JP2007247298A - Measurement method of excavation locus and excavation method - Google Patents

Measurement method of excavation locus and excavation method Download PDF

Info

Publication number
JP2007247298A
JP2007247298A JP2006073526A JP2006073526A JP2007247298A JP 2007247298 A JP2007247298 A JP 2007247298A JP 2006073526 A JP2006073526 A JP 2006073526A JP 2006073526 A JP2006073526 A JP 2006073526A JP 2007247298 A JP2007247298 A JP 2007247298A
Authority
JP
Japan
Prior art keywords
excavation
ground
rod
inertial sensor
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006073526A
Other languages
Japanese (ja)
Other versions
JP3873220B1 (en
Inventor
Tsutomu Katsuta
力 勝田
Shinji Miwa
信二 三和
Masaru Nagashima
勝 永島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Capty Co Ltd
Original Assignee
Capty Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Capty Co Ltd filed Critical Capty Co Ltd
Priority to JP2006073526A priority Critical patent/JP3873220B1/en
Application granted granted Critical
Publication of JP3873220B1 publication Critical patent/JP3873220B1/en
Publication of JP2007247298A publication Critical patent/JP2007247298A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measurement method of an excavation locus and an excavation method which can accurately measure the reference direction of the excavation locus even when the installment position of an excavation propulsive machine becomes misaligned at the time of measurement of the excavation locus. <P>SOLUTION: An inertial sensor 5 used for the detection of an attitude direction is fed to the interior of a pipe of an excavation rod 1 which is built in the ground by the excavation propulsive machine 10. Then the inertial sensor 5 is pulled back from the arrival point to the fixed point P, which is in the substrate, of the excavation rod 1 on the ground side. Then the reference direction, which is measured at the fixed point P in the substrate, is measured as a home position of the excavation locus on the ground side. Thus, the reference direction can be accurately measured even when the installment position of the excavation propulsive machine 10 becomes misaligned in the excavation process, and the excavation locus can be accurately measured. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は地盤内における掘削ロッドの掘削軌跡の測定方法及びそれを含む削孔方法に関し、特に掘削ロッドの直線掘削及び曲線掘削による自在誘導掘削への適用に好適な掘削軌跡の測定方法及びそれを含む掘削工法に関する。   The present invention relates to a method for measuring an excavation trajectory of a excavation rod in the ground and a drilling method including the excavation trajectory, and more particularly to a method for measuring an excavation trajectory suitable for application to free-guided excavation by straight excavation and curved excavation of an excavation rod. Including excavation methods.

地盤内を任意経路で削孔できる自在誘導掘削工法は、非開削で地盤を削孔することができることから施工上の利便性が高く、経済性にも優れる掘削工法として知られている(特許文献1,2)。しかしその反面、掘削自由度の高さによる課題も知られている。とりわけ如何にして掘削計画線に沿って推進させるかが解決困難な課題の一つとして知られている。   The universal guided excavation method that can drill holes in the ground with an arbitrary path is known as a drilling method that has high construction convenience and is economical because it can drill the ground without opening. 1, 2). However, on the other hand, problems due to the high degree of excavation freedom are also known. In particular, it is known as one of the difficult problems to solve along the drilling plan line.

計画線への追従性を高めるには、先ず地盤を推進する掘削ロッドの実際の掘削軌跡を測定し、それから計画線との整合を確認する必要があり、そしてずれている場合には直ちに方向修正を行う。したがって先ずは掘削軌跡を正確に測定することが重要である。   In order to improve followability to the planned line, it is necessary to first measure the actual excavation trajectory of the excavating rod that propels the ground, and then check the alignment with the planned line, and if there is a deviation, the direction is corrected immediately. I do. Therefore, first of all, it is important to accurately measure the excavation locus.

掘削軌跡の測定方法の一つとしてゾンデ方式が知られている。これは掘削ロッドの先端又はその近傍に電波又は電磁波の発信器(ゾンデ)を組み込んでおき、発信器からの電波又は電磁波を地上の受信器(ロケータ)で受信して位置情報を検出し、その位置情報に基づいて掘削軌跡を測定するという方法である(特許文献1,2)。しかしこのゾンデ方式には一長一短がある。すなわちその長所は、発信器が比較的衝撃に強いことから、例えば礫層や建設廃材などのガラが含まれている地盤を打撃掘削する場合でも(特許文献2)、掘削軌跡を正確に測定できることにある。ところが掘削計画線の近辺に電磁遮蔽物があるときのように電波障害が起こると、掘削軌跡を正確に測定できなくなることがある。   The sonde method is known as one of methods for measuring excavation trajectories. This incorporates a radio wave or electromagnetic wave transmitter (sonde) at or near the tip of the excavation rod, receives the radio wave or electromagnetic wave from the transmitter with a ground receiver (locator), detects position information, This is a method of measuring an excavation locus based on position information (Patent Documents 1 and 2). However, this sonde method has its pros and cons. In other words, the advantage is that the transmitter is relatively resistant to impact, so that the excavation trajectory can be accurately measured even when, for example, the ground containing gravel such as gravel layers and construction waste is struck (Patent Document 2). It is in. However, if a radio wave interference occurs, such as when there is an electromagnetic shield near the planned excavation line, the excavation trajectory may not be accurately measured.

こうしたゾンデ方式の短所を補うものとしてジャイロ方式が知られている(関連技術として特許文献3を参照)。ジャイロ方式では、まず地上から掘削ロッドの先端にX(ロール),Y(ピッチ),Z(ヨー)の3軸から姿勢・方位を検出するジャイロなどの慣性センサ(特許請求の範囲及び本明細書で同じ。)を送り込み、掘削ロッドの先端から地上の掘削推進機まで慣性センサを引き戻す。そしてこの引き戻しの際に慣性センサが生成する慣性信号と距離情報に基づいて掘削軌跡を測定するという方法である。このジャイロ方式の長所は、引き戻しの際に慣性センサが生成する慣性信号に基づいて掘削軌跡を測定することにある。つまり電波障害がありゾンデ方式では正確に測定できない環境でも掘削軌跡を正確に測定できることにあるが、次のような課題もある。
特開平11−190190号公報 特開2004−232304号公報 特開2002−242574号公報
A gyro system is known to compensate for the disadvantages of the sonde system (see Patent Document 3 as related technology). In the gyro system, first, an inertial sensor such as a gyro detects the posture / orientation from the three axes of X (roll), Y (pitch), and Z (yaw) from the ground to the tip of the excavating rod (claims and specification) The same)), and pull back the inertial sensor from the tip of the drill rod to the ground excavator. Then, the excavation locus is measured based on the inertial signal generated by the inertial sensor and the distance information during the pullback. The advantage of this gyro system is that the excavation trajectory is measured based on the inertia signal generated by the inertia sensor at the time of pulling back. In other words, the excavation trajectory can be accurately measured even in an environment where there is radio interference and the sonde method cannot accurately measure, but there are also the following problems.
Japanese Patent Laid-Open No. 11-190190 JP 2004-232304 A JP 2002-242574 A

すなわち地上から掘削ロッドに推進力(地盤への給進力及び方向制御のための回転力)を与える掘削推進機は、掘削ロッドを通じて地盤から非常に強い推進反力を受ける。特に前述のような打撃掘削では打撃の衝撃が重畳的に加わることで、より強い力が掘削推進機に作用する。こうした推進反力が掘削推進機に作用すると、その設置位置が掘削しながら次第にずれていくことがある。そして位置ずれした掘削推進機まで慣性センサを引き戻し、そこで掘削軌跡の地上側原点における基準方位(磁方位に対する方位角又は真方位に対する方位角をいう。特許請求の範囲及び本明細書で同じ。)を測定すると、掘削軌跡の基準方位が誤って測定されてしまうことがある。したがって、実際には計画線に沿って正しく掘進しているような場合でも、測定された掘削軌跡それ自体が間違っているために、誤った方向へ誘導掘削するおそれがある。   That is, an excavation propulsion machine that applies a propulsive force (a feed force to the ground and a rotational force for direction control) to the excavation rod from the ground receives a very strong propulsion reaction force from the ground through the excavation rod. In particular, in the hitting excavation as described above, the impact of the hitting is applied in a superimposed manner, so that a stronger force acts on the excavator. When such a propulsion reaction force acts on the excavation propulsion machine, the installation position may gradually shift while excavating. Then, the inertial sensor is pulled back to the misplaced excavator, where the excavation trajectory has a reference azimuth at the ground-side origin (an azimuth angle with respect to the magnetic azimuth or an azimuth angle with respect to the true azimuth. The same applies to the claims and the present specification) When measuring, the reference direction of the excavation trajectory may be measured incorrectly. Therefore, even in the case of actually excavating correctly along the planned line, there is a possibility that guided excavation is performed in the wrong direction because the measured excavation locus itself is incorrect.

掘削軌跡の基準方位の誤測対策の一つとして、掘削推進機を後退させる等することで、掘削ロッドを掘削推進機から一旦切り離し、その地面から突出する掘削ロッドの管口で基準方位を測定することが考えられる(関連技術として特許文献4)。
特開平4−179793号公報
As one of the countermeasures for mismeasurement of the reference direction of the excavation trajectory, the excavation rod is temporarily separated from the excavation propulsion device by retreating the excavation propulsion device, and the reference direction is measured at the port of the excavation rod protruding from the ground. It is conceivable to do (Patent Document 4 as related technology).
Japanese Patent Laid-Open No. 4-179793

しかしながら、掘削推進機が位置ずれしている場合には、地盤に対する掘削ロッドの貫入位置も当初の貫入位置からずれているのが通常であり、これでは正しい基準方位を測定することができない。また測定するごとに地盤に対する貫入位置から常に同じ長さで掘削ロッドを突出させるのは困難であり、測定位置を固定化することができない。   However, when the excavator is misaligned, the drilling rod penetration position with respect to the ground is also usually deviated from the initial penetration position, and this makes it impossible to measure the correct reference orientation. Moreover, it is difficult to always project the excavation rod with the same length from the penetration position with respect to the ground every time measurement is performed, and the measurement position cannot be fixed.

そして最も困難なのは、掘削推進機を移動させて掘削ロッドと切り離してしまうと、再び掘削ロッドと連結させるのが極めて難しいことである。すなわち再度連結させるには、掘削推進機が保持する後続の掘削ロッドと、切り離されて地面から突出している掘削ロッドとを正確に軸合わせして螺合させる連結作業が必要である。ところが、掘削ロッドどうしの軸心を合致させるように、総重量数トンもの掘削推進機を駆動して位置決めさせるのは熟練のオペレータであっても至難の業であり、工期やコストが限られている現場状況ではとても現実味のある作業とは言えない。   And the most difficult thing is that once the excavator is moved and disconnected from the excavating rod, it is very difficult to reconnect it with the excavating rod. In other words, in order to reconnect, a connecting operation for accurately aligning and screwing the succeeding excavation rod held by the excavator and the excavating rod separated and protruding from the ground is necessary. However, it is difficult even for a skilled operator to drive and position a drilling propulsion unit with a total weight of several tons so that the axes of the drilling rods are aligned, and the construction period and cost are limited. It is not a very realistic task in the field situation.

以上のような従来技術を背景としてなされたのが本発明である。その目的は、掘削軌跡の基準方位を正しく測定することができ、この結果、掘削軌跡を正しく測定することができる掘削軌跡の測定方法と、この測定方法を利用する掘削工法を提供することにある。   The present invention has been made against the background of the prior art as described above. The purpose is to provide a method for measuring an excavation trajectory that can correctly measure the reference azimuth of the excavation trajectory and, as a result, can accurately measure the excavation trajectory, and an excavation method using the measurement method. .

上記目的を達成する本発明は以下のように構成される。   The present invention that achieves the above object is configured as follows.

本発明は、掘削推進機で地盤に建て込んだ掘削ロッドの管内に姿勢方位を検出する慣性センサを送り込み、その到達点から慣性センサを引き戻し、その引き戻しにより掘削ロッドの掘削軌跡を測定する掘削軌跡の測定方法について、慣性センサを前記到達点から地上側における掘削ロッドの地盤内固定点まで引き戻し、該固定点での基準方位を前記掘削軌跡の地上側原点として測定することを特徴とする。   The present invention feeds an inertial sensor for detecting the orientation direction into a pipe of a drilling rod built in the ground by a drilling propulsion device, pulls back the inertial sensor from its arrival point, and measures the drilling locus of the drilling rod by its pullback In this measurement method, the inertial sensor is pulled back from the reaching point to a fixed point in the ground of the excavation rod on the ground side, and the reference orientation at the fixed point is measured as the ground-side origin of the excavation locus.

また本発明は、掘削推進機で掘削ロッドに推進力を与えて地盤を削孔する掘削工程と、地盤に建て込んだ掘削ロッドの管内に姿勢方位を検出する慣性センサを送り込み、その到達点から地上側へ慣性センサを引き戻し、その引き戻しにより掘削ロッドの掘削軌跡を測定する測量工程を含む掘削工法について、前記測量工程で、慣性センサを前記到達点から地上側における掘削ロッドの地盤内固定点まで引き戻し、該固定点での基準方位を前記掘削軌跡の地上側原点として測定することを特徴とする。   The present invention also provides a drilling process in which a drilling propulsion unit applies a driving force to a drilling rod to drill the ground, and an inertial sensor for detecting a posture direction is fed into a pipe of the drilling rod built in the ground, from the reaching point. With respect to the excavation method including the surveying step of pulling back the inertial sensor to the ground side and measuring the excavation trajectory of the excavating rod by the pulling back, the inertial sensor is moved from the reaching point to the ground fixed point of the excavating rod on the ground side in the surveying step. Withdrawing, the reference azimuth at the fixed point is measured as the ground-side origin of the excavation locus.

以上の本発明では慣性センサを到達点から掘削ロッドの地盤内固定点まで引き戻し、その固定点での基準方位を前記掘削軌跡の地上側原点として慣性センサで測定する。このため掘削推進機が位置ずれしても、地盤内固定点では掘削ロッドが位置ずれしないため、基準方位を正しく測定することができ、掘削軌跡を正しく測定することができる。よって実際の掘削軌跡を掘削計画線と正しく比較することができ、正しく誘導掘削することができる。   In the present invention described above, the inertial sensor is pulled back from the reaching point to the fixed point in the ground of the excavation rod, and the reference direction at the fixed point is measured by the inertial sensor as the ground-side origin of the excavation locus. For this reason, even if the excavator is displaced, the excavation rod is not displaced at the fixed point in the ground, so that the reference orientation can be measured correctly and the excavation trajectory can be measured correctly. Therefore, the actual excavation trajectory can be correctly compared with the excavation plan line, and the guided excavation can be correctly performed.

基準方位を測定する掘削ロッドの「地盤内固定点」は、掘削対象とする現場の地盤特性に応じて千差万別であり、予め地盤特性が分かっている場合には経験則上特定できるが、通常は事前調査を行って特定する。したがって一義的には特定できないが、本発明者らの経験知によれば、砂層のように掘削ロッドに対する土圧拘束力が比較的緩い軟弱地盤では、地盤への掘削ロッドの貫入口から比較的遠い位置で測定を行う。例えば地盤に貫入角10°〜25度で推進させた場合に貫入口からおよそ6m程度先の掘削ロッドの貫入位置であれば、土圧拘束力を受けて掘削ロッドの地盤内位置が固定化され、基準方位を正しく測定できる。また、土圧拘束力のある非軟弱地盤では、例えば同様の貫入角で推進させた場合に貫入口からおよそ3m程度先の貫入位置であれば基準方位を正しく測定することができる。   The “fixed point in the ground” of the excavation rod that measures the reference orientation is very different depending on the ground characteristics of the site to be excavated, and can be specified based on empirical rules if the ground characteristics are known in advance. Usually, it is identified by conducting a preliminary survey. Therefore, although it cannot be uniquely identified, according to the experience of the present inventors, in soft ground where the earth pressure restraint force against the drilling rod is relatively loose, such as a sand layer, it is relatively difficult to move from the entrance of the drilling rod to the ground. Measure at a distant location. For example, when propelled into the ground at an intrusion angle of 10 ° to 25 °, if the drilling rod is about 6 m away from the entrance, the grounding position of the drilling rod is fixed by receiving the earth pressure restraint force. , The reference orientation can be measured correctly. Further, in a non-soft ground with earth pressure restraining force, for example, when propelled at the same penetration angle, the reference orientation can be correctly measured if the penetration position is about 3 m away from the penetration opening.

本発明による掘削軌跡の測定方法及び掘削工法によれば、ジャイロ方式で掘削軌跡を測定する場合に、掘削軌跡の基準方位の正しく測定することができ、掘削軌跡を正しく測定することができる。したがって掘削軌跡と掘削計画線とを正しく比較することができる。よって直線掘削及び曲線掘削を組み合わせた自在誘導掘削を正しく行うことができ、掘削自由度の高さに由来する方向制御の困難性を容易化することができる。そして特に打撃掘削を伴う自在誘導掘削のように掘削ロッドに強い推進反力が作用する場合でも、掘削計画線に沿って正しく誘導掘削を行うことができる。   According to the excavation trajectory measurement method and excavation method according to the present invention, when the excavation trajectory is measured by the gyro method, the reference orientation of the excavation trajectory can be correctly measured, and the excavation trajectory can be correctly measured. Therefore, the excavation locus and the excavation plan line can be correctly compared. Therefore, free guided excavation combining straight excavation and curved excavation can be performed correctly, and the difficulty of directional control due to the high degree of excavation freedom can be facilitated. And even when a strong propulsion reaction force acts on the excavation rod as in the case of the free induction excavation accompanied by the impact excavation, the guided excavation can be correctly performed along the excavation plan line.

以下、本発明の実施形態の一例について図面を参照しつつ説明する。   Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings.

掘削ロッド〔図1〕: 本実施形態の掘削ロッド1は、図1で示すように、何れも鋼製のヘッド2、ゾンデケース3、延長ロッド4で構成されており、延長ロッド4を順次継ぎ足すように連結していくことで掘削長に応じた自在誘導掘削を行うことができる。 Drilling rod [FIG. 1] : As shown in FIG. 1, the drilling rod 1 of this embodiment is composed of a steel head 2, a sonde case 3, and an extension rod 4, and the extension rod 4 is sequentially joined. By being connected so that it can be added, it is possible to perform free guided excavation according to the excavation length.

ヘッド2には掘削ロッド1の軸心に対し傾斜する土圧受け面2aが形成されている。直線掘削の場合は、土圧受け面2aが特定方向からの土圧を継続的に受けないように、掘削ロッド1を連続回転させながら推進させる。曲線掘削の場合には、土圧受け面2aが特定方向からの土圧を受けるように、掘削ロッド1の軸心に対して土圧受け面2aの回転角を固定した状態、つまり回転停止状態で掘削ロッド1を推進力させる。こうすると土圧受け面2aの略傾斜方向の延長上へ掘削ロッド1を曲線掘削させることができる。またヘッド2には掘削流体の通路2bが形成されており、ヘッド2の前端から掘削流体を噴射するようになっている。   The head 2 is formed with an earth pressure receiving surface 2 a that is inclined with respect to the axis of the excavation rod 1. In the case of straight excavation, the excavation rod 1 is propelled while being continuously rotated so that the earth pressure receiving surface 2a does not continuously receive the earth pressure from a specific direction. In the case of curved excavation, the rotation angle of the earth pressure receiving surface 2a is fixed with respect to the axial center of the excavating rod 1 so that the earth pressure receiving surface 2a receives earth pressure from a specific direction, that is, the rotation stopped state The excavating rod 1 is propelled by. In this way, the excavation rod 1 can be excavated in a curved line on the extension of the earth pressure receiving surface 2a in the substantially inclined direction. Further, a drilling fluid passage 2 b is formed in the head 2, and the drilling fluid is ejected from the front end of the head 2.

ゾンデケース3の管内にはゾンデ3aが内蔵されている。本実施形態の掘削ロッド1はゾンデ3aを使ったゾンデ方式でも掘削軌跡を測定できるようにしている。またゾンデケース3にはヘッド2の通路2bと連通する通路3bが形成されている。   A sonde 3 a is built in the tube of the sonde case 3. The excavation rod 1 of the present embodiment can measure the excavation locus even by a sonde method using the sonde 3a. The sonde case 3 is formed with a passage 3 b communicating with the passage 2 b of the head 2.

延長ロッド4は中空円筒管であり、管内全体が掘削流体の通路となっている。また延長ロッド4は、他の延長ロッド4との連結箇所を含む内周面4aが凹凸の無い平坦面として形成されている。   The extension rod 4 is a hollow cylindrical tube, and the entire inside of the tube is a passage for the drilling fluid. In addition, the extension rod 4 has an inner peripheral surface 4 a including a connection portion with the other extension rod 4 formed as a flat surface without unevenness.

慣性センサ〔図2〕: 掘削軌跡を測定する慣性センサ5は、図2で示すように、円筒状のケース6にセンサ部7を内蔵している。センサ部7には方位角、傾斜角を検出するジャイロなどの慣性センサが備わっている。センサ部7で生成された信号は、ケース6の後端部から掘削ロッド1の管内を延在する伝送線8を通じて地上のコンピュータ装置に送出される。ケース6の外周面には前方と後方にケース6の外周周りに回転する回転環9が取付けられている。各回転環9は慣性センサ5を送り込む際と引き戻す際に、3カ所の弧状面9aが前述の延長ロッド4の内周面4aに対して接触することで、センサ部7を実質的に延長ロッド4の軸心に沿って保持する役割をもっている。 Inertia sensor [FIG. 2] : As shown in FIG. 2, the inertial sensor 5 that measures the excavation locus has a sensor portion 7 built in a cylindrical case 6. The sensor unit 7 includes an inertial sensor such as a gyro for detecting an azimuth angle and an inclination angle. The signal generated by the sensor unit 7 is sent to a computer device on the ground through a transmission line 8 extending from the rear end of the case 6 through the tube of the excavating rod 1. A rotating ring 9 that rotates around the outer periphery of the case 6 is attached to the outer peripheral surface of the case 6 on the front and rear sides. When each inertial sensor 5 is fed and retracted, each rotary ring 9 comes into contact with the inner circumferential surface 4a of the extension rod 4 by the three arcuate surfaces 9a so that the sensor portion 7 is substantially extended. 4 has a role of holding along the axis.

掘削軌跡の測定方法及び掘削工法〔図2〕: 先ず図3で示すように、前述の掘削ロッド1を地上の掘削推進機10によって地盤に推進させる。このとき掘削推進機10は掘削ロッド1の回転推進・回転停止推進を行うことができ、これとともに掘削対象の地盤に礫やガラなどが含まれている場合など必要に応じて、掘削ロッド1に打撃力を与えることができる。 Excavation Trajectory Measurement Method and Excavation Method [FIG. 2] : First, as shown in FIG. 3, the excavation rod 1 is propelled to the ground by an excavation propulsion device 10 on the ground. At this time, the excavation propulsion machine 10 can perform the rotation propulsion / rotation propulsion of the excavation rod 1 and, if necessary, the excavation rod 1 to the excavation rod 1 when the ground to be excavated contains gravel, glass, or the like. A striking force can be given.

そして例えば図4で示すように掘削ロッド1を推進させて、この状態で前述の慣性センサ5を使って掘削軌跡を測定する。具体的には図5で示すように、慣性センサ5を掘削ロッド1の発進側開口端からゾンデケース3の後端部まで送り込み、そこから慣性センサ5を引き戻して掘削軌跡を測定する。   Then, for example, as shown in FIG. 4, the excavation rod 1 is propelled, and the excavation locus is measured using the inertial sensor 5 described above in this state. Specifically, as shown in FIG. 5, the inertial sensor 5 is fed from the start side opening end of the excavation rod 1 to the rear end portion of the sonde case 3, and the inertial sensor 5 is pulled back from there to measure the excavation locus.

ところで図5で部分拡大して示すように、掘削ロッド1の発進側では掘削ロッド1の推進反力や打撃掘削の衝撃を受けて削孔Hが拡径しており掘削ロッド1に対する土圧拘束力が弱まっている。こうした土圧拘束力が弱い部分の発生は、推進反力や打撃掘削の衝撃によって、掘削ロッド1が振動したり掘削推進機10が当初の設置位置から徐々に位置ずれしたりすることで起こる。   Incidentally, as shown in a partially enlarged view in FIG. 5, on the starting side of the excavating rod 1, the drilling hole H is enlarged due to the reaction force of the excavating rod 1 and the impact of the impact excavation, and the earth pressure restraint on the excavating rod 1 is achieved. Power is weakening. The occurrence of such a portion where the earth pressure restraining force is weak occurs when the excavation rod 1 vibrates or the excavation propulsion machine 10 is gradually displaced from the initial installation position due to the reaction force of the propulsion and the impact of the impact excavation.

すなわち、例えば図6(A)では、掘削推進機10が位置ずれすることなく掘削ロッド1を推進させる状態を示している。この場合、掘削推進機10上の推進軸X1は、掘削ロッド1を保持するクランプ10aまでの部分と、その先の地盤内への貫入口Hまでの部分と、貫入口Hの先に伸長する部分とで同軸上にある。ところが掘削ロッド1を推進させていくと、推進反力や打撃掘削の衝撃によって掘削推進機10の設置位置が徐々にずれていき、図6(B)のように掘削推進機10上の推進軸がX1からX2へとずれる。このように推進軸がX1からX2へとずれていく過程では、掘削ロッド1に曲線掘削可能な可撓性があるため、クランプ10aによる保持点から土圧拘束力を受けて地盤内での姿勢・方位が実質的に変化しない地盤内固定点Pまでの部分における掘削ロッド1の曲がりによって、掘削推進機10上の推進軸X2の軸ずれが解消されてしまう。つまり掘削推進機10はその位置ずれにより推進軸がずれた状態でも、掘削ロッド1を推進させることができてしまう。そしてこのように掘削推進機10の位置ずれを掘削ロッド1を撓ませて解消しながら掘進し続けていくと、削孔Hの発進側が拡径されて土圧拘束力が弱くなるのである。 That is, for example, FIG. 6A shows a state in which the excavation propulsion machine 10 propels the excavation rod 1 without being displaced. In this case, propeller shaft X1 on excavating propulsion unit 10 includes a portion of the clamped 10a for holding the drill rod 1, and the portion up penetration hole H 0 of the previously into the ground, before the penetration hole H 0 It is coaxial with the extending part. However, when the excavation rod 1 is propelled, the installation position of the excavation propulsion device 10 gradually shifts due to the propulsion reaction force and impact of the impact excavation, and the propulsion shaft on the excavation propulsion device 10 as shown in FIG. Shifts from X1 to X2. Thus, in the process in which the propulsion shaft shifts from X1 to X2, the excavation rod 1 is flexible so that it can be excavated in a curved line. Therefore, the posture in the ground is affected by the earth pressure restraint force from the holding point by the clamp 10a. The bend of the excavation rod 1 in the portion up to the ground fixed point P where the azimuth does not change substantially eliminates the axial deviation of the propulsion axis X2 on the excavation propulsion machine 10. That is, the excavation propulsion machine 10 can propel the excavation rod 1 even when the propulsion shaft is deviated due to the displacement. When the excavation propulsion machine 10 continues to excavate while eliminating the position shift of the excavation rod 1 by bending the excavation rod 1, the starting side of the hole H is expanded and the earth pressure restraining force is weakened.

このため慣性センサ5を引き戻して行う掘削軌跡の測定時に、位置ずれした掘削推進機10まで慣性センサ5を引き戻して掘削軌跡の基準方位を測定すると、掘削推進機10上の推進軸X2に沿う基準方位(方位角)がそもそも当初の推進軸X1に対してずれているため、仮に計画線に沿って正しく掘進していたとしても、掘削軌跡そのものを正しく測定することができなくなってしまう。   For this reason, when the excavation trajectory is measured by pulling back the inertial sensor 5 and the reference direction of the excavation trajectory is measured by pulling the inertial sensor 5 back to the excavation propulsion device 10 that is displaced, the reference along the propulsion axis X2 on the excavation propulsion device 10 is obtained. Since the azimuth (azimuth angle) is deviated from the initial propulsion axis X1, the excavation trajectory itself cannot be measured correctly even if the excavation is performed correctly along the planned line.

そこで図6(B)及び図7で示すように、前述の地盤内固定点Pまで慣性センサ5を引き戻すようにする。慣性センサ5の地盤内固定点Pまでの引き戻しは、例えば貫入口Hから地盤内固定点Pまでの距離を地盤に貫入させている掘削ロッド1の削孔長から差し引けば引き戻し長が得られるので、それを基準として行うことができる。そして地盤内固定点Pまで引き戻す過程で慣性センサ5で測定される慣性信号と、地盤内固定点Pで測定される基準方位と、伝送線8の実際の引き戻し長さを地上でエンコーダ等により読み取って計測される慣性センサ5の移動距離(距離データ)とに基づいて掘削軌跡を測定するようにする。 Therefore, as shown in FIGS. 6B and 7, the inertial sensor 5 is pulled back to the ground fixed point P described above. The inertia sensor 5 can be pulled back to the ground fixed point P by subtracting, for example, the distance from the penetration H 0 to the ground fixed point P from the drilling length of the excavating rod 1 penetrating the ground. It can be done on the basis of it. Then, the inertial signal measured by the inertial sensor 5 in the process of returning to the fixed point P in the ground, the reference orientation measured at the fixed point P in the ground, and the actual retracted length of the transmission line 8 are read on the ground by an encoder or the like. The excavation trajectory is measured based on the movement distance (distance data) of the inertial sensor 5 measured in this manner.

すなわち、慣性センサ5から延在する伝送線8は図外のコンピュータ装置に接続されている。コンピュータ装置は通常のパーソナルコンピュータ等で構成することができ、中央演算処理装置が主記憶装置に格納されている掘削軌跡測定プログラムを読み込んで、慣性センサ5で生成された慣性信号と距離データについて所定の処理を実行することで、掘削軌跡が生成され測定される。具体的には慣性センサ5のセンサ部7で生成された慣性信号(地盤内固定点Pでの基準方位を含む。)と距離データの演算処理を実行して掘削軌跡を生成する。この際にコンピュータ装置は、地盤内固定点Pでの基準方位を掘削軌跡の地上側原点として設定する処理を実行する。そして生成された掘削軌跡は主記憶装置に格納され、またコンピュータ装置に接続された図外の出力装置により出力される。すなわち表示装置で画面表示されたり印刷装置で紙媒体に出力される。コンピュータ装置によるこうした出力処理としては、例えば二次元又は三次元の座標上や地図上で、掘削軌跡の単独表示又は掘削軌跡と掘削計画線との比較表示を実行する。この出力処理の際には、掘削軌跡の地上側原点となる地盤内固定点Pが、地盤中の実際の位置に表示されたり、あるいはXYZ座標系の原点に表示される。なお、地盤中の実際の位置に地盤内固定点Pを設定し表示する場合には、慣性センサ5の移動距離に貫入口Hから地盤内固定点Pまでの距離を加算し、これを前述の距離データとして掘削軌跡を生成し表示する。 That is, the transmission line 8 extending from the inertial sensor 5 is connected to a computer device (not shown). The computer device can be composed of an ordinary personal computer or the like, and the central processing unit reads the excavation trajectory measurement program stored in the main storage device, and the inertia signal and distance data generated by the inertia sensor 5 are predetermined. By executing the process, the excavation locus is generated and measured. Specifically, an excavation locus is generated by executing a calculation process of the inertial signal (including the reference azimuth at the fixed point P in the ground) generated by the sensor unit 7 of the inertial sensor 5 and the distance data. At this time, the computer apparatus executes processing for setting the reference orientation at the ground fixed point P as the ground-side origin of the excavation locus. The generated excavation trajectory is stored in the main storage device and is output by an output device (not shown) connected to the computer device. That is, it is displayed on the screen by a display device or output to a paper medium by a printing device. As such output processing by the computer device, for example, a single display of the excavation trajectory or a comparison display of the excavation trajectory and the excavation plan line is executed on two-dimensional or three-dimensional coordinates or on a map. In this output process, the ground fixed point P, which is the ground-side origin of the excavation locus, is displayed at the actual position in the ground, or is displayed at the origin of the XYZ coordinate system. When the ground fixed point P is set and displayed at the actual position in the ground, the distance from the entrance H 0 to the ground fixed point P is added to the movement distance of the inertial sensor 5, and this is described above. The excavation trajectory is generated and displayed as distance data.

この後は、正しく測定された掘削軌跡に基づいて掘削計画線に沿っているかを判断し、必要に応じて方向修正を行って掘削ロッド1による掘進を続けていく。   After this, it is determined whether or not the planned excavation line is met based on the excavation trajectory measured correctly, the direction is corrected as necessary, and the excavation with the excavation rod 1 is continued.

以上のように本実施形態による掘削軌跡の測定方法及び掘削工法では、慣性センサ5を位置ずれしている掘削推進機10まで引き戻すのはなく、土圧拘束力を受けて姿勢・方位が実質的に変わらない掘削ロッド1の地盤内固定点Pまで引き戻し、そこでセンサ部7によって基準方位を測定する。したがって掘削推進機10が位置ずれしていても、正しく基準方位を測定することが可能であり、実際の掘削軌跡を正しく測定することができる。よって実際の掘削軌跡を掘削計画線と正しく比較することが可能であり、掘削軌跡の方向修正も正しく行うことができる。   As described above, in the excavation trajectory measuring method and excavation method according to the present embodiment, the inertial sensor 5 is not pulled back to the excavating propulsion device 10 that is displaced, and the posture and orientation are substantially received by the earth pressure restraint force. Then, the excavation rod 1 is pulled back to the ground fixed point P, and the reference orientation is measured by the sensor unit 7 there. Therefore, even if the excavation propulsion device 10 is misaligned, the reference azimuth can be measured correctly, and the actual excavation trajectory can be measured correctly. Therefore, it is possible to correctly compare the actual excavation trajectory with the excavation plan line and correct the excavation trajectory direction correctly.

前記実施形態の応用例: 前記実施形態については、掘削ロッド1の先端側の捩れ角(ヘッド2の軸方向に対する土圧受け面2aの回転角)をも測定するように構成できる。そのためには捩れ角検知装置を用いることができる。その一つの具体例としては掘削ロッド1のゾンデ3aを利用できる。ゾンデ3aはヘッド2の土圧受け面2aの回転角(捩れ角)を測定できるので、掘削ロッド1がどの方向に推進していくかを予測することが可能であり、方向修正する際には掘削ロッド1を所定量回転させてから推進させるようにすることができる。 Application example of the above-described embodiment: The above-described embodiment can be configured to also measure the twist angle (the rotation angle of the earth pressure receiving surface 2a with respect to the axial direction of the head 2) of the excavation rod 1. For that purpose, a twist angle detector can be used. As one specific example, the sonde 3a of the excavating rod 1 can be used. Since the sonde 3a can measure the rotation angle (twist angle) of the earth pressure receiving surface 2a of the head 2, it is possible to predict which direction the excavating rod 1 will propel, and when correcting the direction, The excavation rod 1 can be propelled after being rotated by a predetermined amount.

前記実施形態では慣性センサ5に伝送線8を有するものを例示したが、伝送用の導線が無い回収用線状体を接続したものを利用することもできる。また伝送線8や回収用線状体の無い慣性センサ5のみを掘削ロッド1の管内に送り込んだ後に、回収用ロッドを送り込み、その先端を慣性センサ5の後端部に連結させて引き戻してもよい。   In the above-described embodiment, the inertial sensor 5 having the transmission line 8 is exemplified, but it is also possible to use a structure in which a collection linear body having no transmission wire is connected. Even if only the inertial sensor 5 without the transmission line 8 or the recovery linear body is fed into the tube of the excavation rod 1, the recovery rod is fed and the tip of the inertial sensor 5 is connected to the rear end of the inertial sensor 5 and pulled back. Good.

一実施形態による掘削ロッドの説明図。Explanatory drawing of the excavation rod by one Embodiment. 一実施形態による慣性センサの説明図であり、分図(A)は側面図、分図(B)は矢示SA方向からみた拡大正面図。It is explanatory drawing of the inertial sensor by one Embodiment, and (A) is a side view, and (B) is an enlarged front view seen from arrow SA direction. 一実施形態による掘削軌跡の測定方法及び掘削工法の工程説明図。Explanatory drawing of the measuring method of the excavation locus | trajectory and excavation construction method by one Embodiment. 図3に続く工程説明図。Process explanatory drawing following FIG. 図4に続く工程説明図。Process explanatory drawing following FIG. 掘削推進機の位置ずれを示す概略平面図で、分図(A)は位置ずれ前の説明図、分図(B)は位置ずれ後の説明図。It is a schematic plan view which shows the position shift of an excavation propulsion machine, and a part (A) is explanatory drawing before position shift, and a part (B) is explanatory drawing after position shift. 図5に続く工程説明図。Process explanatory drawing following FIG.

符号の説明Explanation of symbols

1 掘削ロッド
2 ヘッド
2a 土圧受け面
2b 通路
3 ゾンデケース
3a ゾンデ
3b 通路
4 延長ロッド
4a 内周面
5 慣性センサ
6 ケース
7 センサ部
8 伝送線
9 回転環
9a 弧状面
10 掘削推進機
10a クランプ
H 削孔
貫入口
DESCRIPTION OF SYMBOLS 1 Excavation rod 2 Head 2a Earth pressure receiving surface 2b Passage 3 Sonde case 3a Sonde 3b Passage 4 Extension rod 4a Inner peripheral surface 5 Inertial sensor 6 Case 7 Sensor part 8 Transmission line 9 Rotating ring 9a Arc-shaped surface 10 Excavation propulsion machine 10a Clamp H Drilling hole H 0 penetration

Claims (2)

掘削推進機で地盤に建て込んだ掘削ロッドの管内に姿勢方位を検出する慣性センサを送り込み、その到達点から慣性センサを引き戻し、その引き戻しにより掘削ロッドの掘削軌跡を測定する掘削軌跡の測定方法において、
慣性センサを前記到達点から地上側における掘削ロッドの地盤内固定点まで引き戻し、該固定点での基準方位を前記掘削軌跡の地上側原点として測定することを特徴とする掘削軌跡の測定方法。
In the excavation trajectory measurement method, an inertial sensor that detects the attitude direction is sent into the pipe of the excavation rod built in the ground with an excavation propulsion machine, the inertial sensor is pulled back from the arrival point, and the excavation trajectory of the excavation rod is measured by the pullback ,
A method for measuring an excavation trajectory, wherein the inertial sensor is pulled back from the reaching point to a ground fixed point of the excavation rod on the ground side, and a reference orientation at the fixed point is measured as the ground-side origin of the excavation trajectory.
掘削推進機で掘削ロッドに推進力を与えて地盤を削孔する掘削工程と、地盤に建て込んだ掘削ロッドの管内に姿勢方位を検出する慣性センサを送り込み、その到達点から地上側へ慣性センサを引き戻し、その引き戻しにより掘削ロッドの掘削軌跡を測定する測量工程を含む掘削工法において、
前記測量工程で、慣性センサを前記到達点から地上側における掘削ロッドの地盤内固定点まで引き戻し、該固定点での基準方位を前記掘削軌跡の地上側原点として測定することを特徴とする掘削工法。
A drilling process that drills the ground by giving a driving force to the drilling rod with a drilling propulsion machine, and an inertial sensor that detects the orientation direction of the drilling rod built in the ground is sent to the ground side from that point. In the excavation method including the surveying process of measuring the excavation trajectory of the excavation rod by pulling back,
In the surveying step, the inertial sensor is pulled back from the arrival point to a fixed point in the ground of the excavation rod on the ground side, and a reference orientation at the fixed point is measured as the ground side origin of the excavation locus. .
JP2006073526A 2006-03-16 2006-03-16 Method for measuring excavation trajectory and excavation method Active JP3873220B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006073526A JP3873220B1 (en) 2006-03-16 2006-03-16 Method for measuring excavation trajectory and excavation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006073526A JP3873220B1 (en) 2006-03-16 2006-03-16 Method for measuring excavation trajectory and excavation method

Publications (2)

Publication Number Publication Date
JP3873220B1 JP3873220B1 (en) 2007-01-24
JP2007247298A true JP2007247298A (en) 2007-09-27

Family

ID=37757068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006073526A Active JP3873220B1 (en) 2006-03-16 2006-03-16 Method for measuring excavation trajectory and excavation method

Country Status (1)

Country Link
JP (1) JP3873220B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048652A (en) * 2008-08-21 2010-03-04 Tamagawa Seiki Co Ltd Method for measuring position of vertical hole pipeline

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008190986A (en) * 2007-02-05 2008-08-21 Tamagawa Seiki Co Ltd Method and apparatus for measuring position of conduit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048652A (en) * 2008-08-21 2010-03-04 Tamagawa Seiki Co Ltd Method for measuring position of vertical hole pipeline

Also Published As

Publication number Publication date
JP3873220B1 (en) 2007-01-24

Similar Documents

Publication Publication Date Title
EP0955443A1 (en) Moling Apparatus
WO2013098459A1 (en) Method and arrangement for post-drilling insertion
JP2008002202A (en) Underground position detector
SE1450818A1 (en) Method and mining vehicle for post-drilling insertion
JP2001091242A (en) Measuring device for propulsion locus and propulsion attitude in propulsion shield tunneling method, measuring method, propulsion locus control device and propulsion locus control method
JP3873220B1 (en) Method for measuring excavation trajectory and excavation method
JP3891345B2 (en) Underground curve drilling device and drilling control method using the device
JP3763399B2 (en) Drilling method
JPS60212593A (en) Detection of direction of shield drilling machine
JP6542316B2 (en) Drilling equipment
JP4360933B2 (en) Ground drilling device, hole bending measurement method in ground drilling
JP2010181233A (en) Gyro positioning system
JP6936047B2 (en) Drilling method and drilling device
JP2003262521A (en) Surveying apparatus for pipe jacking method, surveying method, and the pipe jacking method
JP2001090477A (en) Position detecting method and equipment
JP2005232834A5 (en)
JP2019078662A (en) Perforating navigation device
JP7482077B2 (en) Perforation device and perforation method
JP2019015646A (en) Boring position measurement method and device
JP2006010628A (en) Detector for detecting object
JP5031623B2 (en) Underground position detection system
JP2004263431A (en) Pipe installation method for stabilizing ground, prelining method for tunnel and excavating apparatus having function of correcting bent hole
JP3580442B2 (en) Method for exploring the direction of presence of mother pipe and drilling equipment for connecting pipe hole
JP2000027592A (en) Boring apparatus
JP2004100288A (en) Method for measuring direction of horizontal drillhole

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061011

R150 Certificate of patent or registration of utility model

Ref document number: 3873220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250