JP2007246861A - Resin composition, and varnish obtained using the resin composition, film adhesive, and copper foil attached with film adhesive - Google Patents

Resin composition, and varnish obtained using the resin composition, film adhesive, and copper foil attached with film adhesive Download PDF

Info

Publication number
JP2007246861A
JP2007246861A JP2006076126A JP2006076126A JP2007246861A JP 2007246861 A JP2007246861 A JP 2007246861A JP 2006076126 A JP2006076126 A JP 2006076126A JP 2006076126 A JP2006076126 A JP 2006076126A JP 2007246861 A JP2007246861 A JP 2007246861A
Authority
JP
Japan
Prior art keywords
resin composition
average particle
particle diameter
particle size
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006076126A
Other languages
Japanese (ja)
Other versions
JP4890063B2 (en
Inventor
Tokuyuki Kirikae
徳之 切替
Tokuo Yamashita
徳夫 山下
Tetsuya Matsuo
哲也 松尾
Hiroyuki Yano
博之 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP2006076126A priority Critical patent/JP4890063B2/en
Publication of JP2007246861A publication Critical patent/JP2007246861A/en
Application granted granted Critical
Publication of JP4890063B2 publication Critical patent/JP4890063B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin composition suitable for use as an insulating adhesive layer in a metal-base circuit substrate, excellent in heat conductivity, and having high voltage resistance and adhesiveness. <P>SOLUTION: This resin composition contains an epoxy resin, a curing agent, a curing promotor and an alumina powder. The alumina powder is contained 86-95 wt.% of the solid content of the resin composition and has the maximum particle diameter of not greater than 120 μm, and contains not less than 90 wt.% of crystalline spherical alumina of which particle diameter distribution is that, average particle diameter D<SB>50</SB>=35-50 μm, and the content satisfying [volume average particle diameter (MV)]/[number average particle diameter (MN)]=1.2-2.0 is 30-50 wt.%, that satisfying D<SB>50</SB>=5-15 μm and [MV]/[MN]=2.30-3.5 is 30-50 wt.%, and that satisfying D<SB>50</SB>=0.1-2 μm is 10-30 wt.%, and Na ion in boiled water extract is not higher than 20 ppm per solid content of the resin composition and the iron content detected by ICP emission spectral analysis is not higher than 100 ppm. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、樹脂組成物、並びにこの樹脂組成物を用いて得たワニス、フィルム状接着剤及びフィルム状接着剤付き銅箔に関し、特に、発熱性の電子部品を搭載する回路基板を作製する上で、放熱性に優れた絶縁接着層を形成するのに好適である。   The present invention relates to a resin composition, and a varnish obtained using the resin composition, a film-like adhesive, and a copper foil with a film-like adhesive, and in particular, for producing a circuit board on which an exothermic electronic component is mounted. Therefore, it is suitable for forming an insulating adhesive layer excellent in heat dissipation.

近年、電気・電子機器における急速な高性能化、高密度化にともない、回路基板に搭載される電子部品からの発熱を無視することができなくなっており、特に、高電流、高電圧で使用する電子部品においてはこの発熱が顕著である。そして、高発熱性の電子部品を搭載する回路基板については高い放熱性が要求されるようになっている。   In recent years, with the rapid increase in performance and density of electrical and electronic equipment, heat generated by electronic components mounted on circuit boards can no longer be ignored, especially when used at high currents and voltages. This heat generation is significant in electronic parts. In addition, high heat dissipation is required for circuit boards on which highly exothermic electronic components are mounted.

回路基板に高い放熱性を付与せしめる形態については様々な方法が提案されているが、そのひとつとして、アルミニウムや銅等の金属基板に絶縁接着層を介して銅配線からなる回路を形成する金属ベース回路基板において、この絶縁接着層に高熱伝導性を有するアルミナ等の無機フィラーを充填する方法が知られている(例えば特許文献1参照)。   Various methods have been proposed for imparting high heat dissipation to a circuit board. One example is a metal base that forms a circuit made of copper wiring via an insulating adhesive layer on a metal substrate such as aluminum or copper. In a circuit board, a method of filling this insulating adhesive layer with an inorganic filler such as alumina having high thermal conductivity is known (see, for example, Patent Document 1).

絶縁接着層を形成する樹脂としては、一般には、エポキシ樹脂やフェノール樹脂等が用いられるが、これらの樹脂組成物に高い割合で無機フィラーを充填すると樹脂組成物の流動性が低下して加工性が劣ったり、均一かつ平滑な絶縁接着層が得られないといった問題がある。そのため、無機フィラーを高い割合で充填させることができず、十分な高熱伝導性を備えた金属ベース回路基板を得ることは難しかった。   In general, epoxy resins and phenol resins are used as the resin for forming the insulating adhesive layer. However, if these resins are filled with an inorganic filler at a high ratio, the fluidity of the resin composition is lowered and the processability is increased. Or a uniform and smooth insulating adhesive layer cannot be obtained. For this reason, it has been difficult to obtain a metal base circuit board having a sufficiently high thermal conductivity because the inorganic filler cannot be filled at a high rate.

そこで、平均粒子径が所定の分布を有する無機フィラーを用いて、比較的高い割合で配合した熱伝導性樹脂組成物が提案されている(特許文献2参照)。しかしながら、高熱伝導性の無機フィラーを多量に充填することによって高熱伝導性を達成できても、絶縁接着層としての加工性が低下したり、得られる絶縁接着層の表面状態が悪化して、耐電圧特性や接着性が劣るといった別の問題が生じる。
特開2001−223450号公報 特開2001−348488号公報
Then, the heat conductive resin composition mix | blended in the comparatively high ratio using the inorganic filler which has a predetermined distribution of an average particle diameter is proposed (refer patent document 2). However, even if high thermal conductivity can be achieved by filling a large amount of the high thermal conductive inorganic filler, the workability as the insulating adhesive layer is deteriorated or the surface state of the resulting insulating adhesive layer is deteriorated, resulting in resistance to resistance. Another problem arises, such as poor voltage characteristics and adhesion.
JP 2001-223450 A JP 2001-348488 A

本発明の目的は、金属基板に絶縁接着層を介して回路が形成される金属ベース回路基板において、熱伝導性に優れると共に、耐電圧特性及び接着性に優れた絶縁接着層を形成することができる樹脂組成物を提供することにある。また、本発明の別の目的は、熱伝導性に優れると共に、耐電圧特性及び接着性に優れたワニス、フィルム状接着剤、及びフィルム状接着剤付き銅箔を提供することにある。   An object of the present invention is to form an insulating adhesive layer having excellent thermal conductivity and withstand voltage characteristics and adhesiveness in a metal base circuit board in which a circuit is formed on the metal substrate via an insulating adhesive layer. It is in providing the resin composition which can be performed. Another object of the present invention is to provide a varnish, a film-like adhesive, and a copper foil with a film-like adhesive, which are excellent in heat conductivity and withstand voltage characteristics and adhesiveness.

本発明者らは、上記課題を解決する手段について鋭意検討した結果、エポキシ樹脂、硬化剤及び硬化促進剤を含む樹脂組成物に、特定の形状及び粒子径分布を有するアルミナ粉末であって金属不純物が所定の値以下のものを加えることによって、熱伝導性に優れると共に、高い耐電圧特性及び接着性を発揮する絶縁接着層を形成することができることを見出し、本発明を完成した。   As a result of intensive studies on means for solving the above problems, the present inventors have found that a resin composition containing an epoxy resin, a curing agent and a curing accelerator is an alumina powder having a specific shape and particle size distribution, and is a metal impurity. It was found that by adding a material having a predetermined value or less, it is possible to form an insulating adhesive layer that is excellent in thermal conductivity and that exhibits high withstand voltage characteristics and adhesiveness, thereby completing the present invention.

すなわち、本発明は、(A)エポキシ樹脂、(B)硬化剤、(C)硬化促進剤、及び(D)アルミナ粉末を含有する樹脂組成物であって、樹脂組成物の固形分当たりの(D)アルミナ粉末の含有率が86〜95重量%、(D)アルミナ粉末の最大粒子径が120μm以下、及び(D)アルミナ粉末中での結晶性の球状アルミナの割合が90重量%以上であり、上記結晶性の球状アルミナの粒子径分布が、平均粒子径D50が35〜50μmであると共に[体積平均粒子径]/[個数平均粒子径]が1.2〜2.0の範囲のものが30〜50重量%、平均粒子径D50が5〜15μmであると共に[体積平均粒子径]/[個数平均粒子径]が2.0〜3.5の範囲のものが30〜50重量%、及び平均粒子径D50が0.1〜2μmのものが10〜30重量%であり、かつ、樹脂組成物の固形分当たりの煮沸抽出水ナトリウムイオンが20ppm以下であると共にICP発光分光分析法で検出される鉄分が100ppm以下である樹脂組成物である。 That is, the present invention is a resin composition containing (A) an epoxy resin, (B) a curing agent, (C) a curing accelerator, and (D) an alumina powder, D) The content of alumina powder is 86 to 95% by weight, (D) the maximum particle size of alumina powder is 120 μm or less, and (D) the proportion of crystalline spherical alumina in the alumina powder is 90% by weight or more. The particle diameter distribution of the crystalline spherical alumina has an average particle diameter D 50 of 35 to 50 μm and a [volume average particle diameter] / [number average particle diameter] in the range of 1.2 to 2.0. Is 30 to 50% by weight, the average particle diameter D 50 is 5 to 15 μm, and the volume average particle diameter / number average particle diameter is in the range of 2.0 to 3.5. And those having an average particle diameter D 50 of 0.1 to 2 μm are 10 to 30% by weight. And it is the resin composition whose iron content detected by ICP emission spectrometry is 100 ppm or less while the boiling extraction water sodium ion per solid content of a resin composition is 20 ppm or less.

また、本発明は、上記樹脂組成物を溶剤に溶解又は分散してなるワニスである。また、本発明は、上記樹脂組成物を支持体上に塗布して乾燥または硬化させてフィルム状に形成してなるフィルム状接着剤である。更に、本発明は、樹脂組成物をフィルム状に形成してなるフィルム状接着剤付き銅箔である。   Moreover, this invention is a varnish formed by melt | dissolving or disperse | distributing the said resin composition in a solvent. Moreover, this invention is a film-form adhesive agent formed by apply | coating the said resin composition on a support body, making it dry or harden | cure, and forming in a film form. Furthermore, this invention is copper foil with a film-form adhesive formed by forming a resin composition in a film form.

本発明で使用する(A)成分のエポキシ樹脂は、樹脂組成物が十分な絶縁性、密着性、耐熱性、機械的強度、加工性等を備えるために必要なものである。この(A)エポキシ樹脂として、具体的には、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、o-クレゾールノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、脂環式エポキシ樹脂、臭素化エポキシ樹脂等の分子中にエポキシ基を2個以上有するエポキシ樹脂を例示することができる。これらのエポキシ樹脂は1種又は2種以上を用いることができる。また、エポキシ樹脂の純度については、耐電圧特性、耐湿信頼性向上の観点からイオン性不純物や加水分解性塩素が少ないものであるのが好ましい。   The epoxy resin of component (A) used in the present invention is necessary for the resin composition to have sufficient insulation, adhesion, heat resistance, mechanical strength, workability, and the like. As this (A) epoxy resin, specifically, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, biphenyl type epoxy resin, naphthalene type epoxy resin, phenol novolac type epoxy resin, o-cresol Epoxy resin having two or more epoxy groups in the molecule, such as novolac type epoxy resin, biphenyl novolac type epoxy resin, triphenylmethane type epoxy resin, dicyclopentadiene type epoxy resin, alicyclic epoxy resin, brominated epoxy resin, etc. It can be illustrated. These epoxy resins can be used alone or in combination of two or more. In addition, the purity of the epoxy resin is preferably low in ionic impurities and hydrolyzable chlorine from the standpoint of improving withstand voltage characteristics and moisture resistance reliability.

本発明で使用する(B)成分の硬化剤については、エポキシ樹脂硬化剤として用いられ、樹脂組成物が十分な絶縁性、密着性、耐熱性、機械的強度等を備えるために必要なものである。その1つとしてフェノール樹脂があり、具体的には、ビスフェノールA、ビスフェノールF、ビスフェノールS、ナフタレンジオール等の2価のフェノール類、フェノールノボラック、o-クレゾールノボラック、トリフェニルメタン型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、フェノールフェニルアラルキル型樹脂、フェノールビフェニルアラルキル型樹脂、ナフトールフェニルアラルキル型樹脂、ナフトールビフェニルアラルキル型樹脂等の3価以上のフェノール類、ビスフェノールA等の2価のフェノール類とホルムアルデヒド等のアルデヒド類との縮合により得られる多価ヒドロキシ性化合物、フェノール類とトリアジン環含有化合物とアルデヒド類とから得られるトリアジン構造含有フェノールノボラック樹脂等を例示することができる。   About the hardening | curing agent of (B) component used by this invention, it is used as an epoxy resin hardening | curing agent, and is what is required in order for a resin composition to provide sufficient insulation, adhesiveness, heat resistance, mechanical strength, etc. is there. One of them is a phenol resin, specifically, divalent phenols such as bisphenol A, bisphenol F, bisphenol S, naphthalene diol, phenol novolac, o-cresol novolak, triphenylmethane type phenol resin, dicyclo Pentadiene type phenol resin, phenol phenyl aralkyl type resin, phenol biphenyl aralkyl type resin, naphthol phenyl aralkyl type resin, trivalent or higher phenols such as naphthol biphenyl aralkyl type resin, divalent phenols such as bisphenol A and formaldehyde, etc. Polyhydric hydroxy compounds obtained by condensation with aldehydes, phenol novolac resins containing triazine structure obtained from phenols, triazine ring-containing compounds and aldehydes, etc. It can be illustrated.

本発明で使用する(B)成分の硬化剤としては、その他にも、ジアミノジフェニルスルホン、ジアミノジフェニルメタン等の芳香族アミン系硬化剤、エチレンジアミン、ヘキサメチレンジアミン等の脂肪族アミン系硬化剤、あるいは塩基性活性水素化合物であるジシアンジアミド等を例示することができる。   Other examples of the curing agent for component (B) used in the present invention include aromatic amine curing agents such as diaminodiphenylsulfone and diaminodiphenylmethane, aliphatic amine curing agents such as ethylenediamine and hexamethylenediamine, or bases. Examples thereof include dicyandiamide which is an active active hydrogen compound.

(A)エポキシ樹脂と(B)硬化剤の好ましい割合については、硬化剤がフェノール樹脂、芳香族アミン系硬化剤、又は脂肪族アミン系硬化剤の場合は、エポキシ樹脂/硬化剤の当量比が0.7〜1.3であり、より好ましくは0.8〜1.2である。硬化剤がジシアンジアミドの場合は、エポキシ樹脂/ジシアンジアミドの当量比が1.2〜2.5であり、より好ましくは1.4〜2.0である。この範囲を外れると、十分な機械的強度を有する樹脂組成物が得られない。   (A) About a desirable ratio of epoxy resin and (B) curing agent, when the curing agent is a phenol resin, an aromatic amine curing agent, or an aliphatic amine curing agent, the equivalent ratio of epoxy resin / curing agent is It is 0.7-1.3, More preferably, it is 0.8-1.2. When the curing agent is dicyandiamide, the equivalent ratio of epoxy resin / dicyandiamide is 1.2 to 2.5, more preferably 1.4 to 2.0. Outside this range, a resin composition having sufficient mechanical strength cannot be obtained.

本発明で(C)成分として使用する硬化促進剤は、エポキシ樹脂に十分な硬化速度、耐熱性、機械的強度等を与えるために必要である。この(C)硬化促進剤としては、例えばイミダゾール類、有機ホスフィン類、アミン類等を挙げることができ、具体的には、2−メチルイミダゾール、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、2−エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2,4-ジアミノ-6-〔2’-メチルイミダゾリル-(1’)〕-エチル-s-トリアジン、2,4-ジアミノ-6-〔2’-メチルイミダゾリル-(1’)〕-エチル-s-トリアジン・イソシアヌル酸付加物、トリフェニルホスフィン、テトラフェニルホスフォニウム・テトラフェニルボレート、1,8−ジアザビシクロ[5,4,0]ウンデセン−7(DBU)等を例示することができる。また、これらをマイクロカプセル化したものを用いることができる。これらの硬化促進剤は1種又は2種以上を用いることができる。   The curing accelerator used as the component (C) in the present invention is necessary for giving the epoxy resin a sufficient curing rate, heat resistance, mechanical strength and the like. Examples of the (C) curing accelerator include imidazoles, organic phosphines, amines, and the like. Specifically, 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2 -Ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2,4-diamino-6- [2 ' -Methylimidazolyl- (1 ')]-ethyl-s-triazine, 2,4-diamino-6- [2'-methylimidazolyl- (1')]-ethyl-s-triazine isocyanuric acid adduct, triphenyl Phosphine, tetraphenylphosphonium / tetraphenylborate, 1,8-diazabicyclo [5,4,0] undecene-7 (DBU), etc. It can be exemplified. Moreover, what microcapsulated these can be used. These curing accelerators can be used alone or in combination of two or more.

(C)成分の硬化促進剤の配合量については、(A)成分のエポキシ樹脂と(B)成分の硬化剤の合計量100重量部に対して、0.02〜10重量部の範囲であることが好ましい。0.02重量部より少ないと硬化促進効果が十分ではなく、10重量部より多くても硬化促進効果を増加させることはなく、むしろ樹脂組成物としての特性の低下を招く。   (C) About the compounding quantity of the hardening accelerator of a component, it is the range of 0.02-10 weight part with respect to 100 weight part of total amounts of the epoxy resin of (A) component, and the hardening | curing agent of (B) component. It is preferable. If it is less than 0.02 parts by weight, the effect of promoting the curing is not sufficient, and if it exceeds 10 parts by weight, the effect of promoting the curing is not increased, but rather the properties as a resin composition are deteriorated.

本発明においては、樹脂組成物の固形分当たりの(D)アルミナ粉末の含有率が86〜95重量%、好ましくは88〜93重量%である。樹脂組成物中のアルミナ粉末の含有率が多くなるほど高熱伝導化、低熱膨張化の観点から望ましく、樹脂組成物の固形分における(D)アルミナ粉末の含有率が86重量%より少ないと高熱伝導化が十分ではなく、十分な放熱性が発現しないのに加えて、低熱膨張化も十分でないため、半田耐熱性の低下を招く。反対に95重量%より多くなると、ワニスとした場合の粘度が増大し、またはフィルム状接着剤としての溶融粘度が増大して、絶縁接着層としての加工性、耐電圧特性、接着性が低下したり、表面状態が悪くなったりする。ここで、樹脂組成物の固形分とは、例えば樹脂組成物が所定の溶剤を含むワニスの場合、このワニスを用いて絶縁接着層を形成する際、乾燥や硬化によって溶剤が除去された後に最終的に残る固形分を意味する。すなわち、ここでのアルミナ粉末の含有率とは、この固形分当たりに含まれる(D)アルミナ粉末の重量%を表すものである。尚、本発明の樹脂組成物には必須成分である(A)〜(D)成分のほか、以下で説明するように、必要に応じてその他の成分が添加される場合もあるが、その場合には別途添加された成分についても含めて考えるものとする。   In this invention, the content rate of the (D) alumina powder per solid content of a resin composition is 86 to 95 weight%, Preferably it is 88 to 93 weight%. The higher the content of alumina powder in the resin composition, the more desirable from the viewpoint of high thermal conductivity and low thermal expansion. When the content of (D) alumina powder in the solid content of the resin composition is less than 86% by weight, high thermal conductivity is achieved. In addition, the heat dissipation is not sufficient, and in addition to insufficient heat dissipation, the low thermal expansion is not sufficient, leading to a decrease in solder heat resistance. On the other hand, if it exceeds 95% by weight, the viscosity in the case of varnish increases, or the melt viscosity as a film adhesive increases, and the workability, withstand voltage characteristics, and adhesion as an insulating adhesive layer decrease. Or the surface condition may deteriorate. Here, the solid content of the resin composition is, for example, when the resin composition is a varnish containing a predetermined solvent, and when the insulating adhesive layer is formed using the varnish, the final content is obtained after the solvent is removed by drying or curing. This means the solid content remaining. That is, the content rate of the alumina powder here represents the weight percentage of the (D) alumina powder contained per solid content. In addition to the components (A) to (D), which are essential components, other components may be added as necessary, as described below. In addition, the component added separately is considered.

また、この(D)アルミナ粉末の最大粒子径については120μm以下、好ましくは100μm以下である必要がある。最大粒子径が120μmより大きくなると絶縁接着層としての加工性が十分ではなく、絶縁層の表面状態が悪くなったりする。ここで最大粒子径とは、アルミナ粒子の全体積を100%としたとき、粒子径の体積分率の分布カーブにおいて、ある粒子径以上で粒子の分布確率が全て0となるときの粒子径の最小値を示す。尚、アルミナ粉末の最大粒子径の下限値については、高熱伝導化の観点では大粒径のアルミナ粉末が有利であることから、55μmである。   Further, the maximum particle size of the (D) alumina powder needs to be 120 μm or less, preferably 100 μm or less. When the maximum particle size is larger than 120 μm, the processability as an insulating adhesive layer is not sufficient, and the surface state of the insulating layer is deteriorated. Here, the maximum particle diameter is a particle diameter when the distribution probability of the particle diameter is equal to or greater than a certain particle diameter in the distribution curve of the volume fraction of the particle diameter when the total volume of alumina particles is 100%. Indicates the minimum value. The lower limit of the maximum particle diameter of the alumina powder is 55 μm because the alumina powder having a large particle diameter is advantageous from the viewpoint of achieving high thermal conductivity.

更に、上記(D)アルミナ粉末については、全アルミナ粉末中の90重量%以上、好ましくは95重量%以上が結晶性の球状アルミナである必要がある。アルミナ粉末の種類としては結晶アルミナ、溶融アルミナ等が挙げられ、アルミナ粉末の形状としては球状または破砕状が挙げられるが、中でも最密充填による高熱伝導性の観点からは、結晶性の球状アルミナが最も適する。(D)アルミナ粉末における結晶性の球状アルミナの含有率が90重量%より少ないと、ワニスとした場合の粘度、またはフィルム状接着剤としての溶融粘度が増大して、絶縁接着層としての加工性、耐電圧特性、接着性が低下したり、表面状態が悪くなったりする。ここで、結晶性のアルミナとは、溶融アルミナと比較して熱伝導率を高くする効果があることを意味し、球状アルミナとは、破砕アルミナと比較して、ワニスとした場合の粘度、またはフィルム状接着剤としての溶融粘度を低くする効果があることを意味する。   Further, regarding the (D) alumina powder, 90% by weight or more, preferably 95% by weight or more of the total alumina powder needs to be crystalline spherical alumina. Examples of the type of alumina powder include crystalline alumina, fused alumina, and the like, and examples of the shape of the alumina powder include a spherical shape and a crushed shape. From the viewpoint of high thermal conductivity by close-packing, crystalline spherical alumina is preferable. Most suitable. (D) When the content of crystalline spherical alumina in the alumina powder is less than 90% by weight, the viscosity when used as a varnish or the melt viscosity as a film adhesive increases, and the processability as an insulating adhesive layer In addition, the withstand voltage characteristics and adhesiveness may be deteriorated or the surface condition may be deteriorated. Here, crystalline alumina means that there is an effect of increasing the thermal conductivity compared to molten alumina, and spherical alumina is the viscosity when used as a varnish compared to crushed alumina, or It means that there is an effect of lowering the melt viscosity as a film adhesive.

また、本発明においては、上記結晶性の球状アルミナの粒子径分布について、平均粒子径D50が35〜50μm、かつ[体積平均粒子径]/[個数平均粒子径]が1.2〜2.0のものが30〜50重量%であり、平均粒子径D50が5〜15μm、かつ[体積平均粒子径]/[個数平均粒子径]が2.0〜3.5のものが30〜50重量%であり、及び平均粒子径D50が0.1〜2μmのものが10〜30重量%である。この[体積平均粒子径]/[個数平均粒子径]は粒子径分布を表す指標として用いられるものであって、一般に[体積平均粒子径]/[個数平均粒子径]≧1であり、この値が小さいほど粒子径分布がシャープであり、この値が大きいほど粒子径分布がブロードであることを表す。結晶性の球状アルミナの粒子径分布が上記範囲から外れると高熱伝導化が十分ではなく、十分な放熱性が発現しないのに加えて、ワニスとした場合の粘度、またはフィルム状接着剤としての溶融粘度が増大して、絶縁接着層としての加工性、耐電圧特性、接着性が低下したり、表面状態が悪くなったりする。尚、平均粒子径D50とは、アルミナ粒子の全体積を100%としたとき、粒子径の体積分率の累積カーブにおいて50%累積となるときの粒子径を示す。 In the present invention, regarding the particle size distribution of the crystalline spherical alumina, the average particle size D 50 is 35 to 50 μm, and the [volume average particle size] / [number average particle size] is 1.2 to 2. 30% to 50% by weight is 0 to 30% by weight, average particle diameter D50 is 5 to 15 μm, and [volume average particle diameter] / [number average particle diameter] is 2.0 to 3.5. The weight average particle diameter D 50 is 0.1 to 2 μm, and 10 to 30% by weight. This [volume average particle size] / [number average particle size] is used as an index representing the particle size distribution, and is generally [volume average particle size] / [number average particle size] ≧ 1. The smaller the value, the sharper the particle size distribution, and the larger the value, the broader the particle size distribution. If the particle size distribution of the crystalline spherical alumina is out of the above range, high thermal conductivity is not sufficient, and sufficient heat dissipation is not exhibited. In addition, the viscosity when used as a varnish, or melting as a film adhesive Viscosity increases, workability as an insulating adhesive layer, withstand voltage characteristics, adhesiveness is lowered, and the surface state is deteriorated. The average particle diameter D 50 indicates the particle diameter when 50% is accumulated in the cumulative curve of the volume fraction of particle diameter when the total volume of alumina particles is 100%.

樹脂組成物の固形分とは、ワニスの場合も包括して規定するための表記である。ワニスとは、樹脂組成物の粘度を低減することにより、加工性を向上させることを目的として溶剤を含んでいるものである。しかし最終的に絶縁層を形成した際には、溶剤は乾燥、硬化により、除去されている。本発明における樹脂組成物中での成分の含有率は、溶剤が除去され、最終的に絶縁層を形成した段階で発明の効果を発揮する。したがって、本発明においては、樹脂組成物の固形分に対する成分含有率を用いて規定した。すなわち、溶剤とは、乾燥、硬化により除去され、最終硬化物中に残らない液体成分のことを言い、固形分とは、乾燥、硬化によっても除去されず、最終硬化物中に残る成分のことを言う。   The solid content of the resin composition is a notation for comprehensively defining the varnish. The varnish contains a solvent for the purpose of improving processability by reducing the viscosity of the resin composition. However, when the insulating layer is finally formed, the solvent is removed by drying and curing. The content ratio of the components in the resin composition in the present invention exerts the effects of the invention when the solvent is removed and the insulating layer is finally formed. Therefore, in this invention, it prescribed | regulated using the component content rate with respect to solid content of a resin composition. That is, the solvent is a liquid component that is removed by drying and curing and does not remain in the final cured product, and the solid content is a component that is not removed by drying and curing and remains in the final cured product. Say.

また、本発明においては、樹脂組成物の固形分当たりの煮沸抽出水ナトリウムイオンが20ppm以下、好ましくは5ppm以下であると共にICP発光分光分析法による鉄分が100ppm以下、好ましくは80ppm以下である。樹脂組成物は、耐電圧特性向上の観点から不純物金属が可及的に低減されたものである必要である。特にアルミナ粉末の製法上の理由からアルミナ中にナトリウムや鉄が残存する可能性があり、これらは耐電圧特性に大きな影響を与えかねない。そのため、ナトリウムイオン及び鉄分についてはそれぞれ上記所定の範囲となるようにする必要がある。   Moreover, in this invention, the boiling extraction water sodium ion per solid content of a resin composition is 20 ppm or less, Preferably it is 5 ppm or less, and the iron content by ICP emission spectrometry is 100 ppm or less, Preferably it is 80 ppm or less. The resin composition needs to have an impurity metal reduced as much as possible from the viewpoint of improving withstand voltage characteristics. In particular, there is a possibility that sodium or iron may remain in alumina due to the production method of alumina powder, and these may have a great influence on the withstand voltage characteristics. Therefore, it is necessary to make the sodium ion and iron content within the predetermined ranges.

本発明における樹脂組成物は、所定の溶剤、例えばN,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン(NMP)等のアミド系溶剤、1−メトキシ−2−プロパノ−ル等のエーテル系溶剤、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、シクロペンタノン等のケトン系溶剤、トルエン、キシレン等の芳香族系溶剤等の1種又は2種以上を混合したものに溶解又は分散させてワニスを形成するようにしてもよい。(B)硬化剤、(C)硬化促進剤、(D)アルミナ粉末、その他必要により添加される添加剤のうちで無機充填剤、有機充填剤、着色剤等については、溶剤中に均一分散していれば、必ずしも溶剤に溶解していなくてもよい。   The resin composition in the present invention contains a predetermined solvent, for example, an amide solvent such as N, N-dimethylformamide (DMF), N, N-dimethylacetamide, N-methyl-2-pyrrolidone (NMP), 1-methoxy- To one or a mixture of two or more ether solvents such as 2-propanol, ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and cyclopentanone, and aromatic solvents such as toluene and xylene The varnish may be formed by dissolving or dispersing. Among (B) curing agent, (C) curing accelerator, (D) alumina powder, and other additives added as necessary, inorganic filler, organic filler, colorant, etc. are uniformly dispersed in the solvent. If it is, it does not necessarily have to be dissolved in the solvent.

また、このワニスを支持材としてのベースフィルム上に塗布し、乾燥させることでフィルム状接着剤を形成してもよく、あるいはこのワニスを銅箔上に塗布し、乾燥させることによってフィルム状接着剤付き銅箔を形成してもよい。ここで、フィルム状接着剤、又はフィルム状接着剤付き銅箔(硬化前)のフィルム支持性については、溶剤残存率が高いほどフィルム支持性が良好な傾向にあるが、溶剤残存率が高すぎると、フィルム状接着剤、又はフィルム状接着剤付き銅箔(硬化前)にタックが発生したり、硬化時に発泡が発生したりする。したがって、溶剤残存率は5重量%以下が好ましい。なお、ここでの溶剤残存率は、180℃雰囲気にて60分乾燥した際の、フィルム状接着剤部分の正味重量減少率の測定により求めた値である。また、上記フィルム状接着剤及びフィルム状接着剤付き銅箔については、溶剤を含まない本発明の樹脂組成物を支持材としてのベースフィルム上に加熱溶融状態で塗布した後、冷却するようにして得てもよい。   Also, a film adhesive may be formed by applying this varnish on a base film as a support and drying it, or by applying this varnish on a copper foil and drying it. An attached copper foil may be formed. Here, as for the film supportability of the film-like adhesive or the copper foil with film-like adhesive (before curing), the higher the solvent residual ratio, the better the film supportability, but the solvent residual ratio is too high. Then, a tack occurs in the film-like adhesive or the copper foil with the film-like adhesive (before curing), or foaming occurs during the curing. Therefore, the solvent residual ratio is preferably 5% by weight or less. In addition, the solvent residual rate here is the value calculated | required by the measurement of the net weight decreasing rate of a film adhesive part at the time of drying for 60 minutes in 180 degreeC atmosphere. Moreover, about the said film adhesive and copper foil with a film adhesive, after apply | coating the resin composition of this invention which does not contain a solvent on the base film as a support material in a heat-melting state, it is made to cool. May be obtained.

フィルム状接着剤又はフィルム状接着剤付き銅箔を形成する際に用いる支持材としては、例えばポリエチレンテレフタレート(PET)、ポリエチレン、銅箔、アルミ箔、離型紙等を挙げることができ、この支持材の厚みについては10〜100μmとするのが一般的である。   Examples of the support material used when forming the film adhesive or the copper foil with the film adhesive include polyethylene terephthalate (PET), polyethylene, copper foil, aluminum foil, release paper, and the like. The thickness is generally 10 to 100 μm.

支持材として、銅箔、アルミ箔等の金属箔を用いる場合、金属箔の製造方法は電解法のものでも圧延法のものであってもよい。なお、これらの金属箔においては絶縁層との接着性の観点から、絶縁層と接する側の面が粗化処理されているのが好ましい。   When a metal foil such as a copper foil or an aluminum foil is used as the support material, the method for producing the metal foil may be an electrolytic method or a rolling method. In these metal foils, the surface on the side in contact with the insulating layer is preferably roughened from the viewpoint of adhesion to the insulating layer.

また、フィルム状接着剤又はフィルム状接着剤付き銅箔は、支持材としてのベースフィルム上に貼り合わされた後、貼り合わされていないもう一方の面を、保護材としてのフィルムで覆い、ロール状に巻き取って保存することもできる。この際に用いられる保護材としては、ポリエチレンテレフタレート、ポリエチレン、離型紙等が挙げられ、この保護材の厚みについては10〜100μmとするのが一般的である。   In addition, the film-like adhesive or the copper foil with film-like adhesive is laminated on the base film as the support material, and then the other surface that is not bonded is covered with a film as the protective material to form a roll. It can also be wound and stored. Examples of the protective material used at this time include polyethylene terephthalate, polyethylene, release paper, and the like. The thickness of the protective material is generally 10 to 100 μm.

本発明における樹脂組成物は、必須成分である(A)〜(D)成分のほかに、フィルム状接着剤又はフィルム状接着剤付き銅箔とした際の可とう性向上の観点から、必要に応じて、ビスフェノ−ル型フェノキシ樹脂を添加することができる。具体的には、ビスフェノールA型フェノキシ樹脂、ビスフェノールF型フェノキシ樹脂、臭素化ビスフェノールA型フェノキシ樹脂、臭素化ビスフェノールF型フェノキシ樹脂等が挙げられる。使用するビスフェノ−ル型フェノキシ樹脂の重量平均分子量は10,000〜200,000、好ましくは20,000〜100,000であるのがよい。重量平均分子量が10,000より小さいとエポキシ樹脂組成物として、耐熱性、機械的強度、可とう性の低下を招き、200,000より大きいと有機溶剤への溶解性、エポキシ樹脂、硬化剤との相溶性等の作業性の低下を招くのに加えて、ワニスとしての粘度、またはフィルム状接着剤としての溶融粘度が増大して、絶縁接着層としての加工性や接着性が低下したり、表面状態が悪くなったりする。尚、ここでの重量平均分子量は、GPC測定によるポリスチレン換算の値である。   In addition to the essential components (A) to (D), the resin composition in the present invention is necessary from the viewpoint of improving flexibility when a film-like adhesive or a copper foil with a film-like adhesive is used. Accordingly, a bisphenol type phenoxy resin can be added. Specifically, bisphenol A type phenoxy resin, bisphenol F type phenoxy resin, brominated bisphenol A type phenoxy resin, brominated bisphenol F type phenoxy resin and the like can be mentioned. The weight average molecular weight of the bisphenol type phenoxy resin used is 10,000 to 200,000, preferably 20,000 to 100,000. When the weight average molecular weight is less than 10,000, the epoxy resin composition causes a decrease in heat resistance, mechanical strength, and flexibility. When the weight average molecular weight is more than 200,000, solubility in an organic solvent, an epoxy resin, a curing agent, In addition to causing a decrease in workability such as compatibility, the viscosity as a varnish, or the melt viscosity as a film adhesive increases, the workability and adhesion as an insulating adhesive layer decrease, The surface condition may deteriorate. In addition, the weight average molecular weight here is a value in terms of polystyrene by GPC measurement.

このビスフェノ−ル型フェノキシ樹脂の含有率については、樹脂組成物の固形分当たり10重量%以下であるのが好ましい。10重量%より多くなると有機溶剤への溶解性が低下したり、(A)エポキシ樹脂や(B)硬化剤との相溶性等の作業性の低下を招くのに加えて、ワニスとしての粘度やフィルム状接着剤としての溶融粘度が増大して、絶縁接着層としての加工性、接着性が低下したり、表面状態が悪くなったりする。場合によっては耐熱性の低下を招く。   The content of the bisphenol type phenoxy resin is preferably 10% by weight or less per solid content of the resin composition. If it exceeds 10% by weight, the solubility in an organic solvent will decrease, and the workability such as compatibility with (A) epoxy resin and (B) curing agent will be reduced. The melt viscosity as a film adhesive increases, and the workability and adhesiveness as an insulating adhesive layer decrease, or the surface state deteriorates. In some cases, heat resistance is reduced.

また、本発明における樹脂組成物には、フィルム状接着剤又はフィルム状接着剤付き銅箔とした際のフィルム支持性向上や絶縁接着層としての低弾性化等の観点から、必要に応じて、ゴム成分を添加することができる。このようなゴム成分としては、例えばポリブタジエンゴム、アクリロニトリル−ブタジエンゴム、変性アクリロニトリル−ブタジエンゴム、アクリルゴム等が挙げられる。使用するゴムの重量平均分子量については10,000〜1,000,000、好ましくは20,000〜500,000であるのがよい。重量平均分子量が10,000より小さいとエポキシ樹脂組成物として、耐熱性、機械的強度、可とう性の低下を招くのに加えて、硬化前段階でのフィルム支持性の低下を招く。1,000,000より大きいと有機溶剤への溶解性、エポキシ樹脂、硬化剤との相溶性等の作業性の低下を招くのに加えて、ワニスとしての粘度、またはフィルム状接着剤としての溶融粘度が増大して、絶縁接着層としての加工性、接着性が低下したり、表面状態が悪くなったりする。なお、ここでの重量平均分子量は、GPC測定によるポリスチレン換算の値である。これらのゴムは1種又は2種以上を用いることができる。また、ゴム成分として用いるゴムの純度については、耐電圧特性、耐湿信頼性向上の観点から、イオン性不純物の少ないものがよい。   In addition, in the resin composition in the present invention, from the viewpoint of film support improvement when film-like adhesive or copper foil with film-like adhesive is used, and low elasticity as an insulating adhesive layer, as necessary, A rubber component can be added. Examples of such a rubber component include polybutadiene rubber, acrylonitrile-butadiene rubber, modified acrylonitrile-butadiene rubber, and acrylic rubber. The weight average molecular weight of the rubber to be used is 10,000 to 1,000,000, preferably 20,000 to 500,000. When the weight average molecular weight is less than 10,000, the epoxy resin composition causes a decrease in heat resistance, mechanical strength, and flexibility, and also a decrease in film support in a pre-curing stage. If it exceeds 1,000,000, workability such as solubility in organic solvents, compatibility with epoxy resins and curing agents will be reduced, and viscosity as a varnish or melting as a film adhesive will occur. Viscosity increases, workability and adhesion as an insulating adhesive layer decrease, and the surface state deteriorates. In addition, the weight average molecular weight here is a value in terms of polystyrene by GPC measurement. These rubbers can be used alone or in combination of two or more. In addition, the purity of the rubber used as the rubber component should be low in ionic impurities from the viewpoint of improving the withstand voltage characteristics and moisture resistance reliability.

また、本発明の樹脂組成物には、ボイド低減や平滑性向上等の観点から、必要に応じて、フッ素系、シリコーン系等の消泡剤、レベリング剤等を添加することができ、また、金属基板、銅配線等の部材との密着性向上の観点から、シランカップリング剤、熱可塑性オリゴマー等の密着性付与剤を添加することができる。   In addition, from the viewpoint of reducing voids and improving smoothness, the resin composition of the present invention can contain a defoaming agent such as a fluorine-based or silicone-based agent, a leveling agent, or the like, if necessary. From the viewpoint of improving the adhesion to members such as a metal substrate and copper wiring, an adhesion-imparting agent such as a silane coupling agent and a thermoplastic oligomer can be added.

更には、本発明の樹脂組成物には、(D)アルミナ粉末以外の充填剤として、必要に応じて、アルミナ以外の無機充填剤、有機充填剤を添加してもよい。この場合の無機充填剤としては、シリカ、窒化ホウ素、窒化アルミニウム、窒化ケイ素、炭酸カルシウム、炭酸マグネシウム等を例に挙げることができ、また、有機充填剤としては、シリコンパウダー、ナイロンパウダー、アクリロニトリル-ブタジエン系架橋ゴム等を例に挙げることができる。これらの充填剤についてはその1種又は2種以上を用いることができる。   Furthermore, an inorganic filler other than alumina and an organic filler other than alumina may be added to the resin composition of the present invention as the filler other than (D) alumina powder, if necessary. Examples of inorganic fillers in this case include silica, boron nitride, aluminum nitride, silicon nitride, calcium carbonate, magnesium carbonate and the like, and examples of organic fillers include silicon powder, nylon powder, acrylonitrile- Examples include butadiene-based crosslinked rubber. About these fillers, the 1 type (s) or 2 or more types can be used.

更にまた、本発明の樹脂組成物には、必要に応じて、フタロシアニン・グリーン、フタロシアニン・ブルー、カーボンブラック等の着色剤を配合することができる。   Furthermore, a colorant such as phthalocyanine / green, phthalocyanine / blue, or carbon black can be blended with the resin composition of the present invention as necessary.

以下で、本発明の樹脂組成物を用いて金属ベース回路基板を製造する方法について例を示す。まず、樹脂組成物を用いて上述したようにしてフィルム状接着剤付き銅箔を得た後、このフィルム状接着剤付き銅箔を、アルミニウム基板の上にバッチ式真空プレスを用いて、温度150〜250℃、圧力1.0〜30MPaの条件で接着する。この際、アルミニウム基板面にフィルム状接着剤面を接触させた状態にて、支持材としての銅箔側を上面とした状態で加熱、加圧して、硬化させることにより、アルミニウム基板に貼り付ける。このようにして、樹脂組成物を絶縁接着層とし、エッチングによって所定箇所の銅箔を除去することにより回路を形成し、最終的にアルミベース回路基板を得る。尚、アルミニウム基板の厚さについては特に制限はないが、0.5〜3.0mmが一般的である。   Below, an example is shown about the method of manufacturing a metal base circuit board using the resin composition of this invention. First, after obtaining a copper foil with a film adhesive as described above using the resin composition, the copper foil with a film adhesive is placed on an aluminum substrate using a batch vacuum press at a temperature of 150. Bonding is performed under conditions of ˜250 ° C. and a pressure of 1.0 to 30 MPa. At this time, in a state where the film-like adhesive surface is in contact with the aluminum substrate surface, it is attached to the aluminum substrate by heating, pressing and curing in a state where the copper foil side as a support material is the upper surface. In this way, the resin composition is used as an insulating adhesive layer, and a circuit is formed by removing the copper foil at a predetermined location by etching, and finally an aluminum base circuit board is obtained. In addition, although there is no restriction | limiting in particular about the thickness of an aluminum substrate, 0.5-3.0 mm is common.

銅箔層、絶縁層、アルミニウム層からなるアルミベース基板を得るには、前記方法のほかに、アルミニウム基板面に絶縁接着層を形成し、絶縁接着層の上に銅箔を載せて、加熱、加圧しながら硬化させる方法、又はアルミニウム基板面に絶縁接着層を形成し、硬化させた後に、めっきにより銅の導体層を形成する方法もある。なお、このときの絶縁接着層の形成に関しては、ワニスを塗布した後に加熱により溶剤を揮発させる方法、無溶剤のペーストを塗布する方法、あるいはフィルム状接着剤を貼り合せる方法のいずれを用いても良い。   In order to obtain an aluminum base substrate composed of a copper foil layer, an insulating layer, and an aluminum layer, in addition to the above method, an insulating adhesive layer is formed on the aluminum substrate surface, a copper foil is placed on the insulating adhesive layer, and heated. There is also a method of curing while applying pressure, or a method of forming an insulating adhesive layer on the surface of the aluminum substrate and curing it, and then forming a copper conductor layer by plating. As for the formation of the insulating adhesive layer at this time, any of a method of volatilizing the solvent by heating after applying the varnish, a method of applying a solvent-free paste, or a method of bonding a film adhesive may be used. good.

本発明の樹脂組成物は、アルミニウム、銅等の金属基板の上に絶縁接着層を有してその上に銅配線の回路を有する金属ベース回路基板の絶縁接着層とした際、熱伝導性に優れると共に、高い耐電圧特性や接着性を発揮することができる。   When the resin composition of the present invention is used as an insulating adhesive layer of a metal base circuit board having an insulating adhesive layer on a metal substrate such as aluminum or copper and having a copper wiring circuit on the insulating adhesive layer, the resin composition has thermal conductivity. In addition to being excellent, it can exhibit high withstand voltage characteristics and adhesiveness.

[実施例1〜10、及び比較例1〜10]
以下、実施例及び比較例により本発明を更に具体的に説明する。ただし、本発明はこれに限定されるものではない。
フィルム状接着剤、及びフィルム状接着剤付き銅箔を作製するのに用いる樹脂組成物を得るために使用した原料とその略号は以下の通りである。
[Examples 1 to 10 and Comparative Examples 1 to 10]
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to this.
The raw materials and the abbreviations used to obtain the resin composition used for producing the film adhesive and the copper foil with film adhesive are as follows.

(A)エポキシ樹脂
エポキシ樹脂(1):ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン製、エピコート828EL;エポキシ当量 189、液状)
(A) Epoxy resin Epoxy resin (1): Bisphenol A type epoxy resin (Japan Epoxy Resin, Epicoat 828EL; Epoxy equivalent 189, liquid)

エポキシ樹脂(2):o-クレゾールノボラック型エポキシ樹脂(日本化薬製、EOCN-1020-55;エポキシ当量 200、軟化点 55℃) Epoxy resin (2): o-cresol novolac type epoxy resin (manufactured by Nippon Kayaku, EOCN-1020-55; epoxy equivalent 200, softening point 55 ° C)

(B)硬化剤
硬化剤(1):ジシアンジアミド(活性水素当量 21)
(B) Curing agent Curing agent (1): Dicyandiamide (active hydrogen equivalent 21)

硬化剤(2):フェノールノボラック(群栄化学工業製、PSM-6200;フェノール性水酸基当量 105、軟化点 81℃) Curing agent (2): Phenol novolak (manufactured by Gunei Chemical Industry Co., Ltd., PSM-6200; phenolic hydroxyl group equivalent 105, softening point 81 ° C)

(C)硬化促進剤
硬化促進剤(1):2-フェニル-4,5-ジヒドロキシメチルイミダゾール(四国化成工業製、キュアゾール2PHZ)
(C) Curing accelerator Curing accelerator (1): 2-Phenyl-4,5-dihydroxymethylimidazole (manufactured by Shikoku Kasei Kogyo Co., Ltd. Curesol 2PHZ)

(D)フェノキシ樹脂
フェノキシ樹脂(1):ビスフェノールA型フェノキシ樹脂(東都化成製、YP-50P)
(D) Phenoxy resin Phenoxy resin (1): Bisphenol A type phenoxy resin (manufactured by Toto Kasei, YP-50P)

(E)アルミナ粉末
表1に示すアルミナ粉末(1)〜(12)を用いた。なお、表中の各項目については、以下に説明する通りにそれぞれ求めた。
(E) Alumina powder Alumina powders (1) to (12) shown in Table 1 were used. Each item in the table was determined as described below.

Figure 2007246861
Figure 2007246861

[アルミナ粉末の粒子径分布パラメータ]
測定対象のアルミナ粉末を、分散媒である0.2wt%ヘキサメタりん酸ナトリウム溶液に試料濃度が0.04wt%になるように計量して混合し、超音波ホモジナイザーを用いて3分間分散させた。このアルミナ分散液を、粒度分布測定装置マイクロトラックMT3300EX(日機装製)を用いて、波長780nmの半導体レーザの照射により得られた散乱光から粒子径分布を測定した。
[Particle size distribution parameter of alumina powder]
The alumina powder to be measured was weighed and mixed in a 0.2 wt% sodium hexametaphosphate solution as a dispersion medium so that the sample concentration was 0.04 wt%, and dispersed using an ultrasonic homogenizer for 3 minutes. The particle size distribution of this alumina dispersion was measured from scattered light obtained by irradiation with a semiconductor laser having a wavelength of 780 nm, using a particle size distribution measuring apparatus Microtrac MT3300EX (manufactured by Nikkiso).

最大粒子径は、前記測定法により得られた粒子径分布において、粒子の全体積を100%としたとき、粒子径の体積分率の分布カーブにおいて、ある粒子径以上で粒子の分布確率が全て0となるときの粒子径の最小値を示す。   The maximum particle size is a particle size distribution obtained by the above measurement method. When the total particle volume is 100%, the distribution curve of the volume fraction of the particle size has all the particle distribution probabilities above a certain particle size. The minimum value of the particle diameter when 0 is shown.

平均粒子径D50は、前記測定法により得られた粒子径分布において、粒子の全体積を100%としたとき、粒子径の体積分率の累積カーブにおいて50%累積となるときの粒子径を示す。 The average particle diameter D 50 is the particle diameter when the particle volume distribution obtained by the measurement method is 50% cumulative in the cumulative curve of the volume fraction of the particle diameter, assuming that the total particle volume is 100%. Show.

体積平均粒子径(MV)は、前記測定法により得られた粒子径分布から求めた「体積で重みづけされた平均粒子径」を示す。MVは式(1)で表される。
MV=Σ(di*Vi) … …(1)
但し、粒子径分布はヒストグラムで表され、diはヒストグラムのi番目の区間の代表粒子径であり、Viはi番目の区間に属する粒子の体積分率である。
The volume average particle size (MV) indicates “average particle size weighted by volume” obtained from the particle size distribution obtained by the measurement method. MV is represented by the formula (1).
MV = Σ (d i * V i ) (1)
However, the particle size distribution is represented by a histogram, d i is the representative particle size of the i-th section of the histogram, and V i is the volume fraction of particles belonging to the i-th section.

個数平均粒子径(MN)は、前記測定法により得られた粒子径分布から求めた「個数で重みづけされた平均粒子径」を示す。ここでは仮想的に粒子を全て球形と仮定し、MNを式(2)により求めた。
MN=Σ(Vi/di 2)/Σ(Vi/di 3) … …(2)
但し、diはヒストグラムのi番目の区間の代表粒子径であり、Viはi番目の区間に属する粒子の体積分率である。
The number average particle size (MN) indicates the “average particle size weighted by the number” obtained from the particle size distribution obtained by the measurement method. Here, virtually all the particles are assumed to be spherical, and MN was obtained from Equation (2).
MN = Σ (V i / d i 2 ) / Σ (V i / d i 3 ) (2)
Where d i is the representative particle diameter of the i-th section of the histogram, and Vi is the volume fraction of particles belonging to the i-th section.

[体積平均粒子径]/[個数平均粒子径]は粒子径分布を表す指標として用いた。一般に [体積平均粒子径]/[個数平均粒子径]≧1であり、この値が小さいほど粒子径分布がシャープであり、この値が大きいほど粒子径分布がブロードであることを示す。   [Volume average particle size] / [Number average particle size] was used as an index representing the particle size distribution. In general, [volume average particle size] / [number average particle size] ≧ 1, and the smaller this value, the sharper the particle size distribution, and the larger this value, the broader the particle size distribution.

上記で示した原料を用いて表2、3に示す割合で配合した。まず、フェノキシ樹脂(1)のみを、攪拌装置付きの容器中にて、N,N−ジメチルアセトアミド(DMAC)に攪拌、溶解した。次に、このDMAC溶液に、エポキシ樹脂、硬化剤を配合し、攪拌、溶解した。その後、ワニス中にアルミナ粉末を配合し、攪拌、分散させた。最後に、ワニス中に硬化促進剤(1)を配合して、攪拌、溶解し、樹脂組成物ワニスを作製した。この樹脂組成物ワニスを、厚さ70μmの銅箔上に、乾燥後の樹脂層の厚さが150μmになるように塗布し、130℃で10分乾燥させることにより、フィルム状接着剤付き銅箔を得た。   It mix | blended in the ratio shown to Table 2, 3 using the raw material shown above. First, only the phenoxy resin (1) was stirred and dissolved in N, N-dimethylacetamide (DMAC) in a container equipped with a stirrer. Next, an epoxy resin and a curing agent were blended in this DMAC solution, and stirred and dissolved. Thereafter, alumina powder was blended in the varnish and stirred and dispersed. Finally, the curing accelerator (1) was blended in the varnish, stirred and dissolved to prepare a resin composition varnish. This resin composition varnish is applied onto a copper foil having a thickness of 70 μm so that the thickness of the resin layer after drying becomes 150 μm, and dried at 130 ° C. for 10 minutes, whereby a copper foil with a film adhesive is used. Got.

なお、TMAによる熱膨張係数、ガラス転移温度の評価、引張試験、イオンクロマト、及びICP発光分光分析に用いる試験片作成のために、前記のようにして得られた樹脂組成物ワニスを、厚さ38μmのPET(ポリエチレンテレフタレート)フィルム上に、乾燥後の樹脂層の厚さが150μmになるように塗布し、130℃で10分乾燥させることにより、フィルム状接着剤を得た。   The resin composition varnish obtained as described above was prepared for the purpose of preparing test pieces used for evaluation of thermal expansion coefficient by TMA, evaluation of glass transition temperature, tensile test, ion chromatography, and ICP emission spectroscopic analysis. The film adhesive was obtained by applying onto a 38 μm PET (polyethylene terephthalate) film so that the thickness of the resin layer after drying would be 150 μm and drying at 130 ° C. for 10 minutes.

このようにして得られたフィルム状接着剤付き銅箔、及びフィルム状接着剤を用いて、各種試験片を得た後、各物性測定に用いた。各物性測定は以下の評価方法によるものである。イオンクロマトによる煮沸抽出水ナトリウムイオン、ICP発光分光分析法による鉄分の評価結果は表2、3に示す。それ以外の評価結果は表4、5に示す。   Using the obtained copper foil with a film adhesive and the film adhesive, various test pieces were obtained, and then used for each physical property measurement. Each physical property measurement is based on the following evaluation method. Tables 2 and 3 show the evaluation results of boiling water ion extracted by ion chromatography and iron content by ICP emission spectroscopy. The other evaluation results are shown in Tables 4 and 5.

[イオンクロマトによる煮沸抽出水ナトリウムイオン]
所定量のフィルム状接着剤を用いて、圧縮プレス成形機にて180℃で10分加熱し、プレスから取り出した後、さらに乾燥機中にて180℃で50分加熱することにより、硬化物試験片を得た。このようにして得られた硬化物1gを純水50cc中に、121℃にて20h抽出した。この抽出水について、DIONEX製イオンクロマト測定装置DX−300を用いて、ナトリウムイオン濃度を測定した。ナトリウムイオンの含有率は、硬化物に対するナトリウムイオンの重量分率(ppm)で示した。
[Boiled water ion extracted by ion chromatography]
Using a predetermined amount of film adhesive, heat at 180 ° C. for 10 minutes in a compression press molding machine, take out from the press, and further heat at 180 ° C. in a dryer for 50 minutes to make a cured product test. I got a piece. 1 g of the cured product thus obtained was extracted in 50 cc of pure water at 121 ° C. for 20 hours. About this extracted water, the sodium ion density | concentration was measured using the ion chromatography measuring apparatus DX-300 made from DIONEX. The content of sodium ions was expressed as a weight fraction (ppm) of sodium ions relative to the cured product.

[ICP発光分光分析法による鉄分]
フィルム状接着剤を硬化させずにそのままで用いた。所定量のフィルム状接着剤を燃焼してアルミナ残留分だけとし、二硫酸塩融解法により調整した後に、JIS R 1649(ファインセラミックス用アルミナ微紛末の化学分析方法)に準拠し、日本ジャーレルアッシュ製ICAP757型測定装置を用いて、測定波長259.94nmにて、鉄の含有率を測定した。鉄の含有率は、フィルム状接着剤に対する鉄元素の重量分率(ppm)で示した。
[Iron content by ICP emission spectroscopy]
The film adhesive was used as it was without curing. A predetermined amount of film adhesive is burned to make only the alumina residue, adjusted by the disulfate melting method, and in accordance with JIS R 1649 (chemical analysis method for fine powder of alumina fine powder). The iron content was measured at a measurement wavelength of 259.94 nm using an Ash ICAP757 type measuring device. The iron content was shown by the weight fraction (ppm) of the iron element with respect to the film adhesive.

[熱膨張係数、ガラス転移温度]
フィルム状接着剤を180℃にて1時間の硬化をすることにより試験片を得た。熱機械的分析装置(TMA、セイコーインスツル製SS6100)を用い、硬化物の幅3mm、チャック間距離15mmにおいて、引張モードにて昇温速度10℃/分の条件で求めた。熱膨張係数α1は0〜40℃の平均変化率で定義した。
[Thermal expansion coefficient, glass transition temperature]
A test piece was obtained by curing the film adhesive at 180 ° C. for 1 hour. Using a thermomechanical analyzer (TMA, Seiko Instruments SS6100), the cured product was 3 mm wide and the distance between chucks was 15 mm. The thermal expansion coefficient α 1 was defined as an average rate of change of 0 to 40 ° C.

[引張試験]
フィルム状接着剤を180℃にて1時間の硬化をすることにより試験片を得た。テンシロン試験機(オリエンテック製RTA−250)を用いた引張試験により、硬化物の幅10mm、チャック間距離40mmにおいて、引張速度5mm/分の条件で、弾性率、強度、及び破断伸びを求めた。
[Tensile test]
A test piece was obtained by curing the film adhesive at 180 ° C. for 1 hour. By a tensile test using a Tensilon tester (Orientec RTA-250), the elastic modulus, strength, and elongation at break were obtained under conditions of a tensile speed of 5 mm / min at a cured product width of 10 mm and a chuck distance of 40 mm. .

[銅箔ピール強度]
接着性は銅箔ピール強度により評価した。フィルム状接着剤付き銅箔を、バッチ式真空プレスを用いて、圧力10MPa、最高温度180℃で1時間維持の温度プロファイルにおいて、厚さ1.5mmのアルミニウム基板にプレスし、硬化させた。その際、アルミニウム基板面にフィルム状接着剤面を接触させ、銅箔を上面とした状態で加圧してアルミニウム基板に貼り付けた。そして、JIS C 6481(引きはがし強さ)に基づいて試験を実施した。すなわち、前記の通りに作製した試験片を前記規格に基づいた形状に切り取り、テンシロン試験機(オリエンテック製RTA−250)を用いて、銅箔を90度方向に速度50mm/分の条件にて引張ることにより、90度銅箔ピール強度を測定した。
[Copper foil peel strength]
Adhesion was evaluated by copper foil peel strength. The copper foil with film adhesive was pressed and cured on a 1.5 mm thick aluminum substrate using a batch type vacuum press in a temperature profile maintained at a pressure of 10 MPa and a maximum temperature of 180 ° C. for 1 hour. At that time, the film-like adhesive surface was brought into contact with the aluminum substrate surface, and pressure was applied with the copper foil as the upper surface, and the aluminum substrate surface was attached to the aluminum substrate. And the test was implemented based on JIS C 6481 (peeling strength). That is, the test piece prepared as described above was cut into a shape based on the standard, and using a Tensilon tester (Orientec RTA-250), the copper foil was rotated in the direction of 90 degrees at a speed of 50 mm / min. The 90 degree copper foil peel strength was measured by pulling.

[熱伝導率]
所定量のフィルム状接着剤を用いて、圧縮プレス成形機にて180℃で10分加熱し、プレスから取り出した後、さらに乾燥機中にて180℃で50分加熱することにより、直径50mm、厚さ5mmの円盤状試験片を得た。この試験片を、英弘精機製HC−110を用いて、定常法により熱伝導率を測定した。
[Thermal conductivity]
Using a predetermined amount of film adhesive, heated at 180 ° C. for 10 minutes in a compression press molding machine, taken out from the press, and further heated at 180 ° C. in a dryer for 50 minutes, a diameter of 50 mm, A disk-shaped test piece having a thickness of 5 mm was obtained. The thermal conductivity of this test piece was measured by a stationary method using HC-110 manufactured by Eihiro Seiki.

[絶縁破壊電圧]
耐電圧特性については絶縁破壊電圧により評価した。先ず、フィルム状接着剤付き銅箔を、バッチ式真空プレスを用いて、圧力10MPa、最高温度180℃で1時間維持の温度プロファイルにおいて、厚さ1.5mmのアルミニウム基板にプレスし、硬化させた。その際、アルミニウム基板面にフィルム状接着剤面を接触させ、銅箔を上面とした状態で加圧してアルミニウム基板に貼り付けた。そして、この試験片を180×180mmに切り取り、銅箔側のそのエリア内に、1箇所当たり20×20mmの測定電極を15箇所、銅箔の不要部分を剥がし取ることにより形成した。このとき、15箇所の測定電極は互いに絶縁されていなければならない。このようにして得られた試験片を、多摩電測製TP−516UZを用いて、23℃の絶縁油中での短時間破壊試験法により測定した。各サンプルの絶縁破壊電圧の値として、電極15箇所の絶縁破壊電圧測定値の平均値を採用した。
[Dielectric breakdown voltage]
Withstand voltage characteristics were evaluated by dielectric breakdown voltage. First, a copper foil with a film adhesive was pressed and cured on an aluminum substrate having a thickness of 1.5 mm using a batch type vacuum press in a temperature profile maintained at a pressure of 10 MPa and a maximum temperature of 180 ° C. for 1 hour. . At that time, the film-like adhesive surface was brought into contact with the aluminum substrate surface, and pressure was applied with the copper foil as the upper surface, and the aluminum substrate surface was attached to the aluminum substrate. And this test piece was cut out to 180x180mm, and it formed by peeling off the unnecessary part of copper foil, 15 measurement electrodes of 20x20mm per location in the area on the copper foil side. At this time, the 15 measurement electrodes must be insulated from each other. The test piece thus obtained was measured by a short time destructive test method in insulating oil at 23 ° C. using TP-516UZ manufactured by Tama Densetsu. As the dielectric breakdown voltage value of each sample, the average value of the dielectric breakdown voltage measured values at 15 locations of the electrodes was adopted.

結果を表4、5に示すが、本発明で規定した条件を満たす実施例1〜10は全て熱伝導性に優れ、加えて、耐電圧特性及び接着性の面においても優れていることが確認できた。優れた熱伝導性は、特に、高いアルミナ粉末の含有率、アルミナ粉末の粒子径分布による影響が大きいと推測される。一方、優れた耐電圧特性は、特に、ナトリウムイオンや鉄分等の金属性不純物の含有率が低いことによる影響と、アルミナ粉末の粒子径分布による影響が大きいと推測される。   The results are shown in Tables 4 and 5. Examples 1 to 10 satisfying the conditions defined in the present invention are all excellent in thermal conductivity, and in addition, confirmed in terms of withstand voltage characteristics and adhesiveness. did it. It is estimated that the excellent thermal conductivity is particularly affected by the high alumina powder content and the particle size distribution of the alumina powder. On the other hand, it is presumed that the excellent withstand voltage characteristics are particularly influenced by the low content of metallic impurities such as sodium ions and iron and by the particle size distribution of the alumina powder.

一方、本発明で規定した条件を満たしていない比較例1〜10は、実施例ほどこれらの特性が同時には優れてはいない。すなわち比較例1、2については、樹脂組成物の固形分当たりの煮沸抽出水ナトリウムイオンが20ppmより大きく、本発明で規定した条件を充たしていないため、耐電圧特性が実施例ほど優れてはいない。比較例3については、樹脂組成物の固形分当たりのICP発光分光分析法による鉄分が100ppmより大きく、本発明で規定した条件を充たしていないことから、耐電圧特性が実施例ほど優れてはいない。比較例4〜6については、結晶性の球状アルミナの粒子径分布が、本発明で規定した条件を充たしていないため、耐電圧特性が実施例ほど優れてはいない。比較例7については、結晶性の球状アルミナの粒子径分布が、本発明で規定した条件を充たしていないため、熱伝導性、耐電圧特性が実施例ほど優れてはいない。比較例8については、全アルミナ粉末中、結晶性の球状アルミナの割合が、本発明で規定した条件を充たしていないため、熱伝導性、耐電圧特性、接着性ともに実施例ほど優れてはいない。比較例9については、樹脂組成物の固形分当たりのアルミナ粉末の含有率が86重量%より小さく、本発明で規定した条件を充たしていないため、熱伝導性が実施例ほど優れてはいない。比較例10については、アルミナ粉末の最大粒子径が120μmより大きく、本発明で規定した条件を充たしていないため、フィルム状接着剤付き銅箔、及びフィルム状接着剤の加工性が著しく劣り、絶縁接着層の表面状態が著しく悪く、今回の一連の評価をすることができなかった。本発明の目的には不適である。   On the other hand, Comparative Examples 1 to 10 that do not satisfy the conditions defined in the present invention are not as excellent in these characteristics as the examples. That is, with respect to Comparative Examples 1 and 2, the boiling extracted water sodium ion per solid content of the resin composition is greater than 20 ppm and does not satisfy the conditions defined in the present invention, so the withstand voltage characteristics are not as excellent as the examples. . With respect to Comparative Example 3, the withstand voltage characteristic is not as excellent as that of the example because the iron content per solid content of the resin composition is greater than 100 ppm and does not satisfy the conditions defined in the present invention. . About Comparative Examples 4-6, since the particle diameter distribution of crystalline spherical alumina does not satisfy the conditions prescribed | regulated by this invention, a withstand voltage characteristic is not as excellent as an Example. In Comparative Example 7, the particle size distribution of the crystalline spherical alumina does not satisfy the conditions defined in the present invention, so the thermal conductivity and the withstand voltage characteristics are not as excellent as those of the examples. In Comparative Example 8, since the ratio of crystalline spherical alumina in the total alumina powder does not satisfy the conditions defined in the present invention, the thermal conductivity, withstand voltage characteristics, and adhesiveness are not as excellent as in the examples. . About Comparative Example 9, since the content rate of the alumina powder per solid content of the resin composition is smaller than 86% by weight and does not satisfy the conditions defined in the present invention, the thermal conductivity is not as excellent as the example. For Comparative Example 10, since the maximum particle diameter of the alumina powder is larger than 120 μm and does not satisfy the conditions defined in the present invention, the copper foil with film adhesive and the workability of the film adhesive are remarkably inferior. The surface condition of the adhesive layer was extremely poor, and this series of evaluations could not be performed. It is unsuitable for the purposes of the present invention.

なお、表2、3において、表中の配合量の数値は重量部を示す。ただし、アルミナ粉末の含有率は樹脂組成物の固形分当たりの重量%を示す。硬化促進剤(1)の配合量は、全ての実施例及び比較例において、0.15(重量部)の一定としたので、記載を省略している。また、全ての実施例及び比較例において、溶剤はDMAC(N,N−ジメチルアセトアミド)を使用したので、記載を省略している。表2、3においては、樹脂組成物の固形分当たりの煮沸抽出水ナトリウムイオン、及びICP発光分光分析法による鉄分の測定結果も併せて示す。   In Tables 2 and 3, the numerical values of the amounts in the tables indicate parts by weight. However, the content rate of alumina powder shows the weight% per solid content of a resin composition. Since the blending amount of the curing accelerator (1) is constant at 0.15 (parts by weight) in all examples and comparative examples, the description is omitted. Moreover, in all the Examples and Comparative Examples, since the solvent used is DMAC (N, N-dimethylacetamide), the description is omitted. In Table 2 and 3, the measurement result of the iron content by boiling extraction water sodium ion per solid content of a resin composition and ICP emission spectroscopy is also shown.

Figure 2007246861
Figure 2007246861

Figure 2007246861
Figure 2007246861

Figure 2007246861
Figure 2007246861

Figure 2007246861
Figure 2007246861

Claims (4)

(A)エポキシ樹脂、(B)硬化剤、(C)硬化促進剤、及び(D)アルミナ粉末を含有する樹脂組成物であって、
樹脂組成物の固形分当たりの(D)アルミナ粉末の含有率が86〜95重量%、(D)アルミナ粉末の最大粒子径が120μm以下、及び(D)アルミナ粉末中での結晶性の球状アルミナの割合が90重量%以上であり、
上記結晶性の球状アルミナの粒子径分布が、平均粒子径D50が35〜50μmであると共に[体積平均粒子径]/[個数平均粒子径]が1.2〜2.0の範囲のものが30〜50重量%、平均粒子径D50が5〜15μmであると共に[体積平均粒子径]/[個数平均粒子径]が2.0〜3.5の範囲のものが30〜50重量%、及び平均粒子径D50が0.1〜2μmのものが10〜30重量%であり、かつ、
樹脂組成物の固形分当たりの煮沸抽出水ナトリウムイオンが20ppm以下であると共にICP発光分光分析法で検出される鉄分が100ppm以下であることを特徴とする樹脂組成物。
(A) an epoxy resin, (B) a curing agent, (C) a curing accelerator, and (D) a resin composition containing alumina powder,
The content of (D) alumina powder per solid content of the resin composition is 86 to 95% by weight, (D) the maximum particle size of alumina powder is 120 μm or less, and (D) crystalline spherical alumina in alumina powder Is 90% by weight or more,
The crystalline spherical alumina has a particle size distribution in which the average particle size D 50 is 35 to 50 μm and the [volume average particle size] / [number average particle size] is in the range of 1.2 to 2.0. 30 to 50% by weight, 30 to 50% by weight having an average particle diameter D 50 of 5 to 15 μm and [volume average particle diameter] / [number average particle diameter] in the range of 2.0 to 3.5, And an average particle diameter D 50 of 0.1 to 2 μm is 10 to 30% by weight, and
A resin composition characterized in that boiled extracted water sodium ion per solid content of the resin composition is 20 ppm or less and iron content detected by ICP emission spectrometry is 100 ppm or less.
請求項1に記載の樹脂組成物を溶剤に溶解又は分散させて得たことを特徴とするワニス。   A varnish obtained by dissolving or dispersing the resin composition according to claim 1 in a solvent. 請求項1に記載の樹脂組成物を支持体上に塗布して乾燥または硬化させてフィルム状に形成したことを特徴とするフィルム状接着剤。   A film adhesive, wherein the resin composition according to claim 1 is applied on a support and dried or cured to form a film. 請求項1に記載の樹脂組成物をフィルム状に形成してなるフィルム状接着剤付き銅箔。   A copper foil with a film adhesive formed by forming the resin composition according to claim 1 into a film.
JP2006076126A 2006-03-20 2006-03-20 Resin composition, varnish obtained using this resin composition, film adhesive and copper foil with film adhesive Active JP4890063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006076126A JP4890063B2 (en) 2006-03-20 2006-03-20 Resin composition, varnish obtained using this resin composition, film adhesive and copper foil with film adhesive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006076126A JP4890063B2 (en) 2006-03-20 2006-03-20 Resin composition, varnish obtained using this resin composition, film adhesive and copper foil with film adhesive

Publications (2)

Publication Number Publication Date
JP2007246861A true JP2007246861A (en) 2007-09-27
JP4890063B2 JP4890063B2 (en) 2012-03-07

Family

ID=38591491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006076126A Active JP4890063B2 (en) 2006-03-20 2006-03-20 Resin composition, varnish obtained using this resin composition, film adhesive and copper foil with film adhesive

Country Status (1)

Country Link
JP (1) JP4890063B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214479A (en) * 2007-03-02 2008-09-18 Ngk Spark Plug Co Ltd Inorganic material component
WO2009031536A1 (en) * 2007-09-05 2009-03-12 Sekisui Chemical Co., Ltd. Insulating sheet and multilayer structure
JP2010070653A (en) * 2008-09-18 2010-04-02 Sekisui Chem Co Ltd Insulating sheet and laminated structure
JP2010155981A (en) * 2008-12-29 2010-07-15 Nan Ya Plast Corp High thermal-conductive, halogen-free, flame-retardant resin composition, and prepreg and coating thereof
JP2011225856A (en) * 2010-03-31 2011-11-10 Toray Ind Inc Adhesive composition for electronic device and adhesive sheet for electronic device using the same
WO2011161902A1 (en) * 2010-06-22 2011-12-29 住友ベークライト株式会社 Resin composition used to form resin layer of metal base substrate, metal base substrate, and method for producing metal base substrate
JP2012017405A (en) * 2010-07-08 2012-01-26 Nippon Steel Chem Co Ltd Epoxy resin composition, molding, varnish, film adhesive, and film adhesive-coated copper foil
JP2012077123A (en) * 2010-09-30 2012-04-19 Nippon Steel Chem Co Ltd Adhesive resin composition, cured product of the same, and adhesive film
JP2012092297A (en) * 2010-09-30 2012-05-17 Nippon Steel Chem Co Ltd Adhesive resin composition, its cured product and adhesive film
WO2012073851A1 (en) * 2010-12-01 2012-06-07 東レ株式会社 Adhesive composition, adhesive sheet, and semiconductor device using the adhesive composition or the adhesive sheet
JP5126233B2 (en) * 2007-10-05 2013-01-23 日立化成工業株式会社 Adhesive composition, circuit connection material using the same, circuit member connection method, circuit connection body, and cured product of adhesive composition
WO2013069468A1 (en) * 2011-11-09 2013-05-16 日本化薬株式会社 Heat-radiating coating and structure
WO2017002315A1 (en) * 2015-06-29 2017-01-05 タツタ電線株式会社 Heat dissipation material adhering composition, heat dissipation material having adhesive, inlay substrate, and method for manufacturing same
KR20170131475A (en) 2015-03-27 2017-11-29 도레이 카부시키가이샤 ADHESIVE COMPOSITION SHEET, PROCESS FOR PRODUCING THE SAME,
CN108102577A (en) * 2017-12-18 2018-06-01 中国科学院深圳先进技术研究院 A kind of high dielectric adhesive tape and preparation method thereof
JP2018522968A (en) * 2015-06-08 2018-08-16 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA High thermal conductivity low pressure formable hot melt
WO2018186030A1 (en) * 2017-04-07 2018-10-11 パナソニックIpマネジメント株式会社 Resin composition, prepreg, metal-clad laminate, printed wiring board, and flex-rigid printed wiring board
WO2019078044A1 (en) * 2017-10-18 2019-04-25 株式会社スリーボンド Thermally conductive resin composition, cured object, and heat radiation method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05132576A (en) * 1991-02-14 1993-05-28 Ciba Geigy Ag Filler for heat-conductive plastic material, resin composition therefor and use thereof
JPH05222270A (en) * 1992-02-07 1993-08-31 Shin Etsu Chem Co Ltd Fluid epoxy resin composition and its cured material
JPH07176548A (en) * 1993-12-20 1995-07-14 Shin Etsu Chem Co Ltd Semiconductor device
JPH11269352A (en) * 1998-03-23 1999-10-05 Nitto Denko Corp Epoxy resin composition for sealing semiconductor
JP2000265038A (en) * 1999-03-16 2000-09-26 Nitto Denko Corp Semiconductor sealing epoxy resin composition and semiconductor device using the same
JP2001348488A (en) * 2000-06-06 2001-12-18 Matsushita Electric Works Ltd Heat-conductive resin composition, prepreg, radiating circuit board and radiating heating part
JP2002309067A (en) * 2001-04-16 2002-10-23 Matsushita Electric Works Ltd Epoxy resin composition for sealing and semiconductor device
JP2003306594A (en) * 2002-04-17 2003-10-31 Hitachi Ltd Epoxy resin composition and rotating machine using the same
JP2005206725A (en) * 2004-01-23 2005-08-04 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05132576A (en) * 1991-02-14 1993-05-28 Ciba Geigy Ag Filler for heat-conductive plastic material, resin composition therefor and use thereof
JPH05222270A (en) * 1992-02-07 1993-08-31 Shin Etsu Chem Co Ltd Fluid epoxy resin composition and its cured material
JPH07176548A (en) * 1993-12-20 1995-07-14 Shin Etsu Chem Co Ltd Semiconductor device
JPH11269352A (en) * 1998-03-23 1999-10-05 Nitto Denko Corp Epoxy resin composition for sealing semiconductor
JP2000265038A (en) * 1999-03-16 2000-09-26 Nitto Denko Corp Semiconductor sealing epoxy resin composition and semiconductor device using the same
JP2001348488A (en) * 2000-06-06 2001-12-18 Matsushita Electric Works Ltd Heat-conductive resin composition, prepreg, radiating circuit board and radiating heating part
JP2002309067A (en) * 2001-04-16 2002-10-23 Matsushita Electric Works Ltd Epoxy resin composition for sealing and semiconductor device
JP2003306594A (en) * 2002-04-17 2003-10-31 Hitachi Ltd Epoxy resin composition and rotating machine using the same
JP2005206725A (en) * 2004-01-23 2005-08-04 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214479A (en) * 2007-03-02 2008-09-18 Ngk Spark Plug Co Ltd Inorganic material component
WO2009031536A1 (en) * 2007-09-05 2009-03-12 Sekisui Chemical Co., Ltd. Insulating sheet and multilayer structure
JP5126233B2 (en) * 2007-10-05 2013-01-23 日立化成工業株式会社 Adhesive composition, circuit connection material using the same, circuit member connection method, circuit connection body, and cured product of adhesive composition
KR101403282B1 (en) 2007-10-05 2014-06-02 히타치가세이가부시끼가이샤 Adhesive composition, circuit connecting material using the same, method for connecting circuit members, and circuit connection structure
JP2013058764A (en) * 2007-10-05 2013-03-28 Hitachi Chemical Co Ltd Adhesive composition and circuit connection material using the same, and connection method of circuit member and circuit connection body
JP2010070653A (en) * 2008-09-18 2010-04-02 Sekisui Chem Co Ltd Insulating sheet and laminated structure
JP2010155981A (en) * 2008-12-29 2010-07-15 Nan Ya Plast Corp High thermal-conductive, halogen-free, flame-retardant resin composition, and prepreg and coating thereof
JP2011225856A (en) * 2010-03-31 2011-11-10 Toray Ind Inc Adhesive composition for electronic device and adhesive sheet for electronic device using the same
WO2011161902A1 (en) * 2010-06-22 2011-12-29 住友ベークライト株式会社 Resin composition used to form resin layer of metal base substrate, metal base substrate, and method for producing metal base substrate
JP2012017405A (en) * 2010-07-08 2012-01-26 Nippon Steel Chem Co Ltd Epoxy resin composition, molding, varnish, film adhesive, and film adhesive-coated copper foil
JP2012077123A (en) * 2010-09-30 2012-04-19 Nippon Steel Chem Co Ltd Adhesive resin composition, cured product of the same, and adhesive film
JP2012092297A (en) * 2010-09-30 2012-05-17 Nippon Steel Chem Co Ltd Adhesive resin composition, its cured product and adhesive film
CN102559113A (en) * 2010-09-30 2012-07-11 新日铁化学株式会社 Adhesive Resin Composition, Its Cured Product And Adhesive Film
WO2012073851A1 (en) * 2010-12-01 2012-06-07 東レ株式会社 Adhesive composition, adhesive sheet, and semiconductor device using the adhesive composition or the adhesive sheet
CN103228753A (en) * 2010-12-01 2013-07-31 东丽株式会社 Adhesive composition, adhesive sheet, and semiconductor device using the adhesive composition or the adhesive sheet
CN103228753B (en) * 2010-12-01 2015-07-22 东丽株式会社 Adhesive composition, adhesive sheet, and semiconductor device using the adhesive composition or the adhesive sheet
JP5853704B2 (en) * 2010-12-01 2016-02-09 東レ株式会社 Adhesive composition, adhesive sheet, and semiconductor device using the same
TWI571501B (en) * 2010-12-01 2017-02-21 東麗股份有限公司 Adhesive composition, adhesive sheet and semiconductor device uses the same
WO2013069468A1 (en) * 2011-11-09 2013-05-16 日本化薬株式会社 Heat-radiating coating and structure
KR20170131475A (en) 2015-03-27 2017-11-29 도레이 카부시키가이샤 ADHESIVE COMPOSITION SHEET, PROCESS FOR PRODUCING THE SAME,
US10563095B2 (en) 2015-03-27 2020-02-18 Toray Industries, Inc. Adhesive composition sheet, method of producing same, and semiconductor device
JP2018522968A (en) * 2015-06-08 2018-08-16 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA High thermal conductivity low pressure formable hot melt
WO2017002315A1 (en) * 2015-06-29 2017-01-05 タツタ電線株式会社 Heat dissipation material adhering composition, heat dissipation material having adhesive, inlay substrate, and method for manufacturing same
US11236227B2 (en) 2015-06-29 2022-02-01 Tatsuta Electric Wire & Cable Co., Ltd. Heat dissipation material adhering composition, heat dissipation material having adhesive, inlay substrate, and method for manufacturing same
JPWO2017002315A1 (en) * 2015-06-29 2018-04-19 タツタ電線株式会社 Composition for adhering heat dissipation material, heat dissipation material with adhesive, inlay substrate, and manufacturing method thereof
WO2018186030A1 (en) * 2017-04-07 2018-10-11 パナソニックIpマネジメント株式会社 Resin composition, prepreg, metal-clad laminate, printed wiring board, and flex-rigid printed wiring board
JP2018177906A (en) * 2017-04-07 2018-11-15 パナソニックIpマネジメント株式会社 Resin composition, prepreg, metal-clad laminate, printed wiring board, and flex-rigid printed wiring board
KR102480537B1 (en) * 2017-04-07 2022-12-22 파나소닉 아이피 매니지먼트 가부시키가이샤 Resin compositions, prepregs, metal clad laminates, printed wiring boards and flex-rigid printed wiring boards
CN110121532A (en) * 2017-04-07 2019-08-13 松下知识产权经营株式会社 Resin combination, prepreg, metal-clad, printed circuit board and flexible rigid print circuit board
KR20190130121A (en) * 2017-04-07 2019-11-21 파나소닉 아이피 매니지먼트 가부시키가이샤 Resin composition, prepreg, metal clad laminate, printed wiring board and flex rigid printed wiring board
WO2019078044A1 (en) * 2017-10-18 2019-04-25 株式会社スリーボンド Thermally conductive resin composition, cured object, and heat radiation method
JPWO2019078044A1 (en) * 2017-10-18 2020-11-05 株式会社スリーボンド Thermally conductive resin composition, cured product and heat dissipation method
CN111247207A (en) * 2017-10-18 2020-06-05 三键有限公司 Thermally conductive resin composition, cured product, and heat dissipation method
CN111247207B (en) * 2017-10-18 2022-11-08 三键有限公司 Thermally conductive resin composition, cured product, and heat dissipation method
CN108102577B (en) * 2017-12-18 2020-12-25 中国科学院深圳先进技术研究院 High-dielectric adhesive tape and preparation method thereof
CN108102577A (en) * 2017-12-18 2018-06-01 中国科学院深圳先进技术研究院 A kind of high dielectric adhesive tape and preparation method thereof

Also Published As

Publication number Publication date
JP4890063B2 (en) 2012-03-07

Similar Documents

Publication Publication Date Title
JP4890063B2 (en) Resin composition, varnish obtained using this resin composition, film adhesive and copper foil with film adhesive
JP5761639B2 (en) Adhesive resin composition, cured product thereof, and adhesive film
US9029438B2 (en) Thermosetting resin composition, B-stage heat conductive sheet, and power module
EP1923426B1 (en) Resin composition and hybrid integrated circuit board making use of the same
JP2013189625A (en) High thermal conductive resin cured product, high thermal conductive semicured resin film, and high thermal conductive resin composition
WO2015059950A1 (en) Polyimide resin composition, and heat-conductive adhesive film produced using same
JP2003286391A (en) Epoxy resin composition, varnish, film adhesive made by using epoxy resin composition, and its cured material
JP2003286390A (en) Epoxy resin composition, varnish, film adhesive made by using epoxy resin composition, and its cured material
JP2014193965A (en) High thermal conductive resin composition, high thermal conductive semi-cured resin film and high thermal conductive resin cured product
TWI543312B (en) Method for manufacturing parts for laminated bodies and power semiconductor modules
JP5622267B2 (en) Adhesive resin composition, cured product thereof, and adhesive film
JP2008297429A (en) Adhesive composition, adhesive sheet and copper foil with adhesive agent
JP6927717B2 (en) Insulation materials and electronic components
JP2014189701A (en) High thermal conductive resin cured product, high thermal conductive semi-cured resin film and high thermal conductive resin composition
JP2004161828A (en) Resin composition for forming film, and film adhesive
JP2004123874A (en) Film-forming resin composition and film-like adhesive
JP2017022265A (en) Metal circuit board and method for manufacturing the same
JP5767540B2 (en) B-stage film, multilayer substrate and laminated film which are episulfide resin materials
JP2015193704A (en) High heat conductive ceramic powder-containing resin composition and cured article thereof
JP2013206902A (en) Manufacturing method of component for power semiconductor module
WO2015178393A1 (en) Metal-foil-clad substrate, circuit board, and substrate with electronic component mounted thereon
WO2021125248A1 (en) Heat-dissipating resin composition for chip resistor protective film, chip resistor protective film, and electronic component
JP2018188628A (en) Thermosetting material
JP6838939B2 (en) Insulating resin composition for metal base plate circuit board and its manufacturing method, its insulating resin cured product, and metal base plate circuit board using it
JP2013194094A (en) Resin composition, resin film and cured material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111214

R150 Certificate of patent or registration of utility model

Ref document number: 4890063

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250