JP2007250361A - Lead-acid battery - Google Patents

Lead-acid battery Download PDF

Info

Publication number
JP2007250361A
JP2007250361A JP2006072335A JP2006072335A JP2007250361A JP 2007250361 A JP2007250361 A JP 2007250361A JP 2006072335 A JP2006072335 A JP 2006072335A JP 2006072335 A JP2006072335 A JP 2006072335A JP 2007250361 A JP2007250361 A JP 2007250361A
Authority
JP
Japan
Prior art keywords
battery
electrode plate
electrolyte
lead
fiber mat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006072335A
Other languages
Japanese (ja)
Inventor
Yoshibumi Hisama
義文 久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006072335A priority Critical patent/JP2007250361A/en
Publication of JP2007250361A publication Critical patent/JP2007250361A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lead-acid battery improving battery capacity, overdischarge resistant performance, life characteristics, and electrolyte reduction resistant characteristics by advancing smooth gas absorbing reaction even in a state where the whole surface of electrode plate is immersed in an electrolyte in the lead-acid battery equipped with a valve mechanism. <P>SOLUTION: In a control valve type lead-acid battery, a fiber mat separator having a porosity of 40% or less is arranged between a positive plate and a negative plate, the distance between electrode plates facing each other and having different polarity is 1.50 mm or less, the height of the electrolyte level is higher than at least the height of the electrode plates of a positive plate and a negative plate, and a control valve is installed in the outer packaging of the lead-acid battery. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、鉛蓄電池に関するものである。   The present invention relates to a lead-acid battery.

近年、ハイブリッド自動車の普及が進んでいるが、その補機用電源として、主に鉛蓄電池が用いられている。一般に補機用の鉛蓄電池は、車室のシート下や床下、あるいはトランクルーム内に配置されるため、充電時に酸霧の発生しない、制御弁式の鉛蓄電池を用いる。   In recent years, hybrid vehicles have been widely used, but lead-acid batteries are mainly used as power supplies for auxiliary machines. In general, lead-acid batteries for auxiliary machines are arranged under the seats or under the floor of a passenger compartment or in a trunk room. Therefore, a lead-acid battery of a control valve type that does not generate acid mist during charging is used.

一般的な制御弁式鉛蓄電池では、セパレータに繊維マットを用い、電解液がほぼすべて極板群に保持され、極板群からの電解液の遊離が殆どない程度に電解液量が制限される。これによって、電池を横倒し状態で使用しても電解液が漏出せず、機器への設置姿勢の自由度を高めている。   In a general control valve type lead-acid battery, a fiber mat is used as a separator, and almost all of the electrolyte solution is held in the electrode plate group, and the amount of the electrolyte solution is limited to such an extent that the electrolyte solution is hardly released from the electrode plate group. . As a result, the electrolyte does not leak out even when the battery is used while being laid down, and the degree of freedom of installation in the device is increased.

一方、自動車用の制御弁式鉛蓄電池では、車両への設定姿勢の自由度はそれほど重視されず、従来の液式鉛蓄電池と同様、正置状態で用いられることが殆どである。したがって、電池容量を重視して、電解液量を増量し、極板群の下部が電解液に浸漬した状態とした制御弁式鉛蓄電池が知られている(例えば特許文献1参照)。   On the other hand, in a control valve type lead-acid battery for automobiles, the degree of freedom of the setting posture to the vehicle is not so important, and it is almost always used in an upright state like a conventional liquid-type lead acid battery. Therefore, a control valve type lead storage battery is known in which the amount of the electrolyte is increased with emphasis on the battery capacity and the lower part of the electrode plate group is immersed in the electrolyte (see, for example, Patent Document 1).

制御弁式鉛蓄電池では、充電時に正極で発生した酸素ガスを負極で吸収させるため、正極から負極への酸素移動のための経路が必要である。従来より、この経路を確保するために、少なくとも負極板の一部もしくはすべてが電解液から露出した状態とすることが必要であると考えられてきた。したがって、極板面すべてが浸漬された液式鉛蓄電池に比較して、制御弁式鉛蓄電池では電解液量が液式鉛蓄電池未満に制限されるため、液式鉛蓄電池に比較して放電容量に大きく劣っていた。   In a control valve type lead-acid battery, oxygen gas generated at the positive electrode during charging is absorbed by the negative electrode, so that a path for oxygen transfer from the positive electrode to the negative electrode is necessary. Conventionally, in order to secure this path, it has been considered that at least a part or all of the negative electrode plate needs to be exposed from the electrolytic solution. Therefore, compared to a liquid lead acid battery with all electrode plates immersed, the control valve type lead acid battery limits the amount of electrolyte to less than that of the liquid lead acid battery. It was greatly inferior to.

また、電解液量が制限されているが故に、制御弁式鉛蓄電池の耐過放電性能は液式鉛蓄電池に比較して劣っている。特に、車両の暗電流によって連続放電される自動車用途においては、車両の長期放置等によって、電池が過放電される。電解液量の制限によって、過放電後の電解液のpHが上昇し、正極格子−活物質界面に不働態層が形成されやすくなり、電池の容量や寿命が低下する。   Moreover, since the amount of electrolyte is limited, the overdischarge resistance performance of the control valve type lead storage battery is inferior to that of the liquid lead storage battery. In particular, in an automobile application in which continuous discharge is caused by the dark current of the vehicle, the battery is overdischarged by leaving the vehicle for a long period of time. Due to the restriction of the amount of the electrolyte, the pH of the electrolyte after overdischarge rises, and a passive layer is easily formed at the positive electrode lattice-active material interface, thereby reducing the capacity and life of the battery.

また、電解液のpHが一旦上昇すると、電解液中の鉛イオン濃度が上昇する。そして、条件によっては、充電時に鉛イオンが、負極上に樹枝状あるいは針状の析出物(デンドライト)として析出する。この析出物によって、正極−負極間の短絡(デンドライトショート)を発生させていた。
特開平11−73985号公報
Further, once the pH of the electrolytic solution is increased, the lead ion concentration in the electrolytic solution is increased. Depending on the conditions, lead ions are deposited as dendritic or needle-like precipitates (dendrites) on the negative electrode during charging. This deposit caused a short circuit (dendritic short) between the positive electrode and the negative electrode.
Japanese Patent Laid-Open No. 11-73985

本発明は、同一サイズで液式鉛蓄電池と同等の放電容量を有することによって、特に、優れた放電容量を有した制御弁式を有した鉛蓄電池を提供するものである。また、過放電時の容量低下を抑制し、長寿命の信頼性に優れた鉛蓄電池を提供するものである。   The present invention provides a lead storage battery having a control valve type having an excellent discharge capacity by having the same size and discharge capacity equivalent to that of a liquid lead storage battery. It is another object of the present invention to provide a lead-acid battery that suppresses capacity reduction during overdischarge and has excellent long-life reliability.

前記した課題を解決するために、本発明の請求項1に係る発明は、正極板と負極板との間に空孔率が40%以下の繊維マットセパレータが配置され、互いに対向しあう異極性の極板面間距離が1.50mm以下であり、電解液面の高さが少なくとも前記正極板および前記負極板の極板面の高さ以上にあり、電池外装に制御弁を備えた鉛蓄電池を示す。   In order to solve the above-mentioned problem, the invention according to claim 1 of the present invention is configured such that a fiber mat separator having a porosity of 40% or less is disposed between a positive electrode plate and a negative electrode plate, and opposite polarities facing each other. The distance between the electrode plates is 1.50 mm or less, the height of the electrolyte surface is at least the height of the electrode plates of the positive electrode plate and the negative electrode plate, and the battery is provided with a control valve on the battery exterior Indicates.

本発明によれば、極板面のすべてが電解液に浸漬した状態においても、負極における酸素ガス吸収反応を進行ならしめることにより、同一サイズでの比較において、液式鉛蓄電池と同等の放電容量を有した、極めて大容量の制御弁式を有した鉛蓄電池を提供することができる。また、従来の制御弁式鉛蓄電池に比較して、耐過放電性能を顕著に改善できる。   According to the present invention, even when all of the electrode plate surfaces are immersed in the electrolytic solution, the discharge capacity equivalent to that of the liquid type lead-acid storage battery can be obtained by making the oxygen gas absorption reaction in the negative electrode proceed. It is possible to provide a lead storage battery having an extremely large capacity control valve type. Moreover, compared with the conventional control valve type lead storage battery, the overdischarge resistance can be remarkably improved.

本発明の実施の形態による鉛蓄電池の構成を以下に説明する。   The configuration of the lead storage battery according to the embodiment of the present invention will be described below.

本発明の鉛蓄電池101は、正極板102と負極板103との間に繊維マットセパレータ104が配置されている。従来の鉛蓄電池と同様、正極板102、負極板103および繊維マットセパレータ104は電槽105に収納され、電槽105の上部は蓋106で閉じられている。   In the lead storage battery 101 of the present invention, a fiber mat separator 104 is disposed between the positive electrode plate 102 and the negative electrode plate 103. Like the conventional lead acid battery, the positive electrode plate 102, the negative electrode plate 103, and the fiber mat separator 104 are housed in a battery case 105, and the upper part of the battery case 105 is closed by a lid 106.

本発明では、正極板102、負極板103および繊維マットセパレータ104が電槽に配置された状態で、繊維マットセパレータ104の空孔率を40%以下とする。なお、空孔率は低下するほど、繊維マットセパレータ104内の電解液量が減少し、放電容量が低下する傾向があるため、必要とされる放電容量を勘案して空孔率の下限を設定すればよいが、たとえば、その下限は10%程度に設定することができる。   In the present invention, the porosity of the fiber mat separator 104 is set to 40% or less in a state where the positive electrode plate 102, the negative electrode plate 103, and the fiber mat separator 104 are arranged in the battery case. As the porosity decreases, the amount of electrolyte in the fiber mat separator 104 decreases and the discharge capacity tends to decrease. Therefore, the lower limit of the porosity is set in consideration of the required discharge capacity. For example, the lower limit can be set to about 10%.

繊維マットセパレータ104の空孔率は繊維径を極細(例えば、2μm以下)としたり、体積あたりの繊維量(坪量)を増加させることによって設定できる。また、この他にも繊維マットセパレータ104への厚み方向の加圧力、すなわち、群圧の設定によって空孔率を設定できる。一般的には群圧を高めることにより、空孔率は低下する。   The porosity of the fiber mat separator 104 can be set by making the fiber diameter very fine (for example, 2 μm or less) or increasing the amount of fibers (basis weight) per volume. In addition, the porosity can be set by setting the pressure in the thickness direction to the fiber mat separator 104, that is, the group pressure. Generally, the porosity is lowered by increasing the group pressure.

また、繊維マットセパレータ104内に、自己放電等に影響しない、シリカ、珪藻土等の珪素酸化物やアルミナ等の無機酸化物、あるいはこれらから得たセラミックスを添加することにより、繊維マットセパレータ104中の空孔率を低下する。これらの手法によっても繊維マットセパレータ104の空孔率を設定できる。   Further, in the fiber mat separator 104, by adding a silicon oxide such as silica or diatomaceous earth, an inorganic oxide such as alumina, or a ceramic obtained from these, which does not affect self-discharge or the like, Reduce porosity. The porosity of the fiber mat separator 104 can also be set by these methods.

なお、本発明における繊維マットセパレータ104の空孔率は、真密度(D)と見掛け密度(AD)の差分(D−AD)の真密度に対する百分率を意味し、繊維マットセパレータ104の見掛け体積(AV)中に存在し、電解液を保持しうる空孔の体積(PV)において、この空孔体積(PV)の見掛け体積(AV)に占める割合(百分率)を意味する。   The porosity of the fiber mat separator 104 in the present invention means the percentage of the difference between the true density (D) and the apparent density (AD) (D-AD) with respect to the true density, and the apparent volume of the fiber mat separator 104 ( AV) means the ratio (percentage) of the pore volume (PV) to the apparent volume (AV) in the pore volume (PV) that can be held in the electrolyte.

本発明の繊維マットセパレータ104の素材としては、従来から制御弁式鉛蓄電池に用いられているような、ガラス繊維、あるいはポリエチレン、ポリプロピレンおよびこれらの共重合体の繊維を用いることができる。なお、これらの合成樹脂繊維を用いる場合には、電解液との親和性を考慮し、スルホン化等の親水化処理を施すことが望ましい。   As a material of the fiber mat separator 104 of the present invention, glass fibers, or polyethylene, polypropylene, and copolymers thereof, which are conventionally used in control valve type lead-acid batteries, can be used. In addition, when using these synthetic resin fibers, it is desirable to perform hydrophilic treatment such as sulfonation in consideration of the affinity with the electrolytic solution.

本発明では、繊維マットセパレータ104を介して互いに対向しあう、互いに異極性の極板面間距離を1.50mm以下とする。そして、電解液107の量は液面107aの高さを少なくとも正極板102および負極板103の極板面の高さ以上に設定する。   In the present invention, the distance between the electrode plates opposite to each other and facing each other through the fiber mat separator 104 is set to 1.50 mm or less. The amount of the electrolyte 107 is set such that the height of the liquid surface 107 a is at least equal to or higher than the height of the electrode plates of the positive electrode plate 102 and the negative electrode plate 103.

なお、電池外装、通常は蓋106に電池内圧に応じて開閉する弁機構108を設ける。電池内圧が過剰に上昇した場合には開弁が行われ、蓋106および電槽105の変形や破損を抑制する。また、開弁後、電池内圧が所定の値まで低下したときは閉弁動作が行われる。   Note that a valve mechanism 108 that opens and closes according to the battery internal pressure is provided on the battery exterior, usually the lid 106. When the battery internal pressure rises excessively, the valve is opened, and deformation and breakage of the lid 106 and the battery case 105 are suppressed. In addition, when the battery internal pressure drops to a predetermined value after the valve is opened, the valve closing operation is performed.

なお、弁機構108としては、図1に示したような、排気筒108aにキャップ状の弁108bを装着し、この弁108bの排気筒108aからの脱落を防止するための上板108cを蓋106に接合した例を示しているが、電池内圧に応じて開閉する機能を有していればよいので、他の構造を用いてもよい。   As the valve mechanism 108, as shown in FIG. 1, a cap-shaped valve 108b is attached to an exhaust cylinder 108a, and an upper plate 108c for preventing the valve 108b from falling off the exhaust cylinder 108a is covered with a lid 106. However, other structures may be used as long as they have a function of opening and closing according to the internal pressure of the battery.

本発明では、繊維マットセパレータの空孔率を40%以下とし、対向しあう正極板と負極板の極板面間の距離を1.50mm以下とすることにより、正極板および負極板の極板面がすべて電解液に浸漬した状態であっても、正極板−負極板間の酸素ガス移動と、負極板上での酸素ガス吸収反応を進行可能とする。   In the present invention, by setting the porosity of the fiber mat separator to 40% or less and the distance between the electrode plates of the positive electrode plate and the negative electrode plate facing each other to 1.50 mm or less, the electrode plates of the positive electrode plate and the negative electrode plate Even when the entire surface is immersed in the electrolytic solution, the oxygen gas movement between the positive electrode plate and the negative electrode plate and the oxygen gas absorption reaction on the negative electrode plate can proceed.

本発明の制御弁式鉛蓄電池では、充電時に正極板上で発生した酸素は主に気泡の状態で繊維マットセパレータ内を通過し、負極板面に到達するか、正極板面で成長した酸素ガス気泡の一部が負極板面に到達し、負極板上で酸素ガス吸収反応が進行すると考えられる。   In the control valve type lead-acid battery of the present invention, oxygen generated on the positive electrode plate during charging passes through the fiber mat separator mainly in the form of bubbles and reaches the negative electrode plate surface or grows on the positive electrode plate surface. It is considered that some of the bubbles reach the negative electrode plate surface and the oxygen gas absorption reaction proceeds on the negative electrode plate.

繊維マットセパレータの空孔率が40%を超えて高く設定した場合、繊維マットセパレータ内部で酸素ガス気泡が大きく成長し、浮力によって電解液中を上昇し、電解液面から離脱してしまうと考えられる。さらには、一旦上昇を開始した酸素ガス気泡は、繊維マットセパレータによって阻害されることなく上昇を続け、電解液面から離脱すると推測される。電解液面から離脱した酸素ガス気泡は、負極板上で吸収され難い。   When the porosity of the fiber mat separator is set to a high value exceeding 40%, oxygen gas bubbles grow large inside the fiber mat separator, rise in the electrolyte due to buoyancy, and detach from the electrolyte surface. It is done. Furthermore, it is assumed that the oxygen gas bubbles that have once started to rise continue to rise without being inhibited by the fiber mat separator and leave the electrolyte surface. Oxygen gas bubbles separated from the electrolyte surface are difficult to be absorbed on the negative electrode plate.

また、正極板面と負極板面間の距離を1.50mmを越えて長く設定した場合、酸素ガス気泡が負極板面に到達する以前に、電解液中を上昇し、電解液面から離脱するため、負極での酸素ガス吸収が抑制されると考えられる。   Further, when the distance between the positive electrode plate surface and the negative electrode plate surface is set longer than 1.50 mm, the oxygen gas bubbles rise in the electrolytic solution before it reaches the negative electrode plate surface, and are separated from the electrolytic solution surface. Therefore, it is considered that oxygen gas absorption at the negative electrode is suppressed.

本発明では、繊維マットセパレータの空孔率を40%以下とすることにより、繊維マットセパレータ内部での酸素ガス気泡の浮力による上昇を抑制し、酸素ガスが電解液面より離脱する以前に負極と接触する確率を高める作用があると考えられる。負極板と接触した酸素ガスは負極活物質に吸収される。   In the present invention, by setting the porosity of the fiber mat separator to 40% or less, an increase due to buoyancy of oxygen gas bubbles inside the fiber mat separator is suppressed, and before the oxygen gas is detached from the electrolyte surface, It is thought that there is an effect of increasing the probability of contact. Oxygen gas in contact with the negative electrode plate is absorbed by the negative electrode active material.

また、同時に正極板−負極板の極板面間の距離を1.50mm以下とすることによって、負極への酸素ガス気泡の到達確率を顕著に高めると考えられる。したがって、本発明のように、繊維マットセパレータの空孔率の上限設定と、極板面間距離の上限設定を同時に行わなければ本発明の効果は得られない。   At the same time, it is considered that the probability of reaching the oxygen gas bubbles to the negative electrode is remarkably increased by setting the distance between the electrode plate surfaces of the positive electrode plate and the negative electrode plate to 1.50 mm or less. Therefore, the effect of the present invention cannot be obtained unless the upper limit setting of the porosity of the fiber mat separator and the upper limit setting of the distance between the electrode plate surfaces are simultaneously performed as in the present invention.

なお、本発明の鉛蓄電池では、正極板および負極板は電解液面下にあるため、大気中の酸素の流入を抑制する制御弁は、一見必要ないかに考えられるが、電解液面から離脱した酸素ガスの電池外への散逸を抑制する目的で必要である。   In the lead storage battery of the present invention, since the positive electrode plate and the negative electrode plate are below the electrolyte surface, a control valve that suppresses the inflow of oxygen in the atmosphere may be unnecessary at first glance. This is necessary for the purpose of suppressing the dissipation of oxygen gas outside the battery.

電解液面から酸素ガス気泡が離脱した場合においても、制御弁が開弁しない程度の内圧上昇であれば、その内圧上昇に応じて酸素分圧も上昇しているため、酸素ガスが再び電解液内に溶け込み、負極で吸収される反応が進行すると推測される。このような酸素の電解液への再溶解現象は、特に自動車用の電池のように、使用中に絶えず振動を受ける用途では、電解液面の振動により促進すると考えられる。   Even when oxygen gas bubbles are released from the electrolyte surface, if the internal pressure rises to such an extent that the control valve does not open, the oxygen partial pressure also rises as the internal pressure rises. It is presumed that the reaction that dissolves in and absorbs at the negative electrode proceeds. Such a re-dissolution phenomenon of oxygen in the electrolytic solution is considered to be promoted by vibration of the electrolytic solution surface, particularly in an application that continuously receives vibration during use, such as an automobile battery.

すなわち、電解液面から一旦放出された酸素も再度電解液中に溶け込み、負極で吸収されうる。したがって、制御弁を有さない場合、本来であれば再度負極で吸収可能であった酸素が電池外に放出され、減液が進行するため好ましくない。本発明ではこのような酸素ガスの散逸と、これによる電解液の減液を抑制する目的さらには、酸霧の電池外への漏出を抑制する目的で、制御弁を備える。   That is, oxygen once released from the electrolyte surface can be dissolved again in the electrolyte and absorbed by the negative electrode. Therefore, when a control valve is not provided, oxygen that could otherwise be absorbed by the negative electrode is released to the outside of the battery, and the liquid reduction proceeds. In the present invention, a control valve is provided for the purpose of suppressing the dissipation of the oxygen gas and the decrease of the electrolyte due to the oxygen gas, and for the purpose of suppressing the leakage of the acid mist to the outside of the battery.

また、電解液面下で、微細な酸素ガス気泡は、繊維マットセパレータや極板に付着したり、電解液中を漂った状態で存在している。また電解液中にも溶存酸素が残存しており、これらの電解液中に残存した酸素ガスは負極に接触し、吸収される。このような現象が進行すると、電解液の見掛けの体積は減少し、制御弁の存在により、電池内は大気圧に対して減圧状態となるため、酸素ガスの電池外への散逸が抑制される。   Further, below the surface of the electrolyte, fine oxygen gas bubbles are attached to the fiber mat separator and the electrode plate, or exist in a state of drifting in the electrolyte. Also, dissolved oxygen remains in the electrolyte, and the oxygen gas remaining in these electrolytes contacts the negative electrode and is absorbed. When such a phenomenon progresses, the apparent volume of the electrolytic solution decreases, and the presence of the control valve causes the inside of the battery to be depressurized with respect to atmospheric pressure, thereby suppressing the dissipation of oxygen gas to the outside of the battery. .

さらに、電解液中の溶存酸素濃度と電解液面上の酸素分圧とは平衡するため、電解液中の溶存酸素が負極に吸収されると、電解液面上に一旦放出された酸素ガスは、再度電解液中に溶け、負極で吸収されると考えられる。   Furthermore, since the dissolved oxygen concentration in the electrolytic solution and the oxygen partial pressure on the electrolytic solution surface are balanced, once the dissolved oxygen in the electrolytic solution is absorbed by the negative electrode, the oxygen gas once released on the electrolytic solution surface is It is considered that it is dissolved again in the electrolytic solution and absorbed by the negative electrode.

本発明は、上記の構成により、正極板と負極板とが電解液面下に位置する場合においても負極での酸素ガス吸収反応が進行するため、制御弁式鉛蓄電池として成立させることができる。   With the above configuration, the present invention can be realized as a control valve type lead-acid battery because the oxygen gas absorption reaction proceeds at the negative electrode even when the positive electrode plate and the negative electrode plate are located below the electrolyte surface.

このような、本発明の構成によれば、制御弁式鉛蓄電池であっても、電解液量を液式鉛蓄電池と同等に確保できる。そして、充電時において、酸霧の電池外への排出が抑制され、また補水不要で優れたメンテナンスフリーを有した制御弁式鉛蓄電池の利点と、高い電池容量を有し、耐過放電性に優れた液式鉛蓄電池の利点とを両立することができる。   According to such a configuration of the present invention, even in the case of a control valve type lead storage battery, the amount of the electrolytic solution can be ensured equivalent to that of the liquid lead storage battery. And at the time of charging, discharge of acid mist to the outside of the battery is suppressed, and there is an advantage of a control valve type lead storage battery that does not need rehydration and has excellent maintenance-freeness, and has a high battery capacity, and is overdischarge resistant. It is possible to achieve both of the advantages of an excellent liquid lead-acid battery.

前記した本発明による鉛蓄電池と比較例の鉛蓄電池を作成し、電池の放電容量と耐過放電性能および寿命特性を評価した。   The lead storage battery according to the present invention and the lead storage battery of the comparative example were prepared, and the discharge capacity, overdischarge resistance and life characteristics of the battery were evaluated.

本実施例では、正極板と負極板との間にガラス繊維マットパレータを配置した極板群を用いた電池と、微孔ポリエチレンシートを用いた電池を作成した。   In this example, a battery using an electrode plate group in which a glass fiber mat palator was disposed between a positive electrode plate and a negative electrode plate, and a battery using a microporous polyethylene sheet were prepared.

(セパレータ)
本実施例で用いたガラス繊維マットセパレータとしては、極板群圧を19.6kPaとしたときの空孔率を15%、40%、50%、60%のものを作成した。なお、この空孔率の調整方法として、空孔率60%のガラス繊維マットセパレータ中にシリカ粒子を添加することによって、空孔率を調整した。
(Separator)
As the glass fiber mat separator used in this example, those having a porosity of 15%, 40%, 50%, and 60% when the electrode plate group pressure was 19.6 kPa were prepared. As a method for adjusting the porosity, the porosity was adjusted by adding silica particles into a glass fiber mat separator having a porosity of 60%.

なお、微孔ポリエチレンシートセパレータとしては、溶媒抽出法により作成し、大部分の孔径1.0μm以下である、微孔性を有したポリエチレンシートを袋状に加工したものを用いた。   As the microporous polyethylene sheet separator, a polyethylene sheet having a microporosity, which was prepared by a solvent extraction method and has a pore diameter of 1.0 μm or less, was processed into a bag shape.

(正極板)
本実施例の電池では、以下の正極板を用いた。酸化度75%の酸化鉛粉を硫酸と精製水とで混練し、見掛け密度4.30g/cm3の正極ペーストを作成した。
(Positive electrode plate)
In the battery of this example, the following positive electrode plate was used. Lead oxide powder having an oxidation degree of 75% was kneaded with sulfuric acid and purified water to prepare a positive electrode paste with an apparent density of 4.30 g / cm 3 .

つぎにPb−1.2質量%Sn−0.07質量%Ca合金から作成した1.30mm厚の圧延シートをエキスパンド展開して得た格子体に、前述の正極ペーストを充填し、熟成乾燥工程を経て本実施例の正極板(未化成状態)とした。なお、化成後の正極活物質(2酸化鉛)の空孔体積、すなわち正極活物質が保持しうる電解液容積は、正極活物質質量あたり、0.150ml/gである。   Next, the above positive electrode paste is filled in the lattice obtained by expanding the 1.30 mm-thick rolled sheet prepared from Pb-1.2 mass% Sn-0.07 mass% Ca alloy, and the aging drying step Then, a positive electrode plate (unformed state) of this example was obtained. The pore volume of the positive electrode active material (lead oxide) after chemical conversion, that is, the volume of the electrolyte solution that can be held by the positive electrode active material is 0.150 ml / g per mass of the positive electrode active material.

(負極板)
本実施例で用いた負極板は、酸化度75%の酸化鉛粉100質量部に対し、0.2質量部のリグニンスルフォン酸ナトリウム、0.3質量部のカーボン(アセチレンブラック)及び0.2質量部の硫酸バリウムを添加して、硫酸と精製水で混練し、密度4.50g/cm3の負極ペーストを作成した。
(Negative electrode plate)
In the negative electrode plate used in this example, 0.2 parts by mass of sodium lignin sulfonate, 0.3 parts by mass of carbon (acetylene black) and 0.2 parts by mass with respect to 100 parts by mass of lead oxide powder having an oxidation degree of 75%. Part by mass of barium sulfate was added and kneaded with sulfuric acid and purified water to prepare a negative electrode paste having a density of 4.50 g / cm 3 .

つぎにPb−0.2質量%Sn−0.07質量%Ca合金から作成した0.70mm厚の圧延シートをエキスパンド展開して得た格子体に、前述の負極ペーストを充填し、熟成乾燥工程を経て本実施例の負極板(未化成状態)とした。なお、化成後の負極活物質(海綿状鉛)の空孔体積、すなわち負極活物質が保持しうる電解液容積は、負極活物質質量あたり、0.148ml/gである。   Next, the above-described negative electrode paste is filled into a lattice obtained by expanding a 0.70 mm-thick rolled sheet prepared from a Pb-0.2 mass% Sn-0.07 mass% Ca alloy, and aged and dried. Then, the negative electrode plate of this example (unformed state) was obtained. In addition, the pore volume of the negative electrode active material (spongy-like lead) after chemical conversion, that is, the volume of the electrolyte solution that can be held by the negative electrode active material is 0.148 ml / g per mass of the negative electrode active material.

上記で得た正極板の6枚と負極板の7枚を同じく前述のガラス繊維マットセパレータもしくは微孔ポリエチレンシートセパレータと組み合わせて極板群を作成した。なお、ガラス繊維マットセパレータおよび微孔性ポリエチレンシートセパレータは、それぞれV字状に二つ折りし、内部に正極板を配置した。   An electrode plate group was prepared by combining 6 positive electrode plates and 7 negative electrode plates obtained in the same manner with the above-described glass fiber mat separator or microporous polyethylene sheet separator. The glass fiber mat separator and the microporous polyethylene sheet separator were each folded in a V shape and a positive electrode plate was disposed inside.

この極板群をポリブロピレン製の樹脂電槽に挿入し、セル間を溶接した後、電槽に蓋を接合した。そして、ガラス繊維マットセパレータを用いた電池では、蓋に設けた排気筒から希硫酸を注液し、化成充電処理を行った。なお、排気筒にはキャップ状のゴム弁を装着することにより、開弁圧14kPa、閉弁圧12kPaの弁機構を配置した。   This electrode plate group was inserted into a polybropyrene resin battery case, the cells were welded, and a lid was joined to the battery case. And in the battery using a glass fiber mat separator, dilute sulfuric acid was injected from an exhaust pipe provided on the lid, and a chemical charge treatment was performed. In addition, a valve mechanism having a valve opening pressure of 14 kPa and a valve closing pressure of 12 kPa was disposed by attaching a cap-shaped rubber valve to the exhaust pipe.

また、微孔性ポリエチレンシートセパレータを用いた電池では、蓋には排気筒に代えて液口が設けられており、液口から希硫酸を注液し、化成充電処理を行った。その後、排気筒に排気栓を装着した。排気栓には電解液飛沫の電池外への飛散を防止するための防沫板や、外部スパークの電池内への侵入を抑制するための、防爆フィルタが配置されているものの、電池内で発生したガスは、電池外に排出するよう、ガス排出経路が設けられている。   Further, in the battery using the microporous polyethylene sheet separator, the lid was provided with a liquid port instead of the exhaust pipe, and diluted sulfuric acid was injected from the liquid port to perform a chemical conversion treatment. Thereafter, an exhaust plug was attached to the exhaust tube. The exhaust plug is equipped with a splash-proof plate to prevent the splash of electrolyte from splashing out of the battery, and an explosion-proof filter to prevent the entry of external sparks into the battery. A gas discharge path is provided so that the discharged gas is discharged out of the battery.

なお、本実施例においては、繊維マットセパレータの無加圧時の厚みを各種変更することにより、所定群圧(19.6kPa)における繊維マットセパレータの厚みを制御し、これにより正・負極板面間の距離を0.80〜2.20mmに調整した。なお繊維マットセパレータの厚みを変更しても群圧は19.6kPaで一定となるよう、必要に応じた厚みを有したスペーサを極板群−電槽内壁間に配置した。   In this example, the thickness of the fiber mat separator at a predetermined group pressure (19.6 kPa) is controlled by variously changing the thickness of the fiber mat separator when no pressure is applied. The distance between them was adjusted to 0.80 to 2.20 mm. In addition, even if the thickness of the fiber mat separator was changed, a spacer having a thickness as required was disposed between the electrode plate group and the inner wall of the battery case so that the group pressure was constant at 19.6 kPa.

さらに、電解液は20℃における密度が1.300の希硫酸であり、液面を極板の上端より上方10.00mmもしくは、正極板および負極板の高さ方向の1/2に設定し、極板上半分が電解液より露出し、極板下半分が電解液に浸漬された状態とした。   Further, the electrolytic solution is dilute sulfuric acid having a density of 1.300 at 20 ° C., and the liquid level is set to 10.00 mm above the upper end of the electrode plate or 1/2 of the height direction of the positive electrode plate and the negative electrode plate, The upper half of the electrode plate was exposed from the electrolytic solution, and the lower half of the electrode plate was immersed in the electrolytic solution.

表1に本実施例の各電池の仕様一覧を示す。なお、本実施例の電池はすべてJIS D5301(始動用鉛蓄電池)で規定する80D26形電池と同じサイズの12V電池とした。   Table 1 shows a list of specifications of each battery of this example. The batteries in this example were all 12V batteries having the same size as the 80D26 battery defined by JIS D5301 (lead storage battery for starting).

Figure 2007250361
Figure 2007250361

表1に示した各電池について、過放電前後の8A放電における放電容量を測定することにより、初期容量(過放電前の放電容量)と過放電後の容量回復性を計測した。試験手順としては下記の通りである。なお、試験温度はすべて25℃である。   For each battery shown in Table 1, the initial capacity (discharge capacity before overdischarge) and the capacity recoverability after overdischarge were measured by measuring the discharge capacity in 8A discharge before and after overdischarge. The test procedure is as follows. All test temperatures are 25 ° C.

(初期容量測定)
各電池を8A放電(放電終止電圧10.5V)し、放電電流と放電持続時間の積より初期容量(A)を求めた。
(Initial capacity measurement)
Each battery was discharged at 8 A (discharge end voltage 10.5 V), and the initial capacity (A) was determined from the product of the discharge current and the discharge duration.

(過放電)
各電池に10Wランプを接続し、1ヶ月間過放電した。
(Over discharge)
A 10 W lamp was connected to each battery and overdischarged for one month.

(回復充電)
過放電後の各電池を、14.5V定電圧(最大充電電流25A)で8時間連続充電した。
(Recovery charge)
Each battery after overdischarge was continuously charged for 8 hours at a constant voltage of 14.5 V (maximum charging current 25 A).

(回復容量)
回復充電後の各電池を8A放電(放電終止電圧10.5V)し、放電電流と放電持続時間の積より回復容量(B)を求めた。この値より、初期容量(A)に対する回復容量(B)の百分率を容量回復率として算出した。これらにより、求めた初期容量および過放電後の容量回復率の結果を表2に示す。
(Recovery capacity)
Each battery after the recovery charge was discharged by 8 A (discharge end voltage 10.5 V), and the recovery capacity (B) was determined from the product of the discharge current and the discharge duration. From this value, the percentage of the recovery capacity (B) relative to the initial capacity (A) was calculated as the capacity recovery rate. Table 2 shows the results of the obtained initial capacity and the capacity recovery rate after overdischarge.

Figure 2007250361
Figure 2007250361

表2に示した結果から、ガラス繊維マットセパレータを用い、かつ電解液量を極板面上端よりも上方に設定した電池1〜20は、同一の繊維マット空孔率および同一の極板面間距離であり、かつ電解液量を極板高さの1/2に設定した電池21〜40に比較して、優れた初期容量と同時に過放電後の容量回復率に優れている。これは電解液量をより確保したことによる。   From the results shown in Table 2, batteries 1 to 20 using a glass fiber mat separator and having the amount of electrolyte set above the upper end of the electrode plate surface are the same fiber mat porosity and the same electrode plate surface. Compared to the batteries 21 to 40, which are distances and the electrolyte amount is set to ½ of the electrode plate height, the capacity recovery rate after overdischarge is excellent simultaneously with the excellent initial capacity. This is due to the fact that the amount of electrolytic solution was further secured.

さらに、電池1〜20の各電池は、微孔性ポリエチレンシートセパレータを用いた電池41と比較した場合、特に極板面間距離が1.00mmで同一とした電池2、電池7、電池12および電池17と電池41とを比較して、初期容量が若干低下する傾向にあったが、電池21〜40で見られた低下よりもはるかに程度は低いものであり、ほぼ同一容量を有しているといってよりレベルであった。   Furthermore, when compared with the battery 41 using the microporous polyethylene sheet separator, each of the batteries 1 to 20 has the same battery 2, battery 7, battery 12, and the same electrode plate surface distance of 1.00 mm. Compared to battery 17 and battery 41, the initial capacity tended to decrease slightly, but to a much lesser extent than the decrease seen in batteries 21-40, having approximately the same capacity. It was more level to be.

次に、表1に示した各電池について、JIS D5301(始動用鉛蓄電池)で規定する軽負荷寿命試験(40℃)を行った。なお、同時に寿命試験における電解液の減液量についても評価した。
(寿命試験方法)
試験温度:40℃
放電:25A、4分間
充電:14.8V定電圧(最大電流25A)、10分間
上記の放電−充電サイクルの480サイクル毎に473Aの定電流で判定放電を行い、判定放電の30秒目電圧が7.2Vを下回った時点で寿命試験終了とした。寿命サイクル数は以下の通り求めた。
Next, the light load life test (40 degreeC) prescribed | regulated by JISD5301 (lead storage battery for starting) was done about each battery shown in Table 1. FIG. At the same time, the amount of electrolyte decreased in the life test was also evaluated.
(Life test method)
Test temperature: 40 ° C
Discharge: 25 A, 4 minutes Charging: 14.8 V constant voltage (maximum current 25 A), 10 minutes The judgment discharge is performed at a constant current of 473 A every 480 cycles of the above discharge-charge cycle. The life test was completed when the voltage dropped below 7.2V. The number of life cycles was determined as follows.

すなわち、n回目の判定放電における放電30秒目電圧Vnが7.2Vを下回ったとする。この場合、横軸(サイクル数)−縦軸(判定放電30秒目電圧)のグラフ上に座標(480n,Vn)をプロットする。同様に前回の判定放電である(n−1)回目の判定放電における放電30秒目電圧Vn-1から、座標(480(n−1),Vn-1)をプロットし、これら2つの座標間を直線で結び、この直線と判定放電30秒目電圧=7.2Vの直線とが交わる点の横軸座標を電池の寿命サイクル数とする。 That is, it is assumed that the discharge 30-second voltage V n in the n-th determination discharge is lower than 7.2V. In this case, coordinates (480 n , V n ) are plotted on a graph with the horizontal axis (number of cycles) -vertical axis (voltage at 30 seconds of determination discharge). Similarly, coordinates (480 (n−1), V n−1 ) are plotted from the voltage V n−1 at the discharge 30 seconds in the (n−1) th determination discharge which is the previous determination discharge, and these two The coordinates are connected by a straight line, and the horizontal axis coordinate of the point where the straight line intersects the straight line of the determination discharge 30 second voltage = 7.2 V is defined as the battery life cycle number.

さらに減液量については以下の方法により評価した。すなわち、480サイクルの充放電サイクル毎(以下、一連の480サイクルの充放電を480サイクル単位とする)に電池質量を計測し、各480サイクル単位の充放電前後の電池質量差から減液量を計算した。そして、この電池質量差を寿命サイクル数にわたって積算することにより、全減液量を計測した。全減液量を寿命サイクルで除することにより、1サイクル当たりの減液量(mg/サイクル)を減液速度として求めた。   Further, the amount of liquid reduction was evaluated by the following method. That is, the battery mass is measured every charge / discharge cycle of 480 cycles (hereinafter, a series of 480 cycles of charge / discharge is assumed to be 480 cycle units), and the amount of liquid reduction is calculated from the difference in battery mass before and after each 480 cycle charge / discharge. Calculated. And the total liquid reduction amount was measured by integrating this battery mass difference over the number of life cycles. By dividing the total liquid reduction amount by the life cycle, the liquid reduction amount per one cycle (mg / cycle) was determined as the liquid reduction rate.

なお、電池41については、480サイクル毎の質量測定後に、電池質量減分に相当する蒸留水を電池に補給した。   In addition, about the battery 41, the distilled water equivalent to a battery mass decrement was supplied to the battery after the mass measurement for every 480 cycles.

これら表1に示す各電池の寿命サイクル数、および減液速度(1サイクル当たりの減液量)の測定結果を表3に示す。   Table 3 shows the measurement results of the life cycle number and the liquid reduction rate (liquid reduction amount per cycle) of each battery shown in Table 1.

Figure 2007250361
Figure 2007250361

表2に示した結果から、減液速度に関しては、繊維マットセパレータを用い、電解液面位置を極板面上端より10.00mm上方に設定した電池において、繊維マットセパレータ空孔率を40%以下とし、かつ正極−負極極板面間距離を1.50mm以下とした本発明例の電池は、繊維マットセパレータを用い、電解液面位置を極板高さの1/2の位置とした電池とほぼ同様の減液速度であり、液式の電池41に比較して、極めて減液速度は低い。   From the results shown in Table 2, regarding the liquid reduction rate, the fiber mat separator porosity was set to 40% or less in the battery in which the fiber mat separator was used and the electrolyte surface position was set 10.00 mm above the upper end of the electrode plate surface. The battery of the present invention in which the distance between the positive and negative electrode plate surfaces is 1.50 mm or less is a battery using a fiber mat separator and having the electrolyte surface position at a position half the electrode plate height. The liquid reduction rate is almost the same, and the liquid reduction rate is extremely low compared to the liquid battery 41.

このことは、本発明例の電池においては、極板面がすべて電解液に浸漬した構成であるにもかかわらず、電池内で酸素ガス吸収反応が行われることにより、減液が極めて低レベルで抑制されていると考えられる。   This is because, in the battery of the example of the present invention, even though the electrode plate surface is entirely immersed in the electrolyte, the oxygen gas absorption reaction is performed in the battery, so that the liquid reduction is at a very low level. It is thought to be suppressed.

一方、繊維マットセパレータを用い、電解液面位置を極板面上端より10.00mm上方に設定した電池において、繊維マットセパレータ空孔率を50%以上もしくは正極−負極極板面間距離を1.80mm以上とした電池では、減液速度は増大し、液式の電池41に近い減液速度を示した。   On the other hand, in a battery in which a fiber mat separator is used and the electrolyte surface position is set 10.00 mm above the upper end of the electrode plate surface, the fiber mat separator porosity is 50% or more, or the distance between the positive electrode and negative electrode plate surfaces is 1. In the battery of 80 mm or more, the liquid reduction rate increased, and the liquid reduction rate close to that of the liquid battery 41 was shown.

これらの電池では、充電時に正極で発生した酸素ガスが負極で吸収されず、その結果として、負極上で水素ガスが発生する。これらのガス発生による電池内圧上昇により制御弁が開弁し、内部の酸素・水素ガスが電池外に放出されることによって、電解液内の水分減少が促進されたと考えられる。   In these batteries, oxygen gas generated at the positive electrode during charging is not absorbed by the negative electrode, and as a result, hydrogen gas is generated on the negative electrode. It is considered that the reduction of moisture in the electrolyte solution was promoted by opening the control valve due to the increase in the internal pressure of the battery due to the generation of these gases and releasing the internal oxygen / hydrogen gas to the outside of the battery.

液式の電池41に関しては、充電時に発生した酸素ガスは微孔性ポリエチレンを透過しないため、負極でのガス吸収反応は進行せず、そのため負極では水素ガスが発生する。この酸素ガスと水素ガスが排気栓から電池外に放出されるため、電解液内の水分減少が進行する。   Regarding the liquid battery 41, the oxygen gas generated during charging does not permeate through the microporous polyethylene, so that the gas absorption reaction does not proceed at the negative electrode, and thus hydrogen gas is generated at the negative electrode. Since the oxygen gas and hydrogen gas are released from the exhaust plug to the outside of the battery, the moisture in the electrolyte solution decreases.

寿命サイクル数に関しては、繊維マットセパレータを用い、電解液面位置を極板面上端より10.00mm上方に設定した電池において、繊維マットセパレータ空孔率を40%以下とし、かつ正極−負極極板面間距離を1.50mm以下とした本発明例の電池は、繊維マットセパレータを用い、電解液面位置を極板高さの1/2の位置とした電池よりも顕著に優れた寿命特性を示した。これは電解液量がより多く確保されているため、本発明の電池はより良好な充電受け入れ性を有しているためと考えられる。   Regarding the number of life cycles, in a battery in which a fiber mat separator was used and the electrolyte surface position was set 10.00 mm above the upper end of the electrode plate surface, the fiber mat separator porosity was 40% or less, and the positive electrode-negative electrode plate The battery according to the present invention in which the inter-surface distance is 1.50 mm or less uses a fiber mat separator, and has a life characteristic that is remarkably superior to a battery in which the electrolyte surface position is a half of the electrode plate height. Indicated. This is presumably because the battery of the present invention has better charge acceptability because a larger amount of electrolyte is secured.

また同様に、本発明例の電池は、比較例による液式の電池41に比較しても優れた寿命特性を有している。本発明例の電池では、繊維マットセパレータが正極活物質の軟化脱落を抑制し、劣化がより抑制されたと推測される。   Similarly, the battery of the example of the present invention has excellent life characteristics even when compared with the liquid battery 41 according to the comparative example. In the battery of the present invention example, it is presumed that the fiber mat separator suppressed softening and falling off of the positive electrode active material, and the deterioration was further suppressed.

一方、繊維マットセパレータを用い、電解液面位置を極板面上端より10.00mm上方に設定した電池において、繊維マットセパレータ空孔率を50%以上もしくは正極−負極極板面間距離を1.80mm以下とした電池では、本発明例によるものよりも寿命特性は低下した。これは本発明の電池によるものと比較して、減液速度は増大するため、電解液中の硫酸濃度が上昇し、正極の劣化がより進行したことによるものと推測できる。   On the other hand, in a battery in which a fiber mat separator is used and the electrolyte surface position is set 10.00 mm above the upper end of the electrode plate surface, the fiber mat separator porosity is 50% or more, or the distance between the positive electrode and negative electrode plate surfaces is 1. In the battery of 80 mm or less, the life characteristics were lower than those according to the examples of the present invention. It can be presumed that this is due to the increase in the sulfuric acid concentration in the electrolytic solution and the further deterioration of the positive electrode, since the liquid reduction rate increases as compared with the battery according to the present invention.

以上の結果から、本発明例の電池は、その内部に電解液を従来の液式鉛蓄電池とほぼ同等することによって、ほぼ同等もしくはそれ以上の初期容量と耐過放電性能を有している。また、電解液が極板面全面を浸漬した状態においても負極における酸素ガス吸収反応を可能とすることによって、減液が抑制された、高いメンテナンスフリー性を有した制御弁を有した鉛蓄電池を得ることができる。   From the above results, the battery of the example of the present invention has substantially the same or higher initial capacity and overdischarge resistance by substantially equalizing the electrolytic solution in the inside thereof with that of a conventional liquid lead acid battery. In addition, a lead-acid battery having a control valve with high maintenance-free property in which liquid reduction is suppressed by enabling oxygen gas absorption reaction in the negative electrode even in a state where the entire surface of the electrode plate is immersed in the electrolyte. Obtainable.

なお、本実施例では、繊維マットセパレータの空孔率を、繊維マットセパレータへのシリカ粒子の添加量によって調整したが、繊維マットセパレータを構成する繊維径を変化させる、あるいは繊維マットを抄造する際の条件を変化させる等により、単位見掛け体積あたりの繊維マット質量を変化させ、繊維マットセパレータ空孔率を調整しても、電池の初期容量や過放電後の容量回復率および寿命特性に、本実施例と同様の結果が得られた。   In this example, the porosity of the fiber mat separator was adjusted by the amount of silica particles added to the fiber mat separator, but when changing the fiber diameter constituting the fiber mat separator or making the fiber mat. Even if the fiber mat mass per unit apparent volume is changed and the fiber mat separator porosity is adjusted by changing the conditions of the above, etc., the initial capacity of the battery, the capacity recovery rate after overdischarge, and the life characteristics are Results similar to those of the example were obtained.

本発明の鉛蓄電池は、弁機構を有し、電池外への酸霧の放出が抑制されるため、従来の車両補機用の制御弁式鉛蓄電池と同様、車室内やトランクルーム内といった、エンジンルーム以外への搭載を可能とし、液式鉛蓄電池に比較して、設置位置の自由度を有している。   Since the lead storage battery of the present invention has a valve mechanism and the release of acid mist to the outside of the battery is suppressed, the engine such as the interior of a vehicle compartment or a trunk room is similar to a conventional control valve type lead storage battery for vehicle auxiliary machinery. It can be installed outside the room and has a greater degree of freedom in installation position than liquid lead-acid batteries.

以上、説明してきたように、本発明によれば、制御弁式鉛蓄電池で課題となっていた、初期容量や耐過放電性能が顕著に改善され、また、電池内でのガス吸収反応が円滑に進行することによって、減液特性に優れた鉛蓄電池を提供できることから、自動車用をはじめとする、各種の鉛蓄電池に極めて好適である。   As described above, according to the present invention, the initial capacity and the overdischarge resistance, which have been problems in the control valve type lead-acid battery, are remarkably improved, and the gas absorption reaction in the battery is smooth. Since it can provide a lead storage battery having excellent liquid reduction characteristics, it is extremely suitable for various lead storage batteries including those for automobiles.

本発明の鉛蓄電池の要部断面を示す図The figure which shows the principal part cross section of the lead acid battery of this invention.

符号の説明Explanation of symbols

101 鉛蓄電池
102 正極板
103 負極板
104 繊維マットセパレータ
105 電槽
106 蓋
107 電解液
107a 液面
108 弁機構
108a 排気筒
108b 弁
108c 上板
101 Lead Storage Battery 102 Positive Electrode 103 Negative Electrode 104 Fiber Mat Separator 105 Battery Case 106 Lid 107 Electrolyte 107a Liquid Level 108 Valve Mechanism 108a Exhaust Tube 108b Valve 108c Upper Plate

Claims (1)

正極板と負極板との間に空孔率が40%以下の繊維マットセパレータが配置され、互いに対向しあう異極性の極板面間距離が1.50mm以下であり、電解液面の高さが少なくとも前記正極板および前記負極板の極板面の高さ以上にあり、電池外装に制御弁を備えた鉛蓄電池。 A fiber mat separator having a porosity of 40% or less is disposed between the positive electrode plate and the negative electrode plate, the distance between the opposite polar electrode plates facing each other is 1.50 mm or less, and the height of the electrolyte surface Is a lead storage battery having at least a height of the electrode plate surface of the positive electrode plate and the negative electrode plate and having a control valve on the battery exterior.
JP2006072335A 2006-03-16 2006-03-16 Lead-acid battery Pending JP2007250361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006072335A JP2007250361A (en) 2006-03-16 2006-03-16 Lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006072335A JP2007250361A (en) 2006-03-16 2006-03-16 Lead-acid battery

Publications (1)

Publication Number Publication Date
JP2007250361A true JP2007250361A (en) 2007-09-27

Family

ID=38594417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006072335A Pending JP2007250361A (en) 2006-03-16 2006-03-16 Lead-acid battery

Country Status (1)

Country Link
JP (1) JP2007250361A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016139855A1 (en) * 2015-03-05 2016-09-09 日立化成株式会社 Lead storage cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016139855A1 (en) * 2015-03-05 2016-09-09 日立化成株式会社 Lead storage cell
JPWO2016139855A1 (en) * 2015-03-05 2017-08-10 日立化成株式会社 Lead acid battery

Similar Documents

Publication Publication Date Title
KR101139665B1 (en) Lead storage battery
JP5361712B2 (en) New silver positive electrode for alkaline storage batteries
JP6331161B2 (en) Control valve type lead acid battery
JP2014157703A (en) Lead accumulator
JP6977770B2 (en) Liquid lead-acid battery
KR102031508B1 (en) Lead acid battery
JP2008243493A (en) Lead acid storage battery
JP6525167B2 (en) Lead storage battery
JP3987445B2 (en) Nickel / hydrogen storage battery
JP2004031167A (en) Alkaline storage battery
JP2006086039A (en) Lead-acid storage battery
JP2007250361A (en) Lead-acid battery
JP2020115424A (en) Lead storage battery
JP4417232B2 (en) Lead acid battery
WO2020066763A1 (en) Lead battery
JP7060858B2 (en) Judgment method of liquid reduction performance of lead-acid battery, and lead-acid battery and its charging method
JP2007250360A (en) Lead-acid battery
JPWO2011077640A1 (en) Control valve type lead acid battery
JP2006093047A (en) Lead acid battery
JP4857894B2 (en) Lead acid battery
JP2006318658A (en) Lead-acid battery
JP2019003838A (en) Liquid-type lead storage battery
WO2024043226A1 (en) Aqueous electrolyte secondary battery
JP2010073537A (en) Alkaline secondary battery
JP2002260717A (en) Valve controlled lead storage battery