JP2007247057A - Cathode graphite material for aluminum three layer electrorefining - Google Patents

Cathode graphite material for aluminum three layer electrorefining Download PDF

Info

Publication number
JP2007247057A
JP2007247057A JP2007030218A JP2007030218A JP2007247057A JP 2007247057 A JP2007247057 A JP 2007247057A JP 2007030218 A JP2007030218 A JP 2007030218A JP 2007030218 A JP2007030218 A JP 2007030218A JP 2007247057 A JP2007247057 A JP 2007247057A
Authority
JP
Japan
Prior art keywords
layer
aluminum
cathode
anode
refined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007030218A
Other languages
Japanese (ja)
Inventor
Hitoshi Yasuda
均 安田
Hiroshi Tabuchi
宏 田渕
Mizuki Shiraishi
瑞樹 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2007030218A priority Critical patent/JP2007247057A/en
Publication of JP2007247057A publication Critical patent/JP2007247057A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cathode graphite material for aluminum three layer electrorefining, which is hard to be consumed even in a state of being contacted with the air at high temperature. <P>SOLUTION: Regarding the cathode graphite material for aluminum three layer electrorefining, the content of Fe is ≤0.2 mass%, and the area ratio of pores in the surface is ≤22%. Using a three layer electrolytic process refining furnace (3) with cathodes (1) each composed of the cathode graphite material for aluminum three layer electrorefining in which a refined aluminum layer (B1), a refined electrolytic bath layer (B2) and an anode master alloy molten metal layer (B3) are formed in order from the side of the cathodes (1) between the cathodes (1) and the anode (2), as raw material aluminum (B) is fed to the anode master alloy molten metal layer (B3), direct current is made to flow from the anode (2) to the cathodes (1), so as to deposit refined aluminum (A) on the refined aluminum layer (B1), thus the refined aluminum (A) can be produced. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、アルミニウム三層電解精製用陰極黒鉛材に関する。 The present invention relates to a cathode graphite material for aluminum three-layer electrolytic purification.

原料アルミニウム(B)を精製して純度99.9質量%以上の精製アルミニウム(A)を製造する方法として、三層電解法が知られている〔非特許文献1:「アルミニウムの製品と製造技術」、社団法人軽金属学会、2001年10月30日発行、第117頁、非特許文献2:「軽金属の研究と技術のあゆみ」、軽金属学会、1991年11月30日発行、第194頁〜第196頁〕。 A three-layer electrolysis method is known as a method for producing a purified aluminum (A) having a purity of 99.9% by mass or more by refining the raw material aluminum (B) [Non-patent Document 1: “Aluminum Products and Production Technology” ”, Japan Institute of Light Metals, published on October 30, 2001, page 117, Non-Patent Document 2:“ Research on Light Metals and History of Technology ”, Japan Institute of Light Metals, published on November 30, 1991, pp. 194- 196].

この方法は、図1に示すようにアルミニウム三層電解精製用陰極黒鉛材からなる陰極(1)および陽極(2)を備え、この陰極(1)と陽極(2)との間に、陰極(1)側から順に精製アルミニウム層(B1)、精製電解浴層(B2)および陽極母合金溶湯層(B3)が形成された三層電解法精製炉(3)を用い、原料アルミニウム(B)を陽極母合金溶湯(B3)に供給しつつ、陰極(1)に向けて陽極(2)から直流電流(I)を通電することにより、精製アルミニウム層(B1)に精製アルミニウム(A)を析出させて、精製アルミニウム(A)を製造する方法である。 As shown in FIG. 1, this method comprises a cathode (1) and an anode (2) made of a cathode graphite material for aluminum three-layer electrolytic purification, and a cathode (1) and an anode (2) are disposed between the cathode (1) and the anode (2). 1) Using a three-layer electrolytic purification furnace (3) in which a purified aluminum layer (B1), a purified electrolytic bath layer (B2), and an anode mother alloy molten metal layer (B3) are formed in this order from the side, the raw material aluminum (B) is Purified aluminum (A) is deposited on the purified aluminum layer (B1) by supplying direct current (I) from the anode (2) toward the cathode (1) while supplying the molten anode mother alloy (B3). Thus, this is a method for producing purified aluminum (A).

かかる方法において、精製アルミニウム層(B1)、精製電解浴層(B2)および陽極母合金溶湯層(B3)は、それぞれ直流電流(I)の通電により750℃〜800℃の高温に加熱されて溶融状態となっている。また、陰極(1)は通常、大気に曝されている。このため、陰極(1)を構成する黒鉛材としては、高温下、大気圧中で消耗のより少ないものが求められている。 In such a method, the refined aluminum layer (B1), the refined electrolytic bath layer (B2), and the anode mother alloy molten metal layer (B3) are each heated to a high temperature of 750 ° C. to 800 ° C. by melting with a direct current (I). It is in a state. The cathode (1) is usually exposed to the atmosphere. For this reason, a graphite material constituting the cathode (1) is required to be less consumed at high temperature and atmospheric pressure.

「アルミニウムの製品と製造技術」、社団法人軽金属学会、2001年10月30日発行、第117頁"Aluminum products and manufacturing technology", Japan Institute of Light Metals, published on October 30, 2001, page 117 「軽金属の研究と技術のあゆみ」、軽金属学会、1991年11月30日発行、第194頁〜第196頁“Research on Light Metals and History of Technology”, Japan Institute of Light Metals, published on November 30, 1991, pp. 194-196

そこで本発明者は、高温下、大気中で消耗のより少ないアルミニウム三層電解精製用陰極黒鉛材を開発するべく鋭意検討した結果、本発明に至った。 Therefore, the present inventors have intensively studied to develop a cathode graphite material for aluminum three-layer electrolytic purification that is less consumed in the atmosphere at high temperatures, and as a result, have reached the present invention.

すなわち本発明は、Fe含有量が0.2質量%以下、表面の気孔面積率が22%以下であることを特徴とするアルミニウム三層電解精製用陰極黒鉛材を提供するものである。 That is, the present invention provides a cathode graphite material for aluminum three-layer electrolytic purification, wherein the Fe content is 0.2% by mass or less and the surface pore area ratio is 22% or less.

本発明のアルミニウム三層電解精製用陰極黒鉛材は、高温下、大気中での消耗がより少ないので、より長期間に亘り、三層電解精製法による精製アルミニウムの製造において、陰極として使用することができる。 The cathode graphite material for aluminum three-layer electrolytic purification according to the present invention is less consumed in the air at high temperatures, so it can be used as a cathode in the production of purified aluminum by the three-layer electrolytic purification method for a longer period of time. Can do.

本発明のアルミニウム三層電解精製用陰極黒鉛材は、Fe含有量が0.2質量%以下、好ましくは0.15質量%以下である。Fe含有量が0.2質量%を超えると、局部的な消耗が生じ易くなる。 The cathode graphite material for aluminum three-layer electrolytic purification of the present invention has an Fe content of 0.2% by mass or less, preferably 0.15% by mass or less. When the Fe content exceeds 0.2% by mass, local wear tends to occur.

表面の気孔面積率は22%以下、好ましくは20%以下である。気孔面積率が22%を超えると、局部的な消耗が生じ易くなる。 The surface pore area ratio is 22% or less, preferably 20% or less. When the pore area ratio exceeds 22%, local wear tends to occur.

本発明のアルミニウム三層電解精製用陰極黒鉛材は、固有抵抗値が6μΩm以下であることが好ましい。固有抵抗値が6μΩmを超えると、陰極(1)として使用した場合に、陰極の発熱によるエネルギーのロスが大きくなる。 The cathode graphite material for aluminum three-layer electrolytic purification of the present invention preferably has a specific resistance value of 6 μΩm or less. When the specific resistance value exceeds 6 μΩm, when used as the cathode (1), energy loss due to the heat generation of the cathode increases.

本発明のアルミニウム三層電解精製用陰極黒鉛材は、例えば図1に示すような三層電解法精製炉(3)の陰極(1)を構成する。 The cathode graphite material for aluminum three-layer electrolytic purification of the present invention constitutes the cathode (1) of a three-layer electrolytic purification furnace (3) as shown in FIG. 1, for example.

図1に示す三層電解法精製炉(3)は、三層電解法による精製アルミニウム(A)の製造に用いられる炉であり、陰極(1)および陽極(2)を備えている。この陰極(1)と陽極(2)との間には、陰極(1)側から順に精製アルミニウム層(B1)、精製電解浴層(B2)および陽極母合金溶湯層(B3)が形成されている。 A three-layer electrolytic method refining furnace (3) shown in FIG. 1 is a furnace used for producing purified aluminum (A) by a three-layer electrolytic method, and includes a cathode (1) and an anode (2). Between the cathode (1) and the anode (2), a purified aluminum layer (B1), a purified electrolytic bath layer (B2), and an anode mother alloy molten metal layer (B3) are formed in this order from the cathode (1) side. Yes.

陰極(1)は精製炉(3)の上部に、陽極(2)は精製炉(3)の底部に、それぞれ配置されており、精製アルミニウム層(B1)は陰極(1)に接し、陽極母合金溶湯層(B3)は陽極(2)に接している。 The cathode (1) is disposed at the top of the refining furnace (3), the anode (2) is disposed at the bottom of the refining furnace (3), and the refining aluminum layer (B1) is in contact with the cathode (1), and the anode mother The molten alloy layer (B3) is in contact with the anode (2).

陽極母合金電解溶湯(B3)の組成は、例えばAlが60質量%〜70質量、Cuが30質量%〜40質量%である。 The composition of the anode mother alloy electrolytic molten metal (B3) is, for example, 60 mass% to 70 mass% for Al and 30 mass% to 40 mass% for Cu.

精製電解浴層(B2)の組成は、例えばAlF3が35質量%〜45質量%、BaF2が25質量%〜45質量%、CaF2が5質量%〜15質量%、NaFが5質量%〜20質量%である。 The composition of the purified electrolytic bath layer (B2) is, for example, 35 mass% to 45 mass% for AlF 3 , 25 mass% to 45 mass% for BaF 2 , 5 mass% to 15 mass% for CaF 2 , and 5 mass% for NaF. ˜20 mass%.

このような三層電解法精製炉(3)を用いて、原料アルミニウム(B)を製造するには、原料アルミニウム(B)を陽極母合金溶湯層(B3)に供給しつつ、陰極(1)に向けて陽極(2)から直流電流(I)を通電すればよい。 In order to produce the raw material aluminum (B) using such a three-layer electrolytic purification furnace (3), while supplying the raw material aluminum (B) to the anode mother alloy molten metal layer (B3), the cathode (1) Direct current (I) may be applied from the anode (2) toward

直流電流(I)は、陽極(2)から陽極母合金溶湯層(B3)、精製電解浴層(B2)および精製アルミニウム層(B1)をこの順に通過して陰極(1)に至る。精製アルミニウム層(B1)、精製電解浴層(B2)および陽極母合金溶湯層(B3)は、通常は陽極(3)から陰極(1)へ通電する直流電流による発熱により、例えば750℃〜800℃に加熱された溶融状態である。陽極(2)から陰極(1)への通電量は、陰極の単位面積あたりで、通常3A/cm2〜4A/cm2である。図1に示す炉(3)において、原料アルミニウム(B)は原料アルミニウム投入口(4)から投入される。この投入口(4)は、隔壁(5)により精製アルミニウム層(B1)および精製電解浴層(B2)と仕切られ、陽極母合金溶湯層(B3)と連通している。投入口(5)から投入された原料アルミニウム(B)は溶融状態となって陽極母合金溶湯層(B3)に供給され、直流電流(I)により溶融状態となり、精製電解浴層(B2)を通過しながら精製されてつつ、陰極(1)へ向けて精製アルミニウム(A)となって析出して、精製アルミニウム層(B1)を形成する。 The direct current (I) passes from the anode (2) through the anode mother alloy molten metal layer (B3), the refined electrolytic bath layer (B2) and the refined aluminum layer (B1) in this order to the cathode (1). The refined aluminum layer (B1), the refined electrolytic bath layer (B2) and the anode mother alloy molten metal layer (B3) are usually heated by direct current flowing from the anode (3) to the cathode (1), for example, 750 ° C. to 800 ° C. It is a molten state heated to ° C. The amount of current flowing from the anode (2) to the cathode (1) is usually 3 A / cm 2 to 4 A / cm 2 per unit area of the cathode. In the furnace (3) shown in FIG. 1, the raw material aluminum (B) is charged from the raw material aluminum inlet (4). The inlet (4) is partitioned from the refined aluminum layer (B1) and the refined electrolytic bath layer (B2) by the partition wall (5), and communicates with the anode mother alloy molten metal layer (B3). The raw material aluminum (B) charged from the inlet (5) is in a molten state and is supplied to the molten anode layer (B3), and is melted by the direct current (I), and the purified electrolytic bath layer (B2) is removed. While being refined while passing, it is precipitated as purified aluminum (A) toward the cathode (1) to form a purified aluminum layer (B1).

かくして精製アルミニウム層(B1)に析出した目的の精製アルミニウム(A)は、通常の方法、例えば精製アルミニウム層(B1)から汲み取る方法により取り出すことができ、取り出された精製アルミニウム(A)は通常、鋳造により冷却される。 Thus, the target purified aluminum (A) deposited on the purified aluminum layer (B1) can be taken out by a usual method, for example, a method of pumping from the purified aluminum layer (B1). It is cooled by casting.

以下、実施例により本発明をより詳細に説明するが、本発明は、かかる実施例により限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by this Example.

なお、各実施例で用いた黒鉛材は以下の方法により評価した。
(1)Fe含有量
ICP発光分析法により求めた。
(2)表面の気孔面積率
電極面を研磨し、研磨面の光学顕微鏡写真(倍率100倍)から、画像解析装置〔Media Cybernetics社製「IMAGE-PRO PLUS」〕により、総面積に対する気孔部分の面積の割合を求めた。
In addition, the graphite material used in each Example was evaluated by the following method.
(1) Fe content Determined by ICP emission analysis.
(2) Polish the surface pore area ratio electrode surface, and from the photomicrograph (magnification 100 times) of the polished surface, image analysis device [Media Cybernetics "IMAGE-PRO PLUS"] of the pore portion relative to the total area The area ratio was determined.

実施例1
黒鉛材〔(株)エスイーシー製、「黒鉛押出材GS−G低Fe品」を円柱状に加工し、図1に示すような三層電解法によるアルミニウム精製用の精製炉(3)の陰極(1)として用いた。この黒鉛材のFe含有量は0.12質量%であり、気孔面積率は18%であった。アルミニウムの溶融温度は750℃〜800℃とし、通電量は3.4A/cm2〜3.5A/cm2とした。299日後に、この陰極を取り出し、その下面を目視で観察したところ、平坦のままであった。
Example 1
Graphite material [“Extruded graphite GS-G low Fe product” manufactured by ESC Corporation was processed into a cylindrical shape, and the cathode of a purification furnace (3) for refining aluminum by a three-layer electrolysis method as shown in FIG. Used as 1). This graphite material had an Fe content of 0.12% by mass and a pore area ratio of 18%. The melting temperature of aluminum was set to 750 ° C. to 800 ° C., and the energization amount was set to 3.4 A / cm 2 to 3.5 A / cm 2 . After 299 days, the cathode was taken out and its lower surface was visually observed.

比較例1
実施例1で用いた黒鉛材に代えて、製鋼用電気炉に使用するアーク電極用黒鉛材〔(株)エスイーシー製、「黒鉛押出し材GS−G普通品」を用いた以外は実施例1と同様に操作した。この黒鉛材のFe含有量は0.43質量%であり、気孔面積率は26%であった。257日後に、この陰極を取り出し、その下面を目視で観察したところ、ドーナツ状に窪んだ形状の局部的な消耗が生じていた。
Comparative Example 1
Instead of the graphite material used in Example 1, Example 1 except that a graphite material for arc electrodes used in an electric furnace for steelmaking [manufactured by ESC Co., Ltd., “graphite extruded material GS-G ordinary product”] was used. The same operation was performed. This graphite material had an Fe content of 0.43% by mass and a pore area ratio of 26%. After 257 days, the cathode was taken out and the lower surface thereof was visually observed. As a result, local consumption in the shape of a donut was found.

三層電解法により精製アルミニウムを製造するための精製炉を示す模式図である。It is a schematic diagram which shows the refinement | purification furnace for manufacturing refined aluminum by a three-layer electrolysis method.

符号の説明Explanation of symbols

A:精製アルミニウム B:原料アルミニウム
B1:精製アルミニウム層 B2:精製電解浴層 B3:陽極母合金溶湯層
I:直流電流
1:陰極 2:陽極 3:三層電解法精製炉
4:原料アルミニウム投入口 5:隔壁
A: Refined aluminum B: Raw material aluminum
B1: Refined aluminum layer B2: Refined electrolytic bath layer B3: Anode mother alloy molten metal layer I: DC current 1: Cathode 2: Anode 3: Three-layer electrolytic purification furnace 4: Raw material aluminum inlet 5: Partition wall

Claims (2)

Fe含有量が0.2質量%以下、表面の気孔面積率が22%以下であることを特徴とするアルミニウム三層電解精製用陰極黒鉛材。 A cathode graphite material for aluminum three-layer electrolytic purification, wherein the Fe content is 0.2% by mass or less and the surface pore area ratio is 22% or less. 陰極および陽極を備え、該陰極と該陽極との間に、陰極側から順に精製アルミニウム層、精製電解浴層および陽極母合金溶湯層が形成された三層電解法精製炉を用い、前記陽極母合金溶湯層に原料アルミニウムを供給しつつ、前記陰極へ向けて前記陽極から直流電流を通電することにより精製アルミニウムを前記精製アルミニウム層に析出させて精製アルミニウムを製造する方法であり、
前記陰極が、請求項1に記載のアルミニウム三層電解精製用陰極黒鉛材で構成されていることを特徴とする前記精製アルミニウムの製造方法。
A three-layer electrolytic purification furnace comprising a cathode and an anode, and a refined aluminum layer, a refined electrolytic bath layer, and an anode mother alloy molten metal layer formed in that order from the cathode side between the cathode and the anode, While supplying raw material aluminum to the molten alloy layer, a method of producing purified aluminum by depositing purified aluminum on the purified aluminum layer by passing a direct current from the anode toward the cathode,
The said cathode is comprised with the cathode graphite material for aluminum three-layer electrolytic purification of Claim 1, The manufacturing method of the said purified aluminum characterized by the above-mentioned.
JP2007030218A 2006-02-16 2007-02-09 Cathode graphite material for aluminum three layer electrorefining Pending JP2007247057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007030218A JP2007247057A (en) 2006-02-16 2007-02-09 Cathode graphite material for aluminum three layer electrorefining

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006039070 2006-02-16
JP2007030218A JP2007247057A (en) 2006-02-16 2007-02-09 Cathode graphite material for aluminum three layer electrorefining

Publications (1)

Publication Number Publication Date
JP2007247057A true JP2007247057A (en) 2007-09-27

Family

ID=38591669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007030218A Pending JP2007247057A (en) 2006-02-16 2007-02-09 Cathode graphite material for aluminum three layer electrorefining

Country Status (1)

Country Link
JP (1) JP2007247057A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102534685A (en) * 2011-12-07 2012-07-04 内蒙古新长江矿业投资有限公司 Refined aluminum pot roasting starting method
US9524918B2 (en) 2011-07-28 2016-12-20 Denka Company Limited Heat dissipating component for semiconductor element
CN106929879A (en) * 2017-02-19 2017-07-07 周俊和 The method that prebaked anode aluminium electroloysis steel pawl aluminum guide leads power-off

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08143378A (en) * 1994-11-21 1996-06-04 Showa Denko Kk Production of carbon sheet
JPH09143781A (en) * 1995-11-28 1997-06-03 Nippon Light Metal Co Ltd Three-layered type electrolytic refining furnace for production of high-purity aluminum
JP2001172786A (en) * 1999-11-02 2001-06-26 Vaw Highpural Gmbh Ultrahigh purity aluminum producing device
WO2006000276A1 (en) * 2004-05-12 2006-01-05 Sgl Carbon Ag Graphite electrode for electrothermic reduction furnaces, electrode column, and method of producing graphite electrodes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08143378A (en) * 1994-11-21 1996-06-04 Showa Denko Kk Production of carbon sheet
JPH09143781A (en) * 1995-11-28 1997-06-03 Nippon Light Metal Co Ltd Three-layered type electrolytic refining furnace for production of high-purity aluminum
JP2001172786A (en) * 1999-11-02 2001-06-26 Vaw Highpural Gmbh Ultrahigh purity aluminum producing device
WO2006000276A1 (en) * 2004-05-12 2006-01-05 Sgl Carbon Ag Graphite electrode for electrothermic reduction furnaces, electrode column, and method of producing graphite electrodes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9524918B2 (en) 2011-07-28 2016-12-20 Denka Company Limited Heat dissipating component for semiconductor element
CN102534685A (en) * 2011-12-07 2012-07-04 内蒙古新长江矿业投资有限公司 Refined aluminum pot roasting starting method
CN106929879A (en) * 2017-02-19 2017-07-07 周俊和 The method that prebaked anode aluminium electroloysis steel pawl aluminum guide leads power-off

Similar Documents

Publication Publication Date Title
JP4602986B2 (en) Method for producing metallic calcium by molten salt electrolysis
US7901561B2 (en) Method for electrolytic production and refining of metals
JP4707036B2 (en) Method for producing alloy ingot by molten salt electrolysis using ESR heating
JP5183498B2 (en) Electrolytic production of silicon and scouring method
WO2019104809A1 (en) Method for directly preparing tungsten-base alloy powder by electrolyzing discarded hard alloy
CN101400811B (en) Method for electrolytic production and refining of metals
CN104561550A (en) Method for preparing Al-Ti-Fe alloy through thermal reduction of ilmenite in cryolite-based molten salt
CN106894052B (en) A kind of conjuncted-multilevel aluminum electrolysis unit and its application method preparing rafifinal
US20090152122A1 (en) Method for electrolyzing molten salt, electrolytic cell, and process for producing ti using said method
JP2007247057A (en) Cathode graphite material for aluminum three layer electrorefining
WO2007034645A1 (en) PROCESS FOR PRODUCING Ti AND APPARATUS THEREFOR
JPH11512149A (en) Electrochemical production of sodium and aluminum chloride
JPH0257694A (en) Production of praseodymium or praseodymium-containing alloy
WO2006003865A1 (en) Method for producing metal by molten salt electrolysis
JP7370988B2 (en) Manufacturing method of titanium metal
JPH03140491A (en) Rare earth metal and production of rare earth alloy
JP2012172194A (en) Electrolytic apparatus and electrowinning method using the same
CN102912382B (en) A kind of method of electrolytic preparation aluminium-magnesium alloy in fluorochloride molten salt system
JPWO2008102520A1 (en) Metal production apparatus by molten salt electrolysis and metal production method using the same
JP4521877B2 (en) Molten salt electrolysis apparatus for metal and method for producing metal using the apparatus
CN109440133A (en) Produce the high purity titanium preparation method of smart magnesium
JP3952296B2 (en) Molten salt heat exchanger and method for producing Ti material using the same
JP4557565B2 (en) Electrolyzer
JP2005200758A (en) Electrolytic cell structure
CN102330118A (en) Method for preparing Mg-Sr alloy through molten salt electrolytic codeposition

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080204

RD05 Notification of revocation of power of attorney

Effective date: 20080516

Free format text: JAPANESE INTERMEDIATE CODE: A7425

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120619