JP2004263431A - Pipe installation method for stabilizing ground, prelining method for tunnel and excavating apparatus having function of correcting bent hole - Google Patents

Pipe installation method for stabilizing ground, prelining method for tunnel and excavating apparatus having function of correcting bent hole Download PDF

Info

Publication number
JP2004263431A
JP2004263431A JP2003054521A JP2003054521A JP2004263431A JP 2004263431 A JP2004263431 A JP 2004263431A JP 2003054521 A JP2003054521 A JP 2003054521A JP 2003054521 A JP2003054521 A JP 2003054521A JP 2004263431 A JP2004263431 A JP 2004263431A
Authority
JP
Japan
Prior art keywords
drilling
bit
force
pipe
inner pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003054521A
Other languages
Japanese (ja)
Other versions
JP3996530B2 (en
JP2004263431A5 (en
Inventor
Masanao Abe
正直 阿部
Atsushi Miyake
淳 三宅
Wataru Yokoyama
亘 横山
Kazuaki Hirai
和明 平井
Hiroyuki Kimata
宏之 木全
Shigeyuki Kono
重行 河野
Kazuo Miyazawa
和夫 宮沢
Shinichi Nishimura
晋一 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Raito Kogyo Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Raito Kogyo Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Raito Kogyo Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2003054521A priority Critical patent/JP3996530B2/en
Publication of JP2004263431A publication Critical patent/JP2004263431A/en
Publication of JP2004263431A5 publication Critical patent/JP2004263431A5/ja
Application granted granted Critical
Publication of JP3996530B2 publication Critical patent/JP3996530B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)
  • Earth Drilling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make it possible to securely correct a bent hole in the midway of a drilling process and to drill a long hole. <P>SOLUTION: In a prelining in which a pipe body is installed along a tunnel line ahead of the tunnel excavation, an outer pipe and an inner pipe are provided above the tunnel cross section and when drilled while imparting a thrust force accompanying a striking force to the extremity of the inner pipe, an inner pipe bit 10 having a shape to bring a bias force in the first direction (1) in the drilling direction in the relation with the drilling reaction of the ground is provided. Further, when drilling while imparting a thrust force accompanying a striking force, an outer pipe bit 20 having a shape to bring a bias force in the second direction (2) in the drilling direction in the relation with the drilling reaction of the ground is provided in the extremity of the outer outer pipe. When drilling a straight hole, the circumferential position is set so that the first direction (1) and the second direction (2) are formed in the opposite positions, substantially 180 degrees, when correcting a bent hole accompanying drilling process, the drilling is executed in the relatively circumferential changed state of the inner pipe bit 20 and the outer pipe bit 10. After the final drilling completion, the outer pipe is left in the ground. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、地盤の安定化用管体設置工法、トンネルの先受け工法及び孔曲り修正機能を有する掘削装置に関する。
【0002】
【従来の技術】
地中構造物、たとえばトンネルを構築する場合、地盤、とりわけ地山を安定化させるために、地中構造物を構築するに先立って、その上方に管体を設置または建込む先受け工法が汎用されている。この管体はこれ自体で、あるいはその管体を注入材の注入通路としさらに補強することで、地盤の安定化に寄与するものである。
【0003】
近年の大断面のトンネルの指向に伴って先受け工法の必要性がより高まっている。先受け工法には、坑口から施工を開始するパイプルーフ工法やフォアパイリング工法などがあるが、削孔長が短い故に施工能率が高くない問題がある。この種の問題は特許文献1にも指摘されている。
【特許文献1】
特開2000−220376号公報
【0004】
【発明が解決しようとする課題】
長尺の管体の設置のためには、目的の掘削線に沿った孔曲りのない削孔が必要である。しかし、孔曲りを検出するセンサー類は比較的高精度のものを得ることができる現状でありながら、削孔過程の途中で孔曲りを確実に修正できる良好な手段がないのが現実である。
【0005】
したがって、本発明の主たる課題は、削孔過程の途中で孔曲りを確実に修正でき、もって長尺の削孔が可能である地盤の安定化用管体設置工法、トンネルの先受け工法及び孔曲り修正機能を有する掘削装置を提供することにある。
【0006】
【課題を解決するための手段】
上記課題を解決した本発明は次記のとおりである。
<請求項1項記載の発明>
地盤の安定化用の管体を地盤内に設置する工法であって、
外管及び内管を備え、前記内管の先端部に、打撃力に伴う推進力を与えつつ削孔を行うと、地盤が有する削孔反力との関係で削孔方向が第1の方向に偏心させる力を生じさせる形状の内管ビットが設けられ、かつ前記外管の先端部に、打撃力に伴う推進力を与えつつ削孔を行うと、地盤が有する削孔反力との関係で削孔方向が第2の方向に偏心させる力を生じさせる形状の外管ビットが設けられ、
直線削孔の時には、前記外管ビット及び前記内管ビットについて、その進行方向位置を実質的に同じとし、かつ周方向位置を前記第1の方向と前記第2の方向とが実質的に180度反対の位置となるように設定し、軸心回りの回転力及び打撃力のうち少なくとも回転力を与えつつ削孔を行い、
削孔に伴う孔曲りの修正時には、前記内管ビットと前記外管ビットとの相対的に周方向位置の変更させた状態で;
前記内管ビットを前記外管ビットより進行方向前方位置にした状態で、あるいは前記内管ビットと前記外管ビットとの進行方向位置を実質的に同じとした状態で、連続する一方向回転を与えることなくある角度範囲内での揺動を加えながらあるいは加えないで打撃力を与えて削孔を行い、
上記の削孔を目標長まで削孔した後、前記外管は地盤中に残置させて地盤の安定化用の管体とすることを特徴とする地盤の安定化用管体設置工法。
【0007】
<請求項2項記載の発明>
内管ビット及び外管ビットの先端面は、軸心と直交する面に対して交差する傾斜面をそれぞれ有する請求項1記載の地盤の安定化用管体設置工法。
【0008】
(請求項1及び請求項2における作用効果)
外管ビット及び内管ビットとして、打撃力に伴う推進力を与えつつ削孔を行うと、地盤が有する削孔反力との関係で削孔方向がある方向に偏心させる力を生じさせる形状のものを使用する。たとえば、内管ビット及び外管ビットの先端面が、軸心と直交する面に対して交差する傾斜面をそれぞれ有すると、これに押し込み力が作用すると、ビット(そして管体の先端部も)は斜面の先端に向かう方向に逃げるようになる。本発明はこの原理を積極的に採用するものである。
しかるに、直線削孔の時には、前記外管ビット及び前記内管ビットについて、その進行方向位置を実質的に同じとし、かつ周方向位置を前記第1の方向と前記第2の方向とが実質的に180度反対の位置となるように設定し、軸心回りの回転力及び打撃力のうち少なくとも回転力を与えつつ(好ましくは回転力及び打撃力の両者を与えつつ)削孔を行う。この場合、外管ビット及び外管の先端部が第1の方向に、内管ビット及び内管の先端部が第2の方向に、それぞれ逃げるようになるが、第1の方向と第2の方向とは実質的に180度反対の位置であるために逃げの力が相殺され、かつ回転力が作用しているので、直線の削孔が保証される。
【0009】
他方で、削孔に伴う孔曲りの修正時には、前記内管ビットと前記外管ビットとの相対的に周方向位置の変更させた状態で(すなわち第1の方向と第2の方向とは実質的に180度反対の位置から変更した状態。180度反対位置でない限り、目標の孔曲りの修正方向に対応して、第1の方向と第2の方向との位置が揃った状態のほか、適宜のたとえば90度、120度位置などでもよい。);前記内管ビットを前記外管ビットより進行方向前方位置にした状態で、あるいは前記内管ビットと前記外管ビットとの進行方向位置を実質的に同じとした状態で、連続する一方向回転を与えることなくある角度範囲内での揺動を加えながらあるいは加えないで打撃力を与えて削孔を行う。
この場合、たとえば簡明に前述の第1の方向と第2の方向との位置が揃った状態を考えると、内管ビット及び内管の先端部が第1の方向に、外管ビット及び外管の先端部が同じ第1の方向にそれぞれ逃げるようになるために、削孔方向が当該方向に変更され、この削孔方向の変更をある長さ続けることで、削孔方向の修正を行うことができる。この際に、前述の90度の位置とすると、90度の角度範囲内のある方向(この方向は地盤の抵抗やビットの形状などによって変わる)に逃げるようになるために、削孔方向が当該方向に変更され、この削孔方向の変更をある長さ続けることで、削孔方向の修正を行うことができる。
さらに、この孔曲り修正には、前記内管ビットと前記外管ビットとの進行方向位置を実質的に同じとした状態で行うのが両者の逃げ力が相乗して効果的ではあるが、前記内管ビットを前記外管ビットより進行方向前方位置にした状態であっても、内管ビットの逃げに伴って、外管側も同伴するようになるので孔曲り修正が可能である。また、連続する一方向回転を与えると、孔曲り修正機能(逃げる機能)が消失する傾向にあるために、連続する一方向回転は行わない。さらに、打撃力のみによって削孔前進させることができるほか、削孔能率を高めるためには、ある角度範囲内での揺動を加えながら打撃力を与えて削孔を行うのが望ましい。
【0010】
上記の削孔を目標長まで削孔した後、前記外管は地盤中に残置させて地盤の安定化用の管体とすることができる。必要により、その後当該管体を通して地盤(地山)の安定化用注入材の注入路などとして利用できる。
【0011】
<請求項3項記載の発明>
地盤の安定化用の管体を地盤内に設置する工法であって、
外管及び内管を備え、前記内管の先端部に内管ビットシューを有し、この内管ビットシューに、軸心より放射方向に伸縮自在となり、収縮時においては掘削面中心が実質的に軸心に一致し、伸長時においては掘削面中心が軸心に対し偏心するよう構成したリーマー片を有し、
直線削孔の時においては、前記リーマー片を収縮させた状態で、軸心回りの回転力及び打撃力のうち少なくとも回転力を与えつつ削孔を行い、
削孔に伴う孔曲りの修正時には、前記リーマー片を伸長させた状態で、連続する一方向回転を与えることなくある角度範囲内での揺動を加えながらあるいは加えないで打撃力を与えて削孔を行い、
上記の削孔を目標長まで削孔した後、前記外管は地盤中に残置させて地盤の安定化用の管体とすることを特徴とする地盤の安定化用管体設置工法。
【0012】
(作用効果)
この発明においては、内管の先端部に内管ビットシューを有し、この内管ビットシューに、軸心より放射方向に伸縮自在となり、収縮時においては掘削面中心が実質的に軸心に一致し、伸長時においては掘削面中心が軸心に対し偏心するよう構成したリーマー片を有する。
前記リーマー片を収縮させた状態で、軸心回りの回転力及び打撃力のうち少なくとも回転力を与えつつ削孔を行うと、内管ビットシューは掘削面中心が実質的に軸心に一致している状態であるから、直線削孔を行うことでできる。
これに対し、前記リーマー片を伸長させた状態で、連続する一方向回転を与えることなくある角度範囲内での揺動を加えながらあるいは加えないで打撃力を与えると、掘削面中心が軸心に対し偏心するので、その偏心方向に削孔線がずれるようになり、孔曲り修正が可能となる。この場合においても、ある角度範囲内での揺動を加えることで、削孔能率が打撃力のみの場合に比較してより高まる。
【0013】
<請求項4項記載の発明>
トンネル横断面の上方に、トンネル掘削に先立ってトンネル線に沿って管体を建込む先受け工法であって、
外管及び内管を備え、前記内管の先端部に、打撃力に伴う推進力を与えつつ削孔を行うと、地盤が有する削孔反力との関係で削孔方向が第1の方向に偏心させる力を生じさせる形状の内管ビットが設けられ、かつ前記外管の先端部に、打撃力に伴う推進力を与えつつ削孔を行うと、地盤が有する削孔反力との関係で削孔方向が第2の方向に偏心させる力を生じさせる形状の外管ビットが設けられ、
直線削孔の時には、前記外管ビット及び前記内管ビットについて、その進行方向位置を実質的に同じとし、かつ周方向位置を前記第1の方向と前記第2の方向とが実質的に180度反対の位置となるように設定し、軸心回りの回転力及び打撃力のうち少なくとも回転力を与えつつ削孔を行い、
削孔に伴う孔曲りの修正時には、前記内管ビットと前記外管ビットとの相対的に周方向位置の変更させた状態で;
前記内管ビットを前記外管ビットより進行方向前方位置にした状態で、あるいは前記内管ビットと前記外管ビットとの進行方向位置を実質的に同じとした状態で、連続な一方向回転を与えることなくある角度範囲内での揺動を加えながらあるいは加えないで打撃力を与えて削孔を行い、
上記の削孔を目標長まで削孔した後、前記外管は地盤中に残置させて地盤の安定化用の管体とすることを特徴とするトンネルの先受け工法。
【0014】
(作用効果)
本発明は、トンネル横断面の上方に、トンネル掘削に先立ってトンネル線に沿って管体を建込む先受け工法において顕著な利点をもたらす。具体的に、従来、削孔精度の観点から15m程度、ある程度精度を無視したとしても50m程度であった削孔長を、100m以上及び施工機械を選定することで、300m以上の削孔が可能となることを知見している。
【0015】
<請求項5項記載の発明>
内管ビット及び外管ビットの先端面は、軸心と直交する面に対して交差する傾斜面をそれぞれ有する請求項4記載の地盤のトンネルの先受け工法。
【0016】
(作用効果)
前述のものと同様である。
【0017】
<請求項6項記載の発明>
トンネル横断面の上方に、トンネル掘削に先立ってトンネル線に沿って管体を建込む先受け工法であって、
外管及び内管を備え、前記内管の先端部に内管ビットシューを有し、この内管ビットシューに、軸心より放射方向に伸縮自在となり、収縮時においては掘削面中心が実質的に軸心に一致し、伸長時においては掘削面中心が軸心に対し偏心するよう構成したリーマー片を有し、
直線削孔の時においては、前記リーマー片を収縮させた状態で、軸心回りの回転力及び打撃力のうち少なくとも回転力を与えつつ削孔を行い、
削孔に伴う孔曲りの修正時には、前記リーマー片を伸長させた状態で、連続する一方向回転を与えることなくある角度範囲内での揺動を加えながらあるいは加えないで打撃力を与えて削孔を行い、
上記の削孔を目標長まで削孔した後、前記外管は地盤中に残置させて地盤の安定化用の管体とすることを特徴とするトンネルの先受け工法。
【0018】
(作用効果)
本発明は、トンネル横断面の上方に、トンネル掘削に先立ってトンネル線に沿って管体を建込む先受け工法において顕著な利点をもたらす。
【0019】
<請求項7項記載の発明>
外管及び内管を備え、前記内管の先端部に、打撃力に伴う推進力を与えつつ削孔を行うと、地盤が有する削孔反力との関係で削孔方向が第1の方向に偏心させる力を生じさせる形状の内管ビットが設けられ、かつ前記外管の先端部に、打撃力に伴う推進力を与えつつ削孔を行うと、地盤が有する削孔反力との関係で削孔方向が第2の方向に偏心させる力を生じさせる形状の外管ビットが設けられ、
さらに前記外管及び前記内管に軸心回りの回転力を与え、かつ前記内管ビット、または前記内管ビット及び前記外管ビットに対して打撃力を与える削孔駆動手段を備え、
前記外管ビットと前記内管ビットとは係脱自在となり、前記第1の方向と前記第2の方向とが一致した状態での係合、並びに前記第1の方向と前記第2の方向とが実質的に180度反対の位置となる状態での係合が選択自在とされ、各係合時において前記外管に対する軸心回りの回転力が前記内管ビットの軸心回りの回転力として伝達可能となっていることを特徴とする孔曲り修正機能を有する掘削装置。
【0020】
(作用効果)
本発明の装置は、前述の各工法に良好に利用できる。この場合、本発明装置においては、特に、前記外管ビットと前記内管ビットとは係脱自在となり、前記第1の方向と前記第2の方向とが一致した状態での係合、並びに前記第1の方向と前記第2の方向とが実質的に180度反対の位置となる状態での係合が選択自在とされ、各係合時において前記外管に対する軸心回りの回転力が前記内管ビットの軸心回りの回転力として伝達可能となっている。したがって、孔曲り修正時において、外管ビットに対し内管ビットを変えることなく、直線削孔を行ってきた内管ビットの係合位置を変えるのみで、孔曲り修正段階に移行できるので、施工能率が高いものとなる(内管ビットの軸心回りの位置変更は基部側から内管を回転させることで容易である)。
【0021】
<請求項8項記載の発明>
内管ビット及び外管ビットの先端面は、軸心と直交する面に対して交差する傾斜面をそれぞれ有する請求項7記載の孔曲り修正機能を有する掘削装置。
【0022】
<請求項9項記載の発明>
外管ビットからの内管ビットの係合を解いて、内管と共に前記内管ビットを前記外管ビットより前方に突き出し可能とされている請求項7または8記載の孔曲り修正機能を有する掘削装置。
【0023】
(作用効果)
外管ビットからの内管ビットの係合を解いて、内管と共に前記内管ビットを前記外管ビットより前方に突き出し可能とされているので、前述のように、内管ビットの逃げのみによって孔曲り修正を行う際に利用できる。
【0024】
【発明の実施の形態】
以下本発明の実施の形態を図面を参照しながらさらに詳説する。
(使用する管体と削孔駆動装置との関係)
使用する管体は、図1及び図2に示すように、たとえば外管1と内管2とからなる二重管であり、これらはたとえばパーカッション削孔駆動装置3に連結されて使用される。削孔駆動装置3は、図1の場合には、トップハンマー方式(ロータリーパーカッション方式)によるもので、二重管の基端に対して打撃力が与えられこれが先端にも伝達され、また、回転力も与えられるものである。図2の場合には先端にダウンザホールを備え、回転力も与えられるものである。その他、外管及び内管に軸心回りの回転力を与えることができ、かつ内管ビット、または内管ビット及び外管ビットに対して打撃力を与えることが可能な限り、適宜の削孔駆動装置を使用可能である。
【0025】
他方、外管1及び内管2に対して、個別に回転力を与え、あるいは個別に打撃力を与えることが可能な削孔駆動装置を使用することも可能である。したがって、外管1及び内管2に対応して個別の回転力付与手段をそれぞれ設けることができる。また、外管1及び内管2に対応して個別の打撃力与手段をそれぞれ設けることができる。もちろん、回転力付与手段及び又は打撃力与手段は、外管1及び内管2に対して共通化できる。
【0026】
また、管体は所定長さの単位管体を順次連結させながら、掘進を行うものである。さらに、以下の例においては、二重管の例を採って説明するが、その内管内に他の管体または流路を設けたり、外管との間に他の管体または流路を設けることが可能である。
【0027】
(削孔の基本概念)
本発明においては、図3及び図4に示すように、外管1の先端に外管ビット10を設け、内管2の先端に内管ビット20を設ける。外管ビット10及び内管ビット20として、打撃力に伴う推進力を与えつつ削孔を行うと、地盤が有する削孔反力(切削抵抗)との関係で削孔方向がある方向に偏心させる力を生じさせる形状のものを使用する。たとえば、外管ビット10及び内管ビット20の先端面が、軸心と直交する面に対して交差する傾斜面をそれぞれ有するものを使用する。
【0028】
外管ビット10の詳細を図6及び図7に示した。内管ビット20の詳細を図8及び図9に示した。さらに、直線削孔時の組み込み状態を図10に、その側面を図11に示した。
【0029】
外管ビット10及び又は内管ビット20に、削孔駆動装置3により与えられる押し込み力が作用すると、ビットは斜面の先端に向かう方向に逃げるようになる。
【0030】
しかるに、直線削孔の時には、図3及び図10に示すように、外管ビット10及び内管ビット20について、その進行方向位置を実質的に同じとし、かつ図10に示すように、周方向位置を第1の方向(図6及び図7の方向(1)参照)と第2の方向(図8及び図9の方向(2)参照)とが実質的に180度反対の位置となるように設定し、軸心回りの回転力及び打撃力のうち少なくとも回転力を与えつつ(好ましくは回転力及び打撃力の両者を与えつつ)削孔を行う。
【0031】
この場合、外管ビット10及び外管1の先端部が第1の方向(1)に、内管ビット20及び内管2の先端部が第2の方向に、それぞれ逃げるようになるが、第1の方向と第2の方向とは実質的に180度反対の位置であるために逃げの力が相殺され、かつ回転力が作用しているので、直線の削孔が保証される。
【0032】
他方、削孔に伴う孔曲りの修正時には、外管ビット10と内管ビット20との相対的に周方向位置の変更させた状態で、たとえば図4及び図12に示すように、第1の方向(1)と第2の方向(2)との位置が揃った状態で;たとえば図4及び図12に図示のように、外管ビット10と内管ビット20との進行方向位置を実質的に同じとした状態で、連続する一方向回転を与えることなくある角度範囲内での揺動を加えながらあるいは加えないで打撃力を与えて削孔を行う。
【0033】
この場合、内管ビット及び内管の先端部が第1の方向(=第2の方向)に、外管ビット及び外管の先端部が同じ第1の方向(=第2の方向)にそれぞれ逃げるようになるために、削孔方向が当該方向に変更され、この削孔方向の変更をある長さ続けることで、削孔方向の修正を行うことができる。
【0034】
この際に、たとえば、図14に第1の方向と第2の方向とを90度の開き角度位置とすると、90度の開き角度範囲内のある方向(この方向は地盤の抵抗やビットの形状などによって変わる)、すなわち図14の白抜き矢印方向に逃げるようになるために、削孔方向が当該方向に変更される。
【0035】
この種の削孔方向の変更をある長さ続けることで、削孔方向の修正を行うことができる。削孔方向の修正が終了したならば、再度前述の直線削孔を行う。
【0036】
削孔の過程における適宜の時点で、外管1及び内管2の継ぎ足しを行う。この継ぎ足し自体は周知の事項であるので説明を省略する。
【0037】
ところで、図5及び図13に示すように、内管ビット20を外管ビット10より進行方向前方位置にした状態であっても、内管ビット20の逃げに伴って、外管1側(外管ビット10を含め)も同伴するようになるので孔曲り修正が可能である。また、孔曲り修正時において、打撃力のみによって削孔前進させることができるほか、削孔能率を高めるためには、図4及び図5に両端矢付き矢印で示すように、ある角度範囲内での揺動を加えながら打撃力を与えて削孔を行うのが望ましい。
【0038】
(穿孔装置の第1例の説明)
ここで、図15に視点を変えて図示した内管ビット20の構造を参照しながら、穿孔装置の構造を説明する。
【0039】
外管1の先端に螺合連結などにより一体化される外管ビット10は、筒状をなしており、その先端面の中央部分が傾斜面11とされている。先端面の適宜位置には多数のビット刃12が一体化されている。さらに、内周面には係合突起13が突設されている。
【0040】
他方で、内管2の先端に螺合連結などにより一体化される内管ビット20は、有底筒状となり、内部は内管2を通して圧送される切削用水の通路となり、先端の吐出口24から吐出されるようになっている。内管ビット20の先端面の中央部分が傾斜面21とされている。先端面の適宜位置には多数のビット刃22が一体化されている。さらに、外周面には切削に伴う排泥溝25,25が形成されている。
【0041】
さらに、係合突起13に対する係合溝23が形成されている。この係合溝23の形状は若干複雑であるために、説明用のために図15にハッチングで示してある。すなわち、図9基準でほぼ1時の位置に、進行方向に沿う直進時溝23Aが形成され、ほぼ7時の位置に、進行方向に沿う修正時溝23Bが形成されている。さらに、直進時溝23A及び修正時溝23Bの後端側には、これらを繋ぐ周方向溝23Cが形成されている。しかも、周方向溝23Cに連通するように進行方向に沿う通り抜け溝23Dが形成されている。
【0042】
直線削孔時には、直進時溝23Aが係合突起13と係合状態にあり、図10の矢印方向に外管1が回転するので、外管ビット10の回転力が係合突起13を通して伝達され、内管ビット20も同方向に回転する。
【0043】
孔曲り修正時には、たとえば内管ビット20を後方まで前方に押し込んだ後、図10の回転方向と反対方向に180度逆転させた後、内管ビット20を後方に引き寄せる。これによって、係合突起13側からみれば、直進時溝23Aから外れ、周方向溝23Cに沿って修正時溝23Bの基部まで移動し、その後修正時溝23Bに嵌め込まれる。かくして、図12に示すように、外管ビット10と内管ビット20との係合がなされた状態で、図12の矢印方向に外管1が回転するので、外管ビット10の回転力が係合突起13を通して伝達され、内管ビット20も同方向に回転する。
【0044】
図5及び図13の状態を採るためには、係合突起13が通り抜け溝23D位置に一致させた状態で、内管2を押し出すことで、係合突起13を周方向溝23Cから通り抜け溝23Dを通して外す。これによって、内管2及び内管ビット20のみの揺動が可能となる。
【0045】
なお、修正時溝23Bには、その先端部から、図9の基準で反時計方向に延びる係合溝(図示せず)をさらに形成し、係合突起13の形状を変形することにより、変形係合突起13が改変修正時溝23Bから外れにくくするなどの設計変更が可能である。
【0046】
(穿孔装置の第2例の説明)
穿孔装置の第2例は、図16及び図17に示すものである。
【0047】
この場合の外管1及び内管2を備え、外管1の先端には適宜の外管ビット10Aを設ける。内管2の先端部には、内管ビットシュー30設ける。この内管ビットシュー30には、軸心より放射方向に伸縮自在となり、収縮時においては掘削面中心が実質的に軸心に一致し、伸長時においては掘削面中心が軸心に対し偏心するよう構成したリーマー片31が設けられている。リーマー片31の伸縮には、たとえば内管ビットシュー30の本体を座とするシリンダのほか、先の穿孔装置の第1例のような溝にリーマー片31に噛み合わせ、内管2の回転に応じてリーマー片31が伸縮する構造等を採り得る。
【0048】
いずれにしても、直線削孔の時においては、リーマー片31を収縮させた状態で、軸心回りの回転力及び打撃力のうち少なくとも回転力を与えつつ削孔を行う。リーマー片31を収縮させた状態で、軸心回りの回転力及び打撃力のうち少なくとも回転力を与えつつ削孔を行うと、内管ビットシューは掘削面中心が実質的に軸心に一致している状態であるから、直線削孔を行うことでできる。
【0049】
これに対し、削孔に伴う孔曲りの修正時には、リーマー片31を伸長させた状態で、連続する一方向回転を与えることなくある角度範囲内での揺動を加えながらあるいは加えないで打撃力を与えて削孔を行う。リーマー片31を伸長させた状態で、連続する一方向回転を与えることなくある角度範囲内での揺動を加えながらあるいは加えないで打撃力を与えると、掘削面中心が軸心に対し偏心するので、その偏心方向に削孔線がずれるようになり、孔曲り修正が可能となる。この場合においても、ある角度範囲内での揺動を加えることで、削孔能率が打撃力のみの場合に比較してより高まる。
【0050】
この例において、リーマー片31は周方向に複数とすることもできる。
【0051】
(回転角度の把握例)
前記例からも各時点での、外管ビット10、特に内管ビット20角度把握は重要である。そこで、たとえば図18に示す形態を採れば、管体の継ぎ足し後においても把握できるようになる。すなわち、削孔駆動装置3の回転ヘッド3Aにロータリーエンコーダなどの回転角検出器40を設けておく。
【0052】
当初または適宜の時点で、現在の内管ビット20の位置をセットしておく。図示の(a)の段階ではゼロリセット状態としてある。管体の1本分の削孔が終したならば、(b)に示すように、外管チャッキング4Aにより外管1を把持し、回転ヘッド3Aを逆回転して先の外管1との切り離しを行う。この場合の回転ヘッド3Aの回転角方位は問題にしない。続いて、(c)のように、内管チャッキング4Bにより内管2を把持し、その内管2との回転ヘッド3Aの切り離しも行う。その際に、内管チャッキング4Bにより内管2を把持した時点での回転角度(たとえば180度)を回転角検出器40に記憶させておく。切り離し後の回転ヘッド3Aの回転角方位は問題にしない。次に(d)に示すように、新たな内管を持ち込み、先の内管との連結を行う。その後(e)に示すように、回転角検出器40に記憶させておいた回転角度(たとえば180度)になるまで、回転ヘッド3Aを回転させ、内管ヘッド20の位置をセットする。続いて、新たに持ち込んだ外管と先の外管との連結を行う。
【0053】
(孔曲り検出を併用する第1の削孔例)
孔曲りの検出には適宜の検出器を採用できる。たとえば、水平方向に曲がりに関しては機械式ジャイロ、磁気コンパスなどを、鉛直方向の曲がりに関しては傾斜計、液圧差計などを使用できる。
【0054】
そこで、図19に示す第1例では、傾斜計51を内管2の先端部に設け、その鉛直方向の信号を管体内を通して、管体外に取り込むようにする(信号の伝送系は図示せず)。これに対し、水平方向の孔曲り検出のために、ジャイロ52を挿入するようにする。
【0055】
施工法を順に説明すると、(a)に示すように二重管ロータリーパーカッションによる直線削孔を続け、適宜の長さ分の削孔が終了して時点で、削孔駆動装置3の回転ヘッド3Aと切り離し、(b)に示すように内管2の基端口から内管2内にジャイロ52を先端部まで挿入し、その先端部の位置を検出する。位置検出が終了したならば(c)に示すようにジャイロ52は引き抜く。その後(d)に示すように、管体を回転ヘッド3Aと接続した状態で、ジャイロ52の水平方向位置及び傾斜計51による鉛直方向位置信号に基づいて、外管1(外管ヘッド10)及び内管2(内管ヘッド20)の周方向位置を修正した後に、(e)に示すように打撃力による推進を行う。以下は(f)に示すように、ジャイロ52の挿入及び管路計測、直線削孔、方位修正削孔などを適宜組み合わせ、目標長までの削孔を行う。最終削孔が完了したならば、(g)に示すように内管2を撤去し、外管1を残置した先受け管とする。
【0056】
この第1の削孔例において、ジャイロ52などの方位検出器の挿入及び後退に際しては、たとえば図21に示す形態を採ることができる。すなわち、ジャイロ52などの方位検出器を内管2内にほぼ液密状態となる関係のケース53内に収納し、後退をリール巻取り器54と連結し、内管2内にポンプ55のホース56口を連通させる。ポンプ55からホース56を通して送水すると、ケース53を押し進めることができる。後退時には、リール巻取り器54により引き込むことで後退させることができる。
【0057】
(孔曲り検出を併用する第2の削孔例)
図20のように、内管2の先端部内に傾斜計51及びジャイロ52を固定しておき、これを用いて削孔を行うこともできる。
【0058】
すなわち、(a)に示すように二重管ロータリーパーカッションによる直線削孔を続け、適宜の長さ分の削孔が終了して時点で、(b)に示すように内管2を適宜長さ後退させながら管路の計測を行う。その後、(c)に示すように、ジャイロ52の水平方向位置及び傾斜計51による鉛直方向位置信号に基づいて、外管1(外管ヘッド10)及び内管2(内管ヘッド20)の周方向位置を修正した後に、(d)に示すように打撃力による推進を行う。以下は(e)に示すように、ジャイロ52の挿入及び管路計測、直線削孔、方位修正削孔などを適宜組み合わせ、目標長までの削孔を行う。最終削孔が完了したならば、(f)に示すように内管2を撤去し、外管1を残置した先受け管とする。この例では、ジャイロ52の挿入及び後退の都度、管体と削孔駆動装置3の回転ヘッド3Aとの切り離しを行う必要がない利点がある。
【0059】
【発明の効果】
以上のとおり、本発明によれば、要すれば、削孔過程の途中で孔曲りを確実に修正でき、もって長尺の削孔が可能である。その他の効果は前述の作用効果の欄に記載してとおりである。
【図面の簡単な説明】
【図1】削孔方式の説明図である。
【図2】他の削孔方式の説明図である。
【図3】直線削孔状態の概要図である。
【図4】孔曲り修正削孔状態概要図である。
【図5】他の孔曲り修正削孔状態概要図である。
【図6】外管ビットの縦断面図である。
【図7】その側面図である。
【図8】内管ビットの縦断面図である。
【図9】その側面図である。
【図10】直線削孔状態の外管ビット及び内管ビットの縦断面図である。
【図11】その側面図である。
【図12】孔曲り修正削孔状態の外管ビット及び内管ビットの縦断面図である。
【図13】別の孔曲り修正削孔状態の外管ビット及び内管ビットの縦断面図である。
【図14】方向及び進行方位の説明図である。
【図15】視点を変えて図示した内管ビット構造の斜視図である。
【図16】別の削孔装置による直線削孔状態の概要図である。
【図17】別の削孔装置による孔曲り修正削孔状態の概要図である。
【図18】管体の連結及び回転角度検出の説明図である。
【図19】孔曲り検出を併用する第1の削孔例の説明図である。
【図20】孔曲り検出を併用する第21の削孔例の説明図である。
【図21】方位検出器の挿入及び後退装置例説明図である。
【符号の説明】
1…外管、2…内管、3…(パーカッション)削孔駆動装置、3A…回転ヘッド、10…外管ビット、11…傾斜面、13…係合突起、20…内管ビット、21…傾斜面、23…係合溝、23A…直進時溝、23B…修正時溝、23C…周方向溝、24D…通り抜け溝、30…内管ビットシュー、31…リーマー片、51…傾斜計、52…ジャイロ、(1)…第1の方向、(2)…第2の方向。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an excavator having a ground stabilizing pipe installation method, a tunnel preloading method, and a hole bending correction function.
[0002]
[Prior art]
When constructing an underground structure, for example, a tunnel, a pre-installed construction method in which a pipe is installed or built above the underground structure prior to construction of the underground structure is generally used to stabilize the ground, especially the ground. Have been. The pipe itself contributes to the stabilization of the ground by itself or by further reinforcing the pipe as an injection passage for the injection material.
[0003]
In recent years, with the orientation of tunnels with large cross sections, the necessity of pre-installation methods has been increasing. There are a pipe roof method and a fore piling method that start construction from a wellhead, and the construction efficiency is not high because the drilling length is short. This kind of problem is also pointed out in Patent Document 1.
[Patent Document 1]
JP 2000-220376 A
[Problems to be solved by the invention]
In order to install a long pipe, it is necessary to drill a hole without bending along the target excavation line. However, while it is the present situation that sensors capable of detecting hole bending can be obtained with relatively high accuracy, there is in reality no good means for reliably correcting hole bending during the drilling process.
[0005]
Therefore, a main problem of the present invention is to provide a method for installing a pipe for stabilizing the ground, a method for receiving a tunnel, and a method for forming a hole, which can surely correct the bending of the hole during the drilling process and can perform a long drilling. An object of the present invention is to provide a drilling device having a bend correcting function.
[0006]
[Means for Solving the Problems]
The present invention that has solved the above problems is as described below.
<Invention according to claim 1>
A method of installing a pipe for stabilizing the ground in the ground,
An outer pipe and an inner pipe are provided, and when drilling is performed at the tip of the inner pipe while applying a propulsive force accompanying a striking force, the drilling direction is in a first direction in relation to a drilling reaction force of the ground. When an inner pipe bit having a shape that generates a force that causes eccentricity is provided, and drilling is performed on the distal end of the outer pipe while applying a propulsive force accompanying a striking force, the relationship with the drilling reaction force of the ground is obtained. An outer pipe bit having a shape that generates a force that causes the drilling direction to be eccentric in the second direction is provided,
At the time of straight drilling, the outer pipe bit and the inner pipe bit have substantially the same traveling direction position, and the circumferential direction position is substantially 180 degrees between the first direction and the second direction. Set to be the opposite position, drilling while giving at least the rotational force of the rotational force and the impact force around the axis,
At the time of correcting the hole bending due to drilling, with the relative position between the inner pipe bit and the outer pipe bit in the circumferential direction changed;
In the state where the inner tube bit is at the forward position relative to the outer tube bit in the traveling direction, or in the state where the inner tube bit and the outer tube bit are substantially in the traveling direction, continuous unidirectional rotation is performed. Drilling by applying a striking force with or without adding rocking within a certain angle range without giving
After drilling the hole to a target length, the outer tube is left in the ground to form a tube for stabilizing the ground.
[0007]
<Invention according to claim 2>
2. The method for installing a pipe for stabilizing a ground according to claim 1, wherein the end faces of the inner pipe bit and the outer pipe bit each have an inclined surface that intersects a plane orthogonal to the axis.
[0008]
(Functions and Effects in Claims 1 and 2)
As the outer pipe bit and inner pipe bit, when drilling while giving a propulsive force associated with the impact force, the drilling direction is eccentric in a certain direction due to the drilling reaction force of the ground. Use things. For example, when the tip surfaces of the inner tube bit and the outer tube bit each have an inclined surface that intersects a plane orthogonal to the axis, when a pushing force is applied to the inclined surface, the bit (and also the end portion of the tube body) is pressed. Will escape in the direction toward the tip of the slope. The present invention actively employs this principle.
However, at the time of straight drilling, the traveling direction positions of the outer pipe bit and the inner pipe bit are substantially the same, and the circumferential position is substantially the same as the first direction and the second direction. The drilling is performed while applying at least one of the rotational force around the axis and the impact force (preferably applying both the rotational force and the impact force). In this case, the outer tube bit and the distal end of the outer tube escape in the first direction, and the inner tube bit and the distal end of the inner tube escape in the second direction, respectively. Since the position is substantially 180 degrees opposite to the direction, the escape force is canceled out and the rotational force acts, so that a straight drilling is ensured.
[0009]
On the other hand, when correcting the bending of the hole caused by drilling, the relative position of the inner pipe bit and the outer pipe bit in the circumferential direction is changed (that is, the first direction and the second direction are substantially different). In the state where the position is changed from the position opposite by 180 degrees, unless the position is opposite to the position 180 degrees, in addition to the state where the positions in the first direction and the second direction correspond to the correction direction of the target hole bending, The position may be, for example, 90 degrees, 120 degrees, or the like as appropriate.); In a state where the inner tube bit is positioned forward of the outer tube bit in the traveling direction, or in the traveling direction position between the inner tube bit and the outer tube bit. In substantially the same state, drilling is performed by applying a striking force with or without rocking within a certain angle range without applying continuous one-way rotation.
In this case, for example, considering the state where the positions of the first direction and the second direction are simply aligned, the inner tube bit and the distal end of the inner tube are moved in the first direction and the outer tube bit and the outer tube are moved in the first direction. The drilling direction is changed to the direction in which the tip ends of the holes escape in the same first direction, and the drilling direction is corrected by continuing the drilling direction change for a certain length. Can be. At this time, if the above-described 90-degree position is set, the hole escapes in a certain direction within the 90-degree angle range (this direction changes depending on the resistance of the ground, the shape of the bit, and the like). The drilling direction can be corrected by continuing the drilling direction change for a certain length.
Further, it is effective that the hole bending correction is performed in a state where the traveling direction positions of the inner tube bit and the outer tube bit are substantially the same. Even in a state where the inner tube bit is positioned forward of the outer tube bit in the traveling direction, the outer tube side comes along with the escape of the inner tube bit, so that the hole bending can be corrected. Further, if continuous one-way rotation is given, the hole bending correction function (escape function) tends to disappear, so that continuous one-way rotation is not performed. Further, the drilling can be advanced only by the striking force, and in order to enhance the drilling efficiency, it is desirable to perform the drilling by applying a striking force while swinging within a certain angle range.
[0010]
After drilling the above hole to the target length, the outer pipe can be left in the ground to form a pipe for stabilizing the ground. If necessary, it can be subsequently used as an injection path for an injection material for stabilizing the ground (ground) through the pipe.
[0011]
<Invention according to claim 3>
A method of installing a pipe for stabilizing the ground in the ground,
An outer pipe and an inner pipe are provided, and an inner pipe bit shoe is provided at a tip portion of the inner pipe. The inner pipe bit shoe can be freely extended and contracted in a radial direction from an axial center. Has a reamer piece that is configured so that the center of the digging surface is eccentric with respect to the axis when extended.
At the time of linear drilling, in the state where the reamer piece is contracted, drilling while applying at least rotational force among the rotational force around the axis and the impact force,
At the time of correcting the hole bending caused by the drilling, the striking force is applied with or without rocking within a certain angle range without giving a continuous one-way rotation while the reamer piece is extended. Make a hole,
After drilling the hole to a target length, the outer tube is left in the ground to form a tube for stabilizing the ground.
[0012]
(Effect)
In the present invention, the inner pipe has an inner pipe bit shoe at the distal end thereof, and the inner pipe bit shoe can be extended and contracted in the radial direction from the axial center. It has a reamer piece that is configured to coincide with the center of the digging surface when eccentric when extended.
In the state where the reamer piece is contracted, when drilling is performed while applying at least the rotational force of the rotational force and the impact force around the axis, the inner pipe bit shoe has the excavation surface center substantially coincident with the axis. In this state, it can be performed by performing a straight hole drilling.
On the other hand, if a striking force is applied with or without a swing within a certain angle range without giving a continuous one-way rotation in a state where the reamer piece is extended, the center of the excavation surface becomes axial center. Eccentricity, the drilling line shifts in the eccentric direction, and the hole bending can be corrected. Also in this case, by applying the swing within a certain angle range, the drilling efficiency is further increased as compared with the case where only the striking force is used.
[0013]
<Invention according to claim 4>
A pre-installation method in which a pipe is erected along a tunnel line above a tunnel cross section prior to tunnel excavation,
An outer pipe and an inner pipe are provided, and when drilling is performed at the tip of the inner pipe while applying a propulsive force accompanying a striking force, the drilling direction is in a first direction in relation to a drilling reaction force of the ground. When an inner pipe bit having a shape that generates a force that causes eccentricity is provided, and drilling is performed on the distal end of the outer pipe while applying a propulsive force accompanying a striking force, the relationship with the drilling reaction force of the ground is obtained. An outer pipe bit having a shape that generates a force that causes the drilling direction to be eccentric in the second direction is provided,
At the time of straight drilling, the outer pipe bit and the inner pipe bit have substantially the same traveling direction position, and the circumferential direction position is substantially 180 degrees between the first direction and the second direction. Set to be the opposite position, drilling while giving at least the rotational force of the rotational force and the impact force around the axis,
At the time of correcting the hole bending due to drilling, with the relative position between the inner pipe bit and the outer pipe bit in the circumferential direction changed;
In the state where the inner tube bit is at a position forward in the traveling direction from the outer tube bit, or in a state where the traveling direction positions of the inner tube bit and the outer tube bit are substantially the same, continuous one-way rotation is performed. Drilling by applying a striking force with or without adding rocking within a certain angle range without giving
After drilling the above hole to a target length, the outer pipe is left in the ground to form a pipe for stabilizing the ground.
[0014]
(Effect)
The present invention provides a significant advantage in a precast construction method in which a tube is erected along a tunnel line above a tunnel cross section prior to tunnel excavation. Concretely, the drilling length is about 15m from the viewpoint of the drilling precision and about 50m even if accuracy is neglected to some extent. I know that.
[0015]
<Invention according to claim 5>
5. The method according to claim 4, wherein the tip surfaces of the inner pipe bit and the outer pipe bit each have an inclined surface that intersects a plane orthogonal to the axis.
[0016]
(Effect)
Same as above.
[0017]
<Invention according to claim 6>
A pre-installation method in which a pipe is erected along a tunnel line above a tunnel cross section prior to tunnel excavation,
An outer pipe and an inner pipe are provided, and an inner pipe bit shoe is provided at a tip portion of the inner pipe. The inner pipe bit shoe can be freely extended and contracted in a radial direction from an axial center. Has a reamer piece that is configured so that the center of the digging surface is eccentric with respect to the axis when extended.
At the time of linear drilling, in the state where the reamer piece is contracted, drilling while applying at least rotational force among the rotational force around the axis and the impact force,
At the time of correcting the hole bending caused by the drilling, the striking force is applied with or without rocking within a certain angle range without giving a continuous one-way rotation while the reamer piece is extended. Make a hole,
After drilling the above hole to a target length, the outer pipe is left in the ground to form a pipe for stabilizing the ground.
[0018]
(Effect)
The present invention provides a significant advantage in a precast construction method in which a tube is erected along a tunnel line above a tunnel cross section prior to tunnel excavation.
[0019]
<Invention according to claim 7>
An outer pipe and an inner pipe are provided, and when drilling is performed at the tip of the inner pipe while applying a propulsive force accompanying a striking force, the drilling direction is in a first direction in relation to a drilling reaction force of the ground. When an inner pipe bit having a shape that generates a force that causes eccentricity is provided, and drilling is performed on the distal end of the outer pipe while applying a propulsive force accompanying a striking force, the relationship with the drilling reaction force of the ground is obtained. An outer pipe bit having a shape that generates a force that causes the drilling direction to be eccentric in the second direction is provided,
Further, drilling drive means for applying a rotational force around the axis to the outer pipe and the inner pipe, and for applying a striking force to the inner pipe bit, or the inner pipe bit and the outer pipe bit,
The outer tube bit and the inner tube bit are detachable from each other, and are engaged in a state where the first direction and the second direction are coincident with each other. Are substantially selectable from each other at a position opposite to 180 degrees, and at each engagement, the rotational force about the axis with respect to the outer pipe is defined as the rotational force about the axis of the inner pipe bit. An excavator having a hole bending correction function, which is capable of transmitting.
[0020]
(Effect)
The apparatus of the present invention can be favorably used in each of the above-described methods. In this case, in the device of the present invention, in particular, the outer tube bit and the inner tube bit are freely disengageable, and are engaged in a state where the first direction and the second direction coincide with each other. Engagement in a state where the first direction and the second direction are substantially 180 degrees opposite to each other is selectable, and the rotational force about the axis with respect to the outer tube is reduced at each engagement. It can be transmitted as a rotational force about the axis of the inner tube bit. Therefore, at the time of hole bending correction, it is possible to shift to the hole bending correction stage only by changing the engagement position of the inner pipe bit that has been drilled straight without changing the inner pipe bit with respect to the outer pipe bit. The efficiency is high (change of the position of the inner pipe bit around the axis is easy by rotating the inner pipe from the base side).
[0021]
<Invention according to claim 8>
The excavator according to claim 7, wherein the tip surfaces of the inner pipe bit and the outer pipe bit each have an inclined surface that intersects a plane orthogonal to the axis.
[0022]
<Invention according to claim 9>
The excavation having a hole bending correcting function according to claim 7 or 8, wherein the inner pipe bit is disengaged from the outer pipe bit and the inner pipe bit can be projected forward of the outer pipe bit together with the inner pipe. apparatus.
[0023]
(Effect)
By disengaging the inner tube bit from the outer tube bit and allowing the inner tube bit to protrude forward from the outer tube bit together with the inner tube, as described above, only by the escape of the inner tube bit It can be used to correct hole bending.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in more detail with reference to the drawings.
(Relationship between pipe used and drilling drive)
As shown in FIGS. 1 and 2, the pipe used is, for example, a double pipe composed of an outer pipe 1 and an inner pipe 2, and these pipes are used by being connected to, for example, a percussion drilling driving device 3. In the case of FIG. 1, the drilling drive device 3 is of a top hammer type (rotary percussion type), in which a striking force is applied to the base end of the double pipe, this is transmitted to the tip end, and the rotation is performed. Power is also given. In the case of FIG. 2, a down-the-hole is provided at the tip, and a rotational force is also given. In addition, appropriate drilling can be performed as long as it can apply a rotational force about the axis to the outer pipe and the inner pipe and can apply a striking force to the inner pipe bit or the inner pipe bit and the outer pipe bit. A drive can be used.
[0025]
On the other hand, it is also possible to use a drilling drive device capable of individually applying a rotating force or individually applying a striking force to the outer pipe 1 and the inner pipe 2. Therefore, separate rotational force applying means can be provided for each of the outer pipe 1 and the inner pipe 2. In addition, individual striking force applying means can be provided for each of the outer pipe 1 and the inner pipe 2. Of course, the rotational force applying means and / or the hitting force applying means can be common to the outer pipe 1 and the inner pipe 2.
[0026]
Further, the pipe is excavated while sequentially connecting unit pipes of a predetermined length. Furthermore, in the following examples, an example of a double pipe will be described, but another pipe or flow path is provided in the inner pipe, or another pipe or flow path is provided between the inner pipe and the outer pipe. It is possible.
[0027]
(Basic concept of drilling)
In the present invention, as shown in FIGS. 3 and 4, an outer tube bit 10 is provided at a tip of the outer tube 1, and an inner tube bit 20 is provided at a tip of the inner tube 2. When the outer pipe bit 10 and the inner pipe bit 20 are drilled while applying a propulsive force accompanying a striking force, the drilling direction is eccentric in a certain direction due to a drilling reaction force (cutting resistance) of the ground. Use a shape that generates force. For example, the outer pipe bit 10 and the inner pipe bit 20 each have a tip end surface having an inclined surface that intersects a plane orthogonal to the axis.
[0028]
Details of the outer tube bit 10 are shown in FIGS. Details of the inner tube bit 20 are shown in FIGS. Further, FIG. 10 shows an assembled state at the time of straight hole drilling, and FIG. 11 shows a side view thereof.
[0029]
When the pushing force given by the drilling drive device 3 acts on the outer tube bit 10 and / or the inner tube bit 20, the bit escapes in the direction toward the tip of the slope.
[0030]
However, at the time of straight drilling, as shown in FIGS. 3 and 10, the outer pipe bit 10 and the inner pipe bit 20 have substantially the same position in the traveling direction, and as shown in FIG. The position is set such that the first direction (see direction (1) in FIGS. 6 and 7) and the second direction (see direction (2) in FIGS. 8 and 9) are substantially 180 degrees opposite to each other. The drilling is performed while applying at least the rotational force (preferably both the rotational force and the impact force) of the rotational force and the impact force around the axis.
[0031]
In this case, the distal ends of the outer tube bit 10 and the outer tube 1 escape in the first direction (1), and the distal ends of the inner tube bit 20 and the inner tube 2 escape in the second direction. Since the first direction and the second direction are at positions substantially 180 degrees opposite to each other, the escape force is canceled out, and the rotational force acts, so that straight drilling is ensured.
[0032]
On the other hand, at the time of correcting the hole bending caused by drilling, as shown in FIGS. 4 and 12, for example, as shown in FIGS. 4 and 12, the outer pipe bit 10 and the inner pipe bit 20 have their relative circumferential positions changed. When the position of the direction (1) and the position of the second direction (2) are aligned; for example, as shown in FIGS. 4 and 12, the position of the outer tube bit 10 and the inner tube bit 20 in the traveling direction is substantially changed. In the same state, the drilling is performed by applying a striking force with or without rocking within a certain angle range without giving a continuous one-way rotation.
[0033]
In this case, the distal ends of the inner pipe bit and the inner pipe are in the first direction (= second direction), and the distal ends of the outer pipe bit and the outer pipe are in the same first direction (= second direction). In order to escape, the drilling direction is changed to that direction, and by continuing this drilling direction change for a certain length, the drilling direction can be corrected.
[0034]
At this time, for example, assuming that the first direction and the second direction are 90 degree open angle positions in FIG. 14, a certain direction within the 90 degree open angle range (this direction is the resistance of the ground and the shape of the bit) 14), that is, in order to escape in the direction of the white arrow in FIG. 14, the drilling direction is changed to the direction.
[0035]
By continuing this kind of change in the drilling direction for a certain length, the drilling direction can be corrected. When the correction of the drilling direction is completed, the above-described straight drilling is performed again.
[0036]
At an appropriate point in the drilling process, the outer pipe 1 and the inner pipe 2 are refilled. Since the addition itself is a well-known matter, description thereof will be omitted.
[0037]
By the way, as shown in FIGS. 5 and 13, even when the inner tube bit 20 is in a position forward of the outer tube bit 10 in the traveling direction, the outer tube 1 side (the outer tube (Including the tube bit 10), so that the hole bending can be corrected. In addition, at the time of hole bending correction, the drilling can be advanced only by the impact force, and in order to enhance the drilling efficiency, as shown by arrows with double-ended arrows in FIGS. It is desirable to perform a drilling by applying a striking force while applying the swing of.
[0038]
(Description of First Example of Punching Device)
Here, the structure of the drilling device will be described with reference to the structure of the inner pipe bit 20 shown in a different manner in FIG.
[0039]
The outer tube bit 10 integrated with the distal end of the outer tube 1 by screw connection or the like has a cylindrical shape, and a central portion of the distal end surface is an inclined surface 11. A number of bit blades 12 are integrated at appropriate positions on the distal end surface. Further, an engagement protrusion 13 is provided on the inner peripheral surface.
[0040]
On the other hand, the inner pipe bit 20 integrated with the tip of the inner pipe 2 by screw connection or the like has a bottomed cylindrical shape, the inside of which serves as a passage for cutting water pumped through the inner pipe 2, and a discharge port 24 at the tip. Is discharged from the apparatus. The central portion of the tip surface of the inner tube bit 20 is an inclined surface 21. A number of bit blades 22 are integrated at an appropriate position on the tip surface. Further, on the outer peripheral surface, sludge grooves 25, 25 for cutting are formed.
[0041]
Further, an engagement groove 23 for the engagement protrusion 13 is formed. Since the shape of the engagement groove 23 is slightly complicated, it is hatched in FIG. 15 for explanation. That is, a straight groove 23A along the traveling direction is formed at approximately 1 o'clock position with reference to FIG. 9, and a correction groove 23B along the traveling direction is formed at approximately 7 o'clock position. Further, a circumferential groove 23C is formed on the rear end side of the straight groove 23A and the correction groove 23B to connect them. Moreover, a through groove 23D is formed along the traveling direction so as to communicate with the circumferential groove 23C.
[0042]
At the time of straight drilling, the straight groove 23A is in engagement with the engagement protrusion 13 and the outer tube 1 rotates in the direction of the arrow in FIG. 10, so that the rotational force of the outer tube bit 10 is transmitted through the engagement protrusion 13. , The inner tube bit 20 also rotates in the same direction.
[0043]
At the time of correcting the hole bending, for example, after pushing the inner tube bit 20 forward to the rear, the inner tube bit 20 is reversed by 180 degrees in the direction opposite to the rotation direction of FIG. 10, and then the inner tube bit 20 is pulled rearward. As a result, when viewed from the engagement projection 13 side, the groove 23A is disengaged from the groove 23A when traveling straight, moves along the circumferential groove 23C to the base of the groove 23B when modified, and is then fitted into the groove 23B when modified. Thus, as shown in FIG. 12, in a state where the outer tube bit 10 and the inner tube bit 20 are engaged, the outer tube 1 rotates in the direction of the arrow in FIG. 12, so that the rotational force of the outer tube bit 10 is reduced. The power is transmitted through the engagement protrusion 13 and the inner tube bit 20 also rotates in the same direction.
[0044]
In order to adopt the state shown in FIGS. 5 and 13, the engagement pipe 13 is pushed out from the circumferential groove 23 </ b> C by pushing out the inner tube 2 in a state where the engagement protrusion 13 is aligned with the position of the through groove 23 </ b> D. Remove through. Thus, only the inner pipe 2 and the inner pipe bit 20 can be swung.
[0045]
The modification groove 23B is further formed with an engagement groove (not shown) extending counterclockwise from the tip end thereof with reference to FIG. A design change such as making it difficult for the engagement protrusion 13 to come off from the groove 23B at the time of modification and modification is possible.
[0046]
(Explanation of the second example of the punching device)
A second example of the punching device is shown in FIGS.
[0047]
In this case, an outer tube 1 and an inner tube 2 are provided, and an appropriate outer tube bit 10A is provided at the end of the outer tube 1. An inner tube bit shoe 30 is provided at the tip of the inner tube 2. The inner tube bit shoe 30 becomes radially expandable and contractible from the axis, so that the center of the excavation surface substantially coincides with the axis during contraction, and the center of the excavation surface is eccentric with respect to the axis during extension. The reamer piece 31 configured as described above is provided. For the expansion and contraction of the reamer piece 31, for example, in addition to the cylinder having the body of the inner pipe bit shoe 30 as a seat, the reamer piece 31 is engaged with the groove as in the first example of the above-described drilling device to rotate the inner pipe 2. A structure or the like in which the reamer piece 31 expands and contracts accordingly can be adopted.
[0048]
In any case, at the time of straight hole drilling, drilling is performed while applying at least a rotational force out of a rotational force around the axis and a striking force with the reamer piece 31 contracted. In the state where the reamer piece 31 is contracted, when drilling is performed while applying at least the rotational force of the rotational force and the impact force around the axis, the center of the excavation surface of the inner pipe bit shoe substantially coincides with the axis. In this state, it can be performed by performing a straight hole drilling.
[0049]
On the other hand, when correcting the bending of the hole caused by the drilling, the impact force is applied with or without the rocking within a certain angle range without giving a continuous unidirectional rotation while the reamer piece 31 is extended. And drilling. When a striking force is applied with or without applying a swing within a certain angle range without giving a continuous one-way rotation in a state where the reamer piece 31 is extended, the excavation surface center is eccentric with respect to the axis. Therefore, the drilling line shifts in the eccentric direction, and the hole bending can be corrected. Also in this case, by applying the swing within a certain angle range, the drilling efficiency is further increased as compared with the case where only the striking force is used.
[0050]
In this example, the number of the reamer pieces 31 may be plural in the circumferential direction.
[0051]
(Example of grasping the rotation angle)
From the above example, it is important to grasp the angle of the outer tube bit 10, particularly the inner tube bit 20, at each time. Therefore, for example, if the form shown in FIG. 18 is adopted, it becomes possible to grasp even after the pipe is added. That is, a rotation angle detector 40 such as a rotary encoder is provided in the rotary head 3A of the drilling drive device 3.
[0052]
Initially or at an appropriate time, the current position of the inner tube bit 20 is set. At the stage of (a) shown, it is in a zero reset state. When the drilling of one pipe is completed, the outer pipe 1 is gripped by the outer pipe chucking 4A, and the rotary head 3A is rotated in the reverse direction as shown in FIG. To disconnect. The rotation angle direction of the rotary head 3A in this case does not matter. Subsequently, as shown in (c), the inner tube 2 is gripped by the inner tube chucking 4B, and the rotary head 3A is separated from the inner tube 2. At this time, the rotation angle (for example, 180 degrees) at the time when the inner tube 2 is gripped by the inner tube chucking 4B is stored in the rotation angle detector 40. The rotational azimuth of the rotary head 3A after separation does not matter. Next, as shown in (d), a new inner pipe is brought in and connected to the previous inner pipe. Thereafter, as shown in (e), the rotation head 3A is rotated until the rotation angle (for example, 180 degrees) stored in the rotation angle detector 40 is reached, and the position of the inner tube head 20 is set. Subsequently, the newly brought outer tube is connected to the previous outer tube.
[0053]
(First drilling example using hole bending detection together)
An appropriate detector can be employed for detecting the hole bending. For example, a mechanical gyro, a magnetic compass, or the like can be used for bending in the horizontal direction, and an inclinometer or a hydraulic pressure difference meter can be used for bending in the vertical direction.
[0054]
Therefore, in the first example shown in FIG. 19, the inclinometer 51 is provided at the distal end of the inner tube 2, and the signal in the vertical direction is taken out of the tube through the tube (a signal transmission system is not shown). ). On the other hand, the gyro 52 is inserted to detect horizontal hole bending.
[0055]
The construction method will be described in order. As shown in (a), straight drilling by double pipe rotary percussion is continued, and when drilling for an appropriate length is completed, the rotary head 3A of the drilling drive device 3 is turned on. And the gyro 52 is inserted into the inner tube 2 from the proximal end of the inner tube 2 to the distal end, as shown in FIG. 3B, and the position of the distal end is detected. When the position detection is completed, the gyro 52 is pulled out as shown in FIG. Thereafter, as shown in (d), the outer tube 1 (outer tube head 10) and the outer tube 1 are connected based on the horizontal position of the gyro 52 and the vertical position signal from the inclinometer 51 in a state where the tube is connected to the rotary head 3A. After correcting the circumferential position of the inner pipe 2 (the inner pipe head 20), propulsion is performed with a striking force as shown in (e). In the following, as shown in (f), insertion of the gyro 52, pipe line measurement, straight drilling, azimuth correction drilling, and the like are appropriately combined to perform drilling up to the target length. When the final drilling is completed, the inner pipe 2 is removed as shown in (g), and the outer pipe 1 is used as the front receiving pipe.
[0056]
In the first drilling example, when inserting and retreating the azimuth detector such as the gyro 52, for example, a form shown in FIG. 21 can be adopted. That is, the azimuth detector such as the gyro 52 is housed in the case 53 which is substantially in a liquid-tight state in the inner tube 2, the retraction is connected to the reel winder 54, and the hose of the pump 55 is provided in the inner tube 2. Connect 56 ports. When water is supplied from the pump 55 through the hose 56, the case 53 can be pushed forward. At the time of retreat, it can be retracted by being pulled in by the reel winder 54.
[0057]
(Second drilling example using hole bending detection together)
As shown in FIG. 20, the inclinometer 51 and the gyro 52 may be fixed in the distal end portion of the inner tube 2, and drilling may be performed using the inclinometer 51 and the gyro 52.
[0058]
That is, as shown in (a), the straight drilling by the double pipe rotary percussion is continued, and when the drilling of an appropriate length is completed, the inner pipe 2 is appropriately lengthened as shown in (b). Measure the pipeline while retracting. Thereafter, as shown in (c), based on the horizontal position of the gyro 52 and the vertical position signal from the inclinometer 51, the circumference of the outer tube 1 (the outer tube head 10) and the inner tube 2 (the inner tube head 20) are changed. After correcting the directional position, propulsion is performed with a striking force as shown in FIG. In the following, as shown in (e), insertion of the gyro 52 and pipe line measurement, straight hole drilling, azimuth correction drilling, and the like are appropriately combined to perform drilling up to the target length. When the final drilling is completed, the inner pipe 2 is removed as shown in FIG. In this example, there is an advantage that it is not necessary to separate the tubular body from the rotary head 3A of the drilling drive device 3 each time the gyro 52 is inserted and retracted.
[0059]
【The invention's effect】
As described above, according to the present invention, if necessary, the bending of the hole can be surely corrected during the drilling process, so that a long hole can be drilled. Other effects are as described in the above-mentioned operation and effect column.
[Brief description of the drawings]
FIG. 1 is an explanatory view of a drilling method.
FIG. 2 is an explanatory view of another drilling method.
FIG. 3 is a schematic view of a straight drilling state.
FIG. 4 is a schematic view showing a state in which a hole is corrected and drilled.
FIG. 5 is a schematic view of another hole bending correction drilling state.
FIG. 6 is a longitudinal sectional view of the outer tube bit.
FIG. 7 is a side view thereof.
FIG. 8 is a longitudinal sectional view of the inner tube bit.
FIG. 9 is a side view thereof.
FIG. 10 is a longitudinal sectional view of an outer tube bit and an inner tube bit in a straight drilled state.
FIG. 11 is a side view thereof.
FIG. 12 is a longitudinal sectional view of the outer pipe bit and the inner pipe bit in a hole bending correction drilling state.
FIG. 13 is a longitudinal sectional view of the outer pipe bit and the inner pipe bit in another hole bending correction drilling state.
FIG. 14 is an explanatory diagram of a direction and a traveling direction.
FIG. 15 is a perspective view of the inner tube bit structure shown from a different viewpoint.
FIG. 16 is a schematic diagram of a state of straight drilling by another drilling device.
FIG. 17 is a schematic view of a state in which a hole is corrected and drilled by another drilling device.
FIG. 18 is an explanatory diagram of connection of a tube and detection of a rotation angle.
FIG. 19 is an explanatory diagram of a first drilling example using hole bending detection in combination.
FIG. 20 is an explanatory diagram of a twenty-first drilling example using hole bending detection in combination.
FIG. 21 is an explanatory diagram of an example of a device for inserting and retracting a direction detector.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Outer pipe, 2 ... Inner pipe, 3 ... (Percussion) drilling drive device, 3A ... Rotating head, 10 ... Outer pipe bit, 11 ... Inclined surface, 13 ... Engagement protrusion, 20 ... Inner pipe bit, 21 ... Inclined groove, 23: engagement groove, 23A: straight groove, 23B: correction groove, 23C: circumferential groove, 24D: through groove, 30: inner tube bit shoe, 31: reamer piece, 51: inclinometer, 52 ... gyro, (1) ... first direction, (2) ... second direction.

Claims (9)

地盤の安定化用の管体を地盤内に設置する工法であって、
外管及び内管を備え、前記内管の先端部に、打撃力に伴う推進力を与えつつ削孔を行うと、地盤が有する削孔反力との関係で削孔方向が第1の方向に偏心させる力を生じさせる形状の内管ビットが設けられ、かつ前記外管の先端部に、打撃力に伴う推進力を与えつつ削孔を行うと、地盤が有する削孔反力との関係で削孔方向が第2の方向に偏心させる力を生じさせる形状の外管ビットが設けられ、
直線削孔の時には、前記外管ビット及び前記内管ビットについて、その進行方向位置を実質的に同じとし、かつ周方向位置を前記第1の方向と前記第2の方向とが実質的に180度反対の位置となるように設定し、軸心回りの回転力及び打撃力のうち少なくとも回転力を与えつつ削孔を行い、
削孔に伴う孔曲りの修正時には、前記内管ビットと前記外管ビットとの相対的に周方向位置の変更させた状態で;
前記内管ビットを前記外管ビットより進行方向前方位置にした状態で、あるいは前記内管ビットと前記外管ビットとの進行方向位置を実質的に同じとした状態で、連続する一方向回転を与えることなくある角度範囲内での揺動を加えながらあるいは加えないで打撃力を与えて削孔を行い、
上記の削孔を目標長まで削孔した後、前記外管は地盤中に残置させて地盤の安定化用の管体とすることを特徴とする地盤の安定化用管体設置工法。
A method of installing a pipe for stabilizing the ground in the ground,
An outer pipe and an inner pipe are provided, and when drilling is performed at the tip of the inner pipe while applying a propulsive force accompanying a striking force, the drilling direction is in a first direction in relation to a drilling reaction force of the ground. When an inner pipe bit having a shape that generates a force that causes eccentricity is provided, and drilling is performed on the distal end of the outer pipe while applying a propulsive force accompanying a striking force, the relationship with the drilling reaction force of the ground is obtained. An outer pipe bit having a shape that generates a force that causes the drilling direction to be eccentric in the second direction is provided,
At the time of straight drilling, the outer pipe bit and the inner pipe bit have substantially the same traveling direction position, and the circumferential direction position is substantially 180 degrees between the first direction and the second direction. Set to be the opposite position, drilling while giving at least the rotational force of the rotational force and the impact force around the axis,
At the time of correcting the hole bending due to drilling, with the relative position between the inner pipe bit and the outer pipe bit in the circumferential direction changed;
In the state where the inner tube bit is at the forward position relative to the outer tube bit in the traveling direction, or in the state where the inner tube bit and the outer tube bit are substantially in the traveling direction, continuous unidirectional rotation is performed. Drilling by applying a striking force with or without adding rocking within a certain angle range without giving
After drilling the hole to a target length, the outer tube is left in the ground to form a tube for stabilizing the ground.
内管ビット及び外管ビットの先端面は、軸心と直交する面に対して交差する傾斜面をそれぞれ有する請求項1記載の地盤の安定化用管体設置工法。2. The method for installing a pipe for stabilizing a ground according to claim 1, wherein the end faces of the inner pipe bit and the outer pipe bit each have an inclined surface that intersects a plane orthogonal to the axis. 地盤の安定化用の管体を地盤内に設置する工法であって、
外管及び内管を備え、前記内管の先端部に内管ビットシューを有し、この内管ビットシューに、軸心より放射方向に伸縮自在となり、収縮時においては掘削面中心が実質的に軸心に一致し、伸長時においては掘削面中心が軸心に対し偏心するよう構成したリーマー片を有し、
直線削孔の時においては、前記リーマー片を収縮させた状態で、軸心回りの回転力及び打撃力のうち少なくとも回転力を与えつつ削孔を行い、
削孔に伴う孔曲りの修正時には、前記リーマー片を伸長させた状態で、連続する一方向回転を与えることなくある角度範囲内での揺動を加えながらあるいは加えないで打撃力を与えて削孔を行い、
上記の削孔を目標長まで削孔した後、前記外管は地盤中に残置させて地盤の安定化用の管体とすることを特徴とする地盤の安定化用管体設置工法。
A method of installing a pipe for stabilizing the ground in the ground,
An outer pipe and an inner pipe are provided, and an inner pipe bit shoe is provided at a tip portion of the inner pipe. The inner pipe bit shoe can be freely extended and contracted in a radial direction from an axial center. Has a reamer piece that is configured so that the center of the digging surface is eccentric with respect to the axis when extended.
At the time of linear drilling, in the state where the reamer piece is contracted, drilling while applying at least rotational force among the rotational force around the axis and the impact force,
At the time of correcting the hole bending caused by the drilling, the striking force is applied with or without rocking within a certain angle range without giving a continuous one-way rotation while the reamer piece is extended. Make a hole,
After drilling the hole to a target length, the outer tube is left in the ground to form a tube for stabilizing the ground.
トンネル横断面の上方に、トンネル掘削に先立ってトンネル線に沿って管体を建込む先受け工法であって、
外管及び内管を備え、前記内管の先端部に、打撃力に伴う推進力を与えつつ削孔を行うと、地盤が有する削孔反力との関係で削孔方向が第1の方向に偏心させる力を生じさせる形状の内管ビットが設けられ、かつ前記外管の先端部に、打撃力に伴う推進力を与えつつ削孔を行うと、地盤が有する削孔反力との関係で削孔方向が第2の方向に偏心させる力を生じさせる形状の外管ビットが設けられ、
直線削孔の時には、前記外管ビット及び前記内管ビットについて、その進行方向位置を実質的に同じとし、かつ周方向位置を前記第1の方向と前記第2の方向とが実質的に180度反対の位置となるように設定し、軸心回りの回転力及び打撃力のうち少なくとも回転力を与えつつ削孔を行い、
削孔に伴う孔曲りの修正時には、前記内管ビットと前記外管ビットとの相対的に周方向位置の変更させた状態で;
前記内管ビットを前記外管ビットより進行方向前方位置にした状態で、あるいは前記内管ビットと前記外管ビットとの進行方向位置を実質的に同じとした状態で、連続な一方向回転を与えることなくある角度範囲内での揺動を加えながらあるいは加えないで打撃力を与えて削孔を行い、
上記の削孔を目標長まで削孔した後、前記外管は地盤中に残置させて地盤の安定化用の管体とすることを特徴とするトンネルの先受け工法。
A pre-installation method in which a pipe is erected along a tunnel line above a tunnel cross section prior to tunnel excavation,
An outer pipe and an inner pipe are provided, and when drilling is performed at the tip of the inner pipe while applying a propulsive force accompanying a striking force, the drilling direction is in a first direction in relation to a drilling reaction force of the ground. When an inner pipe bit having a shape that generates a force that causes eccentricity is provided, and drilling is performed on the distal end of the outer pipe while applying a propulsive force accompanying a striking force, the relationship with the drilling reaction force of the ground is obtained. An outer pipe bit having a shape that generates a force that causes the drilling direction to be eccentric in the second direction is provided,
At the time of straight drilling, the outer pipe bit and the inner pipe bit have substantially the same traveling direction position, and the circumferential direction position is substantially 180 degrees between the first direction and the second direction. Set to be the opposite position, drilling while giving at least the rotational force of the rotational force and the impact force around the axis,
At the time of correcting the hole bending due to drilling, with the relative position between the inner pipe bit and the outer pipe bit in the circumferential direction changed;
In the state where the inner tube bit is at a position forward in the traveling direction from the outer tube bit, or in a state where the traveling direction positions of the inner tube bit and the outer tube bit are substantially the same, continuous one-way rotation is performed. Drilling by applying a striking force with or without adding rocking within a certain angle range without giving
After drilling the above hole to a target length, the outer pipe is left in the ground to form a pipe for stabilizing the ground.
内管ビット及び外管ビットの先端面は、軸心と直交する面に対して交差する傾斜面をそれぞれ有する請求項4記載の地盤のトンネルの先受け工法。5. The method according to claim 4, wherein the tip surfaces of the inner pipe bit and the outer pipe bit each have an inclined surface that intersects a plane orthogonal to the axis. トンネル横断面の上方に、トンネル掘削に先立ってトンネル線に沿って管体を建込む先受け工法であって、
外管及び内管を備え、前記内管の先端部に内管ビットシューを有し、この内管ビットシューに、軸心より放射方向に伸縮自在となり、収縮時においては掘削面中心が実質的に軸心に一致し、伸長時においては掘削面中心が軸心に対し偏心するよう構成したリーマー片を有し、
直線削孔の時においては、前記リーマー片を収縮させた状態で、軸心回りの回転力及び打撃力のうち少なくとも回転力を与えつつ削孔を行い、
削孔に伴う孔曲りの修正時には、前記リーマー片を伸長させた状態で、連続する一方向回転を与えることなくある角度範囲内での揺動を加えながらあるいは加えないで打撃力を与えて削孔を行い、
上記の削孔を目標長まで削孔した後、前記外管は地盤中に残置させて地盤の安定化用の管体とすることを特徴とするトンネルの先受け工法。
A pre-installation method in which a pipe is erected along a tunnel line above a tunnel cross section prior to tunnel excavation,
An outer pipe and an inner pipe are provided, and an inner pipe bit shoe is provided at a tip portion of the inner pipe. The inner pipe bit shoe can be freely extended and contracted in a radial direction from an axial center. Has a reamer piece that is configured so that the center of the digging surface is eccentric with respect to the axis when extended.
At the time of linear drilling, in the state where the reamer piece is contracted, drilling while applying at least rotational force among the rotational force around the axis and the impact force,
At the time of correcting the hole bending caused by the drilling, the striking force is applied with or without rocking within a certain angle range without giving a continuous one-way rotation while the reamer piece is extended. Make a hole,
After drilling the above hole to a target length, the outer pipe is left in the ground to form a pipe for stabilizing the ground.
外管及び内管を備え、前記内管の先端部に、打撃力に伴う推進力を与えつつ削孔を行うと、地盤が有する削孔反力との関係で削孔方向が第1の方向に偏心させる力を生じさせる形状の内管ビットが設けられ、かつ前記外管の先端部に、打撃力に伴う推進力を与えつつ削孔を行うと、地盤が有する削孔反力との関係で削孔方向が第2の方向に偏心させる力を生じさせる形状の外管ビットが設けられ、
さらに前記外管及び前記内管に軸心回りの回転力を与え、かつ前記内管ビット、または前記内管ビット及び前記外管ビットに対して打撃力を与える削孔駆動手段を備え、
前記外管ビットと前記内管ビットとは係脱自在となり、前記第1の方向と前記第2の方向とが一致した状態での係合、並びに前記第1の方向と前記第2の方向とが実質的に180度反対の位置となる状態での係合が選択自在とされ、各係合時において前記外管に対する軸心回りの回転力が前記内管ビットの軸心回りの回転力として伝達可能となっていることを特徴とする孔曲り修正機能を有する掘削装置。
An outer pipe and an inner pipe are provided, and when drilling is performed at the tip of the inner pipe while applying a propulsive force accompanying a striking force, the drilling direction is in a first direction in relation to a drilling reaction force of the ground. When an inner pipe bit having a shape that generates a force that causes eccentricity is provided, and drilling is performed on the distal end of the outer pipe while applying a propulsive force accompanying a striking force, the relationship with the drilling reaction force of the ground is obtained. An outer pipe bit having a shape that generates a force that causes the drilling direction to be eccentric in the second direction is provided,
Further, drilling drive means for applying a rotational force around the axis to the outer pipe and the inner pipe, and for applying a striking force to the inner pipe bit, or the inner pipe bit and the outer pipe bit,
The outer tube bit and the inner tube bit are detachable from each other, and are engaged in a state where the first direction and the second direction are coincident with each other. Are substantially selectable from each other at a position opposite to 180 degrees, and at each engagement, the rotational force about the axis with respect to the outer pipe is defined as the rotational force about the axis of the inner pipe bit. An excavator having a hole bending correction function, which is capable of transmitting.
内管ビット及び外管ビットの先端面は、軸心と直交する面に対して交差する傾斜面をそれぞれ有する請求項7記載の孔曲り修正機能を有する掘削装置。The excavator having a hole bending correcting function according to claim 7, wherein the tip surfaces of the inner pipe bit and the outer pipe bit each have an inclined surface that intersects a plane orthogonal to the axis. 外管ビットからの内管ビットの係合を解いて、内管と共に前記内管ビットを前記外管ビットより前方に突き出し可能とされている請求項7または8記載の孔曲り修正機能を有する掘削装置。The excavation having a hole bending correcting function according to claim 7 or 8, wherein the inner pipe bit can be projected forward of the outer pipe bit together with the inner pipe by disengaging the inner pipe bit from the outer pipe bit. apparatus.
JP2003054521A 2003-02-28 2003-02-28 Excavator with tube installation method for ground stabilization, tunnel tip receiving method and hole bending correction function Expired - Lifetime JP3996530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003054521A JP3996530B2 (en) 2003-02-28 2003-02-28 Excavator with tube installation method for ground stabilization, tunnel tip receiving method and hole bending correction function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003054521A JP3996530B2 (en) 2003-02-28 2003-02-28 Excavator with tube installation method for ground stabilization, tunnel tip receiving method and hole bending correction function

Publications (3)

Publication Number Publication Date
JP2004263431A true JP2004263431A (en) 2004-09-24
JP2004263431A5 JP2004263431A5 (en) 2005-11-04
JP3996530B2 JP3996530B2 (en) 2007-10-24

Family

ID=33118841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003054521A Expired - Lifetime JP3996530B2 (en) 2003-02-28 2003-02-28 Excavator with tube installation method for ground stabilization, tunnel tip receiving method and hole bending correction function

Country Status (1)

Country Link
JP (1) JP3996530B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265993A (en) * 2005-03-25 2006-10-05 Raito Kogyo Co Ltd Pipe installation method for stabilizing ground, prelining method for tunnel and excavation device used therefor
JP2007023704A (en) * 2005-07-21 2007-02-01 Chem Grouting Co Ltd Boring method
JP2007291626A (en) * 2006-04-21 2007-11-08 Kawasaki Heavy Ind Ltd Packaged earth removing shield machine
JP2013209828A (en) * 2012-03-30 2013-10-10 Osaka Bosui Constr Co Ltd Tip bit and drilling apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265993A (en) * 2005-03-25 2006-10-05 Raito Kogyo Co Ltd Pipe installation method for stabilizing ground, prelining method for tunnel and excavation device used therefor
JP2007023704A (en) * 2005-07-21 2007-02-01 Chem Grouting Co Ltd Boring method
JP4548838B2 (en) * 2005-07-21 2010-09-22 ケミカルグラウト株式会社 Drilling method
JP2007291626A (en) * 2006-04-21 2007-11-08 Kawasaki Heavy Ind Ltd Packaged earth removing shield machine
JP2013209828A (en) * 2012-03-30 2013-10-10 Osaka Bosui Constr Co Ltd Tip bit and drilling apparatus

Also Published As

Publication number Publication date
JP3996530B2 (en) 2007-10-24

Similar Documents

Publication Publication Date Title
JP2004263431A (en) Pipe installation method for stabilizing ground, prelining method for tunnel and excavating apparatus having function of correcting bent hole
JP2006265993A (en) Pipe installation method for stabilizing ground, prelining method for tunnel and excavation device used therefor
JP3020286B2 (en) Rotary percussion type ultra-small bore drilling method for gravel layer incorporating hole bending measurement and hole bending correction mechanism
JP4939260B2 (en) Inserting long members into the ground
KR0155429B1 (en) Drilling direction control method of small bore diameter pipe propulsive machine and its device
JP2011006961A (en) Method of installing pipe into natural ground
JP3388723B2 (en) Drilling device and drilling method
JP4381995B2 (en) Pipe propulsion embedding equipment
JPH0452833B2 (en)
JP2006037543A (en) Pipe laying construction method by one-way excavation pipe-jacking method
JP3884428B2 (en) Natural mountain reinforcement pipe
JP2006144385A (en) Underground boring device
JP4392637B2 (en) Excavated body
JPH11159274A (en) Excavating tool
JP2756594B2 (en) Underground drilling rig
JPH0478799B2 (en)
JP2531513B2 (en) Digging device
JPH035593A (en) Underground arc promoting work
JP4883427B2 (en) Excavated body
JP4569856B2 (en) Excavation body and excavation method
JP2006207239A (en) Directional control boring method and device
JP4360974B2 (en) Bending correction mechanism for drilling equipment
JPH035595A (en) Position detection mechanism in outer pipe circumferential direction in a middle boring device of double tube type
JPH0696946B2 (en) Pipe burying method and device
JP2002250029A (en) Improving method for existing structure lower ground, pipe underground erecting device, and its method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050909

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3996530

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140810

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term