JP2007247536A - Variable compression ratio mechanism of internal combustion engine - Google Patents

Variable compression ratio mechanism of internal combustion engine Download PDF

Info

Publication number
JP2007247536A
JP2007247536A JP2006072015A JP2006072015A JP2007247536A JP 2007247536 A JP2007247536 A JP 2007247536A JP 2006072015 A JP2006072015 A JP 2006072015A JP 2006072015 A JP2006072015 A JP 2006072015A JP 2007247536 A JP2007247536 A JP 2007247536A
Authority
JP
Japan
Prior art keywords
actuator shaft
compression ratio
internal combustion
actuator
variable compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006072015A
Other languages
Japanese (ja)
Other versions
JP4491426B2 (en
Inventor
Shunichi Aoyama
俊一 青山
Katsuya Mogi
克也 茂木
Yoshiaki Tanaka
儀明 田中
Shinichi Takemura
信一 竹村
Narifumi Sugawara
済文 菅原
Akira Sakata
晃 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Mitsubishi Electric Corp
Original Assignee
Nissan Motor Co Ltd
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, Mitsubishi Electric Corp filed Critical Nissan Motor Co Ltd
Priority to JP2006072015A priority Critical patent/JP4491426B2/en
Publication of JP2007247536A publication Critical patent/JP2007247536A/en
Application granted granted Critical
Publication of JP4491426B2 publication Critical patent/JP4491426B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transmission Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a variable compression ratio mechanism of an internal combustion engine for improving controllability and reliability. <P>SOLUTION: This variable compression ratio mechanism of the internal combustion engine, variably controls the engine compression ratio by a relative positional change in a rocking center position of a control link 25 caused by rotation of a control shaft 23, by rotating the control shaft 23 by an actuator 30. The actuator 30 has an actuator shaft 32 and an actuator shaft driving member 34 engaging with the actuator shaft 32 via a trapezoidal screw part 41 (a screw mechanism), and is set so that the size of force acting on the trapezoidal screw part 41 changes with the lapse of time, by setting the direction of the force acting on the trapezoidal screw part 41 constant, when an engine rotates at a low speed, and the direction of the force and the size of the force acting on the trapezoidal screw part 41 change with the lapse of time, when the engine rotates at a high speed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、内燃機関の可変圧縮比機構に関する。   The present invention relates to a variable compression ratio mechanism for an internal combustion engine.

特許文献1は、本出願人が先に提案したものであり、複リンク式ピストン−クランク機構を用いた内燃機関の可変圧縮比機構を開示している。これは、一端がピストンにピストンピンを介して連結されたアッパリンクと、このアッパリンクの他端が第1連結ピンを介して連結されるとともにクランクシャフトのクランクピンに回転可能に取り付けられるロアリンクと、によって、ピストンとクランクピンとが連係されているとともに、上記ロアリンクの運動を拘束するように、ロアリンクに第2連結ピンを介してコントロールリンクの一端が連結された構成となっており、コントロールリンクの他端が、例えばシリンダブロック下部に支持されている。そして、このコントロールリンクの他端の揺動中心をカム機構により変位させることで、ピストン上死点位置ひいては機関の圧縮比を変化させることができる。
特開2001−227367号公報
Patent Document 1 has been previously proposed by the present applicant, and discloses a variable compression ratio mechanism of an internal combustion engine using a multi-link type piston-crank mechanism. The upper link has one end connected to the piston via a piston pin, and the other end of the upper link is connected via a first connection pin and is rotatably attached to the crank pin of the crankshaft. And the piston and the crank pin are linked to each other, and one end of the control link is connected to the lower link via the second connecting pin so as to restrain the movement of the lower link. The other end of the control link is supported, for example, at the bottom of the cylinder block. Then, by displacing the swing center of the other end of the control link by the cam mechanism, the piston top dead center position and hence the compression ratio of the engine can be changed.
JP 2001-227367 A

しかしながら、このような複リンク式のピストン−クランク機構は、構成部品の潤滑性、カム機構を駆動するアクチュエータの消費電力を最小限に抑え、かつフェールセーフを確保することが大きな課題となる。また、その一方で、従来からある単リンク式のピストン−クランク機構からは大幅に拡大した機構設定の自由度が有り、ポイントを押さえた設計とすることにより、機構の信頼性を確保し、摩擦損失も最小限に押さえたコンパクトな機構の実現が可能となる。本願発明は、このような観点から複リンク式のピストン−クランク機構の制御性と信頼性が改善された内燃機関の可変圧縮比機構を提供するものである。   However, in such a multi-link type piston-crank mechanism, it is a major issue to minimize the lubricity of the components, the power consumption of the actuator that drives the cam mechanism, and to ensure fail-safety. On the other hand, the conventional single link type piston-crank mechanism has a greatly expanded degree of freedom in setting the mechanism, and by adopting a design that holds down the points, the reliability of the mechanism is ensured and the friction is reduced. A compact mechanism with minimal loss can be realized. The present invention provides a variable compression ratio mechanism of an internal combustion engine in which the controllability and reliability of a multi-link type piston-crank mechanism are improved from such a viewpoint.

本発明は、アクチュエータにより制御軸を回転させ、制御軸の回転に伴う制御リンクの揺動中心位置の相対的な位置変化により機関圧縮比を可変制御する内燃機関の可変圧縮比機構において、アクチュエータは、アクチュエータシャフトと、ねじ機構を介してアクチュエータシャフトと係合するアクチュエータシャフト駆動部材とを有するものであって、エンジン低速回転時には、ねじ機構に作用する力の向きは一定で、ねじ機構に作用する力の大きさが時間と伴に変化し、エンジン高速回転時には、ねじ機構に作用する力の向き及び力の大きさが時間と伴に変化するよう設定されている。   The present invention relates to a variable compression ratio mechanism of an internal combustion engine in which a control shaft is rotated by an actuator, and an engine compression ratio is variably controlled by a relative position change of a swing center position of a control link accompanying rotation of the control shaft. The actuator shaft has an actuator shaft and an actuator shaft driving member that engages with the actuator shaft via a screw mechanism. When the engine rotates at a low speed, the direction of the force acting on the screw mechanism is constant and acts on the screw mechanism. The magnitude of the force changes with time, and the direction of the force acting on the screw mechanism and the magnitude of the force change with time when the engine rotates at high speed.

本発明によれば、エンジン低速回転時には、ねじ機構に作用する摩擦係数を境界潤滑特有の0.1〜0.2程度の値に維持され、エンジン高速回転時には、ねじ摺動面間の潤滑油はいわゆる絞り膜作用を受け、ねじ摺動面同士の接近時には油膜圧力が急上昇することによって接触が阻まれることになり、擦係係数は流体潤滑時のオーダ(例えば0.01程度)になり、境界潤滑時とは桁違いの低摩擦状態となる。   According to the present invention, the friction coefficient acting on the screw mechanism is maintained at a value of about 0.1 to 0.2, which is specific to boundary lubrication, at the time of engine low speed rotation, and the lubricating oil between the screw sliding surfaces is at the time of engine high speed rotation. Is subjected to a so-called squeezing film action, and when the screw sliding surfaces approach each other, the oil film pressure rapidly rises to prevent contact, and the friction coefficient is on the order of fluid lubrication (for example, about 0.01). The frictional state is orders of magnitude lower than that at boundary lubrication.

以下、本発明の一実施形態を図面に基づいて詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

図1は、本発明に係る内燃機関の可変圧縮比機構の概略を模式的に示した説明図である。   FIG. 1 is an explanatory view schematically showing an outline of a variable compression ratio mechanism of an internal combustion engine according to the present invention.

シリンダブロック11には、各気筒毎に円筒状のシリンダ12が形成されると共に、各シリンダ12の周囲にウォータージャケット13が形成されている。各シリンダ12内にはピストン14が昇降可能に配設されており、各ピストン14のピストンピン15と、クランクシャフト16のクランクピン17とは、複リンク式のピストン−クランク機構である可変圧縮比機構を介して機械的に連携されている。尚、18はカウンターウエイトである。   In the cylinder block 11, a cylindrical cylinder 12 is formed for each cylinder, and a water jacket 13 is formed around each cylinder 12. A piston 14 is disposed in each cylinder 12 so as to be movable up and down, and the piston pin 15 of each piston 14 and the crank pin 17 of the crankshaft 16 are variable compression ratios which are multi-link type piston-crank mechanisms. It is mechanically linked through a mechanism. Reference numeral 18 denotes a counterweight.

上記の可変圧縮比機構は、クランクピン17に相対回転可能に外嵌するロアーリンク21と、このロアーリンク21とピストンピン15とを連携するアッパーリンク22と、クランクシャフト16と平行に気筒列方向へ延びる制御軸23と、この制御軸23に偏心して設けられた偏心カム24と、この偏心カム24とロアーリンク21とを連携する制御リンク25と、制御軸23を所定の制御範囲内で回転駆動すると共に、所定の回転位置に保持する駆動手段としてのアクチュエータ30と、を備えている。   The variable compression ratio mechanism includes a lower link 21 that is externally fitted to the crankpin 17 so as to be relatively rotatable, an upper link 22 that links the lower link 21 and the piston pin 15, and a cylinder row direction parallel to the crankshaft 16. A control shaft 23 extending inward, an eccentric cam 24 provided eccentric to the control shaft 23, a control link 25 linking the eccentric cam 24 and the lower link 21, and rotating the control shaft 23 within a predetermined control range. And an actuator 30 as a driving means for driving and holding at a predetermined rotational position.

ロッド状をなすアッパーリンク22の上端部はピストンピン15に相対回転可能に連結されており、下端部は連結ピン26を介してロアーリンク21に相対回転可能に連結されている。制御リンク25の一端はロアーリンク21に連結ピン38を介して相対回転可能に連結されており、制御リンク25の他端は偏心カム24に相対回転可能に外嵌されている。   The upper end portion of the rod-like upper link 22 is connected to the piston pin 15 so as to be relatively rotatable, and the lower end portion is connected to the lower link 21 via the connecting pin 26 so as to be relatively rotatable. One end of the control link 25 is coupled to the lower link 21 via a coupling pin 38 so as to be relatively rotatable, and the other end of the control link 25 is externally fitted to the eccentric cam 24 so as to be relatively rotatable.

また、ピストン14のストローク特性は、上記の複リンク式の可変圧縮比機構において、リンクディメンジョンを適切に選定することにより、単振動に近いピストンストローク特性となるよう設定されている。換言すれば、ピストン14の加速度が上死点と下死点で略同じ大きさとなるよう設定されている。   Further, the stroke characteristics of the piston 14 are set so as to obtain a piston stroke characteristic close to simple vibration by appropriately selecting a link dimension in the above-described variable compression ratio mechanism of the multi-link type. In other words, the acceleration of the piston 14 is set to be substantially the same at the top dead center and the bottom dead center.

アクチュエータ30は、ケーシング31内に進退可能に配設されるアクチュエータシャフト32と、このアクチュエータシャフト32の基端側(後端)の内周面に形成された雌ねじ部36に螺合する雄ねじ部33が先端側の外周面に形成されたロッド状のアクチュエータシャフト駆動部材34と、を有している。つまり、アクチュエータシャフト32の基端側は、略筒状を呈し、その内周面に雌ねじ部36が形成されている。そして、雄ねじ部33及び雌ねじ部36は、台形ねじに形成されており、アクチュエータ30内には、この雄ねじ部33及び雌ねじ部36によりねじ機構としての台形ネジ部41が構成されている。この台形ネジ部41は、制御軸23からの荷重の保持と、アクチュエータシャフト32の軸方向への移動制御機能を併せ持っている。また、アクチュエータシャフト駆動部材34は、台形ネジ部41を介してアクチュエータシャフト32と係合し、アクチュエータシャフト32の円周方向に回転可能となっている。   The actuator 30 includes an actuator shaft 32 disposed in a casing 31 so as to be able to advance and retract, and a male screw portion 33 that is screwed into a female screw portion 36 formed on the inner peripheral surface of the proximal end side (rear end) of the actuator shaft 32. Has a rod-shaped actuator shaft drive member 34 formed on the outer peripheral surface on the distal end side. That is, the proximal end side of the actuator shaft 32 has a substantially cylindrical shape, and the internal thread portion 36 is formed on the inner peripheral surface thereof. The male screw portion 33 and the female screw portion 36 are formed as trapezoidal screws, and the male screw portion 33 and the female screw portion 36 constitute a trapezoidal screw portion 41 as a screw mechanism in the actuator 30. The trapezoidal screw portion 41 has both functions of holding a load from the control shaft 23 and controlling the movement of the actuator shaft 32 in the axial direction. The actuator shaft drive member 34 is engaged with the actuator shaft 32 via the trapezoidal screw portion 41 and is rotatable in the circumferential direction of the actuator shaft 32.

ケーシング31には、台形ネジ部41に供給される潤滑油の給油口42が形成されている。この給油口42には、オイルポンプ43によってオイルパン44から汲み上げられた潤滑油が油圧制御弁としての電磁弁45を介して導入されている。この電磁弁45は、エンジン高速回転時に台形ネジ部41に供給される給油量が多くなるよう制御されており、エンジン高速回転時に、台形ネジ部41の油膜構成を容易できると共に、アクチュエータシャフト駆動部材34の駆動源である電動モータ(図示せず)の通電不良のような場合には自動的に低圧縮比側にアクチュエータシャフト32が戻る作用が強化されている。給油口42に導入された潤滑油は、ケーシング31及びアクチュエータシャフト32に形成された給油路46を経て台形ネジ部41に供給されている。   The casing 31 has an oil supply port 42 for lubricating oil supplied to the trapezoidal screw portion 41. Lubricating oil pumped up from the oil pan 44 by the oil pump 43 is introduced into the oil supply port 42 through an electromagnetic valve 45 as a hydraulic control valve. The solenoid valve 45 is controlled so that the amount of oil supplied to the trapezoidal screw portion 41 at the time of high-speed rotation of the engine is increased, and the oil film configuration of the trapezoidal screw portion 41 can be facilitated at the time of high-speed rotation of the engine. When the electric motor (not shown) that is the drive source of 34 is not energized, the action of automatically returning the actuator shaft 32 to the low compression ratio side is strengthened. The lubricating oil introduced into the oil supply port 42 is supplied to the trapezoidal screw portion 41 through an oil supply passage 46 formed in the casing 31 and the actuator shaft 32.

アクチュエータシャフト駆動部材34は、図外の制御部(エンジンコントロールユニット)からの制御信号に基づいて電動モータにより回転駆動され、エンジン運転条件に応じて、例えば図2に示すような圧縮比特性となるように制御軸23回転位置を制御する。   The actuator shaft driving member 34 is rotationally driven by an electric motor based on a control signal from a control unit (engine control unit) (not shown), and has a compression ratio characteristic as shown in FIG. 2, for example, according to engine operating conditions. Thus, the rotational position of the control shaft 23 is controlled.

アクチュエータシャフト32には、大きな荷重が加わる。例えば上死点付近では、ピストンには慣性力(上死点で最大)とガス圧力が作用する。いずれもピストン荷重となり、ロアリンク21、制御リンク25を介して、力学のルールに従って荷重がアクチュエータシャフト32にも配分される。この荷重は運転条件にもよるが最大数百キログラムにも達する大荷重であり、これを保持し、必要な場合にはこの荷重に抗してアクチュエータシャフト32を移動させ、制御リンク25の支点を変えて、圧縮比を応答遅れなしに最適制御する必要がある。   A large load is applied to the actuator shaft 32. For example, near the top dead center, inertial force (maximum at top dead center) and gas pressure act on the piston. Both are piston loads, and the load is also distributed to the actuator shaft 32 through the lower link 21 and the control link 25 in accordance with the rules of mechanics. Although this load depends on the operating conditions, it is a large load that reaches a maximum of several hundred kilograms. This load is maintained, and when necessary, the actuator shaft 32 is moved against this load, and the fulcrum of the control link 25 is moved. In other words, it is necessary to optimally control the compression ratio without response delay.

そこで、本実施形態においては、アクチュエータシャフト32とアクチュエータシャフト駆動部材34との間の動力伝達が、アクチュエータシャフト32の雌ねじ部36とアクチュエータシャフト駆動部材34の雄ねじ部33とからなる台形ネジ部41によって行われている。   Therefore, in the present embodiment, the power transmission between the actuator shaft 32 and the actuator shaft driving member 34 is transmitted by the trapezoidal screw portion 41 including the female screw portion 36 of the actuator shaft 32 and the male screw portion 33 of the actuator shaft driving member 34. Has been done.

台形ネジは、大きな減速比が得られる他に、軸方向の大荷重を支えるねじ摺動面を大きくとれるメリットがある。また、減速比と摩擦係数の関係を適切に設定することで、軸方向の荷重に対し、摩擦力のみで支えることが可能であるため、単に同じ圧縮比に継続して保持する場合、アクチュエータシャフト駆動部材34の駆動源である電動モータの消費電力をほとんどゼロにすることができる。   A trapezoidal screw has a merit that a large sliding ratio can be obtained in addition to a large reduction ratio and a large axial load. In addition, by properly setting the relationship between the reduction ratio and the friction coefficient, it is possible to support the axial load with only the frictional force. The power consumption of the electric motor that is the drive source of the drive member 34 can be made almost zero.

ところで、本実施形態において、台形ネジ部41に加わる荷重(ネジ歯面荷重)は、エンジン低速回転時では筒内のガス圧が主体となり、エンジン高速回転時ではピストン14の慣性力が主体となる。ガス圧の場合、ピストン14にはクランクシャフト16軸方向の一方向荷重が作用することとなるため、エンジン低速回転時に台形ネジ部41に加わる荷重はやはり一方向荷重となる(図1おけるアクチュエータシャフト32に引っ張り荷重が加わる)。換言すれば、エンジン低速回転時に台形ネジ部41には、力の加わる方向は同じで力の大きさが時間とともに変化するいわゆる片振り荷重が作用する。つまり、台形ネジ部41にも図3、図4に示すように一方向の変動荷重(片振り荷重)が作用する。このような場合、台形ネジ部41のねじ摺動面は面圧は変動するものの常時接触しているため、ねじ摺動面に油膜が構成されても吸着分子程度の境界膜であり、摩擦係数は表面性状によっても異なるが、台形ネジ部41のリード角を適宜設定し、境界潤滑特有の0.1〜0.2程度の値に維持することは比較的容易である。   By the way, in this embodiment, the load (screw tooth surface load) applied to the trapezoidal screw part 41 is mainly the gas pressure in the cylinder at the time of engine low speed rotation, and mainly the inertial force of the piston 14 at the time of engine high speed rotation. . In the case of gas pressure, a unidirectional load is applied to the piston 14 in the axial direction of the crankshaft 16, so that the load applied to the trapezoidal screw portion 41 during low-speed rotation of the engine is also a unidirectional load (the actuator shaft in FIG. 1). 32 is subjected to a tensile load). In other words, at the time of engine low speed rotation, the trapezoidal screw portion 41 is subjected to a so-called one-side swing load in which the force is applied in the same direction and the magnitude of the force changes with time. That is, a variable load (one-way swing load) in one direction acts on the trapezoidal screw portion 41 as shown in FIGS. In such a case, the screw sliding surface of the trapezoidal screw portion 41 is always in contact with the surface pressure although the surface pressure fluctuates. Therefore, even if an oil film is formed on the screw sliding surface, it is a boundary film of adsorbed molecules, and the friction coefficient. Although depending on the surface properties, it is relatively easy to set the lead angle of the trapezoidal screw portion 41 as appropriate and maintain it at a value of about 0.1 to 0.2, which is specific to boundary lubrication.

一方、エンジン中・高速回転時には、慣性力が回転数の2乗に比例して増大してくるため、アクチュエータシャフト32には引っ張りだけではなく圧縮荷重も作用するようになる。換言すれば、力の加わる方向と力の大きさが時間とともに変化するいわゆる両振り荷重がアクチュエータシャフト32に作用することになる。つまり、台形ネジ部41おけるねじ摺動面間の距離が常時変化し、一方向にのみ押しつけられている状況とは異なってくる。このような場合、ねじ摺動面間の潤滑油はいわゆる絞り膜作用を受け、ねじ摺動面同士の接近時には油膜圧力が急上昇することによって、接触が阻まれることになる。変動荷重下での滑り軸受の潤滑原理そのものである。このように油膜が構成されると摩擦係数は流体潤滑時のオーダ(例えば0.01程度)になり、境界潤滑時とは桁違いの低摩擦状態となる。この条件では摩擦によるアクチュエータシャフト32の保持は困難であり、圧縮比を維持しようとすると、アクチュエータシャフト32の駆動源となる電動モータは、アクチュエータシャフト32を保持するために電力消費を余儀なくされる。このような慣性力はピストン14のストローク特性に大きく依存するため、例えば、図5に示すようにな単振動に近いストローク特性とすることで、ピストン加速度が平準化され、従来のストローク特性(単振動に近くないストローク特性)に対し、上死点側の慣性力(従来は下死点側の2倍)を減らすことができる。   On the other hand, the inertial force increases in proportion to the square of the rotational speed at the time of middle / high speed rotation of the engine, so that not only the tension but also the compressive load acts on the actuator shaft 32. In other words, a so-called double swing load in which the direction in which the force is applied and the magnitude of the force change with time acts on the actuator shaft 32. That is, the distance between the screw sliding surfaces in the trapezoidal screw portion 41 is constantly changed, which is different from the situation where the trapezoidal screw portion 41 is pressed only in one direction. In such a case, the lubricating oil between the screw sliding surfaces is subjected to a so-called squeezing film action, and when the screw sliding surfaces approach each other, the oil film pressure rapidly rises to prevent contact. This is the principle of lubrication of sliding bearings under variable loads. When the oil film is formed in this way, the friction coefficient is on the order of fluid lubrication (for example, about 0.01), and the frictional state is on the order of magnitude lower than that of boundary lubrication. Under this condition, it is difficult to hold the actuator shaft 32 due to friction, and if an attempt is made to maintain the compression ratio, the electric motor serving as the drive source of the actuator shaft 32 is forced to consume power in order to hold the actuator shaft 32. Since the inertial force largely depends on the stroke characteristics of the piston 14, for example, by setting the stroke characteristics close to simple vibration as shown in FIG. 5, the piston acceleration is leveled, and the conventional stroke characteristics (single The inertial force on the top dead center side (conventionally twice that on the bottom dead center side) can be reduced with respect to the stroke characteristics that are not close to vibration.

そして、上死点側の慣性力を減らすことで、台形ネジ部41に加わる荷重が一方向荷重となる運転領域を大幅に拡大することができる。これにより、図6に示すように、エンジン中速回転時においても、台形ネジ部41に加わる荷重を一方向荷重(片振り荷重)とすることができ、使用頻度の高い運転領域の大半の条件で、アクチュエータシャフト32の駆動源となる電動モータの消費電力をほとんどゼロにすることができる。尚、図7は、ピストン14のストローク特性を従来のストローク特性(単振動に近くないストローク特性)とした場合に台形ネジ部41に加わる荷重の特性を示したものであり、従来のストローク特性では、エンジン中速回転時に一方向ではなく両方向(アクチュエータシャフト32の引っ張り方向と圧縮方向の両方)の荷重(両振り荷重)が台形ネジ部41に加わる。   And the operation area | region where the load added to the trapezoidal screw part 41 turns into a one-way load can be expanded significantly by reducing the inertial force by the side of a top dead center. Thereby, as shown in FIG. 6, even when the engine is rotating at medium speed, the load applied to the trapezoidal screw portion 41 can be a unidirectional load (one-sided load), and most conditions in the frequently used operating region Thus, the power consumption of the electric motor serving as the drive source of the actuator shaft 32 can be made almost zero. FIG. 7 shows the characteristics of the load applied to the trapezoidal screw portion 41 when the stroke characteristics of the piston 14 are the conventional stroke characteristics (stroke characteristics not close to simple vibration). In addition, a load (both swing load) in both directions (both in the pulling direction and the compression direction of the actuator shaft 32) is applied to the trapezoidal screw portion 41 instead of one direction during medium-speed rotation of the engine.

エンジン高速回転時は、ピストン14の慣性力の急増に伴い、図8及び図9に示すように、台形ネジ部41には両方向(アクチュエータシャフト32の引っ張り方向と圧縮方向の両方)の荷重(両振り荷重)が作用する。   When the engine rotates at high speed, the trapezoidal screw portion 41 has loads in both directions (both in the pulling direction and in the compressing direction of the actuator shaft 32) as shown in FIGS. Swing load) is applied.

図10は、上述した台形ネジ部41のリード角を模式的に示した説明図である。リード角は、基本的には、減速比に大きな影響を与えるため、リード角の小さなネジで減速比を大きくとり、摩擦係数をある範囲(所定範囲)とすれば、小さなモータをアクチュエータシャフト32の駆動源となる電動モータに適用しても、十分な応答性と省電力保持が可能となる。   FIG. 10 is an explanatory view schematically showing the lead angle of the trapezoidal screw portion 41 described above. Since the lead angle basically has a large influence on the reduction ratio, if the reduction ratio is increased with a screw having a small lead angle and the friction coefficient is set within a certain range (predetermined range), a small motor is connected to the actuator shaft 32. Even when applied to an electric motor as a drive source, sufficient responsiveness and power saving can be maintained.

具体的には、いわゆる片振り荷重が台形ネジ部41に作用するエンジン低速回転時及び中速回転時に雄ねじ部33と雌ねじ部36との間で滑りが生じないように、図11に示すように、台形ネジ部41の摩擦係数μと、台形ネジ部41のリード角θとが、μ>tanθとなるように設定される。詳述すると、台形ネジ部に作用する荷重をFとすると、台形ネジ部41に作用する摩擦力FTは、FT=μ・FN=μ・Fcosθとなる。一方、摩擦力FTと反対方向に作用する滑り方向の荷重成分Fmは、Fm=Fsinθとなる。   Specifically, as shown in FIG. 11, so as not to cause a slip between the male screw portion 33 and the female screw portion 36 at the time of engine low-speed rotation and medium-speed rotation when a so-called swinging load acts on the trapezoidal screw portion 41. The friction coefficient μ of the trapezoidal screw portion 41 and the lead angle θ of the trapezoidal screw portion 41 are set such that μ> tan θ. More specifically, if the load acting on the trapezoidal screw portion is F, the frictional force FT acting on the trapezoidal screw portion 41 is FT = μ · FN = μ · Fcos θ. On the other hand, the load component Fm in the sliding direction acting in the direction opposite to the frictional force FT is Fm = Fsinθ.

そこで、摩擦力FTが滑り方向の荷重成分Fmよりも大きくなるように、台形ネジ部41の摩擦係数μと、台形ネジ部41のリード角θを設定すると、FT=μ・Fcosθ>Fm=Fsinθとなり、上述したμ>tanθなる条件が導かれる。   Therefore, when the friction coefficient μ of the trapezoidal screw portion 41 and the lead angle θ of the trapezoidal screw portion 41 are set so that the frictional force FT is larger than the load component Fm in the sliding direction, FT = μ · Fcosθ> Fm = Fsinθ Thus, the above-described condition of μ> tan θ is derived.

尚、上述した実施形態においては、アクチュエータシャフト32に雌ねじ部36を形成し、アクチュエータシャフト駆動部材34に雄ねじ部33を形成しているが、アクチュエータシャフト32に雄ねじ部を形成し、アクチュエータシャフト駆動部材34に雌ねじ部を形成し、両者を螺合させるようにしてもよい。   In the above-described embodiment, the internal thread portion 36 is formed on the actuator shaft 32 and the external thread portion 33 is formed on the actuator shaft drive member 34. However, the external thread portion is formed on the actuator shaft 32 and the actuator shaft drive member is formed. An internal thread portion may be formed on 34, and both may be screwed together.

上記実施形態から把握し得る本発明の技術的思想について、その効果とともに列記する。   The technical idea of the present invention that can be grasped from the above embodiment will be listed together with the effects thereof.

(1) ピストンにピストンピンを介して連結されるアッパーリンクと、アッパーリンクとクランクシャフトのクランクピンとに連結されるロアリンクと、気筒列方向に沿ってクランクシャフトと略平行に延びる制御軸と、一端が制御軸に揺動可能に連結され、他端がロアリンクに連結される制御リンクと、アクチュエータシャフトの往復運動を用いて制御軸を回転駆動するアクチュエータと、を有し、制御軸に対する制御リンクの揺動中心を制御軸の回転中心から偏心させ、制御軸の回転に伴う制御リンクの揺動中心位置の相対的な位置変化により機関圧縮比を可変制御する内燃機関の可変圧縮比機構において、アクチュエータは、アクチュエータシャフトと、ねじ機構を介してアクチュエータシャフトと係合し、アクチュエータシャフトの円周方向に回転可能なアクチュエータシャフト駆動部材と、有し、アクチュエータシャフト駆動部材を回転駆動させることによってアクチュエータシャフトを往復運動させるものであって、アクチュエータシャフトとアクチュエータシャフト駆動部材との間に介在するねじ機構は、制御軸からの荷重の保持とアクチュエータシャフトの軸方向への移動制御機能を併せ持ち、エンジン低速回転時には、ねじ機構に作用する力の向きは一定で、ねじ機構に作用する力の大きさが時間と伴に変化し、エンジン高速回転時には、ねじ機構に作用する力の向き及び力の大きさが時間と伴に変化するよう設定されている。これによって、エンジン低速回転時には、ねじ機構に作用する摩擦係数を境界潤滑特有の0.1〜0.2程度の値に維持され、エンジン高速回転時には、ねじ摺動面間の潤滑油はいわゆる絞り膜作用を受け、ねじ摺動面同士の接近時には油膜圧力が急上昇することによって接触が阻まれることになり、擦係係数は流体潤滑時のオーダ(例えば0.01程度)になり、境界潤滑時とは桁違いの低摩擦状態となる。   (1) an upper link coupled to the piston via a piston pin, a lower link coupled to the upper link and a crankpin of the crankshaft, a control shaft extending substantially parallel to the crankshaft along the cylinder row direction, A control link having one end pivotably connected to the control shaft and the other end connected to the lower link, and an actuator that rotationally drives the control shaft using the reciprocating motion of the actuator shaft. In a variable compression ratio mechanism of an internal combustion engine in which the link compression center is decentered from the rotation center of the control shaft and the engine compression ratio is variably controlled by the relative position change of the control link swing center position accompanying the rotation of the control shaft. The actuator shaft engages with the actuator shaft via a screw mechanism and the actuator shaft. An actuator shaft driving member rotatable in the circumferential direction, and reciprocatingly moving the actuator shaft by rotationally driving the actuator shaft driving member, and is interposed between the actuator shaft and the actuator shaft driving member The screw mechanism has both the function of holding the load from the control shaft and the function of controlling the movement of the actuator shaft in the axial direction. During low-speed engine rotation, the direction of the force acting on the screw mechanism is constant and the magnitude of the force acting on the screw mechanism is large. Is changed with time, and the direction and magnitude of the force acting on the screw mechanism are set to change with time when the engine rotates at high speed. As a result, the coefficient of friction acting on the screw mechanism is maintained at a value of about 0.1 to 0.2, which is specific to boundary lubrication, at the time of engine low-speed rotation. Due to the film action, when the screw sliding surfaces approach each other, the oil film pressure rises rapidly and the contact is blocked, and the friction coefficient is on the order of fluid lubrication (for example, about 0.01). And an extremely low friction state.

(2) 上記(1)に記載の内燃機関の可変圧縮比機構は、具体的には、ねじ機構は、アクチュエータシャフトに形成された雄ねじ部と、アクチュエータシャフト駆動部材に形成された雌ねじ部と、を螺合させることによって構成され、エンジン低速回転時に雄ねじ部と雌ねじ部との間で滑りが生じないように、雄ねじ部及び雌ねじ部の各ねじ摺動面の摩擦係数及びリード角が設定されている。これによって、アクチュエータシャフト駆動部材の駆動源に小さなモータに適用しても、この小さなモータによるアクチュエータシャフトの回転制御の十分な応答性とアクチュエータシャフトの省電力保持が可能となる。   (2) In the variable compression ratio mechanism of the internal combustion engine according to (1), specifically, the screw mechanism includes a male screw portion formed on the actuator shaft, a female screw portion formed on the actuator shaft drive member, The friction coefficient and lead angle of each screw sliding surface of the male screw part and the female screw part are set so that no slip occurs between the male screw part and the female screw part at the time of engine low-speed rotation. Yes. As a result, even when applied to a small motor as the drive source of the actuator shaft driving member, sufficient response of rotation control of the actuator shaft by the small motor and power saving of the actuator shaft can be maintained.

(3) 上記(2)に記載の内燃機関の可変圧縮比機構は、より具体的には、ねじ機構におけるリード角をθ、摩擦係数をμとした際に、リード角θと摩擦係数μがμ>tanθとなる関係を満たすように設定されている。   (3) More specifically, in the variable compression ratio mechanism of the internal combustion engine described in (2) above, when the lead angle in the screw mechanism is θ and the friction coefficient is μ, the lead angle θ and the friction coefficient μ are It is set so as to satisfy the relationship of μ> tan θ.

(4) 上記(1)〜(3)のいずれかに記載の内燃機関の可変圧縮比機構は、より具体的には、ピストンストローク特性が単振動に近いストローク特性である。これによって、ピストン加速度が平準化され、上死点側の慣性力を相対的に減らすことができる。   (4) More specifically, the variable compression ratio mechanism of the internal combustion engine according to any one of the above (1) to (3) has a stroke characteristic in which the piston stroke characteristic is close to a single vibration. Thereby, the piston acceleration is leveled, and the inertial force on the top dead center side can be relatively reduced.

(5) 上記(1)〜(3)のいずれかに記載の内燃機関の可変圧縮比機構は、より具体的には、ピストンの加速度が上死点と下死点で略同じ大きさとなるよう設定されている。これによって、ピストン加速度が平準化され、上死点側の慣性力を相対的に減らすことができる。   (5) More specifically, in the variable compression ratio mechanism for an internal combustion engine according to any one of the above (1) to (3), the acceleration of the piston is approximately the same at the top dead center and the bottom dead center. Is set. Thereby, the piston acceleration is leveled, and the inertial force on the top dead center side can be relatively reduced.

(6) 上記(1)〜(5)のいずれかに記載の内燃機関の可変圧縮比機構は、より具体的には、ねじ機構は、ねじ摺動面に潤滑油を供給する給油路を有する。   (6) In the variable compression ratio mechanism of the internal combustion engine according to any one of (1) to (5), more specifically, the screw mechanism has an oil supply passage that supplies lubricating oil to the screw sliding surface. .

(7) 上記(6)に記載の内燃機関の可変圧縮比機構は、より具体的には、給油路に油圧制御弁が介装され、エンジン高速回転時に給油量を増大させる。これによって、エンジン高速回転時に、ねじ摺動面に油膜構成を容易できると共に、アクチュエータシャフト駆動部材の駆動源に異常があるような場合には自動的に低圧縮比側にアクチュエータシャフトが戻る作用が強化される。   (7) More specifically, in the variable compression ratio mechanism for an internal combustion engine described in (6) above, a hydraulic control valve is interposed in the oil supply passage, and the oil supply amount is increased during high-speed engine rotation. This facilitates oil film configuration on the screw sliding surface during high-speed rotation of the engine, and when the drive source of the actuator shaft drive member is abnormal, the actuator shaft automatically returns to the low compression ratio side. Strengthened.

本発明に係る内燃機関の可変圧縮比機構の概略を模式的に示した説明図。BRIEF DESCRIPTION OF THE DRAWINGS Explanatory drawing which showed typically the outline of the variable compression ratio mechanism of the internal combustion engine which concerns on this invention. 圧縮比制御特性を示す特性図。The characteristic view which shows a compression ratio control characteristic. エンジン低速回転時におけるアクチュエータの台形ネジ部の状態を模式的に示した説明図。Explanatory drawing which showed typically the state of the trapezoidal screw part of the actuator at the time of engine low speed rotation. エンジン低速回転時におけるアクチュエータの台形ネジ部に作用するネジ歯面荷重特性を示す特性図。The characteristic view which shows the screw tooth surface load characteristic which acts on the trapezoidal screw part of an actuator at the time of engine low speed rotation. 可変圧縮比機構となる複リンク式ピストン−クランク機構のピストンストローク特性を示す特性図。The characteristic view which shows the piston stroke characteristic of the double link type piston-crank mechanism used as a variable compression ratio mechanism. エンジン中速回転時でピストンのストローク特性を単振動に近いストローク特性とした場合におけるアクチュエータの台形ネジ部に作用するネジ歯面荷重特性を示す特性図。The characteristic view which shows the screw tooth surface load characteristic which acts on the trapezoidal screw part of an actuator when the stroke characteristic of a piston is made into the stroke characteristic close | similar to a single vibration at the time of engine medium speed rotation. エンジン中速回転時でピストンのストローク特性を単振動に近いストローク特性としない場合におけるアクチュエータの台形ネジ部に作用するネジ歯面荷重特性を示す特性図。The characteristic view which shows the screw tooth surface load characteristic which acts on the trapezoidal screw part of an actuator when the stroke characteristic of a piston is not made into the stroke characteristic close | similar to a single vibration at the time of engine medium speed rotation. エンジン高速回転時におけるアクチュエータの台形ネジ部の状態を模式的に示した説明図。Explanatory drawing which showed typically the state of the trapezoid screw part of the actuator at the time of engine high speed rotation. エンジン高速回転時におけるアクチュエータの台形ネジ部に作用するネジ歯面荷重特性を示す特性図。The characteristic view which shows the screw tooth surface load characteristic which acts on the trapezoidal screw part of an actuator at the time of engine high speed rotation. 台形ネジ部のリード角を模式的に示した説明図。Explanatory drawing which showed typically the lead angle of the trapezoidal screw part. 摩擦力FTが滑り方向の荷重成分Fmよりも大きくなるように台形ネジ部の摩擦係数μと、台形ネジ部のリード角θを設定した際の耐滑り限界への影響を示す説明図。Explanatory drawing which shows the influence on the anti-slip limit at the time of setting the friction coefficient μ of the trapezoidal screw part and the lead angle θ of the trapezoidal screw part so that the frictional force FT becomes larger than the load component Fm in the sliding direction.

符号の説明Explanation of symbols

30…アクチュエータ
32…アクチュエータシャフト
34…アクチュエータシャフト駆動部材
41…台形ネジ部(ねじ機構)
DESCRIPTION OF SYMBOLS 30 ... Actuator 32 ... Actuator shaft 34 ... Actuator shaft drive member 41 ... Trapezoid screw part (screw mechanism)

Claims (7)

ピストンにピストンピンを介して連結されるアッパーリンクと、アッパーリンクとクランクシャフトのクランクピンとに連結されるロアリンクと、気筒列方向に沿ってクランクシャフトと略平行に延びる制御軸と、一端が制御軸に揺動可能に連結され、他端がロアリンクに連結される制御リンクと、アクチュエータシャフトの往復運動を用いて制御軸を回転駆動するアクチュエータと、を有し、制御軸に対する制御リンクの揺動中心を制御軸の回転中心から偏心させ、制御軸の回転に伴う制御リンクの揺動中心位置の相対的な位置変化により機関圧縮比を可変制御する内燃機関の可変圧縮比機構において、
アクチュエータは、アクチュエータシャフトと、ねじ機構を介してアクチュエータシャフトと係合し、アクチュエータシャフトの円周方向に回転可能なアクチュエータシャフト駆動部材と、有し、アクチュエータシャフト駆動部材を回転駆動させることによってアクチュエータシャフトを往復運動させるものであって、
アクチュエータシャフトとアクチュエータシャフト駆動部材との間に介在するねじ機構は、制御軸からの荷重の保持とアクチュエータシャフトの軸方向への移動制御機能を併せ持ち、
エンジン低速回転時には、ねじ機構に作用する力の向きは一定で、ねじ機構に作用する力の大きさが時間と伴に変化し、
エンジン高速回転時には、ねじ機構に作用する力の向き及び力の大きさが時間と伴に変化するよう設定されていることを特徴とする内燃機関の可変圧縮比機構。
An upper link connected to the piston via a piston pin, a lower link connected to the upper link and the crankpin of the crankshaft, a control shaft extending substantially parallel to the crankshaft along the cylinder row direction, and one end controlled A control link connected to the shaft in a swingable manner and having the other end connected to the lower link, and an actuator that rotationally drives the control shaft using the reciprocating motion of the actuator shaft. In a variable compression ratio mechanism of an internal combustion engine in which the dynamic center is decentered from the rotation center of the control shaft and the engine compression ratio is variably controlled by the relative position change of the swing center position of the control link accompanying the rotation of the control shaft.
The actuator has an actuator shaft and an actuator shaft driving member that engages with the actuator shaft via a screw mechanism and is rotatable in a circumferential direction of the actuator shaft, and the actuator shaft is driven by rotating the actuator shaft driving member. Reciprocating, and
The screw mechanism interposed between the actuator shaft and the actuator shaft drive member has both the function of holding the load from the control shaft and the function of controlling the movement of the actuator shaft in the axial direction.
When the engine rotates at low speed, the direction of the force acting on the screw mechanism is constant, and the magnitude of the force acting on the screw mechanism changes with time.
A variable compression ratio mechanism for an internal combustion engine, characterized in that the direction and magnitude of the force acting on the screw mechanism change with time during high-speed rotation of the engine.
ねじ機構は、アクチュエータシャフトに形成された雄ねじ部と、アクチュエータシャフト駆動部材に形成された雌ねじ部と、を螺合させることによって構成され、
エンジン低速回転時に雄ねじ部と雌ねじ部との間で滑りが生じないように、雄ねじ部及び雌ねじ部の各ねじ摺動面の摩擦係数及びリード角が設定されていることを特徴とする請求項1に記載の内燃機関の可変圧縮比機構。
The screw mechanism is configured by screwing a male screw portion formed on the actuator shaft and a female screw portion formed on the actuator shaft driving member,
2. The friction coefficient and the lead angle of each screw sliding surface of the male screw portion and the female screw portion are set so that no slip occurs between the male screw portion and the female screw portion during low-speed engine rotation. A variable compression ratio mechanism for an internal combustion engine according to claim 1.
ねじ機構におけるリード角をθ、摩擦係数をμとした際に、リード角θと摩擦係数μがμ>tanθとなる関係を満たすように設定されていることを特徴とする請求項2に記載の内燃機関の可変圧縮比機構。   3. The screw mechanism according to claim 2, wherein the lead angle θ and the friction coefficient μ are set so as to satisfy a relationship of μ> tan θ when the lead angle in the screw mechanism is θ and the friction coefficient is μ. Variable compression ratio mechanism for internal combustion engines. ピストンストローク特性が単振動に近いストローク特性であることを特徴とする請求項1〜3のいずれかに記載の内燃機関の可変圧縮比機構。   4. The variable compression ratio mechanism for an internal combustion engine according to claim 1, wherein the piston stroke characteristic is a stroke characteristic close to simple vibration. ピストンの加速度が上死点と下死点で略同じ大きさとなるよう設定されていることを特徴とする請求項1〜3のいずれかに記載の内燃機関の可変圧縮比機構。   The variable compression ratio mechanism for an internal combustion engine according to any one of claims 1 to 3, wherein the acceleration of the piston is set to be substantially the same at the top dead center and the bottom dead center. ねじ機構は、ねじ摺動面に潤滑油を供給する給油路を有すことを特徴とする請求項1〜5にいずれかに記載の内燃機関の可変圧縮比機構。   6. The variable compression ratio mechanism for an internal combustion engine according to claim 1, wherein the screw mechanism has an oil supply passage for supplying lubricating oil to the screw sliding surface. 給油路には、油圧制御弁が介装され、エンジン高速回転時に給油量を増大させることを特徴とする請求項6に記載の内燃機関の可変圧縮比機構。   The variable compression ratio mechanism for an internal combustion engine according to claim 6, wherein a hydraulic control valve is interposed in the oil supply passage to increase the amount of oil supply during high-speed engine rotation.
JP2006072015A 2006-03-16 2006-03-16 Variable compression ratio mechanism of internal combustion engine Expired - Fee Related JP4491426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006072015A JP4491426B2 (en) 2006-03-16 2006-03-16 Variable compression ratio mechanism of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006072015A JP4491426B2 (en) 2006-03-16 2006-03-16 Variable compression ratio mechanism of internal combustion engine

Publications (2)

Publication Number Publication Date
JP2007247536A true JP2007247536A (en) 2007-09-27
JP4491426B2 JP4491426B2 (en) 2010-06-30

Family

ID=38592093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006072015A Expired - Fee Related JP4491426B2 (en) 2006-03-16 2006-03-16 Variable compression ratio mechanism of internal combustion engine

Country Status (1)

Country Link
JP (1) JP4491426B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009125851A (en) * 2007-11-22 2009-06-11 Smc Corp Drive mechanism and gripper mechanism equipped with the drive mechanism
WO2013080673A1 (en) * 2011-11-29 2013-06-06 日産自動車株式会社 Lubrication structure for variable compression ratio internal combustion engine
WO2015141037A1 (en) * 2014-03-20 2015-09-24 日立オートモティブシステムズ株式会社 Control device and control method for internal combustion engine
CN110173349A (en) * 2019-06-21 2019-08-27 天津大学 A kind of variable compression ratio engine and its control method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08314239A (en) * 1995-05-19 1996-11-29 Canon Inc Image reader and image forming device
JP2001227367A (en) * 2000-02-16 2001-08-24 Nissan Motor Co Ltd Reciprocating internal combustion engine
JP2002138867A (en) * 2000-10-31 2002-05-17 Nissan Motor Co Ltd Variable compression ratio mechanism for internal combustion engine
JP2002227674A (en) * 2001-02-06 2002-08-14 Nissan Motor Co Ltd Variable compression ratio mechanism for internal combustion engine
JP2003090409A (en) * 2001-09-19 2003-03-28 Nissan Motor Co Ltd Actuator mechanism
JP2005069028A (en) * 2003-08-27 2005-03-17 Nissan Motor Co Ltd Variable compression ratio mechanism for internal combustion engine and its piston position calibration method
JP2005147339A (en) * 2003-11-19 2005-06-09 Nissan Motor Co Ltd Cylinder direct injection type diesel engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08314239A (en) * 1995-05-19 1996-11-29 Canon Inc Image reader and image forming device
JP2001227367A (en) * 2000-02-16 2001-08-24 Nissan Motor Co Ltd Reciprocating internal combustion engine
JP2002138867A (en) * 2000-10-31 2002-05-17 Nissan Motor Co Ltd Variable compression ratio mechanism for internal combustion engine
JP2002227674A (en) * 2001-02-06 2002-08-14 Nissan Motor Co Ltd Variable compression ratio mechanism for internal combustion engine
JP2003090409A (en) * 2001-09-19 2003-03-28 Nissan Motor Co Ltd Actuator mechanism
JP2005069028A (en) * 2003-08-27 2005-03-17 Nissan Motor Co Ltd Variable compression ratio mechanism for internal combustion engine and its piston position calibration method
JP2005147339A (en) * 2003-11-19 2005-06-09 Nissan Motor Co Ltd Cylinder direct injection type diesel engine

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009125851A (en) * 2007-11-22 2009-06-11 Smc Corp Drive mechanism and gripper mechanism equipped with the drive mechanism
US8303007B2 (en) 2007-11-22 2012-11-06 Smc Kabushiki Kaisha Drive mechanism and gripper mechanism equipped with drive mechanism
WO2013080673A1 (en) * 2011-11-29 2013-06-06 日産自動車株式会社 Lubrication structure for variable compression ratio internal combustion engine
JP5614505B2 (en) * 2011-11-29 2014-10-29 日産自動車株式会社 Lubrication structure of variable compression ratio internal combustion engine
WO2015141037A1 (en) * 2014-03-20 2015-09-24 日立オートモティブシステムズ株式会社 Control device and control method for internal combustion engine
CN106133296A (en) * 2014-03-20 2016-11-16 日立汽车***株式会社 The control device of internal combustion engine and control method
US20170096949A1 (en) * 2014-03-20 2017-04-06 Hitachi Automotive Systems, Ltd. Control Device and Control Method for Internal Combustion Engine
US10012152B2 (en) 2014-03-20 2018-07-03 Hitachi Automotive Systems, Ltd. Control device and control method for internal combustion engine
CN110173349A (en) * 2019-06-21 2019-08-27 天津大学 A kind of variable compression ratio engine and its control method
CN110173349B (en) * 2019-06-21 2023-09-12 天津大学 Variable compression ratio engine and control method thereof

Also Published As

Publication number Publication date
JP4491426B2 (en) 2010-06-30

Similar Documents

Publication Publication Date Title
JP3941371B2 (en) Variable compression ratio mechanism of internal combustion engine
US8881695B2 (en) Variable compression ratio internal combustion engine
JP2002138867A (en) Variable compression ratio mechanism for internal combustion engine
JP2004156465A (en) Variable compression ratio equipment for internal combustion engine
JP2010151088A (en) Variable compression ratio device for internal combustion engine
JP4491426B2 (en) Variable compression ratio mechanism of internal combustion engine
JP2008025431A (en) Fluid pressure actuator
JP2002285877A (en) Piston drive for internal combustion engine
JP2006152926A (en) Variable valve gear in internal combustion engine
US9574495B2 (en) Variable compression ratio device for internal combustion engine
JP4103731B2 (en) Variable compression ratio internal combustion engine
JP4714610B2 (en) Variable compression ratio device for internal combustion engine
JP4491425B2 (en) Variable compression ratio device for internal combustion engine
JP2000038937A (en) Variable compression ratio device for internal combustion engine
JP4714609B2 (en) Variable compression ratio mechanism of internal combustion engine
JP4007350B2 (en) Control method of variable compression ratio mechanism
JP4516864B2 (en) Variable compression ratio device for internal combustion engine
JP2005133612A (en) Compression ratio varying internal combustion engine
JPH0422717A (en) Compression ratio varying device of internal combustion engine
JP2003090409A (en) Actuator mechanism
JP2007056835A (en) Variable compression ratio internal combustion engine
JP2005069179A (en) Variable compression ratio type internal combustion engine
JP2010185399A (en) Compression ratio controller of internal combustion engine
JP5051146B2 (en) Multi-link variable compression ratio device for internal combustion engine
JP2005344560A (en) Variable compression ratio internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4491426

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees