乾燥設備を用いて行ってもよい。乾燥設備としては、例えば、管状型電気炉、箱型電気炉、トンネル炉、遠赤外線炉、マイクロ波加熱炉、シャフト炉、反射炉、ロータリー炉、ローラーハース炉のような乾燥機を用いて、機内からガスを排出したり、またはガスを導入したりして行うことができる。   Drying may be air-dried as long as the atmosphere can be adjusted to a dew point of 50 ° C. or lower, or may be performed using a drying facility. As the drying equipment, for example, using a dryer such as a tubular electric furnace, a box electric furnace, a tunnel furnace, a far infrared furnace, a microwave heating furnace, a shaft furnace, a reflection furnace, a rotary furnace, a roller hearth furnace, It can be performed by discharging gas from the machine or introducing gas.

乾燥は、露点50℃以下の雰囲気であれば、減圧下で行ってもよく、例えば、空気、水素、ヘリウム、窒素、アルゴンのようなガスからなる全圧15kPa以下の減圧雰囲気下で行うこともできる。このときに用いる乾燥機は、回分式、連続式いずれの方式であってもよい。   Drying may be performed under reduced pressure as long as the atmosphere has a dew point of 50 ° C. or lower. For example, drying may be performed under a reduced pressure atmosphere made of a gas such as air, hydrogen, helium, nitrogen, or argon and having a total pressure of 15 kPa or less. it can. The dryer used at this time may be either a batch type or a continuous type.

乾燥は、水分を蒸発させるのに必要な温度で行えばよく、このときの温度は、通常10℃〜70℃、好ましくは20℃〜70℃である。乾燥時間は、用いる乾燥機の種類、乾燥温度および、乾燥雰囲気の露点により異なるが、通常1時間以上であり、好ましくは3時間以上、24時間以内である。   Drying may be performed at a temperature necessary for evaporating water, and the temperature at this time is usually 10 ° C to 70 ° C, preferably 20 ° C to 70 ° C. The drying time varies depending on the type of the dryer used, the drying temperature, and the dew point of the drying atmosphere, but is usually 1 hour or longer, preferably 3 hours or longer and 24 hours or shorter.

炉内に導入するガスは、露点を調節したものを用いることが好ましく、例えば、空気をコンプレッサにより圧縮して、空気に含まれる水分を凝縮させ、この凝縮した水分を分離した後、減圧して得られる乾燥空気、空気を除湿機により水分を除去して得られる乾燥空気、または液体窒素を気化させた乾燥窒素なども好適に用いられる。また、水分を含まないものであれば、空気、ヘリウム、窒素などを充填した市販のボンベガスを用いることもできる。これら水蒸気分圧を調節したガスに、適宜、水蒸気を添加し、所定の露点として乾燥機内に導入することができる。   The gas introduced into the furnace is preferably a gas with a dew point adjusted. For example, the air is compressed by a compressor to condense the moisture contained in the air, the condensed moisture is separated, and then the pressure is reduced. The dry air obtained, dry air obtained by removing moisture from the air with a dehumidifier, or dry nitrogen obtained by vaporizing liquid nitrogen are also preferably used. In addition, a commercially available cylinder gas filled with air, helium, nitrogen, or the like can be used as long as it does not contain moisture. Water vapor can be appropriately added to the gas whose water vapor partial pressure is adjusted, and can be introduced into the dryer as a predetermined dew point.

ここで用いるチタン化合物は、例えば、塩化チタン、オキシ塩化チタン、硫酸チタン、オキシ硫酸チタンなどである。チタン化合物と過酸化水素(発泡成分)を混合してもよい。チタン化合物と混合される過酸化水素の量は、チタン化合物のチタンに対して通常0.1モル倍以上である。過酸化水素の量は多いほど、最終的に得られる酸化チタンの粒子径が小さくなるので好ましく、例えば1モル倍以上が好ましい。   Examples of the titanium compound used here include titanium chloride, titanium oxychloride, titanium sulfate, and titanium oxysulfate. You may mix a titanium compound and hydrogen peroxide (foaming component). The amount of hydrogen peroxide mixed with the titanium compound is usually 0.1 mol times or more with respect to titanium of the titanium compound. The larger the amount of hydrogen peroxide, the smaller the particle diameter of the finally obtained titanium oxide, which is preferable.

一方、過酸化水素があまり多くなると、得られる酸化チタンの光触媒活性が低下することがあるので、チタン化合物のチタンに対して5モル倍以下が好ましい。チタン化合物と過酸化水素の混合は、通常65℃以下、好ましくは60℃以下、より好ましくは55℃以下で行われる。   On the other hand, if the amount of hydrogen peroxide is too large, the photocatalytic activity of the resulting titanium oxide may be lowered. Mixing of the titanium compound and hydrogen peroxide is usually performed at 65 ° C. or lower, preferably 60 ° C. or lower, more preferably 55 ° C. or lower.

加水分解は、チタン化合物と過酸化水素の混合物に塩基を添加して行われる。ここで用いられる塩基は、アンモニア、アミン、イミン、アミノ酸、ヒドロキシルアミン誘導体、ヒドラジン誘導体などであり、なかでもアンモニアが好ましい。加水分解は、通常65℃以下、好ましくは60℃以下、より好ましくは55℃以下で行われる。   Hydrolysis is performed by adding a base to a mixture of a titanium compound and hydrogen peroxide. The base used here is ammonia, amine, imine, amino acid, hydroxylamine derivative, hydrazine derivative, etc., among which ammonia is preferable. Hydrolysis is usually performed at 65 ° C. or lower, preferably 60 ° C. or lower, more preferably 55 ° C. or lower.

こうして得られる酸化チタンは、可視光線の照射に対して十分な光触媒活性を示し、分散性に優れる酸化チタン光触媒体を製造することができる。   The titanium oxide thus obtained can produce a titanium oxide photocatalyst that exhibits sufficient photocatalytic activity for irradiation with visible light and is excellent in dispersibility.

焼成して得られるアナターゼ型酸化チタンには、必要に応じて、酸性金属酸化物または、塩基性金属化合物を表面被覆してもよい。表面を被覆する酸性金属化合物は、ブレンステッド酸点、ルイス酸点またはそれらの両方を有するもののいずれであってもよく、例えば、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタル、モリブデン、タングステン、マンガン、鉄、コバルト、ニッケル、銅、アルミニウム、ガリウム、インジウム、スズのような金属の1元系酸化物、珪素−亜鉛、珪素−ジルコニウム、珪素−マグネシウム、珪素−カルシウム、珪素−ガリウム、珪素−アルミニウム、珪素−ランタン、珪素−チタン、チタン−亜鉛、チタン−銅、チタン−亜鉛、チタン−アルミニウム、チタン−ジルコニウム、チタン−鉛、チタン−ビスマス、チタン−鉄、亜鉛−マグネシウム、亜鉛−アルミニウム、亜鉛−ジルコニウム、亜鉛−鉛、亜鉛−アンチモンのような2種金属の複合酸化物である。また、酸点をもつ金属酸化物であれば3種以上の金属の複合酸化物で表面被覆してもよい。これらの金属酸化物の中でも、特に、ジルコニウム、バナジウム、ニオブ、タンタル、モリブデン、タングステン、マンガン、鉄、コバルト、ニッケル、銅、アルミニウム、スズのような金属の1元系酸化物が好ましい。   The anatase-type titanium oxide obtained by firing may be surface-coated with an acidic metal oxide or a basic metal compound as necessary. The acidic metal compound covering the surface may be any having Bronsted acid point, Lewis acid point or both, for example, zirconium, hafnium, vanadium, niobium, tantalum, molybdenum, tungsten, manganese, iron , One-component oxides of metals such as cobalt, nickel, copper, aluminum, gallium, indium, tin, silicon-zinc, silicon-zirconium, silicon-magnesium, silicon-calcium, silicon-gallium, silicon-aluminum, silicon -Lanthanum, silicon-titanium, titanium-zinc, titanium-copper, titanium-zinc, titanium-aluminum, titanium-zirconium, titanium-lead, titanium-bismuth, titanium-iron, zinc-magnesium, zinc-aluminum, zinc-zirconium Like zinc-lead, zinc-antimony A composite oxide of two metal. Moreover, as long as it is a metal oxide having an acid point, the surface may be coated with a composite oxide of three or more metals. Among these metal oxides, one-component oxides of metals such as zirconium, vanadium, niobium, tantalum, molybdenum, tungsten, manganese, iron, cobalt, nickel, copper, aluminum, and tin are particularly preferable.

表面被覆する塩基性金属化合物は、ブレンステッド塩基点、ルイス塩基点またはそれらを両方を有するもののいずれであってもよく、例えば、酸化ナトリウム、酸化カリウム、酸化マグネシウム、酸化カルシウム、酸化バリウム、酸化ランタン、酸化セリウム、酸化亜鉛、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウム、水酸化バリウム、水酸化ランタン、水酸化セリウム、水酸化亜鉛、炭酸ナトリウム、炭酸カリウム、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、炭酸ランタン、炭酸セリウム、炭酸亜鉛である。   The basic metal compound that covers the surface may be any of those having a Bronsted base point, a Lewis base point, or both, such as sodium oxide, potassium oxide, magnesium oxide, calcium oxide, barium oxide, and lanthanum oxide. , Cerium oxide, zinc oxide, sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, lanthanum hydroxide, cerium hydroxide, zinc hydroxide, sodium carbonate, potassium carbonate, magnesium carbonate, calcium carbonate , Barium carbonate, lanthanum carbonate, cerium carbonate, and zinc carbonate.

また、酸化チタンには、上述した酸性金属酸化物と塩基性金属化合物の両方を表面被覆してもよい。さらに、酸性金属酸化物で表面被覆したものと塩基性金属化合物で表面被覆したものを混合して用いてもよい。表面被覆する酸性金属酸化物または塩基性金属化合物の量は、基材である酸化チタンのチタンに対して金属元素換算で30モル%以下、好ましくは10モル%以下、より好ましくは5モル%以下である。   Further, the surface of the titanium oxide may be coated with both the acidic metal oxide and the basic metal compound. Furthermore, you may mix and use what was surface-coated with an acidic metal oxide, and what was surface-coated with a basic metal compound. The amount of the acidic metal oxide or basic metal compound to be coated on the surface is 30 mol% or less, preferably 10 mol% or less, more preferably 5 mol% or less in terms of metal element with respect to titanium of titanium oxide as a base material. It is.

この酸化チタンは、高分子樹脂、結合剤、成形助剤、帯電防止剤、吸着剤などと混合し、成形してペレット、繊維またはシートとすることもできるが、液体中での分散性に優れることから、溶媒と混合して得られるコーティング剤として用いることが推奨される。   This titanium oxide can be mixed with polymer resins, binders, molding aids, antistatic agents, adsorbents, etc., and molded into pellets, fibers or sheets, but has excellent dispersibility in liquids. Therefore, it is recommended to use as a coating agent obtained by mixing with a solvent.

本実施形態の方法により得られる微細粒子状酸化チタン又はこの酸化チタンを用いて調製したコーティング液から形成される膜は、可視光線(概ね波長430〜600nmの光)の照射に対して、高い光触媒活性を発現する。可視光線の照射は、通常、蛍光灯、ハロゲンランプ、ブラックライト、キセノンランプ、ネオンサイン、LED、水銀灯またはナトリウムランプ等で行うことができ、また太陽光線を用いることもできる。このようにして得られた微細粒子状酸化チタン又はこの酸化チタンを用いて調製したコーティング液から形成される膜は、室外で使用される物のみならず、室内で使用される内装その他室内配置物にも広く応用できる。   A film formed from fine particulate titanium oxide obtained by the method of the present embodiment or a coating liquid prepared using this titanium oxide is a high photocatalyst for irradiation with visible light (light having a wavelength of about 430 to 600 nm). Expresses activity. Irradiation with visible light can usually be performed with a fluorescent lamp, a halogen lamp, a black light, a xenon lamp, a neon sign, an LED, a mercury lamp, a sodium lamp, or the like, and sunlight can also be used. The fine particulate titanium oxide thus obtained or the film formed from the coating liquid prepared using this titanium oxide is not only used outdoors but also used indoors and other indoor arrangements. It can also be applied widely.

以下、本発明を実施例によって詳細に説明するが、本発明はこれらに限定されるものではない。なお、酸化チタン前駆体および酸化チタンの物性測定は以下の方法で行った。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these. The physical properties of the titanium oxide precursor and titanium oxide were measured by the following method.

<実施例1>
〔前駆体合成〕
オキシ硫酸チタン75kgをイオン交換水50kgに溶解させ、オキシ硫酸チタン水溶液を調製した。冷却下、このオキシ硫酸チタン水溶液に35%過酸化水素水30kg(チタンに対して、1モル倍相当)を添加した。pH電極と、このpH電極に接続され、25重量%アンモニア水を供給してpHを一定に調整する機構を有するpHコントローラーと、を備えた反応容器にイオン交換水30kgを入れた。pHコントローラーのpH設定を4とした。この反応容器では、容器内の液のpHが設定値より低くなると、アンモニア水が供給されはじめ、pHが設定値になるまで前記速度にて連続供給される。この反応容器に、42rpmで攪拌しながら、上記した混合溶液を530ml/分で添加し、pHコントローラーにより反応容器に供給されるアンモニア水と反応させて、生成物を得た。このときの反応温度は、20℃〜30℃の範囲であった。得られた生成物を攪拌しながら1時間保持(熟成)し、ついで25重量%アンモニア水を供給して、スラリーを得た。反応容器に供給されたアンモニア水の合計量は、90kgであった。スラリーを濾過し、そのまま引き続いてリンス洗浄し、固形物(ケーキ)を得た。
<Example 1>
(Precursor synthesis)
75 kg of titanium oxysulfate was dissolved in 50 kg of ion-exchanged water to prepare a titanium oxysulfate aqueous solution. Under cooling, 30 kg of 35% hydrogen peroxide water (corresponding to 1 mol times with respect to titanium) was added to this aqueous solution of titanium oxysulfate. 30 kg of ion-exchanged water was placed in a reaction vessel equipped with a pH electrode and a pH controller connected to the pH electrode and having a mechanism for supplying a 25 wt% ammonia water to adjust the pH to a constant level. The pH setting of the pH controller was 4. In this reaction vessel, when the pH of the liquid in the vessel becomes lower than the set value, ammonia water starts to be supplied and is continuously supplied at the rate until the pH reaches the set value. While stirring at 42 rpm, the above mixed solution was added to the reaction vessel at 530 ml / min, and reacted with ammonia water supplied to the reaction vessel by a pH controller to obtain a product. The reaction temperature at this time was in the range of 20 ° C to 30 ° C. The obtained product was held (aged) for 1 hour with stirring, and then 25 wt% aqueous ammonia was supplied to obtain a slurry. The total amount of aqueous ammonia supplied to the reaction vessel was 90 kg. The slurry was filtered and rinsed as it was to obtain a solid (cake).

〔乾燥〕
得られたケーキ100gを、10cm×13cmのステンレス製バットに入れ、これを室温(約20℃)下で15時間予備乾燥した。このときの雰囲気露点は、−5℃であった。その後、箱型乾燥機(内容積;216リットル、商品名“高温恒温器 STPH−201M”、エスペック社製)に入れ、230℃で2時間、本乾燥した。
[Dry]
100 g of the obtained cake was placed in a 10 cm × 13 cm stainless steel vat, which was pre-dried at room temperature (about 20 ° C.) for 15 hours. At this time, the atmospheric dew point was −5 ° C. Then, it put into the box-type dryer (internal volume; 216 liters, brand name "high temperature thermostat STPH-201M", the product made by ESPEC Corp.), and this drying was carried out at 230 degreeC for 2 hours.

〔焼成〕
得られた乾燥粉末を、370℃の空気雰囲気下で1時間焼成を行った後、室温まで冷却して、粒子状酸化チタン光触媒体を得た。
[Baking]
The obtained dry powder was calcined in an air atmosphere at 370 ° C. for 1 hour and then cooled to room temperature to obtain a particulate titanium oxide photocatalyst.

〔光触媒体の活性評価〕
直径8cm、高さ10cm、容量約0.5リットルの密閉式ガラス製容器内に、直径5cmのガラス製シャーレを設置し、そのシャーレ上に、得られた光触媒体0.3gを置いた。容器内を酸素20容量%と窒素80容量%とからなる混合ガスで満たし、さらに、相対湿度が50%となるよう調整した。ここにアセトアルデヒドを13.4μモル封入し、容器の外から光触媒体直上の照度が7200ルクスになるように27ワット蛍光燈(昼光色、三波長、商品名“BBパラレル”、三菱電機社製)を照射した。蛍光燈の照射によりアセトアルデヒドが分解すると、二酸化炭素が発生するので二酸化炭素の濃度を光音響マルチガスモニタ(型番“1312型”、INNOVA社製)で経時的に測定し、濃度変化より算出した二酸化炭素の生成速度により、光触媒体をアセトアルデヒドに対する光分解作用を評価した。この例における二酸化炭素の生成速度は、1.7ppm/分であった。
[Evaluation of photocatalytic activity]
A glass petri dish having a diameter of 5 cm was placed in a sealed glass container having a diameter of 8 cm, a height of 10 cm, and a capacity of about 0.5 liter, and 0.3 g of the obtained photocatalyst was placed on the petri dish. The inside of the container was filled with a mixed gas composed of 20 volume% oxygen and 80 volume% nitrogen, and the relative humidity was adjusted to 50%. Acetaldehyde 13.4 μmol is enclosed here, and 27 watt fluorescent lamp (daylight color, three wavelengths, trade name “BB Parallel”, manufactured by Mitsubishi Electric Corporation) is used so that the illuminance immediately above the photocatalyst is 7200 lux from the outside of the container. Irradiated. When acetaldehyde is decomposed by irradiation with a fluorescent lamp, carbon dioxide is generated, so the concentration of carbon dioxide is measured over time with a photoacoustic multi-gas monitor (model number “1312”, manufactured by INNOVA), and carbon dioxide calculated from the concentration change. The photodegradation action of the photocatalyst against acetaldehyde was evaluated based on the production rate. The production rate of carbon dioxide in this example was 1.7 ppm / min.

<比較例1>
〔前駆体合成〕
実施例1と同一の方法で固形物(ケーキ)を得た。
<Comparative Example 1>
(Precursor synthesis)
A solid (cake) was obtained in the same manner as in Example 1.

〔乾燥〕
上記で得られたケーキ2.3kgを30cm×40cmのステンレス製バットに入れた。このバット12枚を箱型乾燥機(内容積;216リットル、商品名“スーパーテンプオーブン HP−60”、旭科学社製)に入れ、40m3 /hの乾燥空気流通下、250℃で5時間乾燥を行った。このときの炉内最大露点は81℃であった。
[Dry]
2.3 kg of the cake obtained above was placed in a 30 cm × 40 cm stainless steel vat. Twelve of these bats are placed in a box-type dryer (internal volume: 216 liters, trade name “Super Temp Oven HP-60”, manufactured by Asahi Kagaku Co., Ltd.) for 5 hours at 250 ° C. under a flow of dry air of 40 m 3 / h. Drying was performed. The maximum dew point in the furnace at this time was 81 ° C.

〔焼成〕
得られた乾燥粉末を370℃の空気雰囲気下で1時間焼成を行った後、室温まで冷却して、粒子状酸化チタン光触媒体を得た。
[Baking]
The obtained dry powder was calcined in an air atmosphere at 370 ° C. for 1 hour and then cooled to room temperature to obtain a particulate titanium oxide photocatalyst.

〔光触媒体の活性評価〕
得られた光触媒体について、実施例1と同一条件で活性評価を行った。この例における二酸化炭素の生成速度は1.5ppm/分であった。
[Evaluation of photocatalytic activity]
About the obtained photocatalyst body, activity evaluation was performed on the same conditions as Example 1. FIG. The production rate of carbon dioxide in this example was 1.5 ppm / min.

以上のように、実施例1の場合、アセトアルデヒドを光分解して生成する二酸化炭素の生成速度は、比較例に比べて約13%早くなっており、光分解作用に優れていることがわかる。   As described above, in the case of Example 1, the production rate of carbon dioxide produced by photolysis of acetaldehyde is about 13% faster than that of the comparative example, indicating that the photodecomposition action is excellent.

Claims (7)

チタン化合物の酸性水溶液と塩基とを混合・反応させて酸化チタン前躯体スラリーとする混合反応工程と、この混合反応工程により得られた反応生成物をろ過する工程と、ろ過工程により得られたろ過残渣を乾燥する工程とを有する酸化チタン前駆体の製造方法において、
前記乾燥工程を、乾燥雰囲気の最大露点が50℃以下の雰囲気かつ70℃以下の温度で予備乾燥した後、200℃以上かつ300℃以下の温度で本乾燥することにより行うことを特徴とする酸化チタン前駆体の製造方法。
A mixing reaction step of mixing and reacting an acidic aqueous solution of a titanium compound and a base to form a titanium oxide precursor slurry, a step of filtering the reaction product obtained by this mixing reaction step, and a filtration obtained by the filtration step In the method for producing a titanium oxide precursor having a step of drying the residue,
Oxidation characterized in that the drying step is performed by pre-drying in an atmosphere having a maximum dew point of 50 ° C. or less and a temperature of 70 ° C. or less, followed by main drying at a temperature of 200 ° C. or more and 300 ° C. or less A method for producing a titanium precursor.
前記反応生成物が、チタン水酸化物またはチタン過酸化物である請求項1記載の酸化チタン前駆体の製造方法。 The method for producing a titanium oxide precursor according to claim 1, wherein the reaction product is titanium hydroxide or titanium peroxide. 前記反応生成物が非晶質である請求項1又は2記載の酸化チタン前駆体の製造方法。 The method for producing a titanium oxide precursor according to claim 1 or 2, wherein the reaction product is amorphous. 前記チタン化合物の酸性水溶液に過酸化水素を混合し、これに塩基を65℃以下で反応させる請求項1〜3のいずれか1項記載の酸化チタン前駆体の製造方法。 The method for producing a titanium oxide precursor according to any one of claims 1 to 3, wherein hydrogen peroxide is mixed in an acidic aqueous solution of the titanium compound, and a base is reacted at 65 ° C or lower. 前記チタン化合物と混合される過酸化水素の量は、チタン化合物のチタンに対して通常0.1モル倍以上5モル倍以下である請求項4記載の酸化チタン前駆体の製造方法。 5. The method for producing a titanium oxide precursor according to claim 4, wherein the amount of hydrogen peroxide mixed with the titanium compound is usually 0.1 mol times or more and 5 mol times or less with respect to titanium of the titanium compound. 前記チタン化合物が、塩化チタン、オキシ塩化チタン、硫酸チタン、オキシ硫酸チタンから選ばれたものである請求項1〜5のいずれか1項記載の酸化チタン前駆体の製造方法。 The method for producing a titanium oxide precursor according to any one of claims 1 to 5, wherein the titanium compound is selected from titanium chloride, titanium oxychloride, titanium sulfate, and titanium oxysulfate. 請求項1〜6のいずれか1項記載の酸化チタン前駆体の製造方法により製造された酸化チタン前躯体を、310〜500℃に焼成する酸化チタンの製造方法。 The manufacturing method of the titanium oxide which bakes the titanium oxide precursor manufactured by the manufacturing method of the titanium oxide precursor of any one of Claims 1-6 at 310-500 degreeC.
JP2006088006A 2006-03-28 2006-03-28 Method for manufacturing titanium oxide precursor and method for manufacturing titanium oxide Pending JP2007261857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006088006A JP2007261857A (en) 2006-03-28 2006-03-28 Method for manufacturing titanium oxide precursor and method for manufacturing titanium oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006088006A JP2007261857A (en) 2006-03-28 2006-03-28 Method for manufacturing titanium oxide precursor and method for manufacturing titanium oxide

Publications (1)

Publication Number Publication Date
JP2007261857A true JP2007261857A (en) 2007-10-11

Family

ID=38635217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006088006A Pending JP2007261857A (en) 2006-03-28 2006-03-28 Method for manufacturing titanium oxide precursor and method for manufacturing titanium oxide

Country Status (1)

Country Link
JP (1) JP2007261857A (en)

Similar Documents

Publication Publication Date Title
JP4971135B2 (en) Carbon-containing titanium dioxide photocatalyst and method for producing the photocatalyst
JP5156009B2 (en) Titanium oxide photocatalyst and method for producing the same
JP4353978B2 (en) Method for producing titanium oxide photocatalyst
JP5209130B2 (en) Tungsten oxide photocatalyst and method for producing the same
AU3140601A (en) Process for producing titanium oxide
JP2001031422A (en) Mesoporous titanium oxide form and its production
JP2013523584A (en) Granules containing silicon dioxide and titanium dioxide
TWI272250B (en) Visible light-activated photocatalyst and method for producing the same
KR20040031628A (en) Method for producing titanium oxide
JP2009056348A (en) Photocatalyst dispersion
JP4631013B2 (en) Acicular titanium oxide fine particles, production method thereof and use thereof
JP2003190811A (en) Photocatalytic body, method for manufacturing the same, and photocatalytic body coating agent obtained by using the same
JP4598704B2 (en) Method for producing titanium oxide precursor and method for producing titanium oxide
WO2013061482A1 (en) Titanium oxide particles for photocatalysts and method for producing same
KR101855747B1 (en) Manufacturing of visible-light active photocatalyst titanium dioxide and titanium dioxide manufactured therefrom
JP2009120422A (en) Preparation method of titanium oxide
JP2007261857A (en) Method for manufacturing titanium oxide precursor and method for manufacturing titanium oxide
JPWO2001081245A1 (en) Method for producing titanium oxide-containing particulate oxide composite
KR101808034B1 (en) Manufacturing method of visible light-responsive photocatalyst and photocatalyst thereof method
JP3981757B2 (en) Photocatalyst body and photocatalyst body coating agent using the same
JP4057475B2 (en) Method for producing barium titanate powder
JP2002047012A (en) Method of manufacturing titanium oxide
JP2008169058A (en) Method for producing titanium oxide precursor
JP2007136394A (en) Manufacturing method of sulfur-doped titanium oxide
JP2007069093A (en) Rutile type titanium dioxide ultrafine particle photocatalyst